1
|
Guo W, Tan J, Wang L, Egelston CA, Simons DL, Ochoa A, Lim MH, Wang L, Solomon S, Waisman J, Wei CH, Hoffmann C, Song J, Schmolze D, Lee PP. Tumor draining lymph nodes connected to cold triple-negative breast cancers are characterized by Th2-associated microenvironment. Nat Commun 2024; 15:8592. [PMID: 39366933 PMCID: PMC11452381 DOI: 10.1038/s41467-024-52577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
Tumor draining lymph nodes (TDLN) represent a key component of the tumor-immunity cycle. There are few studies describing how TDLNs impact lymphocyte infiltration into tumors. Here we directly compare tumor-free TDLNs draining "cold" and "hot" human triple negative breast cancers (TDLNCold and TDLNHot). Using machine-learning-based self-correlation analysis of immune gene expression, we find unbalanced intranodal regulations within TDLNCold. Two gene pairs (TBX21/GATA3-CXCR1) with opposite correlations suggest preferential priming of T helper 2 (Th2) cells by mature dendritic cells (DC) within TDLNCold. This is validated by multiplex immunofluorescent staining, identifying more mature-DC-Th2 spatial clusters within TDLNCold versus TDLNHot. Associated with this Th2 priming preference, more IL4 producing mast cells (MC) are found within sinus regions of TDLNCold. Downstream, Th2-associated fibrotic TME is found in paired cold tumors with increased Th2/T-helper-1-cell (Th1) ratio, upregulated fibrosis growth factors, and stromal enrichment of cancer associated fibroblasts. These findings are further confirmed in a validation cohort and public genomic data. Our results reveal a potential role of IL4+ MCs within TDLNs, associated with Th2 polarization and reduced immune infiltration into tumors.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jiayi Tan
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Lei Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- International Cancer Center, Shenzhen University Medical School, 518060, Shenzhen, Guangdong, China
| | - Colt A Egelston
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Diana L Simons
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Aaron Ochoa
- Department of Surgery, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Min Hui Lim
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Genomics Core, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Lu Wang
- Mork Family Department of Chemical Engineering & Material Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shawn Solomon
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - James Waisman
- Department of Medical Oncology, City of Hope, Duarte, CA, 91010, USA
| | - Christina H Wei
- Department of Pathology, City of Hope, Duarte, CA, 91010, USA
- Pathology Laboratory Administration, Los Angeles General Medical Center, Los Angeles, CA, 90033, USA
| | - Caroline Hoffmann
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Owkin, Inc., New York, NY, 10003, USA
| | - Joo Song
- Department of Pathology, City of Hope, Duarte, CA, 91010, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope, Duarte, CA, 91010, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
2
|
Rodríguez-Bejarano OH, Parra-López C, Patarroyo MA. A review concerning the breast cancer-related tumour microenvironment. Crit Rev Oncol Hematol 2024; 199:104389. [PMID: 38734280 DOI: 10.1016/j.critrevonc.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer (BC) is currently the most common malignant tumour in women and one of the leading causes of their death around the world. New and increasingly personalised diagnostic and therapeutic tools have been introduced over the last few decades, along with significant advances regarding the study and knowledge related to BC. The tumour microenvironment (TME) refers to the tumour cell-associated cellular and molecular environment which can influence conditions affecting tumour development and progression. The TME is composed of immune cells, stromal cells, extracellular matrix (ECM) and signalling molecules secreted by these different cell types. Ever deeper understanding of TME composition changes during tumour development and progression will enable new and more innovative therapeutic strategies to become developed for targeting tumours during specific stages of its evolution. This review summarises the role of BC-related TME components and their influence on tumour progression and the development of resistance to therapy. In addition, an account on the modifications in BC-related TME components associated with therapy is given, and the completed or ongoing clinical trials related to this topic are presented.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia; Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; PhD Programme in Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Carlos Parra-López
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| |
Collapse
|
3
|
Azimi H, Jafari A, Maralani M, Davoodi H. The role of histamine and its receptors in breast cancer: from pathology to therapeutic targets. Med Oncol 2024; 41:190. [PMID: 38951252 DOI: 10.1007/s12032-024-02437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Breast cancer is the most common malignancy in women, and despite the development of new treatment methods and the decreasing mortality rate in recent years, one of the clinical problems in breast cancer treatment is chronic inflammation in the tumor microenvironment. Histamine, an inflammatory mediator, is produced by tumor cells and can induce chronic inflammation and the growth of some tumors by recruiting inflammatory cells. It can also affect tumor physiopathology, antitumor treatment efficiency, and patient survival. Antihistamines, as histamine receptor antagonists, play a role in modulating the effects of these receptors in tumor cells and can affect some treatment methods for breast cancer therapy; in this review, we investigate the role of histamine, its receptors, and antihistamines in breast cancer pathology and treatment methods.
Collapse
Affiliation(s)
- Hossein Azimi
- Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Afifeh Jafari
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahafarin Maralani
- Postdoctoral Fellow Atlantic Cancer Research Institute (ACRI) Dr.Georges-L.Dumont University Hospital Centre, Moncton, NewBrunswick, Canada
| | - Homa Davoodi
- Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Postdoctoral Fellow Atlantic Cancer Research Institute (ACRI) Dr.Georges-L.Dumont University Hospital Centre, Moncton, NewBrunswick, Canada.
| |
Collapse
|
4
|
Gharote H, Bhowate R, Dangore-Khasbage S. Enzyme-linked immunosorbent assay and immunohistochemical analysis of mast cell related biochemicals in oral submucous fibrosis. F1000Res 2024; 12:1288. [PMID: 38826574 PMCID: PMC11140300 DOI: 10.12688/f1000research.141179.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Oral submucous fibrosis (OSMF), a potentially malignant disorder, is developed by progressive fibrous tissue deposition in connective tissue along with atrophy of oral mucosa. Histological sections also show the mast cell infiltration in submucosa which may indicate their possible role in this entity. Abundant availability of biochemicals in mast cells like histamine and serine proteases like chymase may be released and play specific pathways in the disease pathophysiology. Possibly, if the histamine release has some part to play, diamine oxidase may also be found to have a relationship as it metabolizes histamine. The present study is proposed to identify the presence of chymase, histamine, and diamine oxidase in both, serum as well as tissue by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) respectively. This study may provide probable insight into the mast cell-related chemicals and their association with OSMF.
Collapse
Affiliation(s)
- Harshkant Gharote
- Oral Medicine and Radiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| | - Rahul Bhowate
- Oral Medicine and Radiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| | - Suwarna Dangore-Khasbage
- Oral Medicine and Radiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| |
Collapse
|
5
|
Xie Z, Zhou J, Zhang X, Li Z. Clinical potential of microbiota in thyroid cancer therapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166971. [PMID: 38029942 DOI: 10.1016/j.bbadis.2023.166971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Thyroid cancer is one of the most common tumors of the endocrine system because of its rapid and steady increase in incidence and prevalence. In recent years, a growing number of studies have identified a key role for the gut, thyroid tissue and oral microbiota in the regulation of metabolism and the immune system. A growing body of evidence has conclusively demonstrated that the microbiota influences tumor formation, prevention, diagnosis, and treatment. We provide extensive information in which oral, gut, and thyroid microbiota have an effect on thyroid cancer development in this review. In addition, we thoroughly discuss the various microbiota species, their potential functions, and the underlying mechanisms for thyroid cancer. The microbiome offers a unique opportunity to improve the effectiveness of immunotherapy and radioiodine therapy thyroid cancer by maintaining the right type of microbiota, and holds great promise for improving clinical outcomes and quality of life for thyroid cancer patients.
Collapse
Affiliation(s)
- Zilan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jiating Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Xuan Zhang
- Department of General Surgery, The Second People's Hospital of Hunan, Furong Middle Road, Changsha 410078, PR China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| |
Collapse
|
6
|
Xu T, Xu M, Xu Y, Cai X, Brenner MJ, Twigg J, Fei Z, Chen C. Developing and validating the model of tumor-infiltrating immune cell to predict survival in patients receiving radiation therapy for head and neck squamous cell carcinoma. Transl Cancer Res 2024; 13:394-412. [PMID: 38410204 PMCID: PMC10894341 DOI: 10.21037/tcr-23-2345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024]
Abstract
Background Radiotherapy (RT) is a mainstay of head and neck squamous cell carcinoma (HNSCC) treatment. Due to the influence of RT on tumor cells and immune/stromal cells in microenvironment, some studies suggest that immunologic landscape could shape treatment response. To better predict the survival based on genomic data, we developed a prognostic model using tumor-infiltrating immune cell (TIIC) signature to predict survival in patients undergoing RT for HNSCC. Methods Gene expression data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Data from HNSCC patients undergoing RT were extracted for analysis. TIICs prevalence in HNSCC patients was quantified by gene set variation analysis (GSVA) algorithm. TIICs and post-RT survival were analyzed using univariate Cox regression analysis and used to construct and validate a tumor-infiltrating cells score (TICS). Results Five of 26 immune cells were significantly associated with HNSCC prognosis in the training cohort (all P<0.05). Kaplan-Meier (KM) survival curves showed that patients in the high TICS group had better survival outcomes (log-rank test, P<0.05). Univariate analyses demonstrated that the TICS had independent prognostic predictive ability for RT outcomes (P<0.05). Patients with high TICS scores showed significantly higher expression of immune-related genes. Functional pathway analyses further showed that the TICS was significantly related to immune-related biological process. Stratified analyses supported integrating TICS and tumor mutation burden (TMB) into individualized treatment planning, as an adjunct to classification by clinical stage and human papillomavirus (HPV) infection. Conclusions The TICS model supports a personalized medicine approach to RT for HNSCC. Increased prevalence of TIIC within the tumor microenvironment (TME) confers a better prognosis for patients undergoing treatment for HNSCC.
Collapse
Affiliation(s)
- Ting Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Mengting Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yiying Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xiaojun Cai
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Michael J. Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joshua Twigg
- School of Dentistry, University of Leeds, Leeds, UK
| | - Zhaodong Fei
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Chuanben Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
7
|
Ligan C, Ma XH, Zhao SL, Zhao W. The regulatory role and mechanism of mast cells in tumor microenvironment. Am J Cancer Res 2024; 14:1-15. [PMID: 38323271 PMCID: PMC10839313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
Mast cells (MCs) have emerged as pivotal contributors to both the defensive immune response and immunomodulation. They also exhibit regulatory functions in modulating pathological processes across various allergic diseases. The impact of MC presence within tumor tissues has garnered considerable attention, yielding conflicting findings. While some studies propose that MCs within tumor tissues promote tumor initiation and progression, others advocate an opposing perspective. Notably, evidence emphasizes the dual role of MCs in cancer, both as promoters and suppressors, is crucial for optimizing cancer treatment strategies. These conflicting viewpoints have generated substantial controversy, underscoring the need for a comprehensive understanding of MC's role in tumor immune responses.
Collapse
Affiliation(s)
- Caryl Ligan
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Xin-Hua Ma
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Shu-Li Zhao
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, Jiangsu, China
| |
Collapse
|
8
|
Zhang YY, Gan YM. Screening of coexpression genes of immune cells in breast cancer tissues. Medicine (Baltimore) 2024; 103:e36211. [PMID: 38181289 PMCID: PMC10766216 DOI: 10.1097/md.0000000000036211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/30/2023] [Indexed: 01/07/2024] Open
Abstract
This study aimed to investigate immune cell infiltration (ICI) in breast cancer tissues and its impact on the prognosis of patients. The whole transcriptome sequencing data sets of breast tissue (GSE126125, GSE190275 and GSE45498) were downloaded from Gene Expression Omnibus database. Data sets, including 281 breast cancer tissue samples and 59 normal breast tissue samples. In this study, the CIBERSORT algorithm was used to calculate the infiltration content of 22 immune cells subtypes in breast cancer tissues and normal breast tissues. The ICI between normal and breast cancer tissue samples was examined through the Rank-sum test. Furthermore, Kaplan-Meier and the log-rank test were used for survival analysis. Univariate and multivariate COX analysis was used to screen the prognostic risk factors of breast cancer based on ICI. The correlation between 22 kinds of immune cells was analyzed by the Pearson test. The results of univariate COX analysis indicated that resting dendritic cells, eosinophils, resting mast cells, monocytes, and memory CD4 T cells resting were protective factors for the prognosis of breast cancer patients (hazard ratio [HR] < 1, P < .05). The activation of macrophage M0 and mast cells were also prognostic risk factors for breast cancer patients (HR > 1, P < .05). Besides, multivariate COX analysis showed that resting mast cells were independent protective factors for the prognosis of breast cancer patients (HR < 1, P < .05). Macrophage M0 and mast cell activation were independent risk factors for the prognosis of breast cancer patients (HR > 1, P < .05). High infiltration of macrophage M0 and activated mast cells is associated with poor prognosis. Meanwhile, macrophage M0 and activated mast cells promote breast cancer progression. Low infiltration of resting mast cells is associated with poor prognosis, which inhibits breast cancer progression.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Department of Laboratory Medicine, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Yi-Min Gan
- Blood Research Laboratory, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
9
|
Voorwerk L, Sanders J, Keusters MS, Balduzzi S, Cornelissen S, Duijst M, Lips EH, Sonke GS, Linn SC, Horlings HM, Kok M. Immune landscape of breast tumors with low and intermediate estrogen receptor expression. NPJ Breast Cancer 2023; 9:39. [PMID: 37179445 PMCID: PMC10182974 DOI: 10.1038/s41523-023-00543-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Immune checkpoint blockade (ICB) is currently approved for patients with triple-negative breast cancer (TNBC), whereas responses to ICB are also observed in a small subgroup of Estrogen Receptor (ER)-positive breast cancer. The cut-off for ER-positivity (≥1%) is based on likelihood of endocrine treatment response, but ER-positive breast cancer represents a very heterogeneous group. This raises the question whether selection based on ER-negativity should be revisited to select patients for ICB treatment in the context of clinical trials. Stromal tumor-infiltrating lymphocytes (sTILs) and other immune parameters are higher in TNBC compared to ER-positive breast cancer, but it is unknown whether lower ER levels are associated with more inflamed tumor microenvironments (TME). We collected a consecutive series of primary tumors from 173 HER2-negative breast cancer patients, enriched for tumors with ER expression between 1 and 99% and found levels of stromal TILs, CD8 + T cells, and PD-L1 positivity in breast tumors with ER 1-9% and ER 10-50% to be comparable to tumors with ER 0%. Expression of immune-related gene signatures in tumors with ER 1-9% and ER 10-50% was comparable to ER 0%, and higher than in tumors with ER 51-99% and ER 100%. Our results suggest that the immune landscape of ER low tumors (1-9%) and ER intermediate tumors (10-50%) mimic that of primary TNBC.
Collapse
Affiliation(s)
- Leonie Voorwerk
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joyce Sanders
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Milou S Keusters
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sara Balduzzi
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sten Cornelissen
- Core Facility Molecular Pathology & Biobanking, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maxime Duijst
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hugo M Horlings
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marleen Kok
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Li AY, Xiao HN, Zhao ZY, Xiang C, Chen ZY, Wang PX, Xia Y, Yu B, Li H, Xiao T. Prognostic and immune implications of a novel 7-methylguanosine-related microRNA signature in breast invasive carcinoma: from exploration to validation. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04849-1. [PMID: 37171615 DOI: 10.1007/s00432-023-04849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES This study aims to develop and validate a prognostic signature based on 7-methylguanosine-related (M7G-related) miRNAs for predicting prognosis and immune implications in breast invasive carcinoma (BRCA). MATERIALS AND METHODS M7G-related miRNA data of BRCA were obtained from The Cancer Genome Atlas (TCGA). Least absolute shrinkage and selection operator (LASSO)-penalized, univariate, and multivariate Cox regression analyses were used to construct the prognostic signature. Furthermore, the predictive validity was verified using Kaplan-Meier (KM) survival risk and receiver operating characteristic (ROC) plots. Internal random sampling verification was used to simplify and validate the signature. RT-qPCR was used to quantify the expression level of transcriptional profiles. The independent prognostic role of the risk score was validated using univariate and multivariate regression. Single-sample Gene Set Enrichment Analysis (ssGSEA) was used for functional and immune enrichment analysis. RESULTS A total of 18 M7G-related miRNAs were identified to construct the prognostic signature in BRCA. The low-risk group exhibited significantly higher overall survival than the high-risk group in the KM survival plot (P < 0.001). The area under the curve (AUC) for 1-, 3-, and 5-year survivals in the ROC curve were 0.737, 0.724, and 0.702, respectively. The survival significance in the training and testing cohorts was confirmed by random sampling verification. The most prominent miRNAs in the signature were the miR-7, miR-139, miR-10b, and miR-4728. Furthermore, immune scores for B, mast, and Th1 cells varied between risk groups. Our research demonstrated that CD52 was the most positively correlated gene with immune cells and functions in BRCA. CONCLUSION Our study presents a comprehensive and systematic analysis of M7G-related miRNAs to construct a prognostic signature in BRCA. The signature demonstrated excellent prognostic validity, with the risk score as an independent prognostic factor. These results provide critical evidence for further investigation of M7G miRNAs and offer new insights for BRCA patients in the context of effective immunotherapy.
Collapse
Affiliation(s)
- Ao-Yu Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Hui-Ni Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan Province, China
| | - Zi-Yue Zhao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Cheng Xiang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Zhuo-Yuan Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Ping-Xiao Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Yu Xia
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Bin Yu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Hui Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China.
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China.
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China.
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China.
| |
Collapse
|
11
|
Krishnan SN, Thanasupawat T, Arreza L, Wong GW, Sfanos K, Trock B, Arock M, Shah GG, Glogowska A, Ghavami S, Hombach-Klonisch S, Klonisch T. Human C1q Tumor Necrosis Factor 8 (CTRP8) defines a novel tryptase+ mast cell subpopulation in the prostate cancer microenvironment. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166681. [PMID: 36921737 DOI: 10.1016/j.bbadis.2023.166681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/26/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
The adipokine C1q Tumor Necrosis Factor 8 (CTRP8) is the least known member of the 15 CTRP proteins and a ligand of the relaxin receptor RXFP1. We previously demonstrated the ability of the CTRP8-RXFP1 interaction to promote motility, matrix invasion, and drug resistance. The lack of specific tools to detect CTRP8 protein severely limits our knowledge on CTRP8 biological functions in normal and tumor tissues. Here, we have generated and characterized the first specific antiserum to human CTRP8 which identified CTRP8 as a novel marker of tryptase+ mast cells (MCT) in normal human tissues and in the prostate cancer (PC) microenvironment. Using human PC tissue microarrays composed of neoplastic and corresponding tumor-adjacent prostate tissues, we have identified a significantly higher number of CTRP8+ MCT in the peritumor versus intratumor compartment of PC tissues of Gleason scores 6 and 7. Higher numbers of CTRP8+ MCT correlated with the clinical parameter of biochemical recurrence. We showed that the human MC line ROSAKIT WT expressed RXFP1 transcripts and responded to CTRP8 treatment with a small but significant increase in cell proliferation. Like the cognate RXFP1 ligand RLN-2 and the small molecule RXFP1 agonist ML-290, CTRP8 reduced degranulation of ROSAKIT WT MC stimulated by the Ca2+-ionophore A14187. In conclusion, this is the first report to identify the RXFP1 agonist CTRP8 as a novel marker of MCT and autocrine/paracrine oncogenic factor within the PC microenvironment.
Collapse
Affiliation(s)
- Sai Nivedita Krishnan
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Thatchawan Thanasupawat
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Leanne Arreza
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - G William Wong
- Dept. of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Sfanos
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bruce Trock
- Dept. of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michel Arock
- Laboratoire d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Paris, France
| | - G Girish Shah
- Dept. of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, CHU de Quebec-Laval, Quebec, Canada
| | - Aleksandra Glogowska
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Saeid Ghavami
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Sabine Hombach-Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| | - Thomas Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Dept. of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada.
| |
Collapse
|
12
|
Ruiz TFR, Colleta SJ, Dos Santos DD, Castro NFC, Cabral ÁS, Calmon MF, Rahal P, Gil CD, Girol AP, Vilamaior PSL, Leonel ECR, Taboga SR. Bisphenol A disruption promotes mammary tumor microenvironment via phenotypic cell polarization and inflammatory response. Cell Biol Int 2023; 47:1136-1146. [PMID: 36906806 DOI: 10.1002/cbin.12007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/04/2023] [Accepted: 02/20/2023] [Indexed: 03/13/2023]
Abstract
Inflammation in the established tumor microenvironment (TME) is often associated with a poor prognosis of breast cancer. Bisphenol A (BPA) is an endocrine-disrupting chemical that acts as inflammatory promoter and tumoral facilitator in mammary tissue. Previous studies demonstrated the onset of mammary carcinogenesis at aging when BPA exposure occurred in windows of development/susceptibility. We aim to investigate the inflammatory repercussions of BPA in TME in mammary gland (MG) during neoplastic development in aging. Female Mongolian gerbils were exposed to low (50 µg/kg) or high BPA (5000 µg/kg) doses during pregnancy and lactation. They were euthanized at 18 months of age (aging) and the MG were collected for inflammatory markers and histopathological analysis. Contrarily to control MG, BPA induced carcinogenic development mediated by COX-2 and p-STAT3 expression. BPA was also able to promote macrophage and mast cell (MC) polarization in tumoral phenotype, evidenced by pathways for recruitment and activation of these inflammatory cells and tissue invasiveness triggered by tumor necrosis factor-alpha and transforming growth factor-beta 1 (TGF-β1). Increase of tumor-associated macrophages, M1 (CD68 + iNOS+) and M2 (CD163+) expressing pro-tumoral mediators and metalloproteases was observed; this aspect greatly contributed to stromal remodeling and invasion of neoplastic cells. In addition, the MC population drastically increased in BPA-exposed MG. Tryptase-positive MCs increased in disrupted MG and expressed TGF-β1, contributing to EMT process during carcinogenesis mediated by BPA. BPA exposure interfered in inflammatory response by releasing and enhancing the expression of mediators that contribute to tumor growth and recruitment of inflammatory cells that promote a malignant profile.
Collapse
Affiliation(s)
- Thalles F R Ruiz
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Simone J Colleta
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Diego D Dos Santos
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.,Department of Morphology and Genetics, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Nayara F C Castro
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Ágata S Cabral
- Laboratory of Genomic Studies, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Marilia F Calmon
- Laboratory of Genomic Studies, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Paula Rahal
- Laboratory of Genomic Studies, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Cristiane D Gil
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.,Department of Morphology and Genetics, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Ana Paula Girol
- Department of Basics Sciences, University Center Padre Albino (UNIFIPA), Catanduva, São Paulo, Brazil
| | - Patricia S L Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Ellen C R Leonel
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences (ICB III), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Sebastião R Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Bernardo G, Le Noci V, Ottaviano E, De Cecco L, Camisaschi C, Guglielmetti S, Di Modica M, Gargari G, Bianchi F, Indino S, Sartori P, Borghi E, Sommariva M, Tagliabue E, Triulzi T, Sfondrini L. Reduction of Staphylococcus epidermidis in the mammary tumor microbiota induces antitumor immunity and decreases breast cancer aggressiveness. Cancer Lett 2023; 555:216041. [PMID: 36565918 DOI: 10.1016/j.canlet.2022.216041] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The mammary gland hosts a microbiota, which differs between malignant versus normal tissue. We found that aerosolized antibiotics decrease murine mammary tumor growth and strongly limit lung metastasis. Oral absorbable antibiotics also reduced mammary tumors. In ampicillin-treated nodules, the immune microenvironment consisted of an M1 profile and improved T cell/macrophage infiltration. In these tumors, we noted an under-representation of microbial recognition and complement pathways, supported by TLR2/TLR7 protein and C3-fragment deposition reduction. By 16S rRNA gene profiling, we observed increased Staphylococcus levels in untreated tumors, among which we isolated Staphylococcus epidermidis, which had potent inflammatory activity and increased Tregs. Conversely, oral ampicillin lowered Staphylococcus epidermidis in mammary tumors and expanded bacteria promoting an M1 phenotype and reducing MDSCs and tumor growth. Ampicillin/paclitaxel combination improved the chemotherapeutic efficacy. Notably, an Amp-like signature, based on genes differentially expressed in murine tumors, identified breast cancer patients with better prognosis and high immune infiltration that correlated with a bacteria response signature. This study highlights the significant influence of mammary tumor microbiota on local immune status and the relevance of its treatment with antibiotics, in combination with breast cancer therapies.
Collapse
Affiliation(s)
- Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
| | - Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
| | - Emerenziana Ottaviano
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via di Rudinì 8, 20142, Milan, Italy.
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Chiara Camisaschi
- Biomarkers Unit, Department of Applied Research and Technical Development, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Simone Guglielmetti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| | - Martina Di Modica
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Giorgio Gargari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| | - Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy; U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, Piazza Edmondo Malan 2, 20097, San Donato Milanese, Milan, Italy.
| | - Serena Indino
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
| | - Patrizia Sartori
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
| | - Elisa Borghi
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via di Rudinì 8, 20142, Milan, Italy.
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy; Molecular Targeting Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy; Molecular Targeting Unit, Department of Research, Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
14
|
Benito-Martin A, Nogués L, Hergueta-Redondo M, Castellano-Sanz E, Garvin E, Cioffi M, Sola-Castrillo P, Buehring W, Ximénez-Embún P, Muñoz J, Matei I, Villanueva J, Peinado H. Mast cells impair melanoma cell homing and metastasis by inhibiting HMGA1 secretion. Immunology 2023; 168:362-373. [PMID: 36352838 DOI: 10.1111/imm.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Metastatic disease is the major cause of death from cancer. From the primary tumour, cells remotely prepare the environment of the future metastatic sites by secreted factors and extracellular vesicles. During this process, known as pre-metastatic niche formation, immune cells play a crucial role. Mast cells are haematopoietic bone marrow-derived innate immune cells whose function in lung immune response to invading tumours remains to be defined. We found reduced melanoma lung metastasis in mast cell-deficient mouse models (Wsh and MCTP5-Cre-RDTR), supporting a pro-metastatic role for mast cells in vivo. However, due to evidence pointing to their antitumorigenic role, we studied the impact of mast cells in melanoma cell function in vitro. Surprisingly, in vitro co-culture of bone-marrow-derived mast cells with melanoma cells showed that they have an intrinsic anti-metastatic activity. Mass spectrometry analysis of melanoma-mast cell co-cultures secretome showed that HMGA1 secretion by melanoma cells was significantly impaired. Consistently, HMGA1 knockdown in B16-F10 cells reduced their metastatic capacity in vivo. Importantly, analysis of HMGA1 expression in human melanoma tumours showed that metastatic tumours with high HMGA1 expression are associated with reduced overall and disease-free survival. Moreover, we show that HMGA1 is reduced in the nuclei and enriched in the cytoplasm of melanoma metastatic lesions when compared to primary tumours. These data suggest that high HMGA1 expression and secretion from melanoma cells promote metastatic behaviour. Targeting HMGA1 expression intrinsically or extrinsically by mast cells actions reduce melanoma metastasis. Our results pave the way to the use of HMGA1 as anti-metastatic target in melanoma as previously suggested in other cancer types.
Collapse
Affiliation(s)
- Alberto Benito-Martin
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health and the Meyer Cancer Center, Weill Cornell Medical College, New York, New York, USA.,Universidad Alfonso X El Sabio, Facultad de Medicina, Unidad de Investigación Biomédica, Madrid, Spain
| | - Laura Nogués
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health and the Meyer Cancer Center, Weill Cornell Medical College, New York, New York, USA.,Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marta Hergueta-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Elena Castellano-Sanz
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Eduardo Garvin
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Michele Cioffi
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health and the Meyer Cancer Center, Weill Cornell Medical College, New York, New York, USA
| | - Paloma Sola-Castrillo
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health and the Meyer Cancer Center, Weill Cornell Medical College, New York, New York, USA
| | - Weston Buehring
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health and the Meyer Cancer Center, Weill Cornell Medical College, New York, New York, USA
| | - Pilar Ximénez-Embún
- Proteomics Unit-ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit-ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health and the Meyer Cancer Center, Weill Cornell Medical College, New York, New York, USA
| | | | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
15
|
Wang JZ, Nassiri F, Bi L, Zadeh G. Immune Profiling of Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:189-198. [PMID: 37432628 DOI: 10.1007/978-3-031-29750-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Though meningiomas are generally regarded as benign tumors, there is increasing awareness of a large group of meningiomas that are biologically aggressive and refractory to the current standards of care treatment modalities. Coinciding with this has been increasing recognition of the important that the immune system plays in mediating tumor growth and response to therapy. To address this point, immunotherapy has been leveraged for several other cancers such as lung, melanoma, and recently glioblastoma in the context of clinical trials. However, first deciphering the immune composition of meningiomas is essential in order to determine the feasibility of similar therapies for these tumors. Here in this chapter, we review recent updates on characterizing the immune microenvironment of meningiomas and identify potential immunological targets that hold promise for future immunotherapy trials.
Collapse
Affiliation(s)
- Justin Z Wang
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
| | - Farshad Nassiri
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada.
| | - Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
- Department of Neurosurgery, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Feng TY, Azar FN, Dreger SA, Buchta Rosean C, McGinty MT, Putelo AM, Kolli SH, Carey MA, Greenfield S, Fowler WJ, Robinson SD, Rutkowski MR. Reciprocal Interactions Between the Gut Microbiome and Mammary Tissue Mast Cells Promote Metastatic Dissemination of HR+ Breast Tumors. Cancer Immunol Res 2022; 10:1309-1325. [PMID: 36040846 PMCID: PMC9633553 DOI: 10.1158/2326-6066.cir-21-1120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
Establishing commensal dysbiosis, defined as an inflammatory gut microbiome with low biodiversity, before breast tumor initiation, enhances early dissemination of hormone receptor-positive (HR+) mammary tumor cells. Here, we sought to determine whether cellular changes occurring in normal mammary tissues, before tumor initiation and in response to dysbiosis, enhanced dissemination of HR+ tumors. Commensal dysbiosis increased both the frequency and profibrogenicity of mast cells in normal, non-tumor-bearing mammary tissues, a phenotypic change that persisted after tumor implantation. Pharmacological and adoptive transfer approaches demonstrated that profibrogenic mammary tissue mast cells from dysbiotic animals were sufficient to enhance dissemination of HR+ tumor cells. Using archival HR+ patient samples, we determined that enhanced collagen levels in tumor-adjacent mammary tissue positively correlated with mast cell abundance and HR+ breast cancer recurrence. Together, these data demonstrate that mast cells programmed by commensal dysbiosis activate mammary tissue fibroblasts and orchestrate early dissemination of HR+ breast tumors.
Collapse
Affiliation(s)
- Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Francesca N. Azar
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Sally A. Dreger
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Claire Buchta Rosean
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Mitchell T. McGinty
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Audrey M. Putelo
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Sree H. Kolli
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Maureen A. Carey
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, VA, USA
| | - Stephanie Greenfield
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| | - Wesley J. Fowler
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Stephen D. Robinson
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Melanie R. Rutkowski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, VA, USA
| |
Collapse
|
17
|
Miyawaki K, Sugio T. Lymphoma Microenvironment in DLBCL and PTCL-NOS: the key to uncovering heterogeneity and the potential for stratification. J Clin Exp Hematop 2022; 62:127-135. [PMID: 36171096 DOI: 10.3960/jslrt.22027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) and peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) are the most common subtypes of mature B cell neoplasm and T/NK cell lymphoma, respectively. They share a commonality in that they are, by definition, highly heterogeneous populations. Recent studies are revealing more about the heterogeneity of these diseases, and at the same time, there is an active debate on how to stratify these heterogeneous diseases and make them useful in clinical practice. The various immune cells and non-cellular components surrounding lymphoma cells, i.e., the lymphoma microenvironment, have been the subject of intense research since the late 2000s, and much knowledge has been accumulated over the past decade. As a result, it has become clear that the lymphoma microenvironment, despite its paucity in tissues, significantly impacts the lymphoma pathogenesis and clinical behavior, such as its prognosis and response to therapy. In this article, we review the role of the lymphoma microenvironment in DLBCL and PTCL-NOS, with particular attention given to its impact on the prognosis and stratification.
Collapse
Affiliation(s)
- Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takeshi Sugio
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
18
|
Increased Density of Growth Differentiation Factor-15+ Immunoreactive M1/M2 Macrophages in Prostate Cancer of Different Gleason Scores Compared with Benign Prostate Hyperplasia. Cancers (Basel) 2022; 14:cancers14194591. [PMID: 36230513 PMCID: PMC9578283 DOI: 10.3390/cancers14194591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is the second most diagnosed cancer and cause of death in men worldwide. The main challenge is to discover biomarkers for malignancy to guide the physician towards optimized diagnosis and therapy. There is recent evidence that growth differentiation factor-15 (GDF-15) is elevated in cancer patients. Therefore, we aimed to decipher GDF-15+ cell types and their density in biopsies of human PCa patients with Gleason score (GS)6–9 and benign prostate hyperplasia (BPH). Here we show that the density of GDF-15+ cells, mainly identified as interstitial macrophages (MΦ), was higher in GS6–9 than in BPH, and, thus, GDF-15 is intended to differentiate patients with high GS vs. BPH, as well as GS6 vs. GS7 (or even with higher malignancy). Some GDF-15+ MΦ showed a transepithelial migration into the glandular lumen and, thus, might be used for measurement in urine/semen. Taken together, GDF-15 is proposed as a novel tool to diagnose PCa vs. BPH or malignancy (GS6 vs. higher GS) and as a potential target for anti-tumor therapy. GDF-15 in seminal plasma and/or urine could be utilized as a non-invasive biomarker of PCa as compared to BPH. Abstract Although growth differentiation factor-15 (GDF-15) is highly expressed in PCa, its role in the development and progression of PCa is unclear. The present study aims to determine the density of GDF-15+ cells and immune cells (M1-/M2 macrophages [MΦ], lymphocytes) in PCa of different Gleason scores (GS) compared to BPH. Immunohistochemistry and double immunofluorescence were performed on paraffin-embedded human PCa and BPH biopsies with antibodies directed against GDF-15, CD68 (M1 MΦ), CD163 (M2 MΦ), CD4, CD8, CD19 (T /B lymphocytes), or PD-L1. PGP9.5 served as a marker for innervation and neuroendocrine cells. GDF-15+ cell density was higher in all GS than in BPH. CD68+ MΦ density in GS9 and CD163+ MΦ exceeded that in BPH. GDF-15+ cell density correlated significantly positively with CD68+ or CD163+ MΦ density in extratumoral areas. Double immunoreactive GDF-15+/CD68+ cells were found as transepithelial migrating MΦ. Stromal CD68+ MΦ lacked GDF-15+. The area of PGP9.5+ innervation was higher in GS9 than in BPH. PGP9.5+ cells, occasionally copositive for GDF-15+, also occurred in the glandular epithelium. In GS6, but not in BPH, GDF-15+, PD-L1+, and CD68+ cells were found in epithelium within luminal excrescences. The degree of extra-/intra-tumoral GDF-15 increases in M1/M2Φ is proposed to be useful to stratify progredient malignancy of PCa. GDF-15 is a potential target for anti-tumor therapy.
Collapse
|
19
|
Nakad Borrego S, Lengyel E, Kurnit KC. Molecular Characterizations of Gynecologic Carcinosarcomas: A Focus on the Immune Microenvironment. Cancers (Basel) 2022; 14:cancers14184465. [PMID: 36139624 PMCID: PMC9497294 DOI: 10.3390/cancers14184465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Gynecologic carcinosarcomas, specifically of endometrial and ovarian origin, are aggressive and rare tumors. Treatment data are limited and are often extrapolated from other histologies and smaller retrospective studies. While the optimal therapy approach remains contentious, treatment is often multimodal and may include surgery, chemotherapy, radiation, or a combination of multiple strategies. However, despite aggressive treatment, these tumors fare worse than carcinomas of the same anatomic sites irrespective of their stage. Recent studies have described in-depth molecular characterizations of gynecologic carcinosarcomas. Although many molecular features mirror those seen in other uterine and ovarian epithelial tumors, the high prevalence of epithelial-mesenchymal transition is more unique. Recently, molecular descriptions have expanded to begin to characterize the tumor immune microenvironment. While the importance of the immune microenvironment has been well-established for other tumor types, it has been less systematically explored in gynecologic carcinosarcomas. Furthermore, the use of immunotherapy in patients with gynecologic carcinosarcomas has not been extensively evaluated. In this review, we summarize the available data surrounding gynecologic carcinosarcomas, with a focus on the immune microenvironment. We end with a discussion of potential immunotherapy uses and future directions for the field.
Collapse
|
20
|
Babaei S, Fathi AN, Babaei S, Babaei S, Baazm M, Sakhaie H. Effect of bromelain on mast cell numbers and degranulation in diabetic rat wound healing. J Wound Care 2022; 31:S4-S11. [PMID: 36004940 DOI: 10.12968/jowc.2022.31.sup8.s4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Many studies have revealed the prominent roles of mast cells in wound healing, including inflammatory reactions, angiogenesis and extracellular matrix reabsorption. In the present study, we aimed to assess the probable therapeutic features of bromelain on wound contraction and mast cell degranulation in wound healing in experimental diabetic animals. METHOD Male rats were grouped as control, vehicle and experiment. Skin wounds were generated in all groups. Treatments were applied with distilled water and with bromelain (BR) intraperitoneally in the vehicle and experimental groups, respectively. Following skin wound generation, animals were euthanised on days 3, 5, 7 and 15. We gathered 16,800 microscopic images to count the mast cells and degranulation level (Image J software). The wound contraction index was assessed both microscopically (Image J software) and macroscopically (time-lapse photography). The meshwork evaluation method was used to assess wound healing. RESULTS Time-lapse photography revealed that the BR significantly (p<0.05) accelerated wound contraction and healing. BR significantly (p<0.05) increased the total number of mast cells in all experimental groups on days 5 and 7. The count of grade III (degranulated) mast cells was reduced significantly (p<0.05) on days 5 and 7 in experimental groups compared to control and vehicle groups. CONCLUSION In this study, the rate of wound healing was accelerated considerably following BR administration. In addition, this agent decreased the count of degranulated mast cells, leading to wound contraction and healing.
Collapse
Affiliation(s)
- Saeid Babaei
- Department of Anatomical sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Amene Nikgoftar Fathi
- Department of Anatomical sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Sepehr Babaei
- Faculty of Veterinary Medicine. Azad University of Karaj, Karaj, Iran
| | - Soroush Babaei
- Faculty of Veterinary Medicine. Azad University of Karaj, Karaj, Iran
| | - Maryam Baazm
- Department of Anatomical sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hassan Sakhaie
- Department of Anatomical sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
21
|
KIF26B Is Overexpressed in Medulloblastoma and Promotes Malignant Progression by Activating the PI3K/AKT Pathway. Anal Cell Pathol (Amst) 2022; 2022:2552397. [PMID: 35866054 PMCID: PMC9296275 DOI: 10.1155/2022/2552397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma is one of the most common malignant tumors of the central nervous system in children. Although KIF2B was reported as an oncogene in several malignant tumor types, its role in medulloblastoma has not been studied so far. The PCR results of our study showed that KIF26B is highly expressed in medulloblastoma, and its high expression is associated with a high clinical stage. Knockdown the expression of KIF26B could significantly impair the proliferation and migration of medulloblastoma cells. KIF26B promotes the malignant progression of medulloblastoma by affecting the expression of phosphorylation of key proteins in the PI3K/AKT signaling pathway. With the help of 740 Y-P, activating the pi3k signaling pathway can partially rescue the phenotype. Therefore, our experimental results suggest that KIF26B is a potential target for medulloblastoma.
Collapse
|
22
|
Anti-neoplastic action of Cimetidine/Vitamin C on histamine and the PI3K/AKT/mTOR pathway in Ehrlich breast cancer. Sci Rep 2022; 12:11514. [PMID: 35798765 PMCID: PMC9262990 DOI: 10.1038/s41598-022-15551-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022] Open
Abstract
The main focus of our study is to assess the anti-cancer activity of cimetidine and vitamin C via combating the tumor supportive role of mast cell mediators (histamine, VEGF, and TNF-α) within the tumor microenvironment and their effect on the protein kinase A(PKA)/insulin receptor substrate-1(IRS-1)/phosphatidylinositol-3-kinase (PI3K)/serine/threonine kinase-1 (AKT)/mammalian target of rapamycin (mTOR) cue in Ehrlich induced breast cancer in mice. In vitro study was carried out to evaluate the anti-proliferative activity and combination index (CI) of the combined drugs. Moreover, the Ehrlich model was induced in mice via subcutaneous injection of Ehrlich ascites carcinoma cells (EAC) in the mammary fat pad, and then they were left for 9 days to develop obvious solid breast tumor. The combination therapy possessed the best anti-proliferative effect, and a CI < 1 in the MCF7 cell line indicates a synergistic type of drug interaction. Regarding the in vivo study, the combination abated the elevation in the tumor volume, and serum tumor marker carcinoembryonic antigen (CEA) level. The serum vascular endothelial growth factor (VEGF) level and immunohistochemical staining for CD34 as markers of angiogenesis were mitigated. Additionally, it reverted the state of oxidative stress and inflammation. Meanwhile, it caused an increment in apoptosis, which prevents tumor survival. Furthermore, it tackled the elevated histamine and cyclic adenosine monophosphate (cAMP) levels, preventing the activation of the (PKA/IRS-1/PI3K/AKT/mTOR) cue. Finally, we concluded that the synergistic combination provided a promising anti-neoplastic effect via reducing the angiogenesis, oxidative stress, increasing apoptosis,as well as inhibiting the activation of PI3K/AKT/mTOR cue, and suggesting its use as a treatment option for breast cancer.
Collapse
|
23
|
IL-33 promotes gastric tumour growth in concert with activation and recruitment of inflammatory myeloid cells. Oncotarget 2022; 13:785-799. [PMID: 35677533 PMCID: PMC9159270 DOI: 10.18632/oncotarget.28238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/07/2022] [Indexed: 01/01/2023] Open
Abstract
Interleukin-33 (IL-33) is an IL-1 family cytokine known to promote T-helper (Th) type 2 immune responses that are often deregulated in gastric cancer (GC). IL-33 is overexpressed in human gastric tumours suggesting a role in driving GC progression although a causal link has not been proven. Here, we investigated the impact of IL-33 genetic deficiency in the well-characterized gp130F/F mouse model of GC. Expression of IL-33 (and it’s cognate receptor, ST2) was increased in human and mouse GC progression. IL-33 deficient gp130F/F/Il33−/− mice had reduced gastric tumour growth and reduced recruitment of pro-tumorigenic myeloid cells including key mast cell subsets and type-2 (M2) macrophages. Cell sorting of gastric tumours revealed that IL-33 chiefly localized to gastric (tumour) epithelial cells and was absent from tumour-infiltrating immune cells (except modest IL-33 enrichment within CD11b+ CX3CR1+CD64+MHCII+ macrophages). By contrast, ST2 was absent from gastric epithelial cells and localized exclusively within the (non-macrophage) immune cell fraction together with mast cell markers, Mcpt1 and Mcpt2. Collectively, we show that IL-33 is required for gastric tumour growth and provide evidence of a likely mechanism by which gastric epithelial-derived IL-33 drives mobilization of tumour-promoting inflammatory myeloid cells.
Collapse
|
24
|
Depression in breast cancer patients: Immunopathogenesis and immunotherapy. Cancer Lett 2022; 536:215648. [DOI: 10.1016/j.canlet.2022.215648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023]
|
25
|
Matouskova K, Bugos J, Schneider SS, Vandenberg LN. Exposure to Low Doses of Oxybenzone During Perinatal Development Alters Mammary Gland Stroma in Female Mice. FRONTIERS IN TOXICOLOGY 2022; 4:910230. [PMID: 35669359 PMCID: PMC9163781 DOI: 10.3389/ftox.2022.910230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Mammary stroma is a prominent modulator of epithelial development, and a complex set of interactions between these tissue compartments is essential for normal development, which can be either permissive or restrictive in tumor initiation and progression. During perinatal development, exposures of mice to oxybenzone, a common UV filter, environmental pollutant and endocrine disruptor, induce alterations in mammary epithelium. Our prior research indicates that oxybenzone alters mammary epithelial structures at puberty and in adulthood. We had also previously observed changes in the expression of hormone receptors at puberty (e.g., oxybenzone induced a decrease in the number of epithelial cells positive for progesterone receptor) and in adulthood (e.g., oxybenzone induced a decrease in the number of estrogen receptor-positive epithelial cells), and increased body weight in adulthood. Here, we investigated mammary stromal changes in BALB/c animals exposed during gestation and perinatal development to 0, 30, or 3000 μg oxybenzone/kg/day. In mice exposed to 30 μg/kg/day, we observed morphological changes in adulthood (e.g., a thicker periductal stroma and adipocytes that were considerably larger). We also observed an increased number of mast cells in the mammary stroma at puberty which may represent a transient influence of oxybenzone exposure. These results provide additional evidence that even low doses of oxybenzone can disrupt hormone sensitive outcomes in the mammary gland when exposures occur during critical windows of development, and some of these effects manifest in later life.
Collapse
Affiliation(s)
- Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States
| | - Jennifer Bugos
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States
| | | | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States
- *Correspondence: Laura N. Vandenberg,
| |
Collapse
|
26
|
Zhong J, Qin Y, Yu P, Xia W, Gu B, Qian X, Hu Y, Su W, Zhang Z. The Landscape of the Tumor-Infiltrating Immune Cell and Prognostic Nomogram in Colorectal Cancer. Front Genet 2022; 13:891270. [PMID: 35646079 PMCID: PMC9133796 DOI: 10.3389/fgene.2022.891270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor-infiltrating immune cells are associated with prognosis and immunotherapy targets in colorectal cancer (CRC). The recently developed CIBERSORT method allows immune cell analysis by deconvolution of high-throughput data onto gene expression. In this study, we analyzed the relative proportions of immune cells in GEO (94 samples) and TCGA (522 samples) CRC data based on the CIBERSORT method. A total of 22 types of tumor-infiltrating immune cells were evaluated. Combined with GEO and TCGA data, it was found that naive B cells, M2 macrophages, and resting mast cells were highly expressed in normal tissues, while M0 macrophages, M1 macrophages, activated mast cells, and neutrophils were highly expressed in tumors. Moreover, we constructed a prognostic model by infiltrating immune cells that showed high specificity and sensitivity in both the training (AUC of 5-year survival = 0.699) and validation (AUC of 5-year survival = 0.844) sets. This provides another basis for clinical prognosis. The results of multiple immunofluorescence detection showed that there were differences in the results of bioinformatics analysis. Neutrophils were highly expressed in normal tissues, and M2 macrophages were highly expressed in tumor tissues. Collectively, our data suggested that infiltrating immune cells in CRC may be an important determinant of prognosis and immunotherapy.
Collapse
Affiliation(s)
- Jiateng Zhong
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
- Department of Gynecology, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yu Qin
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Pei Yu
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Weiyue Xia
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Baoru Gu
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Xinlai Qian
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Yuhan Hu
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- *Correspondence: Wei Su, ; Zheying Zhang,
| | - Zheying Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Wei Su, ; Zheying Zhang,
| |
Collapse
|
27
|
Best M, Gale ME, Wells CM. PAK-dependent regulation of actin dynamics in breast cancer cells. Int J Biochem Cell Biol 2022; 146:106207. [PMID: 35385780 PMCID: PMC9941713 DOI: 10.1016/j.biocel.2022.106207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
Abstract
Metastatic Breast Cancer has a poor 25% survival rate and currently there are no clinical therapeutics which target metastasis. 'Migrastatics' are a new drug class which target migration pathway effector proteins in order to inhibit cancer cell invasion and metastasis. The p21-activated kinases (PAKs) are essential drivers of breast cancer cell migration and invasion through their regulation of actin cytoskeletal dynamics. Therefore, the PAKs present as attractive migrastatic candidates. Here we review how PAKs regulate distinct aspects of breast cancer actin dynamics focussing on cytoskeletal reorganisation, cell:matrix adhesion, actomyosin contractility and degradative invasion. Lastly, we discuss the introduction of PAK migrastatics into the well-honed breast cancer clinical pipeline.
Collapse
Affiliation(s)
- Marianne Best
- School of Cancer and Pharmaceutical Sciences, Kings College London, London UK.
| | - Madeline E. Gale
- School of Cancer and Pharmaceutical Sciences, Kings College London, London UK,North West Thames Regional Genetics Service, Northwick Park Hospital, London UK
| | - Claire M. Wells
- School of Cancer and Pharmaceutical Sciences, Kings College London, London UK,Corresponding author.
| |
Collapse
|
28
|
Costa AC, Santos JMO, Medeiros-Fonseca B, Oliveira PA, Bastos MMSM, Brito HO, Gil da Costa RM, Medeiros R. Characterizing the Inflammatory Microenvironment in K14-HPV16 Transgenic Mice: Mast Cell Infiltration and MicroRNA Expression. Cancers (Basel) 2022; 14:2216. [PMID: 35565345 PMCID: PMC9099850 DOI: 10.3390/cancers14092216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
High-risk human papillomavirus (HPV) is the etiologic agent of several types of cancer. Mast cells’ role as either a driving or opposing force for cancer progression remains controversial. MicroRNAs are dysregulated in several HPV-induced cancers, and can influence mast cell biology. The aim of this study was to evaluate mast cell infiltration and to identify microRNAs potentially regulating this process. Transgenic male mice (K14-HPV16; HPV+) and matched wild-type mice (HPV−) received 7,12-Dimethylbenz[a]anthracene (DMBA) (or vehicle) over 17 weeks. Following euthanasia, chest skin and ear tissue samples were collected. Mast cell infiltration was evaluated by immunohistochemistry. MicroRNAs associated with mast cell infiltration were identified using bioinformatic tools. MicroRNA and mRNA relative expression was evaluated by RT-qPCR. Immunohistochemistry showed increased mast cell infiltration in HPV+ mice (p < 0.001). DMBA did not have any statistically significant influence on this distribution. Ear tissue of HPV+ mice showed increased mast cell infiltration (p < 0.01) when compared with chest skin samples. Additionally, reduced relative expression of miR-125b-5p (p = 0.008, 2−ΔΔCt = 2.09) and miR-223-3p (p = 0.013, 2−ΔΔCt = 4.42) seems to be associated with mast cell infiltration and increased expression of target gene Cxcl10. These results indicate that HPV16 may increase mast cell infiltration by down-regulating miR-223-3p and miR-125b-5p.
Collapse
Affiliation(s)
- Alexandra C. Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (A.C.C.); (J.M.O.S.); (R.M.G.d.C.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Research Department of the Portuguese League against Cancer—Regional Nucleus of the North (Liga Portuguesa Contra o Cancro—Núcleo Regional do Norte), 4200-177 Porto, Portugal
| | - Joana M. O. Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (A.C.C.); (J.M.O.S.); (R.M.G.d.C.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Beatriz Medeiros-Fonseca
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (B.M.-F.); (P.A.O.)
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (B.M.-F.); (P.A.O.)
| | - Margarida M. S. M. Bastos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Haissa O. Brito
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), São Luís 65080-805, Brazil;
| | - Rui M. Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (A.C.C.); (J.M.O.S.); (R.M.G.d.C.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (B.M.-F.); (P.A.O.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), São Luís 65080-805, Brazil;
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (A.C.C.); (J.M.O.S.); (R.M.G.d.C.)
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Research Department of the Portuguese League against Cancer—Regional Nucleus of the North (Liga Portuguesa Contra o Cancro—Núcleo Regional do Norte), 4200-177 Porto, Portugal
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal
| |
Collapse
|
29
|
Majorini MT, Colombo MP, Lecis D. Few, but Efficient: The Role of Mast Cells in Breast Cancer and Other Solid Tumors. Cancer Res 2022; 82:1439-1447. [PMID: 35045983 PMCID: PMC9306341 DOI: 10.1158/0008-5472.can-21-3424] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023]
Abstract
Tumor outcome is determined not only by cancer cell-intrinsic features but also by the interaction between cancer cells and their microenvironment. There is great interest in tumor-infiltrating immune cells, yet mast cells have been less studied. Recent work has highlighted the impact of mast cells on the features and aggressiveness of cancer cells, but the eventual effect of mast cell infiltration is still controversial. Here, we review multifaceted findings regarding the role of mast cells in cancer, with a particular focus on breast cancer, which is further complicated because of its classification into subtypes characterized by different biological features, outcome, and therapeutic strategies.
Collapse
Affiliation(s)
| | - Mario Paolo Colombo
- Corresponding Authors: Daniele Lecis, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano 20133, Italy. Phone: 022-390-2212; E-mail: ; and Mario Paolo Colombo,
| | - Daniele Lecis
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.,Corresponding Authors: Daniele Lecis, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano 20133, Italy. Phone: 022-390-2212; E-mail: ; and Mario Paolo Colombo,
| |
Collapse
|
30
|
Fereydouni M, Motaghed M, Ahani E, Kafri T, Dellinger K, Metcalfe DD, Kepley CL. Harnessing the Anti-Tumor Mediators in Mast Cells as a New Strategy for Adoptive Cell Transfer for Cancer. Front Oncol 2022; 12:830199. [PMID: 35433433 PMCID: PMC9009255 DOI: 10.3389/fonc.2022.830199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of cancer immunotherapies utilizing adoptive cell transfer (ACT) continues to be one of the most promising strategies for cancer treatment. Mast cells (MCs) which occur throughout vascularized tissues, are most commonly associated with Type I hypersensitivity, bind immunoglobin E (IgE) with high affinity, produce anti-cancer mediators such as tumor necrosis factor alpha (TNF-α) and granulocyte macrophage colony-stimulating factor (GM-CSF), and generally populate the tumor microenvironments. Yet, the role of MCs in cancer pathologies remains controversial with evidence for both anti-tumor and pro-tumor effects. Here, we review the studies examining the role of MCs in multiple forms of cancer, provide an alternative, MC-based hypothesis underlying the mechanism of therapeutic tumor IgE efficacy in clinical trials, and propose a novel strategy for using tumor-targeted, IgE-sensitized MCs as a platform for developing new cellular cancer immunotherapies. This autologous MC cancer immunotherapy could have several advantages over current cell-based cancer immunotherapies and provide new mechanistic strategies for cancer therapeutics alone or in combination with current approaches.
Collapse
Affiliation(s)
- Mohammad Fereydouni
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro (UNCG), Greensboro, NC, United States
| | - Mona Motaghed
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Elnaz Ahani
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Tal Kafri
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christopher L. Kepley
- Department of Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
- *Correspondence: Christopher L. Kepley,
| |
Collapse
|
31
|
Leveque E, Rouch A, Syrykh C, Mazières J, Brouchet L, Valitutti S, Espinosa E, Lafouresse F. Phenotypic and Histological Distribution Analysis Identify Mast Cell Heterogeneity in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14061394. [PMID: 35326546 PMCID: PMC8946292 DOI: 10.3390/cancers14061394] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary During the fight against tumor, some cells of the immune system such as cytotoxic lymphocytes eliminate tumoral cells while others such as tumor-associated macrophages favor tumor development. Mast cells (MCs) are multifaceted immune cells whose role in cancer is still poorly understood. Moreover, MCs are poorly characterized in the context of cancer and their presence in the tumor microenvironment has been reported to be either associated with good or bad prognosis. In this pilot study we characterized tumor-associated MCs (TAMCs) in lung cancer. We showed that TAMCs exhibited a typical phenotype and can be classified in two subsets according to alphaE integrin (CD103) expression. CD103+ TAMCs appeared more mature, more prone to interact with CD4+ T cells, and located closer to cancer cells than their CD103− counterpart. This study revealed that a high frequency of total TAMC correlated with better overall survival and progression free survival in patients and underlined MC heterogeneity in cancer. Abstract Mast cells (MCs) are multifaceted innate immune cells often present in the tumor microenvironment (TME). However, MCs have been only barely characterized in studies focusing on global immune infiltrate phenotyping. Consequently, their role in cancer is still poorly understood. Furthermore, their prognosis value is confusing since MCs have been associated with good and bad (or both) prognosis depending on the cancer type. In this pilot study performed on a surgical cohort of 48 patients with Non-Small Cell Lung Cancer (NSCLC), we characterized MC population within the TME and in matching non-lesional lung areas, by multicolor flow cytometry and confocal microscopy. Our results showed that tumor-associated MCs (TAMCs) harbor a distinct phenotype as compared with MCs present in non-lesional counterpart of the lung. Moreover, we found two TAMCs subsets based on the expression of CD103 (also named alphaE integrin). CD103+ TAMCs appeared more mature, more prone to interact with CD4+ T cells, and located closer to cancer cells than their CD103− counterpart. In spite of these characteristics, we did not observe a prognosis advantage of a high frequency of CD103+ TAMCs, while a high frequency of total TAMC correlated with better overall survival and progression free survival. Together, this study reveals that TAMCs constitute a heterogeneous population and indicates that MC subsets should be considered for patients’ stratification and management in future research.
Collapse
Affiliation(s)
- Edouard Leveque
- Centre de Recherche en Cancérologie de Toulouse (CRCT), UMR1037, INSERM, UMR5071, CNRS, Université Toulouse 3, 31037 Toulouse, France; (E.L.); (A.R.); (S.V.); (E.E.)
| | - Axel Rouch
- Centre de Recherche en Cancérologie de Toulouse (CRCT), UMR1037, INSERM, UMR5071, CNRS, Université Toulouse 3, 31037 Toulouse, France; (E.L.); (A.R.); (S.V.); (E.E.)
- Thoracic Surgery Department, Hôpital Larrey, CHU Toulouse, 31000 Toulouse, France;
| | - Charlotte Syrykh
- Department of Pathology, Institut Universitaire du Cancer—Oncopole de Toulouse, 31059 Toulouse, France;
| | - Julien Mazières
- Thoracic Oncology Department, Hôpital Larrey, CHU Toulouse, 31000 Toulouse, France;
| | - Laurent Brouchet
- Thoracic Surgery Department, Hôpital Larrey, CHU Toulouse, 31000 Toulouse, France;
| | - Salvatore Valitutti
- Centre de Recherche en Cancérologie de Toulouse (CRCT), UMR1037, INSERM, UMR5071, CNRS, Université Toulouse 3, 31037 Toulouse, France; (E.L.); (A.R.); (S.V.); (E.E.)
- Department of Pathology, Institut Universitaire du Cancer—Oncopole de Toulouse, 31059 Toulouse, France;
| | - Eric Espinosa
- Centre de Recherche en Cancérologie de Toulouse (CRCT), UMR1037, INSERM, UMR5071, CNRS, Université Toulouse 3, 31037 Toulouse, France; (E.L.); (A.R.); (S.V.); (E.E.)
| | - Fanny Lafouresse
- Centre de Recherche en Cancérologie de Toulouse (CRCT), UMR1037, INSERM, UMR5071, CNRS, Université Toulouse 3, 31037 Toulouse, France; (E.L.); (A.R.); (S.V.); (E.E.)
- Correspondence:
| |
Collapse
|
32
|
Sobiepanek A, Kuryk Ł, Garofalo M, Kumar S, Baran J, Musolf P, Siebenhaar F, Fluhr JW, Kobiela T, Plasenzotti R, Kuchler K, Staniszewska M. The Multifaceted Roles of Mast Cells in Immune Homeostasis, Infections and Cancers. Int J Mol Sci 2022; 23:2249. [PMID: 35216365 PMCID: PMC8875910 DOI: 10.3390/ijms23042249] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Mast cells (MCs) play important roles in normal immune responses and pathological states. The location of MCs on the boundaries between tissues and the external environment, including gut mucosal surfaces, lungs, skin, and around blood vessels, suggests a multitude of immunological functions. Thus, MCs are pivotal for host defense against different antigens, including allergens and microbial pathogens. MCs can produce and respond to physiological mediators and chemokines to modulate inflammation. As long-lived, tissue-resident cells, MCs indeed mediate acute inflammatory responses such as those evident in allergic reactions. Furthermore, MCs participate in innate and adaptive immune responses to bacteria, viruses, fungi, and parasites. The control of MC activation or stabilization is a powerful tool in regulating tissue homeostasis and pathogen clearance. Moreover, MCs contribute to maintaining the homeostatic equilibrium between host and resident microbiota, and they engage in crosstalk between the resident and recruited hematopoietic cells. In this review, we provide a comprehensive overview of the functions of MCs in health and disease. Further, we discuss how mouse models of MC deficiency have become useful tools for establishing MCs as a potential cellular target for treating inflammatory disorders.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Łukasz Kuryk
- National Institute of Public Health NIH—National Institute of Research, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Sandeep Kumar
- Clinical Science, Targovax Oy, Lars Sonckin kaari 14, 02600 Espoo, Finland;
| | - Joanna Baran
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Paulina Musolf
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Frank Siebenhaar
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Joachim Wilhelm Fluhr
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (F.S.); (J.W.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (A.S.); (J.B.); (P.M.); (T.K.)
| | - Roberto Plasenzotti
- Department of Biomedical Research, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria;
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
33
|
Zhang L, Pan J, Wang Z, Yang C, Chen W, Jiang J, Zheng Z, Jia F, Zhang Y, Jiang J, Su K, Ren G, Huang J. Multi-Omics Profiling Suggesting Intratumoral Mast Cells as Predictive Index of Breast Cancer Lung Metastasis. Front Oncol 2022; 11:788778. [PMID: 35111673 PMCID: PMC8801492 DOI: 10.3389/fonc.2021.788778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Breast cancer lung metastasis has a high mortality rate and lacks effective treatments, for the factors that determine breast cancer lung metastasis are not yet well understood. In this study, data from 1067 primary tumors in four public datasets revealed the distinct microenvironments and immune composition among patients with or without lung metastasis. We used multi-omics data of the TCGA cohort to emphasize the following characteristics that may lead to lung metastasis: more aggressive tumor malignant behaviors, severer genomic instability, higher immunogenicity but showed generalized inhibition of effector functions of immune cells. Furthermore, we found that mast cell fraction can be used as an index for individual lung metastasis status prediction and verified in the 20 human breast cancer samples. The lower mast cell infiltrations correlated with tumors that were more malignant and prone to have lung metastasis. This study is the first comprehensive analysis of the molecular and cellular characteristics and mutation profiles of breast cancer lung metastasis, which may be applicable for prognostic prediction and aid in choosing appropriate medical examinations and therapeutic regimens.
Collapse
Affiliation(s)
- Leyi Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhen Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Chenghui Yang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China.,Department of Breast Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wuzhen Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Jingxin Jiang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhiyuan Zheng
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Fang Jia
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Jiahuan Jiang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Ke Su
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Guohong Ren
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention &Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Hu K, Yao L, Xu Z, Yan Y, Li J. Prognostic Value and Therapeutic Potential of CBX Family Members in Ovarian Cancer. Front Cell Dev Biol 2022; 10:832354. [PMID: 35155439 PMCID: PMC8829121 DOI: 10.3389/fcell.2022.832354] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Ovarian cancer (OV) is one of the common malignant tumors and has a poor prognosis. Chromobox (CBX) family proteins are critical components of epigenetic regulation complexes that repress target genes transcriptionally via chromatin modification. Some studies have investigated the function specifications among several CBXs members in multiple cancer types, however, little is known about the functions and prognostic roles of distinct CBXs family proteins in ovarian cancer. Methods: In this study, several bioinformatics databases and in vitro experiments were used to analyze the expression profiles, prognostic values, and therapeutic potential of the CBXs family (CBX1-8) in ovarian cancer. Results: It was found that higher expression of CBX3/8 and lower expression of CBX1/6/7 were detected in OV tissues. CBX2/4/5/8 were significantly correlated with individual cancer stages of OV. The expression of CBX1/2/3 were all significantly associated with worse overall survival (OS) and progression-free survival (PFS) for OV patients, whereas the expression of other five CBXs members showed either irrelevant (CBX5 and CBX8) or inconsistent (CBX4, CBX6, and CBX7) results for both OS and PFS in OV. These results showed that only CBX3 had consistent results in expression and prognosis. Further cell experiments also showed that CBX3 promoted the proliferation of ovarian cancer cells. CBX3 was highly expressed in chemoresistant OV tissues. These results indicated that CBX3 was the most likely prognostic indicator and new therapeutic target in OV. Furthermore, gene enrichment analysis suggests that the CBXs family was primarily involved in mast cell activation and mast cell mediated immunity. Individual CBXs members were associated with varying degrees of the infiltration of immune cells, especially B cells. Finally, a high genetic alteration rate of CBXs family (39%) was observed in OV. The low methylation status of CBX3/8 in OV may be associated with their high expression levels. Conclusions: Taken together, these findings exhibited the pivotal value of CBXs family members (especially CBX3) in the prognosis and chemoresistance of ovarian cancer. Our results may provide new insight to explore new prognostic biomarkers and therapeutic targets for ovarian cancer.
Collapse
Affiliation(s)
- Kuan Hu
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Yao
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Juanni Li, ; Yuanliang Yan,
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Juanni Li, ; Yuanliang Yan,
| |
Collapse
|
35
|
Tai J, Wang L, Guo H, Yan Z, Liu J. Prognostic implications of N 6-methyladenosine RNA regulators in breast cancer. Sci Rep 2022; 12:1222. [PMID: 35075167 PMCID: PMC8786853 DOI: 10.1038/s41598-022-05125-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
Abstract
The significance of N6-methyladenosine (m6A) RNA modifications in the progression of breast cancer (BC) has been recognised. However, their potential role and mechanism of action in the tumour microenvironment (TME) and immune response has not been demonstrated. Thus, the role of m6A regulators and their downstream target gene components in BC remain to be explored. In this study, we used a series of bioinformatics methods and experiments to conduct exploratory research on the possible role of m6A regulators in BC. First, two regulatory modes of immune activation and inactivation were determined by tumour classification. The TME, immune cell infiltration, and gene set variation analysis results confirmed the reliability of this pattern. The prognostic model of the m6A regulator was established by the least absolute shrinkage and selection operator and univariate and multivariate Cox analyses, with the two regulators most closely related to survival verified by real-time quantitative reverse transcription polymerase chain reaction. Next, the prognostic m6A regulator identified in the model was crossed with the differential copy number of variant genes in invasive BC (IBC), and it was determined that YTHDF1 was a hub regulator. Subsequently, single-cell analysis revealed the expression patterns of m6A regulators in different IBC cell populations and found that YTHDF1 had significantly higher expression in immune-related IBC cells. Therefore, we selected the intersection of the BC differential expression gene set and the differential expression gene set of a cell line with knocked-down YTHDF1 in literature to identify downstream target genes of YTHDF1, in which we found IFI6, EIR, and SPTBN1. A polymerase chain reaction was conducted to verify the results. Finally, we confirmed the role of YTHDF1 as a potential prognostic biomarker through pan-cancer analysis. Furthermore, our findings revealed that YTHDF1 can serve as a new molecular marker for BC immunotherapy.
Collapse
Affiliation(s)
- Jiaojiao Tai
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Linbang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hao Guo
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China
| | - Ziqiang Yan
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China.
| | - Jingkun Liu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, No. 555, Youyi Road, Beilin District, Xi'an, 710054, Shaanxi, People's Republic of China.
| |
Collapse
|
36
|
Risom T, Glass DR, Averbukh I, Liu CC, Baranski A, Kagel A, McCaffrey EF, Greenwald NF, Rivero-Gutiérrez B, Strand SH, Varma S, Kong A, Keren L, Srivastava S, Zhu C, Khair Z, Veis DJ, Deschryver K, Vennam S, Maley C, Hwang ES, Marks JR, Bendall SC, Colditz GA, West RB, Angelo M. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell 2022; 185:299-310.e18. [PMID: 35063072 PMCID: PMC8792442 DOI: 10.1016/j.cell.2021.12.023] [Citation(s) in RCA: 169] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/05/2021] [Accepted: 12/16/2021] [Indexed: 01/16/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a pre-invasive lesion that is thought to be a precursor to invasive breast cancer (IBC). To understand the changes in the tumor microenvironment (TME) accompanying transition to IBC, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) and a 37-plex antibody staining panel to interrogate 79 clinically annotated surgical resections using machine learning tools for cell segmentation, pixel-based clustering, and object morphometrics. Comparison of normal breast with patient-matched DCIS and IBC revealed coordinated transitions between four TME states that were delineated based on the location and function of myoepithelium, fibroblasts, and immune cells. Surprisingly, myoepithelial disruption was more advanced in DCIS patients that did not develop IBC, suggesting this process could be protective against recurrence. Taken together, this HTAN Breast PreCancer Atlas study offers insight into drivers of IBC relapse and emphasizes the importance of the TME in regulating these processes.
Collapse
Affiliation(s)
- Tyler Risom
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Research Pathology, Genentech, South San Francisco, CA, USA
| | - David R Glass
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Inna Averbukh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Candace C Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex Baranski
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Adam Kagel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erin F McCaffrey
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Noah F Greenwald
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Siri H Strand
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Leeat Keren
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sucheta Srivastava
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chunfang Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zumana Khair
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Deborah J Veis
- Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine Deschryver
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Sujay Vennam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlo Maley
- Biodesign institute, Arizona State University, Tempe, AZ, USA
| | | | | | - Sean C Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Graham A Colditz
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Michael Angelo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Departments of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
37
|
Floroni E, Ceauşu AR, Cosoroabă RM, Niculescu Talpoş IC, Popovici RA, Gaje NP, Raica M. Mast cell density in the primary tumor predicts lymph node metastases in patients with breast cancer. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:129-135. [PMID: 36074676 PMCID: PMC9593109 DOI: 10.47162/rjme.63.1.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Breast cancer (BrCa) is the most frequent neoplastic disease in female, with high morbidity and mortality. Most of the researches were focused on tumor cells concerning their natural evolution, molecular profile, and potential response to therapy. Few and uncertain data are available about the tumor microenvironment and its impact on the progression of the disease. Mast cells (MCs) associated to BrCa have been reported many years ago, but their real and specific role in the biology of this disease remained elusive. In the current study, we have investigated the predictive role of MCs from the primary tumor on lymph node metastasis on patients stratified based on the molecular classification. We investigated 156 patients with BrCa, stratified as luminal A, luminal B, human epidermal growth factor receptor 2 (HER2) type, basal-like, and unclassified. MCs were identified with anti-MC tryptase antibody in a double immunohistochemical reaction combined with anti-cluster of differentiation 34 (CD34) antibody. Mast cell density (MCD) was calculated based on the hot-spot method, on three fields with maximum density of MCs in each case. The final result was the arithmetic media that was compared with the molecular profile and lymph node metastases. We found no significant correlation between MCD and the molecular profile of the primary tumor, but we noticed a strong correlation between intratumor MCD and lymph node metastases, regardless of the molecular type.
Collapse
Affiliation(s)
- Erwin Floroni
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Amalia Raluca Ceauşu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Raluca Mioara Cosoroabă
- Discipline of Management, Legislation and Communication in Dental Medicine, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Ioana Cristina Niculescu Talpoş
- Discipline of Ergonomics and Oral Diagnosis, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Ramona Amina Popovici
- Discipline of Management, Legislation and Communication in Dental Medicine, Faculty of Dental Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Nela Puşa Gaje
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center Timişoara, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| |
Collapse
|
38
|
Chen S, Jin Z, Xin L, Lv L, Zhang X, Gong Y, Liu J. Expression and Clinical Significance of Origin Recognition Complex Subunit 6 in Breast Cancer – A Comprehensive Bioinformatics Analysis. Int J Gen Med 2021; 14:9733-9745. [PMID: 34934348 PMCID: PMC8684402 DOI: 10.2147/ijgm.s342597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022] Open
Abstract
Objective We aimed to investigate the expression, diagnostic and prognostic values, and potential molecular mechanisms of the origin recognition complex (ORC) in breast cancer (BC). Methods Kaplan–Meier estimation was used to assess the prognostic value of ORC genes, and Oncomine, TCGA, GEO and ULCAN databases were used to analyze their expression in BC. Wilcoxon rank-sum tests were used to evaluate the relationship between ORC gene expression levels and BC clinicopathological features. Receiver operating characteristic (ROC) curves were used to assess the diagnostic value of ORC genes in BC. Survival analysis was performed using Kaplan–Meier estimation and Cox regression. A nomogram was constructed to predict 1-, 3-, and 5-year survival probabilities in BC. Gene set enrichment analysis (GSEA) and immune infiltration were used to investigate potential molecular mechanisms of the ORC. Results ORC1L and ORC6L were highly expressed in BC compared with healthy tissue, while ORC5L expression patterns were inconsistent; no significant differences in ORC2L, ORC3L or ORC4L expression were observed between BC and healthy tissues. ORC1L and ORC6L expression levels were significantly correlated with age, tumor (T) stage and molecular subtype; ORC5L expression was significantly correlated with age and number of nearby lymph nodes with cancer (N stage). ORC6L expression had the highest diagnostic value in BC and was an independent prognostic factor for poor overall survival (OS). ORC6L may be involved in cell cycle progression and may regulate cancer signaling pathways, including NF-κB, P53, and WNT, in BC. ORC6L expression was also associated with immune infiltration. Conclusion ORC1L and ORC6L are highly expressed in BC; ORC6L has a high diagnostic value and is an independent prognostic factor for poor OS. ORC6L may be involved in the initiation and progression of BC by regulating cell cycle progression, promoting cancer signaling pathway activation, and influencing tumor immune cell infiltration.
Collapse
Affiliation(s)
- Shaohua Chen
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nangning, People’s Republic of China
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Guilin Medical University, Guilin, People’s Republic of China
| | - Ziyao Jin
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, People’s Republic of China
| | - Linfeng Xin
- Clinical Medicine, Guilin Medical University, Guilin, People’s Republic of China
| | - Lv Lv
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Guilin Medical University, Guilin, People’s Republic of China
| | - Xuemei Zhang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, People’s Republic of China
| | - Yizhen Gong
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nangning, People’s Republic of China
| | - Jianlun Liu
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nangning, People’s Republic of China
- Correspondence: Jianlun Liu Email
| |
Collapse
|
39
|
Wang X, Li Y, Fu J, Zhou K, Wang T. ARNTL2 is a Prognostic Biomarker and Correlates with Immune Cell Infiltration in Triple-Negative Breast Cancer. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1425-1440. [PMID: 34785930 PMCID: PMC8591114 DOI: 10.2147/pgpm.s331431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022]
Abstract
Background Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and is associated with poor prognosis. The aberrant expression of circadian genes contributes to the origin and progression of breast cancer. The present study was designed to explore the potential function and prognosis value of circadian genes in TNBC. Methods The transcriptome data of circadian genes were downloaded from The Cancer Genomic Atlas (TCGA), GSE25066 and GSE31448 datasets. The differential expressed circadian genes between non-TNBC and TNBC patients were analysed by Wilcoxon test. Univariate and multivariate Cox regression analyses were employed to identify the prognostic circadian genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) were performed to study the biological functions of ARNTL2. The composition of 22 immune cells in the tumour samples was estimated with CIBERSORT algorithm. The correlations between ARNTL2 expression and tumour-infiltrating immune cells were evaluated by Spearman correlation coefficient. Results A total of 8 circadian genes were found to be differentially expressed between non-TNBC and TNBC, but only ARNTL2 has prognostic value. Multivariate Cox analysis identified that ARNTL2 was an independent prognosis factor for overall survival and relapse-free survival in TNBC patients. Functionally, ARNTL2 was mainly involved in immune response processes such as positive regulation of cytokine production, regulation of innate immune response, and cellular responses to molecules of bacterial origin. High expression of ARNTL2 was positively correlated with activated CD4 memory T cells, activated mast cells, and neutrophil infiltration and the expression of markers of neutrophils (ITGAM), dendritic cells (HLA-DRA, HLA-DPA1, ITGAM), Th1 (IL1B, STAT1), Th2 (IL13), Th17 (STAT3) and mast cells (TPSB2, TPSAB1). Conclusion ARNTL2 may be linked with the functional modulation of the tumour immune microenvironment and serve as a potential biomarker for predicting the prognosis of TNBC patients.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yan Li
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jianchang Fu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Kewen Zhou
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Tinghuai Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
40
|
Lam HY, Tergaonkar V, Kumar AP, Ahn KS. Mast cells: Therapeutic targets for COVID-19 and beyond. IUBMB Life 2021; 73:1278-1292. [PMID: 34467628 PMCID: PMC8652840 DOI: 10.1002/iub.2552] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023]
Abstract
Mast cells (MCs) are innate immune cells that widely distribute throughout all tissues and express a variety of cell surface receptors. Upon activation, MCs can rapidly release a diverse array of preformed mediators residing within their secretory granules and newly synthesize a broad spectrum of inflammatory and immunomodulatory mediators. These unique features of MCs enable them to act as sentinels in response to rapid changes within their microenvironment. There is increasing evidence now that MCs play prominent roles in other pathophysiological processes besides allergic inflammation. In this review, we highlight the recent findings on the emerging roles of MCs in the pathogenesis of coronavirus disease-2019 (COVID-19) and discuss the potential of MCs as novel therapeutic targets for COVID-19 and other non-allergic inflammatory diseases.
Collapse
Affiliation(s)
- Hiu Yan Lam
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- Laboratory of NF‐κB SignalingInstitute of Molecular and Cell Biology (IMCB)SingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Vinay Tergaonkar
- Laboratory of NF‐κB SignalingInstitute of Molecular and Cell Biology (IMCB)SingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Pathology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingaporeSingapore
| | - Kwang Seok Ahn
- Department of Science in Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| |
Collapse
|
41
|
McKee AM, Kirkup BM, Madgwick M, Fowler WJ, Price CA, Dreger SA, Ansorge R, Makin KA, Caim S, Le Gall G, Paveley J, Leclaire C, Dalby M, Alcon-Giner C, Andrusaite A, Feng TY, Di Modica M, Triulzi T, Tagliabue E, Milling SW, Weilbaecher KN, Rutkowski MR, Korcsmáros T, Hall LJ, Robinson SD. Antibiotic-induced disturbances of the gut microbiota result in accelerated breast tumor growth. iScience 2021; 24:103012. [PMID: 34522855 PMCID: PMC8426205 DOI: 10.1016/j.isci.2021.103012] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota's function in regulating health has seen it linked to disease progression in several cancers. However, there is limited research detailing its influence in breast cancer (BrCa). This study found that antibiotic-induced perturbation of the gut microbiota significantly increases tumor progression in multiple BrCa mouse models. Metagenomics highlights the common loss of several bacterial species following antibiotic administration. One such bacteria, Faecalibaculum rodentium, rescued this increased tumor growth. Single-cell transcriptomics identified an increased number of cells with a stromal signature in tumors, and subsequent histology revealed an increased abundance of mast cells in the tumor stromal regions. We show that administration of a mast cell stabilizer, cromolyn, rescues increased tumor growth in antibiotic treated animals but has no influence on tumors from control cohorts. These findings highlight that BrCa-microbiota interactions are different from other cancers studied to date and suggest new research avenues for therapy development.
Collapse
Affiliation(s)
- Alastair M. McKee
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Benjamin M. Kirkup
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Matthew Madgwick
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Wesley J. Fowler
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Christopher A. Price
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Sally A. Dreger
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Rebecca Ansorge
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Kate A. Makin
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Shabhonam Caim
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Gwenaelle Le Gall
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Jack Paveley
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Charlotte Leclaire
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Matthew Dalby
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Cristina Alcon-Giner
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
| | - Anna Andrusaite
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Martina Di Modica
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Instituto Nazionale di Tumori, Milan, 20133, Italy
| | - Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Instituto Nazionale di Tumori, Milan, 20133, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Instituto Nazionale di Tumori, Milan, 20133, Italy
| | - Simon W.F. Milling
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Katherine N. Weilbaecher
- Department of Internal Medicine, Division of Molecular Oncology, Washington University in St Louis, St. Louis, MO, 63110, USA
| | - Melanie R. Rutkowski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Tamás Korcsmáros
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Lindsay J. Hall
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL – Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany
| | - Stephen D. Robinson
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7AU, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
42
|
Neagu AN, Whitham D, Buonanno E, Jenkins A, Alexa-Stratulat T, Tamba BI, Darie CC. Proteomics and its applications in breast cancer. Am J Cancer Res 2021; 11:4006-4049. [PMID: 34659875 PMCID: PMC8493401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is an individually unique, multi-faceted and chameleonic disease, an eternal challenge for the new era of high-integrated precision diagnostic and personalized oncomedicine. Besides traditional single-omics fields (such as genomics, epigenomics, transcriptomics and metabolomics) and multi-omics contributions (proteogenomics, proteotranscriptomics or reproductomics), several new "-omics" approaches and exciting proteomics subfields are contributing to basic and advanced understanding of these "multiple diseases termed breast cancer": phenomics/cellomics, connectomics and interactomics, secretomics, matrisomics, exosomics, angiomics, chaperomics and epichaperomics, phosphoproteomics, ubiquitinomics, metalloproteomics, terminomics, degradomics and metadegradomics, adhesomics, stressomics, microbiomics, immunomics, salivaomics, materiomics and other biomics. Throughout the extremely complex neoplastic process, a Breast Cancer Cell Continuum Concept (BCCCC) has been modeled in this review as a spatio-temporal and holistic approach, as long as the breast cancer represents a complex cascade comprising successively integrated populations of heterogeneous tumor and cancer-associated cells, that reflect the carcinoma's progression from a "driving mutation" and formation of the breast primary tumor, toward the distant secondary tumors in different tissues and organs, via circulating tumor cell populations. This BCCCC is widely sustained by a Breast Cancer Proteomic Continuum Concept (BCPCC), where each phenotype of neoplastic and tumor-associated cells is characterized by a changing and adaptive proteomic profile detected in solid and liquid minimal invasive biopsies by complex proteomics approaches. Such a profile is created, beginning with the proteomic landscape of different neoplastic cell populations and cancer-associated cells, followed by subsequent analysis of protein biomarkers involved in epithelial-mesenchymal transition and intravasation, circulating tumor cell proteomics, and, finally, by protein biomarkers that highlight the extravasation and distant metastatic invasion. Proteomics technologies are producing important data in breast cancer diagnostic, prognostic, and predictive biomarkers discovery and validation, are detecting genetic aberrations at the proteome level, describing functional and regulatory pathways and emphasizing specific protein and peptide profiles in human tissues, biological fluids, cell lines and animal models. Also, proteomics can identify different breast cancer subtypes and specific protein and proteoform expression, can assess the efficacy of cancer therapies at cellular and tissular level and can even identify new therapeutic target proteins in clinical studies.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IașiCarol I bvd. No. 22, Iași 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Emma Buonanno
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Avalon Jenkins
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Teodora Alexa-Stratulat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and PharmacyIndependenței bvd. No. 16-18, Iași 700021, Romania
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and PharmacyMihail Kogălniceanu Street No. 9-13, Iași 700454, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
43
|
Badodekar N, Sharma A, Patil V, Telang G, Sharma R, Patil S, Vyas N, Somasundaram I. Angiogenesis induction in breast cancer: A paracrine paradigm. Cell Biochem Funct 2021; 39:860-873. [PMID: 34505714 DOI: 10.1002/cbf.3663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Breast cancer is the most prevalent type of cancer among women globally. Angiogenesis contributes significantly to breast cancer progression and dissemination. Neovascularization is concurrent with the progression and growth of breast cancer. Breast cancer cells control angiogenesis by secreting pro-angiogenic factors like fibroblast growth factor, vascular endothelial growth factor, interleukin, transforming growth factor-β, platelet-derived growth factor and several others. These pro-angiogenic factors trigger neovascularization, and thereby lead to breast cancer development and metastasis. The hypoxia-inducible factor (HIF)-regulated angiogenesis cascade is a crucial underlying factor in breast cancer growth and metastasis. To that end, several efforts have been made to identify druggable targets within the HIF-angiogenesis components. However, escape pathways are a major hindrance for targeted therapies against angiogenesis. Thus, understanding the key factors that trigger breast cancer angiogenesis is critical in elucidating ways to inhibit breast cancer. The current review provides an overview of the key growth factors that trigger breast cancer angiogenesis.
Collapse
Affiliation(s)
| | - Akshita Sharma
- Department of Stem Cell and Regenerative Medicine, D. Y. Patil Education Society, Kolhapur, India
| | | | | | - Rakesh Sharma
- Department of Obstetrics and Gynaecology, D. Y. Patil Medical College, Kolhapur, India
| | - Shankargouda Patil
- Department of Maxilofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | - Indumathi Somasundaram
- Department of Stem Cell and Regenerative Medicine, D. Y. Patil Education Society, Kolhapur, India
| |
Collapse
|
44
|
Roles of the Immune/Methylation/Autophagy Landscape on Single-Cell Genotypes and Stroke Risk in Breast Cancer Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5633514. [PMID: 34457116 PMCID: PMC8397558 DOI: 10.1155/2021/5633514] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
This study sought to perform integrative analysis of the immune/methylation/autophagy landscape on breast cancer prognosis and single-cell genotypes. Breast Cancer Recurrence Risk Score (BCRRS) and Breast Cancer Prognostic Risk Score (BCPRS) were determined based on 6 prognostic IMAAGs obtained from the TCGA-BRCA cohort. BCRRS and BCPRS, respectively, were used to construct a risk prediction model of overall survival and progression-free survival. Predictive capacity of the model was evaluated using clinical data. Analysis showed that BCRRS is associated with a high risk of stroke. In addition, PPI and drug-ceRNA networks based on differences in BCPRS were constructed. Single cells were genotyped through integrated scRNA-seq of the TNBC samples based on clustering results of BCPRS-related genes. The findings of this study show the potential regulatory effects of IMAAGs on breast cancer tumor microenvironment. High AUCs of 0.856 and 0.842 were obtained for the OS and PFS prognostic models, respectively. scRNA-seq analysis showed high expression levels of adipocytes and adipose tissue macrophages (ATMs) in high BCPRS clusters. Moreover, analysis of ligand-receptor interactions and potential regulatory mechanisms were performed. The LINC00276&MALAT1/miR-206/FZD4-Wnt7b pathway was also identified which may be useful in future research on targets against breast cancer metastasis and recurrence. Neural network-based deep learning models using BCPRS-related genes showed that these genes can be used to map the tumor microenvironment. In summary, analysis of IMAAGs, BCPRS, and BCRRS provides information on the breast cancer microenvironment at both the macro- and microlevels and provides a basis for development of personalized treatment therapy.
Collapse
|
45
|
Babaei-Jadidi R, Dongre A, Miller S, Castellanos Uribe M, Stewart ID, Thompson ZM, Nateri AS, Bradding P, May ST, Clements D, Johnson SR. Mast-Cell Tryptase Release Contributes to Disease Progression in Lymphangioleiomyomatosis. Am J Respir Crit Care Med 2021; 204:431-444. [PMID: 33882264 DOI: 10.1164/rccm.202007-2854oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Lymphangioleiomyomatosis (LAM) is a multisystem disease that causes lung cysts and respiratory failure. Loss of TSC (tuberous sclerosis complex) gene function results in a clone of "LAM cells" with dysregulated mTOR (mechanistic target of rapamycin) activity. LAM cells and fibroblasts form lung nodules that also contain mast cells, although their significance is unknown. Objectives: To understand the mechanism of mast-cell accumulation and the role of mast cells in the pathogenesis of LAM. Methods: Gene expression was examined using transcriptional profiling and qRT-PCR. Mast cell/LAM nodule interactions were examined in vitro using spheroid TSC2-null cell/fibroblast cocultures and in vivo using an immunocompetent Tsc2-null murine homograft model. Measurements and Main Results: LAM-derived cell/fibroblast cocultures induced multiple CXC chemokines in fibroblasts. LAM lungs had increased tryptase-positive mast cells expressing CXCRs (CXC chemokine receptors) (P < 0.05). Mast cells located around the periphery of LAM nodules were positively associated with the rate of lung function loss (P = 0.016). LAM spheroids attracted mast cells, and this process was inhibited by pharmacologic and CRISPR/cas9 inhibition of CXCR1 and CXCR2. LAM spheroids caused mast-cell tryptase release, which induced fibroblast proliferation and increased LAM-spheroid size (1.36 ± 0.24-fold; P = 0.0019). The tryptase inhibitor APC366 and sodium cromoglycate (SCG) inhibited mast cell-induced spheroid growth. In vivo, SCG reduced mast-cell activation and Tsc2-null lung tumor burden (vehicle: 32.5.3% ± 23.6%; SCG: 5.5% ± 4.3%; P = 0.0035). Conclusions: LAM-cell/fibroblast interactions attract mast cells where tryptase release contributes to disease progression. Repurposing SCG for use in LAM should be studied as an alternative or adjunct to mTOR inhibitor therapy.
Collapse
Affiliation(s)
- Roya Babaei-Jadidi
- Division of Respiratory Medicine, National Institute for Health Research Biomedical Research Centre and Biodiscovery Institute
| | - Arundhati Dongre
- Division of Respiratory Medicine, National Institute for Health Research Biomedical Research Centre and Biodiscovery Institute
| | - Suzanne Miller
- Division of Respiratory Medicine, National Institute for Health Research Biomedical Research Centre and Biodiscovery Institute
| | | | - Ian D Stewart
- Division of Respiratory Medicine, National Institute for Health Research Biomedical Research Centre and Biodiscovery Institute
| | - Zoe M Thompson
- Division of Respiratory Medicine, National Institute for Health Research Biomedical Research Centre and Biodiscovery Institute
| | - Abdolrahman S Nateri
- Cancer Genetics & Stem Cell Group, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Peter Bradding
- Department of Respiratory Sciences, Institute for Lung Health, University of Leicester, Leicester, United Kingdom.,Respiratory Theme, National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom; and
| | - Sean T May
- Nottingham Arabidopsis Stock Centre, and
| | - Debbie Clements
- Division of Respiratory Medicine, National Institute for Health Research Biomedical Research Centre and Biodiscovery Institute
| | - Simon R Johnson
- Division of Respiratory Medicine, National Institute for Health Research Biomedical Research Centre and Biodiscovery Institute.,National Centre for Lymphangioleiomyomatosis, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
| |
Collapse
|
46
|
Crosstalk between Tumor-Infiltrating Immune Cells and Cancer-Associated Fibroblasts in Tumor Growth and Immunosuppression of Breast Cancer. J Immunol Res 2021; 2021:8840066. [PMID: 34337083 PMCID: PMC8294979 DOI: 10.1155/2021/8840066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/04/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Signals from the tumor microenvironment (TME) have a profound influence on the maintenance and progression of cancers. Chronic inflammation and the infiltration of immune cells in breast cancer (BC) have been strongly associated with early carcinogenic events and a switch to a more immunosuppressive response. Cancer-associated fibroblasts (CAFs) are the most abundant stromal component and can modulate tumor progression according to their secretomes. The immune cells including tumor-infiltrating lymphocytes (TILs) (cytotoxic T cells (CTLs), regulatory T cells (Tregs), and helper T cell (Th)), monocyte-infiltrating cells (MICs), myeloid-derived suppressor cells (MDSCs), mast cells (MCs), and natural killer cells (NKs) play an important part in the immunological balance, fluctuating TME between protumoral and antitumoral responses. In this review article, we have summarized the impact of these immunological players together with CAF secreted substances in driving BC progression. We explain the crosstalk of CAFs and tumor-infiltrating immune cells suppressing antitumor response in BC, proposing these cellular entities as predictive markers of poor prognosis. CAF-tumor-infiltrating immune cell interaction is suggested as an alternative therapeutic strategy to regulate the immunosuppressive microenvironment in BC.
Collapse
|
47
|
Wang CA, Tsai SJ. Regulation of lymphangiogenesis by extracellular vesicles in cancer metastasis. Exp Biol Med (Maywood) 2021; 246:2048-2056. [PMID: 34139872 DOI: 10.1177/15353702211021022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metastasis is not only one of the hallmarks of cancer but, unfortunately, it also is the most accurate biomarker for poor prognosis. Cancer cells metastasize through two different but eventually merged routes, the vasculature and lymphatic systems. The processes of cancer metastasis through blood vessel have been extensively studied and are well documented in the literature. In contrast, metastasis through the lymphatic system is less studied. Most people believe that cancer cells metastasize through lymphatic vessel are passive because the lymphatic system is thought to be a sewage draining system that collects whatever appears in the tissue fluid. It was recently found that cancer cells disseminated from lymphatic vessels are protected from being destroyed by our body's defense system. Furthermore, some cancer cells or cancer-associated immune cells secrete lymphangiogenic factors to recruit lymphatic vessel infiltration to the tumor region, a process known as lymphangiogenesis. To ensure the efficiency of lymphangiogenesis, the lymphangiogenic mediators are carried or packed by nanometer-sized particles named extracellular vesicles. Extracellular vesicles are lipid bilayer particles released from eventually every single cell, including bacterium, with diameters ranging from 30 nm (exosome) to several micrometers (apoptotic body). Components carried by extracellular vesicles include but are not limited to DNA, RNA, protein, fatty acid, and other metabolites. Recent studies suggest that cancer cells not only secrete more extracellular vesicles but also upload critical mediators required for lymphatic metastasis onto extracellular vesicles. This review will summarize recent advances in cancer lymphatic metastasis and how cancer cells regulate this process via extracellular vesicle-dependent lymphangiogenesis.
Collapse
Affiliation(s)
- Chu-An Wang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701
| |
Collapse
|
48
|
Progress for Immunotherapy in Inflammatory Breast Cancer and Emerging Barriers to Therapeutic Efficacy. Cancers (Basel) 2021; 13:cancers13112543. [PMID: 34067257 PMCID: PMC8196819 DOI: 10.3390/cancers13112543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Despite recent advances in the treatment of other breast cancer subtypes, inflammatory breast cancer (IBC) remains a significant clinical challenge, with an overall 5-year survival rate of 39%. Though immunotherapy has shown remarkable efficacy in other difficult-to-treat cancers, such approaches have yet to show substantial therapeutic efficacy in IBC. Here, we summarize the known immune composition of IBC tumors, as well as past and present efforts to advance immunotherapy in the treatment of IBC. Abstract Inflammatory breast cancer (IBC) is a rare and aggressive subtype of breast cancer that carries a particularly poor prognosis. Despite the efficacy of immunotherapy in other difficult to treat forms of breast cancer, progress for immunotherapy in IBC has been difficult. Though immunotherapy has been under clinical investigation in IBC since the 1970s, few approaches have shown significant therapeutic efficacy, and no immunotherapy regimens are currently used in the treatment of IBC. Here, we provide a comprehensive summary of what is known about the immune composition of IBC tumors, clinical and basic science evidence describing the role for immune checkpoints such as PD-L1 in IBC pathobiology, as well as past and present attempts to advance ICIs in the treatment of IBC.
Collapse
|
49
|
Lichterman JN, Reddy SM. Mast Cells: A New Frontier for Cancer Immunotherapy. Cells 2021; 10:cells10061270. [PMID: 34063789 PMCID: PMC8223777 DOI: 10.3390/cells10061270] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Mast cells are unique tissue-resident immune cells of the myeloid lineage that have long been implicated in the pathogenesis of allergic and autoimmune disorders. More recently, mast cells have been recognized as key orchestrators of anti-tumor immunity, modulators of the cancer stroma, and have also been implicated in cancer cell intrinsic properties. As such, mast cells are an underrecognized but very promising target for cancer immunotherapy. In this review, we discuss the role of mast cells in shaping cancer and its microenvironment, the interaction between mast cells and cancer therapies, and strategies to target mast cells to improve cancer outcomes. Specifically, we address (1) decreasing cell numbers through c-KIT inhibition, (2) modulating mast cell activation and phenotype (through mast cell stabilizers, FcεR1 signaling pathway activators/inhibitors, antibodies targeting inhibitory receptors and ligands, toll like receptor agonists), and (3) altering secreted mast cell mediators and their downstream effects. Finally, we discuss the importance of translational research using patient samples to advance the field of mast cell targeting to optimally improve patient outcomes. As we aim to expand the successes of existing cancer immunotherapies, focused clinical and translational studies targeting mast cells in different cancer contexts are now warranted.
Collapse
Affiliation(s)
- Jake N. Lichterman
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sangeetha M. Reddy
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: ; Tel.: +1-214-648-4180
| |
Collapse
|
50
|
Kang X, Chen Y, Yi B, Yan X, Jiang C, Chen B, Lu L, Sun Y, Shi R. An integrative microenvironment approach for laryngeal carcinoma: the role of immune/methylation/autophagy signatures on disease clinical prognosis and single-cell genotypes. J Cancer 2021; 12:4148-4171. [PMID: 34093817 PMCID: PMC8176413 DOI: 10.7150/jca.58076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
The effects of methylation/autophagy-related genes (MARGs) and immune infiltration in the tumor microenvironment on the prognosis of laryngeal cancer were comprehensively explored in this study. Survival analysis screened out 126 MARGs and 10 immune cells potentially associated with the prognosis of laryngeal carcinoma. Cox and lasso regression analyses were then used to select 8 MARGs (CAPN10, DAPK2, MBTPS2, ST13, CFLAR, FADD, PEX14 and TSC2) and 2 immune cells (Eosinophil and Mast cell) to obtain the prognostic risk scoring system (pRS). The pRS was used to establish a risk prediction model for the prognosis of laryngeal cancer. The predictive ability of the prediction model was evaluated by GEO datasets and our clinical samples. Further analysis revealed that pRS is highly associated with single nucleotide polymorphism (SNP), copy number variation (CNV), immune checkpoint blockade (ICB) therapy and tumor microenvironment. Moreover, the screened pRS-related ceRNA network and circ_0002951/miR-548k/HAS2 pathway provide potential therapeutic targets and biomarkers of laryngocarcinoma. Based on the clustering results of pRS-related genes, single cells were then genotyped and revealed by integrated scRNA-seq in laryngeal cancer samples. Fibroblasts were found enriched in high risk cell clusters at the scRNA-seq level. Fibroblast-related ligand-receptor interactions were then exposed and a neural network-based deep learning model based on these pRS-related hub gene signatures was also established with a high accuracy in cell type prediction. In conclusion, the combination of single-cell and transcriptome laryngeal carcinoma landscape analyses can investigate the link between the tumor microenvironmental and prognostic characteristics.
Collapse
Affiliation(s)
- Xueran Kang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Yisheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Yi
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Xiaojun Yan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Chenyan Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Bin Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Lixing Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Yuxing Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Runjie Shi
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| |
Collapse
|