1
|
Wozna‐Wysocka M, Jazurek‐Ciesiolka M, Przybyl L, Wronka D, Misiorek JO, Suszynska‐Zajczyk J, Figura G, Ciesiolka A, Sobieszczanska P, Zeller A, Niemira M, Switonski PM, Fiszer A. Insights into RNA-mediated pathology in new mouse models of Huntington's disease. FASEB J 2024; 38:e70182. [PMID: 39604147 PMCID: PMC11602643 DOI: 10.1096/fj.202401465r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative polyglutamine (polyQ) disease resulting from the expansion of CAG repeats located in the ORF of the huntingtin gene (HTT). The extent to which mutant mRNA-driven disruptions contribute to HD pathogenesis, particularly in comparison to the dominant mechanisms related to the gain-of-function effects of the mutant polyQ protein, is still debatable. To evaluate this contribution in vivo, we generated two mouse models through a knock-in strategy at the Rosa26 locus. These models expressed distinct variants of human mutant HTT cDNA fragment: a translated variant (HD/100Q model, serving as a reference) and a nontranslated variant (HD/100CAG model). The cohorts of animals were subjected to a broad spectrum of molecular, behavioral, and cognitive analysis for 21 months. Behavioral testing revealed alterations in both models, with the HD/100Q model exhibiting late disease phenotype. The rotarod, static rod, and open-field tests showed some motor deficits in HD/100CAG and HD/100Q model mice during the light phase, while ActiMot indicated hyperkinesis during the dark phase. Both models also exhibited certain gene deregulations in the striatum that are related to disrupted pathways and phenotype alterations observed in HD. In conclusion, we provide in vivo evidence for a minor contributory role of mutant RNA in HD pathogenesis. The separated effects resulting from the presence of mutant RNA in the HD/100CAG model led to less severe but, to some extent, similar types of impairments as in the HD/100Q model. Increased anxiety was one of the most substantial effects caused by mutant HTT RNA.
Collapse
Affiliation(s)
| | | | - Lukasz Przybyl
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Dorota Wronka
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | | | | | - Grzegorz Figura
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Present address:
Department of Bioenergetics, Institute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | - Adam Ciesiolka
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Present address:
Department of Gene Expression, Institute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityPoznanPoland
| | | | - Anna Zeller
- Genomics and Epigenomics Laboratory, Clinical Research CentreMedical University of BialystokBialystokPoland
| | - Magdalena Niemira
- Genomics and Epigenomics Laboratory, Clinical Research CentreMedical University of BialystokBialystokPoland
| | | | - Agnieszka Fiszer
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| |
Collapse
|
2
|
Wu K, Sun Q, Liu D, Lu J, Wen D, Zang X, Gao L. Alternative Splicing Landscape of Head and Neck Squamous Cell Carcinoma. Technol Cancer Res Treat 2024; 23:15330338241272051. [PMID: 39113534 PMCID: PMC11307358 DOI: 10.1177/15330338241272051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Head and neck malignancies are a significant global health concern, with head and neck squamous cell carcinoma (HNSCC) being the sixth most common cancer worldwide accounting for > 90% of cases. In recent years, there has been growing recognition of the potential role of alternative splicing (AS) in the etiology of cancer. Increasing evidence suggests that AS is associated with various aspects of cancer progression, including tumor occurrence, invasion, metastasis, and drug resistance. Additionally, AS is involved in shaping the tumor microenvironment, which plays a crucial role in tumor development and response to therapy. AS can influence the expression of factors involved in angiogenesis, immune response, and extracellular matrix remodeling, all of which contribute to the formation of a supportive microenvironment for tumor growth. Exploring the mechanism of AS events in HNSCC could provide insights into the development and progression of this cancer, as well as its interaction with the tumor microenvironment. Understanding how AS contributes to the molecular changes in HNSCC cells and influences the tumor microenvironment could lead to the identification of new therapeutic targets. Targeted chemotherapy and immunotherapy strategies tailored to the specific AS patterns in HNSCC could potentially improve treatment outcomes and reduce side effects. This review explores the concept, types, processes, and technological advancements of AS, focusing on its role in the initiation, progression, treatment, and prognosis of HNSCC.
Collapse
Affiliation(s)
- Kehan Wu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Qianhui Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Dongxu Liu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Jiayi Lu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Deyu Wen
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Xiyan Zang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Li Gao
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| |
Collapse
|
3
|
Shen W, Yuan L, Cheng F, Wu Z, Li X. SRSF7 is a promising prognostic biomarker in hepatocellular carcinoma and is associated with immune infiltration. Genes Genomics 2024; 46:49-64. [PMID: 37985547 DOI: 10.1007/s13258-023-01463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/30/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Previous studies indicate that the splicing process, regulated by the cellular machinery of tumors (spliceosome), undergoes alterations, leading to oncogenic splicing events associated with the progression of tumors towards aggressiveness. However, the role of serine/arginine-rich splicing factor 7 (SRSF7) in hepatocellular carcinoma (HCC) and the tumor microenvironment (TME) remains unclear. METHODS This study was aimed to explore the role and clinical significance of SRSF7 in HCC. By conducting functional analysis and gene set enrichment analysis, it was discovered that SRSF7 contributes to multiple pathways associated with immune response and tumor advancement. Further experiments verified that silencing of SRSF7 obviously inhibits progression of HCC. RESULTS Aberrant expression of SRSF7, which were referred as an independent prognostic risk factor, effectively predicts the prognosis of patients with HCC. Functional and gene enrichment analyses revealed that SRSF7 is linked with multiple immune and tumor progression-related pathways, including the B cell receptor signaling pathway, positive regulation of leukocyte and immunoglobulin receptor binding cell activation, nuclear division, membrane invagination, cell cycle, as well as mTOR signaling pathway. Furthermore, increased SRSF7 expression was associated with tumor-infiltrating inflammatory cells (CD4+, monocytes/macrophages, CD8 + and endothelial). Additionally, multiple immune checkpoint genes were markedly positively related to SRSF7. The efficiency of SRSF7 in predicting immunomodulator and chemokine responses were also assessed in microenvironment. Moreover, in vitro analyses demonstrated that knockdown of SRSF7 suppressed the malignant evolution of HCC possibly by deactivating the PI3K/AKT/mTOR signaling. CONCLUSION The role of SRSF7 in the tumor microenvironment has been successfully assessed. It may be a valid bio-index for predicting the HCC prognosis, thereby guiding individualized immunotherapy for cancer.
Collapse
Affiliation(s)
- Wei Shen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Lebin Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fei Cheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhao Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xiaodong Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| |
Collapse
|
4
|
Sun Y, Liu X, Wu Z, Wang X, Zhang Y, Yan W, You Y. SRSF4 Confers Temozolomide Resistance of Glioma via Accelerating Double Strand Break Repair. J Mol Neurosci 2023; 73:259-268. [PMID: 37014544 DOI: 10.1007/s12031-023-02115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Temozolomide (TMZ)-based chemotherapy plays a central part in glioma treatment. However, prominent resistance to TMZ is a major change by now. In this study, expression and prognosis of SRSF4 were analyzed using multiple public datasets. Therapeutic efficacy against TMZ resistance was determined by assessing colony formation, flow cytometry, and western blot assays. Bio-informational analysis, immunofluorescence (IF), and western blot assays were performed to evaluate double strand break repair. An orthotopic xenograft model was used to exam the functional role of SRSF4. Here, we found that SRSF4 expression was associated with histological grade, IDH1 status, 1p/19q codeletion, molecular subtype, tumor recurrence, and poor prognosis. SRSF4 promotes TMZ resistance through positively regulating MDC1, thereby accelerating double strand break repair. Targeting SRSF4 could significantly improve chemosensitivity. Taken together, our collective findings highlight an important role of SRSF4 in the regulation of TMZ resistance by modulation of double strand break repair.
Collapse
Affiliation(s)
- Yi Sun
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xingdong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhiqiang Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xiefeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yong Zhang
- Department of Neurosurgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
5
|
Hou R, Huang Y. Genomic sequences and RNA binding proteins predict RNA splicing efficiency in various single-cell contexts. Bioinformatics 2022; 38:3231-3237. [PMID: 35552604 DOI: 10.1093/bioinformatics/btac321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The RNA splicing efficiency is of high interest for both understanding the regulatory machinery of gene expression and estimating the RNA velocity in single cells. However, its genomic regulation and stochasticity across contexts remain poorly understood. RESULTS Here, by leveraging the recent RNA velocity tool, we estimated the relative splicing efficiency across a variety of single-cell RNA-Seq data sets. We further extracted large sets of genomic features and 120 RNA binding protein features and found they are highly predictive to relative RNA splicing efficiency across multiple tissues and organs on human and mouse. This predictive power brings promise to reveal the complexity of RNA processing and to enhance the analysis of single-cell transcription activities. AVAILABILITY AND IMPLEMENTATION In order to ensure reproducibility, all preprocessed data sets and scripts used for the prediction and figure generation are publicly available at https://doi.org/10.5281/zenodo.6513669. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ruiyan Hou
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Yuanghua Huang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China.,Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Krupenko SA, Cole SA, Hou R, Haack K, Laston S, Mehta NR, Comuzzie AG, Butte NF, Voruganti VS. Genetic variants in ALDH1L1 and GLDC influence the serine-to-glycine ratio in Hispanic children. Am J Clin Nutr 2022; 116:500-510. [PMID: 35460232 PMCID: PMC9348975 DOI: 10.1093/ajcn/nqac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Glycine is a proteogenic amino acid that is required for numerous metabolic pathways, including purine, creatine, heme, and glutathione biosynthesis. Glycine formation from serine, catalyzed by serine hydroxy methyltransferase, is the major source of this amino acid in humans. Our previous studies in a mouse model have shown a crucial role for the 10-formyltetrahydrofolate dehydrogenase enzyme in serine-to-glycine conversion. OBJECTIVES We sought to determine the genomic influence on the serine-glycine ratio in 803 Hispanic children from 319 families of the Viva La Familia cohort. METHODS We performed a genome-wide association analysis for plasma serine, glycine, and the serine-glycine ratio in Sequential Oligogenic Linkage Analysis Routines while accounting for relationships among family members. RESULTS All 3 parameters were significantly heritable (h2 = 0.22-0.78; P < 0.004). The strongest associations for the serine-glycine ratio were with single nucleotide polymorphisms (SNPs) in aldehyde dehydrogenase 1 family member L1 (ALDH1L1) and glycine decarboxylase (GLDC) and for glycine with GLDC (P < 3.5 × 10-8; effect sizes, 0.03-0.07). No significant associations were found for serine. We also conducted a targeted genetic analysis with ALDH1L1 exonic SNPs and found significant associations between the serine-glycine ratio and rs2886059 (β = 0.68; SE, 0.25; P = 0.006) and rs3796191 (β = 0.25; SE, 0.08; P = 0.003) and between glycine and rs3796191 (β = -0.08; SE, 0.02; P = 0.0004). These exonic SNPs were further associated with metabolic disease risk factors, mainly adiposity measures (P < 0.006). Significant genetic and phenotypic correlations were found for glycine and the serine-glycine ratio with metabolic disease risk factors, including adiposity, insulin sensitivity, and inflammation-related phenotypes [estimate of genetic correlation = -0.37 to 0.35 (P < 0.03); estimate of phenotypic correlation = -0.19 to 0.13 (P < 0.006)]. The significant genetic correlations indicate shared genetic effects among glycine, the serine-glycine ratio, and adiposity and insulin sensitivity phenotypes. CONCLUSIONS Our study suggests that ALDH1L1 and GLDC SNPs influence the serine-to-glycine ratio and metabolic disease risk.
Collapse
Affiliation(s)
- Sergey A Krupenko
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ruixue Hou
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sandra Laston
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA,South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Nitesh R Mehta
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,USDA/ARS Children Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Nancy F Butte
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,USDA/ARS Children Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
7
|
Exploring the multifunctionality of SR proteins. Biochem Soc Trans 2021; 50:187-198. [PMID: 34940860 PMCID: PMC9022966 DOI: 10.1042/bst20210325] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022]
Abstract
Members of the arginine–serine-rich protein family (SR proteins) are multifunctional RNA-binding proteins that have emerged as key determinants for mRNP formation, identity and fate. They bind to pre-mRNAs early during transcription in the nucleus and accompany bound transcripts until they are translated or degraded in the cytoplasm. SR proteins are mostly known for their essential roles in constitutive splicing and as regulators of alternative splicing. However, many additional activities of individual SR proteins, beyond splicing, have been reported in recent years. We will summarize the different functions of SR proteins and discuss how multifunctionality can be achieved. We will also highlight the difficulties of studying highly versatile SR proteins and propose approaches to disentangle their activities, which is transferrable to other multifunctional RBPs.
Collapse
|
8
|
HINOURA TAKUJI, MUKAI SHOICHIRO, KAMOTO TOSHIYUKI, KURODA YOSHIKI. PER3 polymorphisms and their association with prostate cancer risk in Japanese men. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 62:E489-E495. [PMID: 34604590 PMCID: PMC8451342 DOI: 10.15167/2421-4248/jpmh2021.62.2.1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/18/2021] [Indexed: 12/24/2022]
Abstract
Introduction Prostate cancer (PCa) is one of the most common cancers affecting men globally. Although PER3 has been suggested as a risk factor for cancer development, there are few reports elucidating the relationship between PER3 and PCa. We investigated the association between PER3 polymorphisms (rs2640908 and VNTR) and susceptibility to PCa in the Japanese population. Methods Eighty three patients with PCa and 122 controls participated in this study. We analyzed rs2640908 and VNTR polymorphisms by using PCR-Restriction Fragment Length Polymorphism (PCR-RFLP). Results Compared to the C/C genotype with the rs2640908 polymorphism, the T/T (OR: 0.35, 95% CI: 0.15-0.81, P = 0.02) and C/T + T/T (OR: 0.46, 95% CI: 0.24-0.88, P = 0.02) genotypes had a significantly lower risk of PCa. TT (OR: 0.29, 95% CI: 0.10-0.77, P = 0.02) and CT + TT (OR: 0.47, 95% CI: 0.23-0.97, P = 0.04) also had significant protection against PCa in the smoker group. Significantly, we observed an association between smoking and rs2640908 polymorphism in this study. However, no association between the VNTR polymorphisms and PCa was detected. Conclusions Our results suggest that PER3 rs2640908 polymorphisms influence an individual's susceptibility to PCa.
Collapse
Affiliation(s)
- TAKUJI HINOURA
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - SHOICHIRO MUKAI
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - TOSHIYUKI KAMOTO
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - YOSHIKI KURODA
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Correspondence: Yoshiki Kuroda, Department of Public Health, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki city, Miyazaki 889-1692, Japan - Tel.: +81-985-85-0874 - Fax: +81-985-85-6258 - E-mail:
| |
Collapse
|
9
|
Zhang S, Wang J, Zhang A, Zhang X, You T, Xie D, Yang W, Chen Y, Zhang X, Di C, Xie X. A SNP involved in alternative splicing of ABCB1 is associated with clopidogrel resistance in coronary heart disease in Chinese population. Aging (Albany NY) 2020; 12:25684-25699. [PMID: 33232268 PMCID: PMC7803500 DOI: 10.18632/aging.104177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 04/07/2023]
Abstract
Although many scientists are studying the association between genetic polymorphism of ABCB1 and CR in patients, the molecular mechanism has not been further studied in patients with CHD. This study investigated the relationship between SNP of the ABCB1 gene in patients with CHD and CR, and whether the polymorphism of the ABCB1 gene affects the AS of the gene. 741 patients were enrolled in the study, 316 CR cases and 425 NCR cases. The correlation between CR risk and clinical-pathological characteristics were studied. Additionally, the five SNPs were analysed by PCR and Mass Array genotyping methods. Furthermore, silicon analysis was used to predict whether the polymorphism affects the process of AS. Results showed that there was a significant correlation between rs1045642 polymorphism and CR in genotyping and allele analysis. The rs1045642 polymorphism of the ABCB1 gene of CHD patients carrying the A allele are more likely to develop CR. Silicon analysis showed that rs1045642 generated a new ESE sequence which might affect AS of ABCB1 gene. We hypothesize that the mechanism of CR might be caused by a change in the AS caused by the polymorphism of the gene. Thus, this work provides guidance for the clinical use of clopidogrel.
Collapse
Affiliation(s)
- Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Anan Zhang
- The Second Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaowei Zhang
- Department of Cardiology, The Second Hospital of Lanzhou University, Lanzhou 730000, China
| | - Tao You
- Department of Cardiac Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base, Lanzhou 730000, China
| | - Dingxiong Xie
- Gansu Cardiovascular Institute, Lanzhou 730050, China
| | - Wenke Yang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuhong Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xuetian Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
- Gansu Provincial Maternity and Childcare Hospital, Lanzhou 730050, China
| |
Collapse
|
10
|
Wang W, Xiong L, Wang P, Wang F, Ma Q. Major vault protein plays important roles in viral infection. IUBMB Life 2020; 72:624-631. [PMID: 31769934 PMCID: PMC7165711 DOI: 10.1002/iub.2200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Viral replication and related protein expression inside the host cells, and host antiviral immune responses can lead to the occurrence of diverse diseases. With the outbreak of viral infection, a large number of newly diagnosed and died patients infected with various viruses are still reported every year. Viral infection has already been one of the major global public health issues and lead to huge economic and social burdens. Studying of viral pathogenesis is a very important way to find methods for prevention, diagnosis, and cure of viral infection; more evidence has confirmed that major vault protein (MVP) is closely associated with viral infection and pathogenesis, and this review is intended to provide a broad relationship between viruses and MVP to stimulate the interest of related researchers.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, Puai Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fubing Wang
- Department of Laboratory MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Qingfeng Ma
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
11
|
Masaki S, Kabuto T, Suzuki K, Kataoka N. Multiple nuclear localization sequences in SRSF4 protein. Genes Cells 2020; 25:327-333. [PMID: 32050040 DOI: 10.1111/gtc.12756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/29/2022]
Abstract
SRSF4 is one of the members of serine-/arginine (SR)-rich protein family involved in both constitutive and alternative splicing. SRSF4 is localized in the nucleus with speckled pattern, but its nuclear localization signal was not determined. Here, we have identified nuclear localization signals (NLSs) of SRSF4 by using a pyruvate kinase fusion system. As expected, arginine-/serine (RS)-rich domain of SRSF4 confers nuclear localization activity when it is fused to PK protein. We then further delineated the minimum sequences for nuclear localization in RS domain of SRSF4. Surprisingly, RS-rich region does not always have a nuclear localization activity. In addition, basic amino acid stretches that resemble to classical-type NLSs were identified. These results strongly suggest that SRSF4 protein uses two different nuclear import pathways with multiple NLSs in RS domain.
Collapse
Affiliation(s)
- So Masaki
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Takafumi Kabuto
- Laboratory of Anatomy and Developmental Biology, Kyoto University School of Medicine, Kyoto, Japan
| | - Kenji Suzuki
- Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Naoyuki Kataoka
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Anatomy and Developmental Biology, Kyoto University School of Medicine, Kyoto, Japan.,Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Muthusamy M, Yoon EK, Kim JA, Jeong MJ, Lee SI. Brassica Rapa SR45a Regulates Drought Tolerance via the Alternative Splicing of Target Genes. Genes (Basel) 2020; 11:genes11020182. [PMID: 32050656 PMCID: PMC7074037 DOI: 10.3390/genes11020182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/25/2020] [Accepted: 02/07/2020] [Indexed: 01/02/2023] Open
Abstract
The emerging evidence has shown that plant serine/arginine-rich (SR) proteins play a crucial role in abiotic stress responses by regulating the alternative splicing (AS) of key genes. Recently, we have shown that drought stress enhances the expression of SR45a (also known as SR-like 3) in Brassica rapa. Herein, we unraveled the hitherto unknown functions of BrSR45a in drought stress response by comparing the phenotypes, chlorophyll a fluorescence and splicing patterns of the drought-responsive genes of Arabidopsis BrSR45a overexpressors (OEs), homozygous mutants (SALK_052345), and controls (Col-0). Overexpression and loss of function did not result in aberrant phenotypes; however, the overexpression of BrSR45a was positively correlated with drought tolerance and the stress recovery rate in an expression-dependent manner. Moreover, OEs showed a higher drought tolerance index during seed germination (38.16%) than the control lines. Additionally, the overexpression of BrSR45a induced the expression of the drought stress-inducible genes RD29A, NCED3, and DREB2A under normal conditions. To further illustrate the molecular linkages between BrSR45a and drought tolerance, we investigated the AS patterns of key drought-tolerance and BrSR45a interacting genes in OEs, mutants, and controls under both normal and drought conditions. The splicing patterns of DCP5, RD29A, GOLS1, AKR, U2AF, and SDR were different between overexpressors and mutants under normal conditions. Furthermore, drought stress altered the splicing patterns of NCED2, SQE, UPF1, U4/U6-U5 tri-snRNP-associated protein, and UPF1 between OEs and mutants, indicating that both overexpression and loss of function differently influenced the splicing patterns of target genes. This study revealed that BrSR45a regulates the drought stress response via the alternative splicing of target genes in a concentration-dependent manner.
Collapse
Affiliation(s)
- Muthusamy Muthusamy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.A.K.); (M.-J.J.)
| | - Eun Kyung Yoon
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore;
| | - Jin A Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.A.K.); (M.-J.J.)
| | - Mi-Jeong Jeong
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.A.K.); (M.-J.J.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.A.K.); (M.-J.J.)
- Correspondence: ; Tel.: +82-63-238-4618; Fax: +82-63-238-4604
| |
Collapse
|
13
|
Global Analysis of Alternative Splicing Difference in Peripheral Immune Organs between Tongcheng Pigs and Large White Pigs Artificially Infected with PRRSV In Vivo. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4045204. [PMID: 32083129 PMCID: PMC7011390 DOI: 10.1155/2020/4045204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/13/2019] [Indexed: 11/17/2022]
Abstract
Alternative splicing (AS) plays a significant role in regulating gene expression at the transcriptional level in eukaryotes. Flexibility and diversity of transcriptome and proteome can be significantly increased through alternative splicing of genes. In the present study, transcriptome data of peripheral immune organs including spleen and inguinal lymph nodes (ILN) were used to identify AS difference between PRRSV-resistant Tongcheng (TC) pigs and PRRSV-susceptible Large White (LW) pigs artificially infected with porcine reproductive and respiratory syndrome virus (PRRSV) in vivo. The results showed that PRRSV infection induced global alternative splicing events (ASEs) with different modes. Among them, 373 genes and 595 genes in the spleen and ILN of TC pigs, while 458 genes and 560 genes in the spleen and ILN of LW pigs had significantly differential ASEs. Alternative splicing was subject to tissue-specific and lineage-specific regulation in response to PRRSV infection. Enriched GO terms and pathways showed that genes with differential ASEs played important roles in transcriptional regulation, immune response, metabolism, and apoptosis. Furthermore, a splicing factor associated with apoptosis, SRSF4, was significantly upregulated in LW pigs. Functional analysis on apoptosis associated genes was validated by RT-PCR and DNA sequencing. These findings revealed different response to PRRSV between PRRSV-resistant TC pigs and PRRSV-susceptible LW pigs at the level of alternative splicing, suggesting the potential relationship between AS and disease resistance to PRRSV.
Collapse
|
14
|
Haider T, Tiwari R, Vyas SP, Soni V. Molecular determinants as therapeutic targets in cancer chemotherapy: An update. Pharmacol Ther 2019; 200:85-109. [PMID: 31047907 DOI: 10.1016/j.pharmthera.2019.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
It is well known that cancer cells are heterogeneous in nature and very distinct from their normal counterparts. Commonly these cancer cells possess different and complementary metabolic profile, microenvironment and adopting behaviors to generate more ATPs to fulfill the requirement of high energy that is further utilized in the production of proteins and other essentials required for cell survival, growth, and proliferation. These differences create many challenges in cancer treatments. On the contrary, such situations of metabolic differences between cancer and normal cells may be expected a promising strategy for treatment purpose. In this article, we focus on the molecular determinants of oncogene-specific sub-organelles such as potential metabolites of mitochondria (reactive oxygen species, apoptotic proteins, cytochrome c, caspase 9, caspase 3, etc.), endoplasmic reticulum (unfolded protein response, PKR-like ER kinase, C/EBP homologous protein, etc.), nucleus (nucleolar phosphoprotein, nuclear pore complex, nuclear localization signal), lysosome (microenvironment, etc.) and plasma membrane phospholipids, etc. that might be exploited for the targeted delivery of anti-cancer drugs for therapeutic benefits. This review will help to understand the various targets of subcellular organelles at molecular levels. In the future, this molecular level understanding may be combined with the genomic profile of cancer for the development of the molecularly guided or personalized therapeutics for complete eradication of cancer.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Rahul Tiwari
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Suresh Prasad Vyas
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
15
|
Culjkovic-Kraljacic B, Borden KLB. The Impact of Post-transcriptional Control: Better Living Through RNA Regulons. Front Genet 2018; 9:512. [PMID: 30455716 PMCID: PMC6230556 DOI: 10.3389/fgene.2018.00512] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/12/2018] [Indexed: 12/26/2022] Open
Abstract
Traditionally, cancer is viewed as a disease driven by genetic mutations and/or epigenetic and transcriptional dysregulation. While these are undoubtedly important drivers, many recent studies highlight the disconnect between the proteome and the genome or transcriptome. At least in part, this disconnect arises as a result of dysregulated RNA metabolism which underpins the altered proteomic landscape observed. Thus, it is important to understand the basic mechanisms governing post-transcriptional control and how these processes can be co-opted to drive cancer cell phenotypes. In some cases, groups of mRNAs that encode protein involved in specific oncogenic processes can be co-regulated at multiple processing levels in order to turn on entire biochemical pathways. Indeed, the RNA regulon model was postulated as a means to understand how cells coordinately regulate transcripts encoding proteins in the same biochemical pathways. In this review, we describe some of the basic mRNA processes that are dysregulated in cancer and the biological impact this has on the cell. This dysregulation can affect networks of RNAs simultaneously thereby underpinning the oncogenic phenotypes observed.
Collapse
Affiliation(s)
- Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer, Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer, Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|