1
|
Norazman SI, Mohd Zaffarin AS, Shuid AN, Hassan H, Soleiman IN, Kuan WS, Alias E. A Review of Animal Models for Studying Bone Health in Type-2 Diabetes Mellitus (T2DM) and Obesity. Int J Mol Sci 2024; 25:9399. [PMID: 39273348 PMCID: PMC11394783 DOI: 10.3390/ijms25179399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Preclinical research on diabetes and obesity has been carried out in various animal models over the years. These animal models are developed from genetic manipulation that affects their body metabolism, chemical-induced procedures, diet alteration/modifications, or combinations of the aforementioned approaches. The diabetic and obesity animal models have allowed researchers to not only study the pathological aspect of the diseases but also enable them to screen and explore potential therapeutic compounds. Besides several widely known complications such as macrovascular diseases, diabetic neuropathy, nephropathy and retinopathy, type 2 diabetes mellitus is also known to affect bone health. There is also evidence to suggest obesity affects bone health. Therefore, continuous research needs to be conducted to find a remedy or solution to this matter. Previous literature reported evidence of bone loss in animal models of diabetes and obesity. These findings, as highlighted in this review, further augment the suggestion of an inter-relationship between diabetes, obesity and bone loss.
Collapse
Affiliation(s)
- Saiful Iqbal Norazman
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Anis Syauqina Mohd Zaffarin
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh 47000, Malaysia
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Ima Nirwana Soleiman
- The Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Wong Sok Kuan
- The Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ekram Alias
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
2
|
Lin CH, Shih CC. The Ethyl Acetate Extract of Phyllanthus emblica L. Alleviates Diabetic Nephropathy in a Murine Model of Diabetes. Int J Mol Sci 2024; 25:6686. [PMID: 38928391 PMCID: PMC11204328 DOI: 10.3390/ijms25126686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Oil-Gan is the fruit of the genus Phyllanthus emblica L. The fruits have excellent effects on health care and development values. There are many methods for the management of diabetic nephropathy (DN). However, there is a lack of effective drugs for treating DN throughout the disease course. The primary aim of this study was to examine the protective effects (including analyses of urine and blood, and inflammatory cytokine levels) and mechanisms of the ethyl acetate extract of P. emblica (EPE) on db/db mice, an animal model of diabetic nephropathy; the secondary aim was to examine the expression levels of p- protein kinase Cα (PKCα)/t-PKCα in the kidney and its downregulation of vascular endothelial growth factor (VEGF) and fibrosis gene transforming growth factor-β1 (TGF-β1) by Western blot analyses. Eight db/m mice were used as the control group. Forty db/db mice were randomly divided into five groups. Treatments included a vehicle, EPE1, EPE2, EPE3 (at doses of 100, 200, or 400 mg/kg EPE), or the comparative drug aminoguanidine for 8 weeks. After 8 weeks of treatment, the administration of EPE to db/db mice effectively controlled hyperglycemia and hyperinsulinemia by markedly lowering blood glucose, insulin, and glycosylated HbA1c levels. The administration of EPE to db/db mice decreased the levels of BUN and creatinine both in blood and urine and reduced urinary albumin excretion and the albumin creatine ratio (UACR) in urine. Moreover, EPE treatment decreased the blood levels of inflammatory cytokines, including kidney injury molecule-1 (KIM-1), C-reactive protein (CRP), and NLR family pyrin domain containing 3 (NLRP3). Our findings showed that EPE not only had antihyperglycemic effects but also improved renal function in db/db mice. A histological examination of the kidney by immunohistochemistry indicated that EPE can improve kidney function by ameliorating glomerular morphological damage following glomerular injury; alleviating proteinuria by upregulating the expression of nephrin, a biomarker of early glomerular damage; and inhibiting glomerular expansion and tubular fibrosis. Moreover, the administration of EPE to db/db mice increased the expression levels of p- PKCα/t-PKCα but decreased the expression levels of VEGF and renal fibrosis biomarkers (TGF-β1, collagen IV, p-Smad2, p-Smad3, and Smad4), as shown by Western blot analyses. These results implied that EPE as a supplement has a protective effect against renal dysfunction through the amelioration of insulin resistance as well as the suppression of nephritis and fibrosis in a DN model.
Collapse
Affiliation(s)
- Cheng-Hsiu Lin
- Department of Internal Medicine, Fengyuan Hospital, Ministry of Health and Welfare, Fengyuan District, Taichung City 42055, Taiwan;
| | - Chun-Ching Shih
- Department of Nursing, College of Nursing, Central Taiwan University of Science and Technology, No. 666 Buzih Road, Beitun District, Taichung City 406053, Taiwan
| |
Collapse
|
3
|
Wang K, Zhang H, Yuan L, Li X, Cai Y. Potential Implications of Hyperoside on Oxidative Stress-Induced Human Diseases: A Comprehensive Review. J Inflamm Res 2023; 16:4503-4526. [PMID: 37854313 PMCID: PMC10581022 DOI: 10.2147/jir.s418222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Hyperoside is a flavonol glycoside mainly found in plants of the genera Hypericum and Crataegus, and also detected in many plant species such as Abelmoschus manihot, Ribes nigrum, Rosa rugosa, Agrostis stolonifera, Apocynum venetum and Nelumbo nucifera. This compound exhibits a multitude of biological functions including anti-inflammatory, antidepressant, antioxidative, vascular protective effects and neuroprotective effects, etc. This review summarizes the quantification, original plant, chemical structure and property, structure-activity relationship, pharmacologic effect, pharmacokinetics, toxicity and clinical application of hyperoside, which will be significant for the exploitation for new drug and full utilization of this compound.
Collapse
Affiliation(s)
- Kaiyang Wang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Huhai Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
4
|
Wai Linn T, Kobroob A, Ngernjan M, Amornlerdpison D, Lailerd N, Wongmekiat O. Crocodile Oil Disrupts Mitochondrial Homeostasis and Exacerbates Diabetic Kidney Injury in Spontaneously Diabetic Torii Rats. Biomolecules 2022; 12:biom12081068. [PMID: 36008962 PMCID: PMC9406139 DOI: 10.3390/biom12081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetic nephropathy is currently the leading cause of end-stage renal disease (ESRD) in type 2 diabetes. Studies have suggested that supplementation with some fatty acids might reduce the risk and delay the progression to ESRD in patient with chronic kidney disease. Crocodile oil (CO) contains a variety of fatty acids, especially omega-3, -6 and -9, that have been reported to be beneficial to human health. This study examined the impact of long-term CO supplementation on the development of diabetic nephropathy in spontaneously diabetic Torii (SDT) rats. After diabetic verification, SDT rats were assigned to receive vehicle or CO at 500 and 1000 mg/kg BW, respectively, by oral gavage. Age-matched nondiabetic Sprague–Dawley rats were given vehicle or high-dose CO. After 28 weeks of intervention, CO failed to improve hyperglycemia and pancreatic histopathological changes in SDT rats. Unexpectedly, CO dose-dependently exacerbated the impairment of kidney and mitochondrial functions caused by diabetes. CO also disturbed the expressions of proteins involved in mitochondrial biogenesis, dynamics, and mitophagy. However, no significant alterations were observed in nondiabetic rats receiving high-dose CO. The findings reveal that CO has deleterious effects that aggravate diabetic kidney injury via disrupting mitochondrial homeostasis, possibly due to its improper omega-6: omega-3 ratio.
Collapse
Affiliation(s)
- Thiri Wai Linn
- Nutrition and Exercise Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.W.L.); (N.L.)
| | - Anongporn Kobroob
- Division of Physiology, School of Medical Science, University of Phayao, Phayao 56000, Thailand;
| | - Metas Ngernjan
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand; (M.N.); (D.A.)
| | - Doungporn Amornlerdpison
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand; (M.N.); (D.A.)
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneur, Maejo University, Chiang Mai 50290, Thailand
| | - Narissara Lailerd
- Nutrition and Exercise Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.W.L.); (N.L.)
| | - Orawan Wongmekiat
- Integrative Renal Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-935362
| |
Collapse
|
5
|
Yoon JJ, Park JH, Lee YJ, Kim HY, Han BH, Jin HG, Kang DG, Lee HS. Protective Effects of Ethanolic Extract from Rhizome of Polygoni avicularis against Renal Fibrosis and Inflammation in a Diabetic Nephropathy Model. Int J Mol Sci 2021; 22:7230. [PMID: 34281284 PMCID: PMC8267752 DOI: 10.3390/ijms22137230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/21/2022] Open
Abstract
Progressive diabetic nephropathy (DN) in diabetes leads to major morbidity and mortality. The major pathological alterations of DN include mesangial expansion, extracellular matrix alterations, tubulointerstitial fibrosis, and glomerular sclerosis. Polygoni avicularis is widely used in traditional oriental medicine and has long been used as a diuretic, astringent, insecticide and antihypertensive. However, to the best of the authors' knowledge, the effects of the ethanolic extract from rhizome of Polygoni avicularis (ER-PA) on DN have not yet been assessed. The present study aimed to identify the effect of ER-PA on renal dysfunction, which has been implicated in DN in human renal mesangial cells and db/db mice and investigate its mechanism of action. The in vivo experiment was performed using Polygoni avicularis-ethanol soluble fraction (ER-PA) and was administrated to db/db mice at 10 and 50 mg/kg dose. For the in vitro experiments, the human renal mesangial cells were induced by high glucose (HG, 25 mM). The ER-PA group showed significant amelioration in oral glucose tolerance, and insulin resistance index. ER-PA significantly improved the albumin excretion and markedly reduced plasma creatinine, kidney injury molecule-1 and C-reactive protein. In addition, ER-PA significantly suppressed inflammatory cytokines. Histopathologically, ER-PA attenuated glomerular expansion and tubular fibrosis in db/db mice. Furthermore, ER-PA suppressed the expression of renal fibrosis biomarkers (TGF and Collagen IV). ER-PA also reduced the NLR family pyrin domain containing 3 inflammatory factor level. These results suggest that ER-PA has a protective effect against renal dysfunction through improved insulin resistance as well as the inhibition of nephritis and fibrosis in DN.
Collapse
Affiliation(s)
- Jung-Joo Yoon
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Jeollabuk-do, Iksan 54538, Korea; (J.-J.Y.); (J.-H.P.); (Y.-J.L.); (H.-Y.K.); (B.-H.H.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Jeollabuk-do, Iksan 54538, Korea
| | - Ji-Hun Park
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Jeollabuk-do, Iksan 54538, Korea; (J.-J.Y.); (J.-H.P.); (Y.-J.L.); (H.-Y.K.); (B.-H.H.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Jeollabuk-do, Iksan 54538, Korea
| | - Yun-Jung Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Jeollabuk-do, Iksan 54538, Korea; (J.-J.Y.); (J.-H.P.); (Y.-J.L.); (H.-Y.K.); (B.-H.H.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Jeollabuk-do, Iksan 54538, Korea
| | - Hye-Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Jeollabuk-do, Iksan 54538, Korea; (J.-J.Y.); (J.-H.P.); (Y.-J.L.); (H.-Y.K.); (B.-H.H.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Jeollabuk-do, Iksan 54538, Korea
| | - Byung-Hyuk Han
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Jeollabuk-do, Iksan 54538, Korea; (J.-J.Y.); (J.-H.P.); (Y.-J.L.); (H.-Y.K.); (B.-H.H.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Jeollabuk-do, Iksan 54538, Korea
| | - Hong-Guang Jin
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Jeollabuk-do, Iksan 54538, Korea;
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332005, China
| | - Dae-Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Jeollabuk-do, Iksan 54538, Korea; (J.-J.Y.); (J.-H.P.); (Y.-J.L.); (H.-Y.K.); (B.-H.H.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Jeollabuk-do, Iksan 54538, Korea
| | - Ho-Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Jeollabuk-do, Iksan 54538, Korea; (J.-J.Y.); (J.-H.P.); (Y.-J.L.); (H.-Y.K.); (B.-H.H.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, Jeollabuk-do, Iksan 54538, Korea
| |
Collapse
|
6
|
Jiang M, Wang J, Chen M, Zhang H. Complete chloroplast genome of a rare and endangered plant species Osteomeles subrotunda: genomic features and phylogenetic relationships with other Rosaceae plants. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:762-768. [PMID: 33763572 PMCID: PMC7954488 DOI: 10.1080/23802359.2021.1881835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteomeles subrotunda is a rare and endangered plant species with extremely small populations. In our study, we sequenced the complete chloroplast (CP) genome of O. subrotunda and described its structural organization, and performed comparative genomic analyses with other Rosaceae CP genomes. The plastome of O. subrotunda was 159,902 bp in length with 36.6% GC content and contained a pair of inverted repeats of 26,367 bp which separated a large single-copy region of 87,933 bp and a small single-copy region of 19,235 bp. The CP genome included 130 genes, of which 85 were protein-coding genes, 37 were transfer RNAs, and eight were ribosomal RNAs. Two genes, rps19 and ycf1, which are located at the borders of IRB/SSC and IRB/LSC, were presumed to be pseudogenes. A total of 61 SSRs were detected, of which, 59 loci were mono-nucleotide repeats, and two were di-nucleotide repeats. The phylogenic analysis indicated that the 14 Rosaceae species were divided into three groups, among which O. subrotunda grouped with P. rupicola, E. japonica, P. pashia, C. japonica, S. torminalis, and M. florentina, and it was found to be a sister clade to C. japonica. Our newly sequenced CP genome of O. subrotunda will provide essential data for further studies on population genetics and biodiversity.
Collapse
Affiliation(s)
- Ming Jiang
- College of Life Sciences, Taizhou University, Taizhou, P. R. China
| | - Junfeng Wang
- Scientific Research Management Center, East China Medicinal Botanical Garden, Lishui, P. R. China
| | - Minghui Chen
- College of Life Sciences, Taizhou University, Taizhou, P. R. China
| | - Huijuan Zhang
- College of Life Sciences, Taizhou University, Taizhou, P. R. China
| |
Collapse
|
7
|
Kim D, Kim YS, Kim CS, Lee NK. Method for the Rapid Screening of Drug Candidates Using Single‐Protein Tracking in a Living Cell. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dong‐Kyun Kim
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology, 77, Cheongam‐ro, Nam‐gu, Pohang‐si Gyeongsangbuk‐do 37673 Republic of Korea
| | - Young Sook Kim
- Herbal Medicine Research Division Korea Institute of Oriental Medicine, 1672, Yuseong‐daero, Yuseong‐gu Daejeon 34054 Republic of Korea
| | - Chan Sik Kim
- Clinical Medicine Division Korea Institute of Oriental Medicine, 1672, Yuseong‐daero, Yuseong‐gu Daejeon 34054 Republic of Korea
| | - Nam Ki Lee
- Department of Chemistry Seoul National University, 1, Gwanak‐ro, Gwanak‐gu Seoul 08826 Republic of Korea
| |
Collapse
|
8
|
Kim CS, Kim J, Kim YS, Jo K, Lee YM, Jung DH, Lee IS, Kim JH, Kim JS. Improvement in Diabetic Retinopathy through Protection against Retinal Apoptosis in Spontaneously Diabetic Torii Rats Mediated by Ethanol Extract of Osteomeles schwerinae C.K. Schneid. Nutrients 2019; 11:nu11030546. [PMID: 30836664 PMCID: PMC6470872 DOI: 10.3390/nu11030546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Retinal apoptosis plays a critical role in the progression of diabetic retinopathy (DR), a common diabetic complication. Currently, the tight control of blood glucose levels is the standard approach to prevent or delay the progression of DR. However, prevalence of DR among diabetic patients remains high. Focusing on natural nutrients or herbal medicines that can prevent or delay the onset of diabetic complications, we administered an ethanol extract of the aerial portion of Osteomeles schwerinae (OSSCE), a Chinese herbal medicine, over a period of 17 weeks to spontaneously diabetic Torii (SDT) rats. OSSCE was found to ameliorate retinal apoptosis through the regulation of advanced glycation end product (AGE) accumulation, oxidative stress, and mitochondrial function via the inhibition of NF-κB activity, in turn, through the downregulation of PKCδ, P47phox, and ERK1/2. We further demonstrated in 25 mM glucose-treated human retinal microvascular endothelial cells (HRMECs) that hyperoside (3-O-galactoside-quercetin), quercitrin (3-O-rhamnoside-quercetin), and 2″-O-acetylvitexin (8-C-(2″-O-acetyl-glucoside)-apigenin) were the active components of OSSCE that mediated its pharmacological action. Our results provide evidence that OSSCE is a powerful agent that may directly mediate a delay in the development or disease improvement in patients of DR.
Collapse
Affiliation(s)
- Chan-Sik Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- Korean Convergence Medicine, University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Junghyun Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju 54896, Korea.
| | - Young Sook Kim
- Korean Convergence Medicine, University of Science and Technology (UST), Daejeon 34113, Korea.
- Clinical Research Coordination Team, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Kyuhyung Jo
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Yun Mi Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Dong Ho Jung
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Ik Soo Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Joo-Hwan Kim
- Department of Life Science. Gachon University, 1342, Seongnamdaero, Seongnam, Gyeonggido 13120, Korea.
| | - Jin Sook Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|