1
|
Alivaisi E, Amini S, Haghani K, Ghaneialvar H, Keshavarzi F. Comparative effects of metformin and varying intensities of exercise on miR-133a expression in diabetic rats: Insights from machine learning analysis. Biochem Biophys Rep 2024; 40:101882. [PMID: 39649797 PMCID: PMC11625223 DOI: 10.1016/j.bbrep.2024.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/11/2024] Open
Abstract
This study investigated the effects of metformin, high-intensity interval training (HIIT), and moderate-intensity continuous training (MCT) on miR-133a expression in a diabetic rat model. miR-133a, a microRNA associated with skeletal muscle insulin resistance, served as a key indicator of treatment efficacy. Diabetic rats exhibited elevated miR-133a levels compared to healthy controls. Both HIIT and MCT, alone and in combination with metformin, significantly reduced miR-133a expression. Importantly, the combination of HIIT and metformin demonstrated the most potent effect, reducing miR-133a levels more than other treatments. We used the CatBoost algorithm to develop a predictive model for miR-133a expression based on metabolic parameters. The model accurately predicted miR-133a levels using body weight, blood glucose, insulin levels, and cholesterol metrics. The findings suggest a potential clinical strategy combining metformin and exercise, with miR-133a potentially serving as a biomarker for personalized diabetes management.
Collapse
Affiliation(s)
- Elahe Alivaisi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Sabrieh Amini
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Karimeh Haghani
- Department of Clinical Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Keshavarzi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
2
|
Senyigit A, Durmus S, Oruc A, Gelisgen R, Uzun H, Tabak O. Dysfunction of PTEN-Associated MicroRNA Regulation: Exploring Potential Pathological Links in Type 1 Diabetes Mellitus. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1744. [PMID: 39596932 PMCID: PMC11595949 DOI: 10.3390/medicina60111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: Type 1 Diabetes Mellitus (T1DM) is an autoimmune disease with T cell-mediated pathogenesis of pancreatic β-cell destruction, leading to insulin deficiency. MicroRNAs such as miR-223 and miR-106b, along with PTEN, have been reported to participate in the pathophysiology of diabetes and its complications. The current study has explored the expression of miR-223, miR-106b, and PTEN and their association with various clinical and biochemical parameters in subjects diagnosed with T1DM. Materials and Methods: Sixty T1DM patients (two groups as uncomplicated/ with microalbuminuria) and fifty healthy volunteers, age- and sex-matched, were enrolled in this study. The fasting venous blood samples were collected, and PTEN and miRNAs (miR-223 and miR-106b) levels were measured by ELISA and real-time PCR, respectively. Results: The PTEN levels of patients with microalbuminuria were significantly lower than those of patients without microalbuminuria, while those of miR-223 and miR-106b were significantly increased in the T1DM group compared with the healthy control group (p < 0.001). ROC analysis indicated that PTEN, miR-223, and miR-106b could be potential biomarkers for diagnosing T1DM with high specificity but with variable sensitivities. Also, PTEN and miR-223 were negatively correlated with r =-0.398 and p < 0.0001, indicating that they were interrelated in their role within the T1DM pathophysiology. Conclusions: In the current study, it has been shown that the circulating levels of PTEN, miR-223, and miR-106b are significantly changed in T1DM patients and may back their potential to be used as non-invasive biomarkers for the diagnosis and monitoring of T1DM. Low PTEN protein expression was related to high miR-223 expression, indicating involvement of these miRNA in the regulation of PTEN. Further studies should be performed to clarify the exact mechanisms and possible clinical applications of these molecules.
Collapse
Affiliation(s)
- Abdulhalim Senyigit
- Department of Internal Medicine, Faculty of Medicine, Istanbul Atlas University, Istanbul 34403, Türkiye;
| | - Sinem Durmus
- Department of Medical Biochemistry, Faculty of Medicine, İzmir Kâtip Celebi University, Izmir 35620, Türkiye;
| | - Aykut Oruc
- Department of Physiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34320, Türkiye;
| | - Remise Gelisgen
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34320, Türkiye;
| | - Hafize Uzun
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul 34403, Türkiye
| | - Omur Tabak
- Department of Internal Medicine, Kanuni Sultan Suleyman Training and Research Hospital, Health Sciences University, Istanbul 34668, Türkiye
| |
Collapse
|
3
|
Hong X, Jiang M, Kho AT, Tiwari A, Guo H, Wang AL, McGeachie MJ, Weiss ST, Tantisira KG, Li J. Circulating miRNAs associate with historical childhood asthma hospitalization in different serum vitamin D groups. Respir Res 2024; 25:118. [PMID: 38459594 PMCID: PMC10921757 DOI: 10.1186/s12931-024-02737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/17/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Vitamin D may help to alleviate asthma exacerbation because of its anti-inflammation effect, but the evidence is inconsistent in childhood asthma. MiRNAs are important mediators in asthma pathogenesis and also excellent non-invasive biomarkers. We hypothesized that circulating miRNAs are associated with asthma exacerbation and modified by vitamin D levels. METHODS We sequenced baseline serum miRNAs from 461 participants in the Childhood Asthma Management Program (CAMP). Logistic regression was used to associate miRNA expression with asthma exacerbation through interaction analysis first and then stratified by vitamin D insufficient and sufficient groups. Microarray from lymphoblastoid B-cells (LCLs) treated by vitamin D or sham of 43 subjects in CAMP were used for validation in vitro. The function of miRNAs was associated with gene modules by weighted gene co-expression network analysis (WGCNA). RESULTS We identified eleven miRNAs associated with asthma exacerbation with vitamin D effect modification. Of which, five were significant in vitamin D insufficient group and nine were significant in vitamin D sufficient group. Six miRNAs, including hsa-miR-143-3p, hsa-miR-192-5p, hsa-miR-151a-5p, hsa-miR-24-3p, hsa-miR-22-3p and hsa-miR-451a were significantly associated with gene modules of immune-related functions, implying miRNAs may mediate vitamin D effect on asthma exacerbation through immune pathways. In addition, hsa-miR-143-3p and hsa-miR-451a are potential predictors of childhood asthma exacerbation at different vitamin D levels. CONCLUSIONS miRNAs are potential mediators of asthma exacerbation and their effects are directly impacted by vitamin D levels.
Collapse
Affiliation(s)
- Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Mingye Jiang
- Clinical Big Data Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Alvin T Kho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haiyan Guo
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Disease, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Alberta L Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Partners Personalized Medicine, Partners Healthcare, Boston, MA, USA
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jiang Li
- Clinical Big Data Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Zheng R, Xu Q, Wang Y, Zhong Y, Zhu R. Cordyceps cicadae polysaccharides attenuate diabetic nephropathy via the miR-30a-3p/TRIM16 axis. J Diabetes Investig 2024; 15:300-314. [PMID: 38149724 PMCID: PMC10906025 DOI: 10.1111/jdi.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
OBJECTIVE The molecular mechanism of the protective effect of Cordyceps cicadae polysaccharides (CCPs) on renal tubulointerstitial fibrosis in diabetic nephropathy (DN) is still unclear. This study aims to further understand the molecular mechanisms behind the therapeutic benefits of CCP on diabetic nephropathy. METHODS Mice were randomly assigned into six groups (n = 8). Cordyceps cicadae polysaccharide dissolved in 5% dimethyl sulfoxide was administered by gavage for 12 consecutive weeks. The CCP doses were divided into low, medium, and high, 75, 150, and 300 mg/kg/day, respectively. The efficacy of CCP was determined by assessing the renal function and histological alterations in diabetic db/db mice. The degree of glomerular mesangial dilatation and sclerosis was evaluated using semiquantitative markers. Cell viability, apoptosis, epithelial-mesenchymal transition (EMT), inflammation, oxidative stress, and mitochondrial reactive oxygen species (ROS) in high glucose (HG)-cultured MPC5 podocytes were determined. The interaction of miR-30a-3p and tripartite motif-containing protein 16 (TRIM16) was examined by luciferase reporter assay. Western blotting, reverse transcription-polymerase chain reaction, and immunofluorescence were used to analyze gene and protein expressions. RESULTS The in vivo findings illustrated that CCP may protect mice with type 2 diabetes from inflammation and oxidative damage (P < 0.05). Furthermore, CCP has a therapeutic value in protecting renal function and morphology in diabetic nephropathy by reversing podocyte EMT. The in vitro results indicated that CCP dose-dependently inhibited HG-induced apoptosis, EMT, inflammation, oxidative stress, and mitochondrial ROS levels in MPC5 podocytes (P < 0.05). Luciferase reporter assay confirmed the interaction between miR-30a-3p and TRIM16 in MPC5 podocytes cultured in high glucose (P < 0.05). CONCLUSION The protective effect of CCP on HG-induced MPC5 can be achieved by miR-30a-3p/TRIM16 axis.
Collapse
Affiliation(s)
- Rong Zheng
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qin Xu
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yiwen Wang
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yifei Zhong
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Rong Zhu
- Department of Nephrology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
5
|
Engin AB, Engin ED, Engin A. Macrophage Activation Syndrome in Coinciding Pandemics of Obesity and COVID-19: Worse than Bad. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:919-954. [PMID: 39287877 DOI: 10.1007/978-3-031-63657-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic changes have long-lasting impacts, which influence the epigenome and are maintained during cell division. Thus, human genome changes have required a very long timescale to become a major contributor to the current obesity pandemic. Whereas bidirectional effects of coronavirus disease 2019 (COVID-19) and obesity pandemics have given the opportunity to explore, how the viral microribonucleic acids (miRNAs) use the human's transcriptional machinery that regulate gene expression at a posttranscriptional level. Obesity and its related comorbidity, type 2 diabetes (T2D), and new-onset diabetes due to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are additional risk factors, which increase the severity of COVID-19 and its related mortality. The higher mortality rate of these patients is dependent on severe cytokine storm, which is the sum of the additional cytokine production by concomitant comorbidities and own cytokine synthesis of COVID-19. Patients with obesity facilitate the SARS-CoV-2 entry to host cell via increasing the host's cell receptor expression and modifying the host cell proteases. After entering the host cells, the SARS-CoV-2 genome directly functions as a messenger ribonucleic acid (mRNA) and encodes a set of nonstructural proteins via processing by the own proteases, main protease (Mpro), and papain-like protease (PLpro) to initiate viral genome replication and transcription. Following viral invasion, SARS-CoV-2 infection reduces insulin secretion via either inducing β-cell apoptosis or reducing intensity of angiotensin-converting enzyme 2 (ACE2) receptors and leads to new-onset diabetes. Since both T2D and severity of COVID-19 are associated with the increased serum levels of pro-inflammatory cytokines, high glucose levels in T2D aggravate SARS-CoV-2 infection. Elevated neopterin (NPT) value due to persistent interferon gamma (IFN-γ)-mediated monocyte-macrophage activation is an indicator of hyperactivated pro-inflammatory phenotype M1 macrophages. Thus, NPT could be a reliable biomarker for the simultaneously occurring COVID-19-, obesity- and T2D-induced cytokine storm. While host miRNAs attack viral RNAs, viral miRNAs target host transcripts. Eventually, the expression rate and type of miRNAs also are different in COVID-19 patients with different viral loads. It is concluded that specific miRNA signatures in macrophage activation phase may provide an opportunity to become aware of the severity of COVID-19 in patients with obesity and obesity-related T2D.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey
| | - Evren Doruk Engin
- Biotechnology Institute, Ankara University, Gumusdere Campus, Gumusdere, Ankara, Turkey
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
6
|
Bellini S, Guarrera S, Matullo G, Schalkwijk C, Stehouwer CD, Chaturvedi N, Soedamah-Muthu SS, Barutta F, Gruden G. Serum MicroRNA-191-5p Levels in Vascular Complications of Type 1 Diabetes: The EURODIAB Prospective Complications Study. J Clin Endocrinol Metab 2023; 109:e163-e174. [PMID: 37552780 PMCID: PMC10735284 DOI: 10.1210/clinem/dgad468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
CONTEXT MicroRNA-191-5p regulates key cellular processes involved in the pathogenesis of diabetic complications such as angiogenesis, extracellular matrix deposition, and inflammation. However, no data on circulating microRNA-191-5p in the chronic complications of diabetes are available. OBJECTIVE To assess whether serum levels of microRNA-191-5p were associated with micro- and macrovascular disease in a large cohort of subjects with type 1 diabetes mellitus (DM1) from the EURODIAB Prospective Complication Study. DESIGN AND SETTING Levels of microRNA-191-5p were measured by quantitative PCR in 420 patients with DM1 recruited as part of the cross-sectional analysis of the EURODIAB Prospective Complication Study. Cases (n = 277) were subjects with nephropathy and/or retinopathy and/or cardiovascular disease (CVD). Controls (n = 143) were patients without complications. Logistic regression analysis was performed to evaluate the potential independent association of microRNA-191-5p levels with chronic complications of diabetes. RESULTS Levels of microRNA-191-5p were significantly reduced (P < .001) in cases compared with controls even after adjustment for age, sex, and diabetes duration. Logistic regression analysis revealed that microRNA-191-5p was negatively associated with a 58% reduced odds ratio (OR) of chronic diabetes complications, specifically CVD, micro-macroalbuminuria, and retinopathy (OR, 0.42; 95% CI, 0.23-0.77), independent of age, sex, physical activity, educational levels, diabetes duration, glycated hemoglobin, total insulin dose, hypertension, smoking, total cholesterol, albumin excretion rate, estimated glomerular filtration rate, serum vascular cell adhesion molecule-1, and tumor necrosis factor-α. Analyses performed separately for each complication demonstrated a significant independent association with albuminuria (OR, 0.36; 95% CI, (0.18-0.75) and CVD (OR, 0.34; 95% CI, 0.16-0.70). CONCLUSIONS In DM1 subjects, microRNA-191-5p is inversely associated with vascular chronic complications of diabetes.
Collapse
Affiliation(s)
- Stefania Bellini
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine, IIGM, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Medical Genetics Unit, AOU Città della Salute e della Scienza, 10126 Turin, Italy
| | - Casper Schalkwijk
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6221 Maastricht, the Netherlands
| | - Coen D Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6221 Maastricht, the Netherlands
| | - Nish Chaturvedi
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Sabita S Soedamah-Muthu
- Center of Research on Psychology in Somatic Diseases (CORPS), Department of Medical and Clinical Psychology, Tilburg University, 5048 Tilburg, the Netherland
- Institute for Food, Nutrition and Health, University of Reading Reading RG6 6UR, UK
| | - Federica Barutta
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Gabriella Gruden
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
7
|
Prieto I, Kavanagh M, Jimenez-Castilla L, Pardines M, Lazaro I, Herrero del Real I, Flores-Muñoz M, Egido J, Lopez-Franco O, Gomez-Guerrero C. A mutual regulatory loop between miR-155 and SOCS1 influences renal inflammation and diabetic kidney disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102041. [PMID: 37842165 PMCID: PMC10571033 DOI: 10.1016/j.omtn.2023.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/23/2023] [Indexed: 10/17/2023]
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication of diabetes, a global health issue. Hyperglycemia, in concert with cytokines, activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway to induce inflammation and oxidative stress contributing to renal damage. There is evidence of microRNA-155 (miR-155) involvement in diabetes complications, but the underlying mechanisms are unclear. In this study, gain- and loss-of-function experiments were conducted to investigate the interplay between miR-155-5p and suppressor of cytokine signaling 1 (SOCS1) in the regulation of the JAK/STAT pathway during renal inflammation and DKD. In experimental models of mesangial injury and diabetes, miR-155-5p expression correlated inversely with SOCS1 and positively with albuminuria and expression levels of cytokines and prooxidant genes. In renal cells, miR-155-5p mimic downregulated SOCS1 and promoted STAT1/3 activation, cytokine expression, and cell proliferation and migration. Conversely, both miR-155-5p antagonism and SOCS1 overexpression protected cells from inflammation and hyperglycemia damage. In vivo, SOCS1 gene delivery decreased miR-155-5p and kidney injury in diabetic mice. Moreover, therapeutic inhibition of miR-155-5p suppressed STAT1/3 activation and alleviated albuminuria, mesangial damage, and renal expression of inflammatory and fibrotic genes. In conclusion, modulation of the miR-155/SOCS1 axis protects kidneys against diabetic damage, thus highlighting its potential as therapeutic target for DKD.
Collapse
Affiliation(s)
- Ignacio Prieto
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - María Kavanagh
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
| | - Luna Jimenez-Castilla
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Marisa Pardines
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
| | - Iolanda Lazaro
- Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute-IMIM, 08003 Barcelona, Spain
| | - Isabel Herrero del Real
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
| | - Monica Flores-Muñoz
- Translational Medicine Lab, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa 91140, Veracruz, Mexico
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Oscar Lopez-Franco
- Translational Medicine Lab, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa 91140, Veracruz, Mexico
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| |
Collapse
|
8
|
Sharma S, Bhonde R. Applicability of mesenchymal stem cell-derived exosomes as a cell-free miRNA therapy and epigenetic modifiers for diabetes. Epigenomics 2023; 15:1323-1336. [PMID: 38018455 DOI: 10.2217/epi-2023-0302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Given that exosome nanovesicles constitute various growth factors, miRNAs and lncRNAs, they have implications for epigenetic modifications. Few studies have shown that exosomes from mesenchymal stem cells (MSCs) exhibit therapeutic effects on diabetic complications by substituting miRNAs and regulating histone modifications. Therefore, reversing epigenetic aberrations in diabetes may provide new insight into its treatment. This review discusses the impact of DNA and histone methylations on the development of diabetes and its complications. Further, we talk about miRNAs dysregulated in diabetic conditions and the possibility of utilizing mesenchymal stem cell (MSC) exosomes for the development of miRNA cell-free therapy and epigenetic modifiers in reversing diabetic-induced epigenetic alterations.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute For Stem Cell Science & Regenerative Medicine, Bangalore, 560065, India
| | - Ramesh Bhonde
- Dr D.Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India
| |
Collapse
|
9
|
Li X, Dai A, Tran R, Wang J. Text mining-based identification of promising miRNA biomarkers for diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1195145. [PMID: 37560309 PMCID: PMC10407569 DOI: 10.3389/fendo.2023.1195145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction MicroRNAs (miRNAs) are small, non-coding RNAs that play a critical role in diabetes development. While individual studies investigating the mechanisms of miRNA in diabetes provide valuable insights, their narrow focus limits their ability to provide a comprehensive understanding of miRNAs' role in diabetes pathogenesis and complications. Methods To reduce potential bias from individual studies, we employed a text mining-based approach to identify the role of miRNAs in diabetes and their potential as biomarker candidates. Abstracts of publications were tokenized, and biomedical terms were extracted for topic modeling. Four machine learning algorithms, including Naïve Bayes, Decision Tree, Random Forest, and Support Vector Machines (SVM), were employed for diabetes classification. Feature importance was assessed to construct miRNA-diabetes networks. Results Our analysis identified 13 distinct topics of miRNA studies in the context of diabetes, and miRNAs exhibited a topic-specific pattern. SVM achieved a promising prediction for diabetes with an accuracy score greater than 60%. Notably, miR-146 emerged as one of the critical biomarkers for diabetes prediction, targeting multiple genes and signal pathways implicated in diabetic inflammation and neuropathy. Conclusion This comprehensive approach yields generalizable insights into the network miRNAs-diabetes network and supports miRNAs' potential as a biomarker for diabetes.
Collapse
Affiliation(s)
- Xin Li
- Central Hospital Affiliated to Shandong First Medical University, Ophthalmology Department, Jinan, Shandong, China
| | - Andrea Dai
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Richard Tran
- University of Chicago, Master’s Program in Computer Science, Chicago, IL, United States
| | - Jie Wang
- Syracuse University, Applied Data Science Program, Syracuse, NY, United States
- MDSight, LLC, Brookeville, MD, United States
| |
Collapse
|
10
|
Abstract
CONTEXT The prevalence of diabetic neuropathy is drastically increasing in the world. To halt the progression of diabetic neuropathy, there is an unmet need to have potential biomarkers for the diagnosis and new drug discovery. OBJECTIVE To study various biomarkers involved in the pathogenesis of diabetic neuropathy. METHODS The literature was searched with the help of various scientific databases and resources like PubMed, ProQuest, Scopus, and Google scholar from the year 1976 to 2020. RESULTS Biomarkers of diabetic neuropathy are categorised as inflammatory biomarkers such as MCP-1, VEGF, TRPV1, NF-κB; oxidative biomarkers such as adiponectin, NFE2L2; enzyme biomarkers like NADPH, ceruloplasmin, HO-1, DPP-4, PARP α; miscellaneous biomarkers such as SIRT1, caveolin 1, MALAT1, and microRNA. All biomarkers have a significant role in the pathogenesis of diabetic neuropathy. CONCLUSION These biomarkers have a potential role in the progression of diabetic neuropathy and can be considered as potential targets for new drug discovery.
Collapse
Affiliation(s)
- Kaveri M Adki
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
11
|
Da'as SI, Ahmed I, Hasan WH, Abdelrahman DA, Aliyev E, Nisar S, Bhat AA, Joglekar MV, Hardikar AA, Fakhro KA, Akil ASAS. The link between glycemic control measures and eye microvascular complications in a clinical cohort of type 2 diabetes with microRNA-223-3p signature. J Transl Med 2023; 21:171. [PMID: 36869348 PMCID: PMC9985290 DOI: 10.1186/s12967-023-03893-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a critical healthcare challenge and priority in Qatar which is listed amongst the top 10 countries in the world, with its prevalence presently at 17% double the global average. MicroRNAs (miRNAs) are implicated in the pathogenesis of (T2D) and long-term microvascular complications including diabetic retinopathy (DR). METHODS In this study, a T2D cohort that accurately matches the characteristics of the general population was employed to find microRNA (miRNA) signatures that are correlated with glycemic and β cell function measurements. Targeted miRNA profiling was performed in (471) T2D individuals with or without DR and (491) (non-diabetic) healthy controls from the Qatar Biobank. Discovery analysis identified 20 differentially expressed miRNAs in T2D compared to controls, of which miR-223-3p was significantly upregulated (fold change:5.16, p = 3.6e-02) and positively correlated with glucose and hemoglobin A1c (HbA1c) levels (p-value = 9.88e-04 and 1.64e-05, respectively), but did not show any significant associations with insulin or C-peptide. Accordingly, we performed functional validation using a miR-223-3p mimic (overexpression) under control and hyperglycemia-induced conditions in a zebrafish model. RESULTS Over-expression of miR-223-3p alone was associated with significantly higher glucose (42.7 mg/dL, n = 75 vs 38.7 mg/dL, n = 75, p = 0.02) and degenerated retinal vasculature, and altered retinal morphology involving changes in the ganglion cell layer and inner and outer nuclear layers. Assessment of retinal angiogenesis revealed significant upregulation in the expression of vascular endothelial growth factor and its receptors, including kinase insert domain receptor. Further, the pancreatic markers, pancreatic and duodenal homeobox 1, and the insulin gene expressions were upregulated in the miR-223-3p group. CONCLUSION Our zebrafish model validates a novel correlation between miR-223-3p and DR development. Targeting miR-223-3p in T2D patients may serve as a promising therapeutic strategy to control DR in at-risk individuals.
Collapse
Affiliation(s)
- Sahar I Da'as
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Waseem H Hasan
- Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Doua A Abdelrahman
- Zebrafish Functional Genomics, Integrated Genomic Services Core Facility, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Elbay Aliyev
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Nisar
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz Ahmad Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW, 2560, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Narellan Road & Gilchrist Drive, Campbelltown, NSW, 2560, Australia.,Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Khalid A Fakhro
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar. .,Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|
12
|
Galiero R, Caturano A, Vetrano E, Beccia D, Brin C, Alfano M, Di Salvo J, Epifani R, Piacevole A, Tagliaferri G, Rocco M, Iadicicco I, Docimo G, Rinaldi L, Sardu C, Salvatore T, Marfella R, Sasso FC. Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options. Int J Mol Sci 2023; 24:ijms24043554. [PMID: 36834971 PMCID: PMC9967934 DOI: 10.3390/ijms24043554] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetic neuropathy (DN) is one of the main microvascular complications of both type 1 and type 2 diabetes mellitus. Sometimes, this could already be present at the time of diagnosis for type 2 diabetes mellitus (T2DM), while it appears in subjects with type 1 diabetes mellitus (T1DM) almost 10 years after the onset of the disease. The impairment can involve both somatic fibers of the peripheral nervous system, with sensory-motor manifestations, as well as the autonomic system, with neurovegetative multiorgan manifestations through an impairment of sympathetic/parasympathetic conduction. It seems that, both indirectly and directly, the hyperglycemic state and oxygen delivery reduction through the vasa nervorum can determine inflammatory damage, which in turn is responsible for the alteration of the activity of the nerves. The symptoms and signs are therefore various, although symmetrical painful somatic neuropathy at the level of the lower limbs seems the most frequent manifestation. The pathophysiological aspects underlying the onset and progression of DN are not entirely clear. The purpose of this review is to shed light on the most recent discoveries in the pathophysiological and diagnostic fields concerning this complex and frequent complication of diabetes mellitus.
Collapse
Affiliation(s)
- Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Chiara Brin
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Jessica Di Salvo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaella Epifani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ilaria Iadicicco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Giovanni Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
- Correspondence: ; Tel.: +39-08-1566-5010
| |
Collapse
|
13
|
Ismail A, El-Mahdy HA, Eldeib MG, Doghish AS. miRNAs as cornerstones in diabetic microvascular complications. Mol Genet Metab 2023; 138:106978. [PMID: 36565688 DOI: 10.1016/j.ymgme.2022.106978] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is usually accompanied by nephropathy, retinopathy, and neuropathy as microvascular complications. MicroRNAs (miRNAs) can affect the kidney, retina, and peripheral neurons through their implication in pathways involved in angiogenesis, inflammation, apoptosis, as well as fibrosis within these tissues and hence, play a crucial role in the pathogenesis of microvascular complications. In this review, the updated knowledge of the role of miRNAs in the pathogenesis of diabetic microvascular complications was summarized. PubMed Central was searched extensively to retrieve data from a wide range of reputable biomedical reports/articles published after the year 2000 to systematically collect and present a review of the key molecular pathways mediating the hyperglycemia-induced adverse effects on vascular tissues, particularly in persons with T2DM. In the present review, miR-126, miR-29b, and miR-125a are implicated in diabetes-induced microvascular complications, while miR-146a is found to be connected to all these complications. Also, vascular endothelial growth factors are noted to be the most impacted targets by miRNAs in all diabetic microvascular problems.
Collapse
Affiliation(s)
- Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Mahmoud Gomaa Eldeib
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Sinai University - Kantara Branch, 41636 Ismailia, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
14
|
MicroRNA-150 (miR-150) and Diabetic Retinopathy: Is miR-150 Only a Biomarker or Does It Contribute to Disease Progression? Int J Mol Sci 2022; 23:ijms232012099. [PMID: 36292956 PMCID: PMC9603433 DOI: 10.3390/ijms232012099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic disease associated with diabetes mellitus and is a leading cause of visual impairment among the working population in the US. Clinically, DR has been diagnosed and treated as a vascular complication, but it adversely impacts both neural retina and retinal vasculature. Degeneration of retinal neurons and microvasculature manifests in the diabetic retina and early stages of DR. Retinal photoreceptors undergo apoptosis shortly after the onset of diabetes, which contributes to the retinal dysfunction and microvascular complications leading to vision impairment. Chronic inflammation is a hallmark of diabetes and a contributor to cell apoptosis, and retinal photoreceptors are a major source of intraocular inflammation that contributes to vascular abnormalities in diabetes. As the levels of microRNAs (miRs) are changed in the plasma and vitreous of diabetic patients, miRs have been suggested as biomarkers to determine the progression of diabetic ocular diseases, including DR. However, few miRs have been thoroughly investigated as contributors to the pathogenesis of DR. Among these miRs, miR-150 is downregulated in diabetic patients and is an endogenous suppressor of inflammation, apoptosis, and pathological angiogenesis. In this review, how miR-150 and its downstream targets contribute to diabetes-associated retinal degeneration and pathological angiogenesis in DR are discussed. Currently, there is no effective treatment to stop or reverse diabetes-caused neural and vascular degeneration in the retina. Understanding the molecular mechanism of the pathogenesis of DR may shed light for the future development of more effective treatments for DR and other diabetes-associated ocular diseases.
Collapse
|
15
|
EROGLU İ, KORKMAZ H, OZTURK KH, SIRIN FB, SEVIK S, AFSAR B. New risk factors in diabetic nephropathy: microRNA-196-3p and microRNA-203. Minerva Endocrinol (Torino) 2022; 47:314-324. [DOI: 10.23736/s2724-6507.20.03204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Xue W, Zhang Q, Chen Y, Zhu Y. Hydrogen Sulfide Improves Angiogenesis by Regulating the Transcription of pri-miR-126 in Diabetic Endothelial Cells. Cells 2022; 11:cells11172651. [PMID: 36078059 PMCID: PMC9455028 DOI: 10.3390/cells11172651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction: Diabetes mellitus results in high rates of cardiovascular disease, such as microcirculation disorder of the lower limbs, with angiogenesis impairment being the main factor. The endothelium functions as a barrier between blood and the vessel wall. Vascular endothelial cell dysfunction caused by hyperglycemia is the main factor leading to angiogenesis impairment. Hydrogen sulfide (H2S) and miR-126-3p are known for their pro-angiogenesis effects; however, little is known about how H2S regulates miR-126-3p to promote angiogenesis under high-glucose conditions. Objectives: The main objective of this research was to explore how H2S regulates the miR-126-3p levels under high-glucose conditions. Methods: We evaluated the pro-angiogenesis effects of H2S in the diabetic hindlimb of an ischemia mice model and in vivo Matrigel plugs. Two microRNA datasets were used to screen microRNAs regulated by both diabetes and H2S. The mRNA and protein levels were detected through real-time PCR and Western blot, respectively. Immunofluorescent staining was also used to assess the capillary density and to evaluate the protein levels in vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs) were used in in vitro experiments. A scratch wound-healing assay was applied to detect the migration ability of endothelial cells. Methylated DNA immunoprecipitation combined with real-time PCR was chosen to identify the DNA methylation level in the HUVECs. Results: Exogenous H2S improved angiogenesis in diabetic mice. miR-126-3p was regulated by both diabetes and H2S. Exogenous H2S up-regulated the miR-126-3p level and recovered the migration rate of endothelial cells via down-regulating the DNMT1 protein level, which was increased by high glucose. Furthermore, DNMT1 upregulation in the HUVECs increased the methylation levels of the gene sequences upstream of miR-126-3p and then inhibited the transcription of primary-miR-126, thus decreasing the miR-126-3p level. CSE overexpression in the HUVECs rescued the miR-126-3p level, by decreasing the methylation level to improve migration. Conclusion: H2S increases the miR-126-3p level through down-regulating the methylation level, by decreasing the DNMT1 protein level induced by high glucose, thus improving the angiogenesis originally impaired by high glucose.
Collapse
Affiliation(s)
- Wenlong Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Qingqing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Ying Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Yichun Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel./Fax: +86-21-5423-7098
| |
Collapse
|
17
|
Veshkini A, Hammon HM, Lazzari B, Vogel L, Gnott M, Tröscher A, Vendramin V, Sadri H, Sauerwein H, Ceciliani F. Investigating circulating miRNA in transition dairy cows: What miRNAomics tells about metabolic adaptation. Front Genet 2022; 13:946211. [PMID: 36082001 PMCID: PMC9445238 DOI: 10.3389/fgene.2022.946211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the current study, we investigated dairy cows’ circulating microRNA (miRNA) expression signature during several key time points around calving, to get insights into different aspects of metabolic adaptation. In a trial with 32 dairy cows, plasma samples were collected on days −21, 1, 28, and 63 relative to calving. Individually extracted total RNA was subjected to RNA sequencing using NovaSeq 6,000 (Illumina, CA) on the respective platform of IGA Technology Services, Udine, Italy. MiRDeep2 was used to identify known and novel miRNA according to the miRbase collection. Differentially expressed miRNA (DEM) were assessed at a threshold of fold-change > 1.5 and false discovery rate < 0.05 using the edgeR package. The MiRWalk database was used to predict DEM targets and their associated KEGG pathways. Among a total of 1,692 identified miRNA, 445 known miRNA were included for statistical analysis, of which 84, 59, and 61 DEM were found between days −21 to 1, 1 to 28, and 28 to 63, respectively. These miRNA were annotated to KEGG pathways targeting the insulin, MAPK, Ras, Wnt, Hippo, sphingolipid, T cell receptor, and mTOR signaling pathways. MiRNA-mRNA network analysis identified miRNA as master regulators of the biological process including miR-138, miR-149-5p, miR-2466-3p, miR-214, miR-504, and miR-6523a. This study provided new insights into the miRNA signatures of transition to the lactation period. Calving emerged as a critical time point when miRNA were most affected, while the following period appeared to be recovering from massive parturition changes. The primarily affected pathways were key signaling pathways related to establishing metabolic and immune adaptations.
Collapse
Affiliation(s)
- Arash Veshkini
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
| | | | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology of the CNR, Milan, Italy
| | - Laura Vogel
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Martina Gnott
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | | | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
- *Correspondence: Fabrizio Ceciliani,
| |
Collapse
|
18
|
Barutta F, Bellini S, Guarrera S, Matullo G, Schalkwijk C, Stehouwer CD, Chaturvedi N, Soedamah-Muthu SS, Durazzo M, Gruden G. Association of serum MicroRNA-145-5p levels with microvascular complications of type 1 Diabetes: The EURODIAB prospective complications study. Diabetes Res Clin Pract 2022; 190:109987. [PMID: 35820565 DOI: 10.1016/j.diabres.2022.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022]
Abstract
AIMS To investigate whether serum miR-145-5p levels were associated with micro-macrovascular chronic complications in patients with type 1 diabetes (DM1). METHODS A nested case-control study from the EURODIAB Prospective Complications Study was performed. Cases (n = 289) had one or more complications of diabetes, whereas controls (n = 153) did not have any complication. We measured miR-145-5p levels by qPCR and investigated the association with diabetes complications. RESULTS Mean miR-145-5p levels were significantly lower in cases with microangiopathy [2.12 (0.86-4.94)] compared to controls [3.15 (1.21-7.36), P < 0.05] even after adjustment for age, gender, and diabetes duration. In logistic regression analysis, miR-145-5p levels in the lowest tertile were associated with an over three-fold increased odds ratio (OR) of albuminuria [3.22 (1.17-8.81)], independently of both demographic and diabetes-related factors. In addition, mir145-5p levels in the lowest tertile were independently and inversely associated with arterial hypertension [1.96 (1.08-3.56)] and hypertension was the mediator of the relationship between miR-145-5p and albuminuria. CONCLUSIONS In this large cohort of DM1 patients, we found an inverse association between miR-145-5p and albuminuria that was mediated by systemic hypertension.
Collapse
Affiliation(s)
| | | | - Simonetta Guarrera
- Italian Institute for Genomic Medicine, IIGM, Candiolo, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Italy; Medical Genetics Unit, AOU Città della Salute e della Scienza, Turin, Italy
| | - Casper Schalkwijk
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Coen D Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Nish Chaturvedi
- Institute of Cardiovascular Science, University College London, London, UK
| | - Sabita S Soedamah-Muthu
- Center of Research on Psychology in Somatic Diseases (CORPS), Department of Medical and Clinical Psychology, Tilburg University, the Netherlands; Institute for Food, Nutrition and Health, University of Reading, Reading, UK
| | | | | |
Collapse
|
19
|
Klisic A, Radoman Vujacic I, Munjas J, Ninic A, Kotur-Stevuljevic J. Micro-ribonucleic acid modulation with oxidative stress and inflammation in patients with type 2 diabetes mellitus - a review article. Arch Med Sci 2022; 18:870-880. [PMID: 35832702 PMCID: PMC9266798 DOI: 10.5114/aoms/146796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
In parallel with the rapid growth of obesity, there is also an increase in the prevalence of type 2 diabetes mellitus (T2D) worldwide. Due to its complications, cardiovascular diseases are the leading cause of death in those patients. In the last two decades, special attention has been given to oxidative stress and inflammation, as the underlying mechanisms related to T2D occurrence and progression. Moreover, micro-ribonucleic acids (miRNAs) as new genetic biomarkers take an important place in the investigation of different metabolic pathways of insulin signaling. In this review article, we discuss microRNA modulation with oxidative stress and inflammation in patients with T2D. Better insight into the novel potential therapeutic targets for treatment of diabetes and its complications is of utmost importance for public health.
Collapse
Affiliation(s)
- Aleksandra Klisic
- Primary Health Care Center, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Irena Radoman Vujacic
- Clinical Center of Montenegro, Department of Internal Medicine, Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ana Ninic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jelena Kotur-Stevuljevic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
20
|
Madhu SV. MicroRNAs in diabetes mellitus—genetic tools that could transform clinical practice? Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01065-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Mukherjee S, Murata A, Ishida R, Sugai A, Dohno C, Hamada M, Krishna S, Nakatani K. HT-SELEX-based identification of binding pre-miRNA hairpin-motif for small molecules. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:165-174. [PMID: 34976435 PMCID: PMC8685993 DOI: 10.1016/j.omtn.2021.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Selective targeting of biologically relevant RNAs with small molecules is a long-standing challenge due to the lack of clear understanding of the binding RNA motifs for small molecules. The standard SELEX procedure allows the identification of specific RNA binders (aptamers) for the target of interest. However, more effort is needed to identify and characterize the sequence-structure motifs in the aptamers important for binding to the target. Herein, we described a strategy integrating high-throughput (HT) sequencing with conventional SELEX followed by bioinformatic analysis to identify aptamers with high binding affinity and target specificity to unravel the sequence-structure motifs of pre-miRNA, which is essential for binding to the recently developed new water-soluble small-molecule CMBL3aL. To confirm the fidelity of this approach, we investigated the binding of CMBL3aL to the identified motifs by surface plasmon resonance (SPR) spectroscopy and its potential regulatory activity on dicer-mediated cleavage of the obtained aptamers and endogenous pre-miRNAs comprising the identified motif in its hairpin loop. This new approach would significantly accelerate the identification process of binding sequence-structure motifs of pre-miRNA for the compound of interest and would contribute to increase the spectrum of biomedical application.
Collapse
Affiliation(s)
- Sanjukta Mukherjee
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bangalore 560065, India
| | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Ryoga Ishida
- Graduate School of Advanced Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Ayako Sugai
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Chikara Dohno
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Michiaki Hamada
- Graduate School of Advanced Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Sudhir Krishna
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bangalore 560065, India
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| |
Collapse
|
22
|
Barseem NF, Mahasab MM, Zaed IF, Said AEA, El Gayed EMA. Genetic Indices Relationship to Hyperglycemia-associated Biomarkers: Consistency with miRNA Expression in Egyptian Children with T1DM. J Clin Res Pediatr Endocrinol 2022; 14:76-86. [PMID: 34927407 PMCID: PMC8900082 DOI: 10.4274/jcrpe.galenos.2021.2021.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Micro RNAs (miRNAs) are gaining acceptance as novel biomarkers for the autoimmune disorders. However, miRNA profiles have not been investigated in individuals at risk of or diagnosed with type 1 diabetes mellitus (T1DM). To study the expression pattern of miRNAs in plasma obtained from patients with T1DM and compare with matched healthy controls. METHODS Equal numbers of patients with T1DM (90) and healthy-matched control children (90) were assessed for the expression profile of plasma miRNAs including miRNA-101-5p, miRNA-146-5p, miRNA-21-5p, miRNA-375, miRNA-126, and Let7a-5p using reverse transcriptase polymerase chain reaction methodology and quantitative real-time testing. RESULTS Analysis showed that miRNA-101, miRNA-21 and miRNA-375 were highly expressed, whereas, miRNA-146-5p, miRNA-126, and miRNA-Let7a-5p showed significantly low levels of expression in T1DM patients compared to controls (p<0.05). In addition, miRNA-101 and miRNA-146 correlated with age at diagnosis of T1DM and disease duration, respectively. Furthermore, multivariate analysis showed that miRNA-126 and Let7a-5p had a significant negative correlation with mean hemoglobin A1c (HbA1c) values. CONCLUSION Dysregulation of the six miRNAs analyzed suggested a possible role as biomarkers in T1DM. miRNA-101 was correlated with age at diagnosis while miRNA-146 correlated with disease duration. Two further miRNAs correlated with the existing biomarker, HbA1c.
Collapse
Affiliation(s)
- Naglaa Fathy Barseem
- Menoufia University Faculty of Medicine, Department of Pediatric, Unit of Genetic and Endocrinology, Shebein Elkom, Egypt,* Address for Correspondence: Menoufia University Faculty of Medicine, Department of Pediatric, Unit of Genetic and Endocrinology, Shebein Elkom, Egypt Phone: +00201000314896 E-mail:
| | - Marwa Mohamed Mahasab
- Menoufia University Faculty of Medicine, Department of Family Medicine, Shebein Elkom, Egypt
| | - Ibrahem Fathy Zaed
- Menoufia University Faculty of Sciences, Department of Chemistry, Shebein Elkom, Egypt
| | - Aya Eldesoky A. Said
- Menoufia University Faculty of Sciences, Department of Chemistry, Shebein Elkom, Egypt
| | - Eman Masoud Abd El Gayed
- Menoufia University Faculty of Medicine, Department of Medical Biochemistry and Molecular Biology, Shebein Elkom, Egypt
| |
Collapse
|
23
|
Allawe QH, Abed MQ, Abdullah HN. The possible effect of expressive plasma level of miRNA-21-5P on the serum level of IL-23 in with and without lupus nephritis patients. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Liu M, Zhao J. Circular RNAs in Diabetic Nephropathy: Updates and Perspectives. Aging Dis 2022; 13:1365-1380. [PMID: 36186139 PMCID: PMC9466972 DOI: 10.14336/ad.2022.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
Circular RNAs (circRNAs) are widespread endogenous transcripts lacking 5′-caps and 3′-polyadenylation tails. Their closed-loop structure confers exonuclease resistance and extreme stability. CircRNAs play essential roles in various diseases, including diabetes. Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease and is one of the most common complications of diabetes. CircRNAs are key in DN and therefore important for understanding DN pathophysiology and developing new therapeutic strategies. In the present review, we briefly introduce the characteristics and functions of circRNAs and summarize recent discoveries on how circRNAs participate in DN. Based on these advances, we suggest future perspectives for studying circRNAs in DN to improve DN treatment and management.
Collapse
Affiliation(s)
| | - Junli Zhao
- Correspondence should be addressed to: Dr. Junli Zhao, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China. E-mail: .
| |
Collapse
|
25
|
Niu SR, Hu JM, Lin S, Hong Y. Research progress on exosomes/microRNAs in the treatment of diabetic retinopathy. Front Endocrinol (Lausanne) 2022; 13:935244. [PMID: 36017322 PMCID: PMC9395612 DOI: 10.3389/fendo.2022.935244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic retinopathy (DR) is the leakage and obstruction of retinal microvessels caused by chronic progressive diabetes that leads to a series of fundus lesions. If not treated or controlled, it will affect vision and even cause blindness. DR is caused by a variety of factors, and its pathogenesis is complex. Pericyte-related diseases are considered to be an important factor for DR in many pathogeneses, which can lead to DR development through direct or indirect mechanisms, but the specific mechanism remains unclear. Exosomes are small vesicles of 40-100 nm. Most cells can produce exosomes. They mediate intercellular communication by transporting microRNAs (miRNAs), proteins, mRNAs, DNA, or lipids to target cells. In humans, intermittent hypoxia has been reported to alter circulating excretory carriers, increase endothelial cell permeability, and promote dysfunction in vivo. Therefore, we believe that the changes in circulating exocrine secretion caused by hypoxia in DR may be involved in its progress. This article examines the possible roles of miRNAs, proteins, and DNA in DR occurrence and development and discusses their possible mechanisms and therapy. This may help to provide basic proof for the use of exocrine hormones to cure DR.
Collapse
Affiliation(s)
- Si-ru Niu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jian-min Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
- *Correspondence: Shu Lin, ; Yu Hong,
| | - Yu Hong
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Shu Lin, ; Yu Hong,
| |
Collapse
|
26
|
Al-Rawaf HA, Alghadir AH, Gabr SA. Circulating MicroRNA Expression, Vitamin D, and Hypercortisolism as Predictors of Osteoporosis in Elderly Postmenopausal Women. DISEASE MARKERS 2021; 2021:3719919. [PMID: 34938374 PMCID: PMC8687791 DOI: 10.1155/2021/3719919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNA) identified as critical molecular regulators for bone development, function, and modeling/remodeling process and could be predictable for osteoporotic fractures in postmenopausal elderly women. AIM The potential diagnostic role of circulating miRNAs, miR-148a and miR-122-5p, in the pathogenesis of osteoporosis and its association with bone markers, hypercortisolism, and vitamin D deficiency were explored in postmenopausal elderly women with osteoporosis. METHODS A total of 120 elderly women aged 50-80 years old were recruited in this study, of which only 100 eligible women with amenorrhea of at least 12 consecutive months or surgical menopause participated in this study. Based upon bone mineral density (BMD) measurements, the participants were classified according into two groups: normal (n = 45; T score of ≥-1.0) and osteoporosis (n = 55; T score: ≤-2.5). Circulating miRNAs, miR-148a and miR-122-5p, were estimated by real-time RT-PCR analysis. In addition, bone markers, hypercortisolism, and vitamin D deficiency were colorimetrically and ELISA immune assay estimated. The potential role of miR-148a, miR-122-5p, cortisol, and vitamin D in the diagnosis of osteoporosis was predicted using the analysis of the respective area under the receiver operating characteristic curve (AUC-ROC). RESULTS The expressed level of miR-148a significantly increased and miR-122-5p significantly decreased in the serum of osteoporotic patients compared to healthy controls. In addition, a significant increase in the levels of cortisol, s-BAP, and CTx and significant decrease in the levels of T-BMD, the levels of OC, and s-Ca were also identified. All parameters significantly correlated with fracture risk parameters; BMD, and T score lumbar spine (L2-L4). Thus, the data showed AUC cut off values (miR-148a; 0.876, miR-122-5p; 0.761) were best evaluated for clinical diagnosis of patients with osteoporosis and that AUC cut off values of 0.748 for cortisol and 0.635 for vitamin D were the best cut off values, respectively, reported for the prediction of osteoporosis clinical diagnosis. CONCLUSION In this study, expressed miRNAs miR-148a and miR-122-5p and changes in the levels of both cortisol and vitamin D status are significantly associated with bone loss or osteoporosis. Thus, circulation miRNAs alone or in combination with cortisol and vitamin D status might be considered predictable biomarkers in the diagnosis or the pathogenesis of osteoporosis in elderly postmenopausal women; however, more studies are recommended.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad H. Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A. Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Barutta F, Corbetta B, Bellini S, Guarrera S, Matullo G, Scandella M, Schalkwijk C, Stehouwer CD, Chaturvedi N, Soedamah-Muthu SS, Durazzo M, Gruden G. MicroRNA 146a is associated with diabetic complications in type 1 diabetic patients from the EURODIAB PCS. J Transl Med 2021; 19:475. [PMID: 34823560 PMCID: PMC8614036 DOI: 10.1186/s12967-021-03142-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background MicroRNA-146a-5p (miR-146a-5p) is a key regulator of inflammatory processes. Expression of miR-146a-5p is altered in target organs of diabetic complications and deficiency of miR-146a-5p has been implicated in their pathogenesis. We investigated if serum miR-146a-5p levels were independently associated with micro/macrovascular complications of type 1 diabetes (DM1). Methods A nested case–control study from the EURODIAB PCS of 447 DM1 patients was performed. Cases (n = 294) had one or more complications of diabetes, whereas controls (n = 153) did not have any complication. Total RNA was isolated from all subjects and miR-146a-5p levels measured by qPCR. Both the endogenous controls U6 snRNA and the spike (Cel-miR-39) were used to normalize the results. Logistic regression analysis was carried out to investigate the association of miR-146a-5p with diabetes complications. Results MiR-146a-5p levels were significantly lower in cases [1.15 (0.32–3.34)] compared to controls [1.74 (0.44–6.74) P = 0.039]. Logistic regression analysis showed that levels of miR-146a-5p in the upper quartile were inversely associated with reduced odds ratio (OR) of all complications (OR 0.34 [95% CI 0.14–0.76]) and particularly with cardiovascular diseases (CVD) (OR 0.31 [95% CI 0.11–0.84]) and diabetic retinopathy (OR 0.40 [95% CI 0.16–0.99]), independently of age, sex, diabetes duration, A1c, hypertension, AER, eGFR, NT-proBNP, and TNF-α. Conclusions In this large cohort of DM1 patients, we reported an inverse and independent association of miR-146a-5p with diabetes chronic complications and in particular with CVD and retinopathy, suggesting that miR-146a-5p may be a novel candidate biomarker of DM1 complications. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03142-4.
Collapse
Affiliation(s)
- Federica Barutta
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy.
| | - Beatrice Corbetta
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Stefania Bellini
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine, IIGM, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Giuseppe Matullo
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy.,Medical Genetics Unit, AOU Città Della Salute E Della Scienza, Turin, Italy
| | - Michela Scandella
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Casper Schalkwijk
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Coen D Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Nish Chaturvedi
- Institute of Cardiovascular Science, University College London, London, UK
| | - Sabita S Soedamah-Muthu
- Center of Research On Psychology in Somatic Diseases (CORPS), Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands.,Institute for Food, Nutrition and Health, University of Reading, Reading, UK
| | - Marilena Durazzo
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Gabriella Gruden
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| |
Collapse
|
28
|
Smit-McBride Z, Morse LS. MicroRNA and diabetic retinopathy-biomarkers and novel therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1280. [PMID: 34532417 PMCID: PMC8421969 DOI: 10.21037/atm-20-5189] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/14/2021] [Indexed: 01/10/2023]
Abstract
Diabetic retinopathy (DR) accounts for ~80% of legal blindness in persons aged 20-74 years and is associated with enormous social and health burdens. Current therapies are invasive, non-curative, and in-effective in 15-25% of DR patients. This review outlines the potential utility of microRNAs (miRNAs) as biomarkers and potential therapy for diabetic retinopathy. miRNAs are small noncoding forms of RNA that may play a role in the pathogenesis of DR by altering the level of expression of genes via single nucleotide polymorphism and regulatory loops. A majority of miRNAs are intracellular and specific intracellular microRNAs have been associated with cellular changes associated with DR. Some microRNAs are extracellular and called circulatory microRNAs. Circulatory miRNAs have been found to be differentially expressed in serum and bodily fluid in patients with diabetes mellitus (DM) with and without retinopathy. Some miRNAs have been associated with the severity of DR, and future studies may reveal whether circulatory miRNAs could serve as novel reliable biomarkers to detect or predict retinopathy progression. Therapeutic strategies can be developed utilizing the natural miRNA/long noncoding RNA (lncRNA) regulatory loops. miRNAs and lncRNAs are two major families of the non-protein-coding transcripts. They are regulatory molecules for fundamental cellular processes via a variety of mechanisms, and their expression and function are tightly regulated. The recent evidence indicates a cross-talk between miRNAs and lncRNAs. Therefore, dysregulation of miRNAs and lncRNAs is critical to human disease pathogenesis, such as diabetic retinopathy. miRNAs are long-distance communicators and reprogramming agents, and they embody an entirely novel paradigm in cellular and tissue signaling and interaction. By targeting specific miRNAs, whole pathways implicated in the pathogenesis of DR may potentially be altered. Understanding the endogenous roles of miRNAs in the pathogenesis of diabetic retinopathy could lead to novel diagnostic and therapeutic approaches to managing this frequently blinding retinal condition.
Collapse
Affiliation(s)
- Zeljka Smit-McBride
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, USA
| | - Lawrence S Morse
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
29
|
Scott ES, Januszewski AS, Carroll LM, Fulcher GR, Joglekar MV, Hardikar AA, Jones TW, Davis EA, Jenkins AJ. Continuous subcutaneous insulin infusion alters microRNA expression and glycaemic variability in children with type 1 diabetes. Sci Rep 2021; 11:16656. [PMID: 34404828 PMCID: PMC8370996 DOI: 10.1038/s41598-021-95824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/13/2021] [Indexed: 11/12/2022] Open
Abstract
To determine whether continuous subcutaneous insulin infusion (CSII) vs. multiple daily injections (MDI) therapy from near-diagnosis of type 1 diabetes is associated with reduced glycaemic variability (GV) and altered microRNA (miRNAs) expression. Adolescents (74% male) within 3-months of diabetes diagnosis (n = 27) were randomized to CSII (n = 12) or MDI. HbA1c, 1-5-Anhydroglucitol (1,5-AG), high sensitivity C-peptide and a custom TaqMan qPCR panel of 52 miRNAs were measured at baseline and follow-up (median (LQ-UQ); 535 (519–563) days). There were no significant differences between groups in baseline or follow-up HbA1c or C-peptide, nor baseline miRNAs. Mean ± SD 1,5-AG improved with CSII vs. MDI (3.1 ± 4.1 vs. − 2.2 ± − 7.0 mg/ml respectively, P = 0.029). On follow-up 11 miRNAs associated with diabetes vascular complications had altered expression in CSII-users. Early CSII vs. MDI use is associated with lower GV and less adverse vascular-related miRNAs. Relationships with future complications are of interest.
Collapse
Affiliation(s)
- Emma S Scott
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Department of Endocrinology and Diabetes, Royal North Shore Hospital, Sydney, Australia
| | - Andrzej S Januszewski
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Luke M Carroll
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Gregory R Fulcher
- Department of Endocrinology and Diabetes, Royal North Shore Hospital, Sydney, Australia.,Northern Clinical School, University of Sydney, Sydney, Australia
| | - Mugdha V Joglekar
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Anandwardhan A Hardikar
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Timothy W Jones
- University of Western Australia, Perth, Australia.,Diabetes and Endocrinology Services, Perth Children's Hospital, Perth, Australia.,Telethon Kids Institute, Perth, Australia
| | - Elizabeth A Davis
- University of Western Australia, Perth, Australia.,Diabetes and Endocrinology Services, Perth Children's Hospital, Perth, Australia.,Telethon Kids Institute, Perth, Australia
| | - Alicia J Jenkins
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia. .,Department of Medicine, St Vincent's Hospital, University of Melbourne, Melbourne, Australia. .,NHMRC Clinical Trials Centre, The University of Sydney, Locked bag, 77, Camperdown, NSW, 1450, Australia.
| |
Collapse
|
30
|
Rasoulinejad SA, Akbari A, Nasiri K. Interaction of miR-146a-5p with oxidative stress and inflammation in complications of type 2 diabetes mellitus in male rats: Anti-oxidant and anti-inflammatory protection strategies in type 2 diabetic retinopathy. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1078-1086. [PMID: 34804425 PMCID: PMC8591764 DOI: 10.22038/ijbms.2021.56958.12706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES This study aimed to evaluate the role of miR-146a-5p in the pathogenesis of diabetic retinopathy and its interaction with oxidative stress and inflammation in the ocular tissue of rats with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS Twenty adult male Sprague Dawley rats (220 ±20 g) were randomly assigned to control and diabetic groups. A high-fat diet was used for three months to induce T2DM which was confirmed by the HOMA-IR index. After that, the levels of glucose and insulin in serum, HOMA-IR as an indicator of insulin resistance, the ocular level of oxidative markers, TNF-α, IL-1β, MIPs, and MCP-1 along with ocular gene expression of NF-κB, Nrf2, and miR-146a-5p were evaluated. RESULTS The level of lipid peroxidation along with metabolic and inflammatory factors significantly increased and the antioxidant enzyme activity significantly decreased in diabetic rats (P<0.05). The ocular expression of NF-κB and TNF-α increased and Nrf2, HO-1, and miR-146a-5p expression decreased in diabetic rats (P<0.05). In addition, a negative correlation between miR-146a-5p expression with NF-κB and HOMA-IR and a positive correlation between miR-146a-5p with Nrf2 were observed. CONCLUSION It can be concluded that miR-146a-5p may regulate Nrf2 and NF-κB expression and inflammation and oxidative stress in the ocular tissue of diabetic rats.
Collapse
Affiliation(s)
- Seyed Ahmad Rasoulinejad
- Department of Ophthalmology, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Abolfazl Akbari
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Khadijeh Nasiri
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran,Corresponding author: Khadijeh Nasiri. Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran. Babolsar, Iran.
| |
Collapse
|
31
|
Mahmoud MM, Sanad EF, Hamdy NM. MicroRNAs' role in the environment-related non-communicable diseases and link to multidrug resistance, regulation, or alteration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36984-37000. [PMID: 34046834 DOI: 10.1007/s11356-021-14550-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 05/28/2023]
Abstract
The discovery of microRNAs (miRNAs) 20 years ago has advocated a new era of "small molecular genetics." About 2000 miRNAs are present that regulate one third of the genome. MiRNA dysregulated expression arising as a response to our environment insult or stress or changes may contribute to several diseases, namely non-communicable diseases, including tumor growth. Their presence in body fluids, reflecting level alteration in various cancers, merit circulating miRNAs as the "next-generation biomarkers" for early-stage tumor diagnosis and/or prognosis. Herein, we performed a comprehensive literature search focusing on the origin, biosynthesis, and role of miRNAs and summarized the foremost studies centering on miR value as non-invasive biomarkers in different environment-related non-communicable diseases, including various cancer types. Moreover, during chemotherapy, many miRNAs were linked to multidrug resistance, via modulating numerous, environment triggered or not, biological processes and/or pathways that will be highlighted as well.
Collapse
Affiliation(s)
- Marwa M Mahmoud
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Eman F Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, 11566, Abassia, Cairo, Egypt.
| |
Collapse
|
32
|
Tayel SI, Saleh AA, El-Hefnawy SM, Elzorkany KM, Elgarawany GE, Noreldin RI. Simultaneous Assessment of MicroRNAs 126 and 192 in Diabetic Nephropathy Patients and the Relation of these MicroRNAs with Urinary Albumin. Curr Mol Med 2021; 20:361-371. [PMID: 31629394 DOI: 10.2174/1566524019666191019103918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Diabetic nephropathy (DN) is a major determinant of end-stage renal disease (ESRD). Altered microRNA levels lead to serious chronic diseases, such as diabetes. We aimed to measure the expression levels of two microRNAs, microRNA126 and 192 in DN and investigate their connection with albuminuria levels. METHODS This study included 229 subjects (134 DN patients and 95 controls). Serum lipid profiles, glucose levels, glycated haemoglobin (HbA1c) levels, and renal functions were assayed. The microRNA126 and microRNA192 expression levels were determined by real-time PCR. RESULTS Patients with DN had higher weights, BMI values, glucose levels (P<0.001), HbA1c levels (P<0.001), urinary albumin-creatinine ratio (ACR) values (P<0.001), urea levels (P=0.002), and creatinine levels (P=0.004) and lower expression levels of both microRNA192 (P<0.001) and microRNA126 (P<0.001) than controls. MicroRNA126 expression was positively correlated with age, estimated glomerular filtration rate (eGFR) and microRNA192 expression but negatively correlated with blood sugar, HbA1c, urea, creatinine and ACR. MicroRNA192 had higher sensitivity (91%), specificity (94%), and area under the curve (AUC) (0.967) values than microRNA126 (sensitivity, 90%; specificity, 68%; AUC, 0.897) and thus can precisely diagnose DN. CONCLUSION Both MicroRNA126 and microRNA192 expression were obviously associated with DN and might determine the progression of the disease owing to prominent relation with macroalbuminuria.
Collapse
Affiliation(s)
- Safaa I Tayel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Amany A Saleh
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Sally M El-Hefnawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Khaled Ma Elzorkany
- Internal Medicine Department, Faculty of Medicine, Menoufia University, Egypt
| | | | - Rasha I Noreldin
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|
33
|
Chen X, Cao J, Ge Z, Xia Z. Correlation and integration of circulating miRNA and peripheral whole blood gene expression profiles in patients with venous thromboembolism. Bioengineered 2021; 12:2352-2363. [PMID: 34077299 PMCID: PMC8806583 DOI: 10.1080/21655979.2021.1935401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The main aim of this work was to evaluate differential expression and biological functions of circulating miRNA and whole peripheral blood (PB) genes in patients affected by venous thromboembolism (VTE) and in healthy subjects. Circulating miRNA sequences and PB expression profiles were obtained from GEO datasets. Ten miRNAs with the most significant differential expression rate (dif-miRNA) were subjected to miRbase to confirm their identity. Dif-miRNA targets were predicted by TargetScan and aligned with differentially expressed genes to obtain overlapping co-genes. Biological functions of co-genes were analyzed by Gene Ontology and KEGG analysis. Interaction network of dif-miRNAs, co-genes, and their downstream pathways were studied by analyzing protein-protein interaction (PPI) clusters (STRING) and determining the crucial hubs (Cytoscape).MiR-522-3p and miR-134 dif-miRNAs are involved in protein translation and apoptosis by regulating their respective co-genes in PB. Co-genes are present in nucleolus and extracellular exosomes and are involved in oxidative phosphorylation and ribosome/poly(A)-RNA organization. The predicted PPI network covered 107 clustered genes and 220 marginal joints, where ten hub genes participating in PPIs were found. All these hub genes were down-regulated in VTE patients. Our study identifies new miRNAs as potential biological markers and therapeutic targets for VTE.
Collapse
Affiliation(s)
- Xiaonan Chen
- Emergency and Acute Critical Care Department, Huashan Hospital North, Fudan University, Shanghai, China
| | - Jun Cao
- Emergency and Acute Critical Care Department, Huashan Hospital North, Fudan University, Shanghai, China
| | - Zi Ge
- Emergency and Acute Critical Care Department, Huashan Hospital North, Fudan University, Shanghai, China
| | - Zhijie Xia
- Emergency and Acute Critical Care Department, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
34
|
MicroRNAs-1299, -126-3p and -30e-3p as Potential Diagnostic Biomarkers for Prediabetes. Diagnostics (Basel) 2021; 11:diagnostics11060949. [PMID: 34073154 PMCID: PMC8226728 DOI: 10.3390/diagnostics11060949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022] Open
Abstract
This cross-sectional study investigated the association of miR-1299, -126-3p and -30e-3p with and their diagnostic capability for dysglycaemia in 1273 (men, n = 345) South Africans, aged >20 years. Glycaemic status was assessed by oral glucose tolerance test (OGTT). Whole blood microRNA (miRNA) expressions were assessed using TaqMan-based reverse transcription quantitative-PCR (RT-qPCR). Receiver operating characteristic (ROC) curves assessed the ability of each miRNA to discriminate dysglycaemia, while multivariable logistic regression analyses linked expression with dysglycaemia. In all, 207 (16.2%) and 94 (7.4%) participants had prediabetes and type 2 diabetes mellitus (T2DM), respectively. All three miRNAs were significantly highly expressed in individuals with prediabetes compared to normotolerant patients, p < 0.001. miR-30e-3p and miR-126-3p were also significantly more expressed in T2DM versus normotolerant patients, p < 0.001. In multivariable logistic regressions, the three miRNAs were consistently and continuously associated with prediabetes, while only miR-126-3p was associated with T2DM. The ROC analysis indicated all three miRNAs had a significant overall predictive ability to diagnose prediabetes, diabetes and the combination of both (dysglycaemia), with the area under the receiver operating characteristic curve (AUC) being significantly higher for miR-126-3p in prediabetes. For prediabetes diagnosis, miR-126-3p (AUC = 0.760) outperformed HbA1c (AUC = 0.695), p = 0.042. These results suggest that miR-1299, -126-3p and -30e-3p are associated with prediabetes, and measuring miR-126-3p could potentially contribute to diabetes risk screening strategies.
Collapse
|
35
|
Saeidi L, Shahrokhi SZ, Sadatamini M, Jafarzadeh M, Kazerouni F. Can circulating miR-7-1-5p, and miR-33a-5p be used as markers of T2D patients? Arch Physiol Biochem 2021; 129:771-777. [PMID: 33476198 DOI: 10.1080/13813455.2021.1871762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Recent evidence has indicated that miRNAs play an important role in both initiation and progression of many pathologic processes such as diabetes and can be used as an important and more sensitive tool to predict the development of the disease than the currently used biomarkers. This research aimed at comparing miR-7-5p and miR-33a-5p expression levels in the diabetics and pre-diabetics with the control group. METHODS In this study, we compared expression of miR-7-5p and miR-33a-5p in plasma of three groups including pre-diabetic patients (n = 20), T2D patients (n = 20) and control group (n = 20), using RT-qPCR. Biochemical parameters were measured by auto-analyser. In silico analysis was performed to identify potential target genes of these miRNAs. RESULTS Compared to the controls, miR-7-1-5p expression was down regulated in the pre-diabetics and the T2D patients; whereas, miR-33a-5p was expressed at higher levels in the T2D patients compared to the control group. Both miRs were correlated with glycaemic status such as FBS and HbA1c levels. The ROC analysis indicated a significant ability for miR-33a-5p in discriminating between the diabetics and the healthy individuals. In silico analysis suggests that both miRs affect biological pathways related to T2DM pathogenesis, such as MAPK, and insulin signalling pathway. CONCLUSION Our results demonstrated that the miR-7-1-5p and miR-33a-5p expression levels are deregulated in the diabetics and pre-diabetics. Furthermore, miR-33a-5p showed significant ability in discriminating between diabetics and healthy individuals, suggesting a potential diagnostic use of miRNAs in type-2 diabetes detection.
Collapse
Affiliation(s)
- Leyla Saeidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Shahrokhi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mirsaber Sadatamini
- Shohada Hospital, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Jafarzadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, TarbiatModares University, Tehran, Iran
| | - Faranak Kazerouni
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Spallone V, Ciccacci C, Latini A, Borgiani P. What Is in the Field for Genetics and Epigenetics of Diabetic Neuropathy: The Role of MicroRNAs. J Diabetes Res 2021; 2021:5593608. [PMID: 34660810 PMCID: PMC8514969 DOI: 10.1155/2021/5593608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the high prevalence of diabetic neuropathy, its early start, and its impact on quality of life and mortality, unresolved clinical issues persist in the field regarding its screening implementation, the understanding of its mechanisms, and the search for valid biomarkers, as well as disease-modifying treatment. Genetics may address these needs by providing genetic biomarkers of susceptibility, giving insights into pathogenesis, and shedding light on how to select possible responders to treatment. After a brief summary of recent studies on the genetics of diabetic neuropathy, the current review focused mainly on microRNAs (miRNAs), including the authors' results in this field. It summarized the findings of animal and human studies that associate miRNAs with diabetic neuropathy and explored the possible pathogenetic meanings of these associations, in particular regarding miR-128a, miR-155a, and miR-499a, as well as their application for diabetic neuropathy screening. Moreover, from a genetic perspective, it examined new findings of polymorphisms of miRNA genes in diabetic neuropathy. It considered in more depth the pathogenetic implications for diabetic neuropathy of the polymorphism of MIR499A and the related changes in the downstream action of miR-499a, showing how epigenetic and genetic studies may provide insight into pathogenetic mechanisms like mitochondrial dysfunction. Finally, the concept and the data of genotype-phenotype association for polymorphism of miRNA genes were described. In conclusion, although at a very preliminary stage, the findings linking the genetics and epigenetics of miRNAs might contribute to the identification of exploratory risk biomarkers, a comprehensive definition of susceptibility to specific pathogenetic mechanisms, and the development of mechanism-based treatment of diabetic neuropathy, thus addressing the goals of genetic studies.
Collapse
Affiliation(s)
- V. Spallone
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - C. Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - A. Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - P. Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
37
|
Roganović J. Downregulation of microRNA-146a in diabetes, obesity and hypertension may contribute to severe COVID-19. Med Hypotheses 2021; 146:110448. [PMID: 33338955 PMCID: PMC7836676 DOI: 10.1016/j.mehy.2020.110448] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is able to produce an excessive host immune reaction and may leads to severe disease- a life-threatening condition occurring more often in patients suffering from comorbidities such as hypertension, diabetes and obesity. Infection by human corona viruses highly depends on host microRNA (miR) involved in regulation of host innate immune response and inflammation-modulatory miR-146a is among the first miRs induced by immune reaction to a virus. Moreover, recent analysis showed that miR-146 is predicted to target at the SARS-CoV-2 genome. As the dominant regulator of Toll-like receptors (TLRs) downstream signaling, miR-146a may limit excessive inflammatory response to virus. Downregulation of circulating miR-146a was found in diabetes, obesity and hypertension and it is reflected by enhanced inflammation and fibrosis, systemic effects accompanying severe COVID-19. Thus it could be hypothesized that miR-146a deficiency may contribute to severe COVID-19 state observed in diabetes, obesity and hypertension but further investigations are needed.
Collapse
Affiliation(s)
- Jelena Roganović
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
38
|
Roy D, Modi A, Khokhar M, Sankanagoudar S, Yadav D, Sharma S, Purohit P, Sharma P. MicroRNA 21 Emerging Role in Diabetic Complications: A Critical Update. Curr Diabetes Rev 2021; 17:122-135. [PMID: 32359340 DOI: 10.2174/1573399816666200503035035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/13/2020] [Accepted: 04/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes Mellitus is a multifactorial disease encompassing various pathogenic pathways. To avoid morbidity and mortality related to diabetic complications, early detection of disease complications as well as targeted therapeutic strategies are essential. INTRODUCTION MicroRNAs (miRs) are short non-coding RNA molecules that regulate eukaryotic posttranscriptional gene expression. MicroRNA-21 has diverse gene regulatory functions and plays a significant role in various complications of Type 2 diabetes mellitus (T2DM). METHODS The study included electronic database searches on Pubmed, Embase, and Web of Science with the search items MicroRNA21 and each of the diabetic complications. The search was carried out up to November, 2019. RESULTS MicroRNA-21 modulates diabetic cardiomyopathy by affecting vascular smooth muscle cell proliferation and apoptosis, cardiac cell growth and death, and cardiac fibroblast functions. At the renal tubules, miR-21 can regulate the mesangial expansion, interstitial fibrosis, macrophage infiltration, podocyte loss, albuminuria and fibrotic and inflammatory gene expression related to diabetic nephropathy. Overexpression of miR-21 has been seen to play a pivotal role in the pathogenesis of diabetic retinopathy by contributing to diabetes-induced endothelial dysfunction as well as low-grade inflammation. CONCLUSION Considering the raised levels of miR-21 in various diabetic complications, it may prove to be a candidate biomarker for diabetic complications. Further, miR-21 antagonists have shown great potential in the treatment of diabetic cardiomyopathy, diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy related complications in the future. The current review is the first of its kind encompassing the roles miR-21 plays in various diabetic complications, with a critical discussion of its future potential role as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | | | - Dharamveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| |
Collapse
|
39
|
Greco M, Chiefari E, Accattato F, Corigliano DM, Arcidiacono B, Mirabelli M, Liguori R, Brunetti FS, Pullano SA, Scorcia V, Fiorillo AS, Foti DP, Brunetti A. MicroRNA-1281 as a Novel Circulating Biomarker in Patients With Diabetic Retinopathy. Front Endocrinol (Lausanne) 2020; 11:528. [PMID: 32849308 PMCID: PMC7417427 DOI: 10.3389/fendo.2020.00528] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/29/2020] [Indexed: 01/10/2023] Open
Abstract
Objective: Recently, the role of circulating miRNAs as non-invasive biomarkers for the identification and monitoring of diabetes microvascular complications has emerged. Herein, we aimed to: identify circulating miRNAs differentially expressed in patients with and without diabetic retinopathy (DR); examine their predictive value; and understand their pathogenic impact. Methods: Pooled serum samples from randomly selected matched patients with type 2 diabetes, either with or without DR, were used for initial serum miRNA profiling. Validation of the most relevant miRNAs was thereafter conducted by RT-qPCR in an extended sample of patients with DR and matched controls. Results: Following miRNA profiling, 43 miRNAs were significantly up- or down-regulated in patients with DR compared with controls. After individual validation, 5 miRNAs were found significantly overexpressed in patients with DR. One of them, miR-1281, was the most up-regulated and appeared to be specifically related to DR. Furthermore, secreted levels of miR-1281 were increased in high glucose-cultured retinal cells, and there was evidence of a potential link between glucose-induced miR-1281 up-regulation and DR. Conclusion: Our findings suggest miR-1281 as a circulating biomarker of DR. Also, they highlight the pathogenic significance of miR-1281, providing insights for a new potential target in treating DR.
Collapse
Affiliation(s)
- Marta Greco
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Francesca Accattato
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | | | - Biagio Arcidiacono
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Maria Mirabelli
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Rossella Liguori
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Salvatore A. Pullano
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Vincenzo Scorcia
- Department of Medical and Surgical Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Antonino S. Fiorillo
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Daniela P. Foti
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| |
Collapse
|
40
|
Sidorkiewicz I, Niemira M, Maliszewska K, Erol A, Bielska A, Szalkowska A, Adamska-Patruno E, Szczerbinski L, Gorska M, Kretowski A. Circulating miRNAs as a Predictive Biomarker of the Progression from Prediabetes to Diabetes: Outcomes of a 5-Year Prospective Observational Study. J Clin Med 2020; 9:E2184. [PMID: 32664305 PMCID: PMC7408684 DOI: 10.3390/jcm9072184] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Due to a global increase in the prevalence of type 2 diabetes mellitus (T2DM), there is an urgent need for early identification of prediabetes, as these people have the highest risk of developing diabetes. Circulating miRNAs have shown potential as progression biomarkers in other diseases. This study aimed to conduct a baseline comparison of serum-circulating miRNAs in prediabetic individuals, with the distinction between those who later progressed to T2DM and those who did not. The expression levels of 798 miRNAs using NanoString technology were examined. Spearman correlation, receiver operating characteristic (ROC) curve analysis, and logistic regression modeling were performed. Gene ontology (GO) and canonical pathway analysis were used to explore the biological functions of the miRNA target genes. The study revealed that three miRNAs were upregulated in the serum samples of patients who later progressed to T2DM. Pathway analysis showed that the miRNA target genes were mainly significantly enriched in neuronal NO synthase (nNOS) signaling in neurons, amyloid processing, and hepatic cholestasis. ROC analysis demonstrated that miR-491-5p, miR-1307-3p, and miR-298 can be introduced as a diagnostic tool for the prediction of T2DM (area under the curve (AUC) = 94.0%, 88.0%, and 84.0%, respectively). Validation by real-time quantitative polymerase chain reaction (qRT-PCR) confirmed our findings. The results suggest that circulating miRNAs can potentially be used as predictive biomarkers of T2DM in prediabetic patients.
Collapse
Affiliation(s)
- Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.E.); (A.B.); (A.S.); (E.A.-P.); (L.S.); (A.K.)
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.E.); (A.B.); (A.S.); (E.A.-P.); (L.S.); (A.K.)
| | - Katarzyna Maliszewska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (K.M.); (M.G.)
| | - Anna Erol
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.E.); (A.B.); (A.S.); (E.A.-P.); (L.S.); (A.K.)
| | - Agnieszka Bielska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.E.); (A.B.); (A.S.); (E.A.-P.); (L.S.); (A.K.)
| | - Anna Szalkowska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.E.); (A.B.); (A.S.); (E.A.-P.); (L.S.); (A.K.)
| | - Edyta Adamska-Patruno
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.E.); (A.B.); (A.S.); (E.A.-P.); (L.S.); (A.K.)
| | - Lukasz Szczerbinski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.E.); (A.B.); (A.S.); (E.A.-P.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (K.M.); (M.G.)
| | - Maria Gorska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (K.M.); (M.G.)
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (A.E.); (A.B.); (A.S.); (E.A.-P.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (K.M.); (M.G.)
| |
Collapse
|
41
|
Khokhar M, Roy D, Modi A, Agarwal R, Yadav D, Purohit P, Sharma P. Perspectives on the role of PTEN in diabetic nephropathy: an update. Crit Rev Clin Lab Sci 2020; 57:470-483. [PMID: 32306805 DOI: 10.1080/10408363.2020.1746735] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Phosphatase and tensin homolog (PTEN) is a potent tumor suppressor gene that antagonizes the proto-oncogenic phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway and governs basic cellular metabolic processes. Recently, its role in cell growth, metabolism, architecture, and motility as an intramolecular and regulatory mediator has gained widespread research interest as it applies to non-tumorous diseases, such as insulin resistance (IR) and diabetic nephropathy (DN). DN is characterized by renal tubulointerstitial fibrosis (TIF) and epithelial-mesenchymal transition (EMT), and PTEN plays a significant role in the regulation of both. Epigenetics and microRNAs (miRNAs) are novel players in post-transcriptional regulation and research evidence demonstrates that they reduce the expression of PTEN by acting as key regulators of autophagy and TIF through activation of the Akt/mammalian target of rapamycin (mTOR) signaling pathway. These regulatory processes might play an important role in solving the complexities of DN pathogenesis and IR, as well as the therapeutic management of DN with the help of PTEN K27-linked polyubiquitination. Currently, there are no comprehensive reviews citing the role PTEN plays in the development of DN and its regulation via miRNA and epigenetic modifications. The present review explores these facets of PTEN in the pathogenesis of IR and DN.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Riddhi Agarwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Dharmveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
42
|
Zaiou M. circRNAs Signature as Potential Diagnostic and Prognostic Biomarker for Diabetes Mellitus and Related Cardiovascular Complications. Cells 2020; 9:cells9030659. [PMID: 32182790 PMCID: PMC7140626 DOI: 10.3390/cells9030659] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) belong to the ever-growing class of naturally occurring noncoding RNAs (ncRNAs) molecules. Unlike linear RNA, circRNAs are covalently closed transcripts mostly generated from precursor-mRNA by a non-canonical event called back-splicing. They are highly stable, evolutionarily conserved, and widely distributed in eukaryotes. Some circRNAs are believed to fulfill a variety of functions inside the cell mainly by acting as microRNAs (miRNAs) or RNA-binding proteins (RBPs) sponges. Furthermore, mounting evidence suggests that the misregulation of circRNAs is among the first alterations in various metabolic disorders including obesity, hypertension, and cardiovascular diseases. More recent research has revealed that circRNAs also play a substantial role in the pathogenesis of diabetes mellitus (DM) and related vascular complications. These findings have added a new layer of complexity to our understanding of DM and underscored the need to reexamine the molecular pathways that lead to this disorder in the context of epigenetics and circRNA regulatory mechanisms. Here, I review current knowledge about circRNAs dysregulation in diabetes and describe their potential role as innovative biomarkers to predict diabetes-related cardiovascular (CV) events. Finally, I discuss some of the actual limitations to the promise of these RNA transcripts as emerging therapeutics and provide recommendations for future research on circRNA-based medicine.
Collapse
Affiliation(s)
- Mohamed Zaiou
- School of Pharmacy, Institut Jean-Lamour, The University of Lorraine, 7 Avenue de la Foret de Haye, CEDEX BP 90170, 54500 Vandoeuvre les Nancy, France
| |
Collapse
|
43
|
The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int J Mol Sci 2020; 21:ijms21051835. [PMID: 32155866 PMCID: PMC7084712 DOI: 10.3390/ijms21051835] [Citation(s) in RCA: 531] [Impact Index Per Article: 106.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus comprises a group of carbohydrate metabolism disorders that share a common main feature of chronic hyperglycemia that results from defects of insulin secretion, insulin action, or both. Insulin is an important anabolic hormone, and its deficiency leads to various metabolic abnormalities in proteins, lipids, and carbohydrates. Atherosclerosis develops as a result of a multistep process ultimately leading to cardiovascular disease associated with high morbidity and mortality. Alteration of lipid metabolism is a risk factor and characteristic feature of atherosclerosis. Possible links between the two chronic disorders depending on altered metabolic pathways have been investigated in numerous studies. It was shown that both types of diabetes mellitus can actually induce atherosclerosis development or further accelerate its progression. Elevated glucose level, dyslipidemia, and other metabolic alterations that accompany the disease development are tightly involved in the pathogenesis of atherosclerosis at almost every step of the atherogenic process. Chronic inflammation is currently considered as one of the key factors in atherosclerosis development and is present starting from the earliest stages of the pathology initiation. It may also be regarded as one of the possible links between atherosclerosis and diabetes mellitus. However, the data available so far do not allow for developing effective anti-inflammatory therapeutic strategies that would stop atherosclerotic lesion progression or induce lesion reduction. In this review, we summarize the main aspects of diabetes mellitus that possibly affect the atherogenic process and its relationship with chronic inflammation. We also discuss the established pathophysiological features that link atherosclerosis and diabetes mellitus, such as oxidative stress, altered protein kinase signaling, and the role of certain miRNA and epigenetic modifications.
Collapse
|
44
|
Liu CH, Huang S, Britton WR, Chen J. MicroRNAs in Vascular Eye Diseases. Int J Mol Sci 2020; 21:ijms21020649. [PMID: 31963809 PMCID: PMC7014392 DOI: 10.3390/ijms21020649] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the first microRNA (miRNA) decades ago, studies of miRNA biology have expanded in many biomedical research fields, including eye research. The critical roles of miRNAs in normal development and diseases have made miRNAs useful biomarkers or molecular targets for potential therapeutics. In the eye, ocular neovascularization (NV) is a leading cause of blindness in multiple vascular eye diseases. Current anti-angiogenic therapies, such as anti-vascular endothelial growth factor (VEGF) treatment, have their limitations, indicating the need for investigating new targets. Recent studies established the roles of various miRNAs in the regulation of pathological ocular NV, suggesting miRNAs as both biomarkers and therapeutic targets in vascular eye diseases. This review summarizes the biogenesis of miRNAs, and their functions in the normal development and diseases of the eye, with a focus on clinical and experimental retinopathies in both human and animal models. Discovery of novel targets involving miRNAs in vascular eye diseases will provide insights for developing new treatments to counter ocular NV.
Collapse
Affiliation(s)
| | | | | | - Jing Chen
- Correspondence: ; Tel.: +1-617-919-2525
| |
Collapse
|
45
|
Raina R, Chauvin A, Chakraborty R, Nair N, Shah H, Krishnappa V, Kusumi K. The Role of Endothelin and Endothelin Antagonists in Chronic Kidney Disease. KIDNEY DISEASES 2019; 6:22-34. [PMID: 32021871 DOI: 10.1159/000504623] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Indexed: 12/21/2022]
Abstract
Background Endothelins (ET) are a family of peptides that act as potent vasoconstrictors and pro-fibrotic growth factors. ET-1 is integral to renal and cardiovascular pathophysiology and exerts effects via autocrine, paracrine and endocrine signaling pathways tied to regulation of aldosterone, catecholamines, and angiotensin. In the kidney, ET-1 is critical to maintaining renal perfusion and controls glomerular arteriole tone and hemodynamics. It is hypothesized that ET-1 influences the progression of chronic kidney disease (CKD), and the objective of this review is to discuss the pathophysiology, and role of ET and endothelin receptor antagonists (ERAs) in CKD. Summary The use of ERAs in hypertensive nephropathy has the potential to decrease proteinuria, and in diabetic nephropathy has the potential to restore glycocalyx thickness, also decreasing proteinuria. Focal segmental glomerular sclerosis has no specific Food and Drug Administration-approved therapy currently, however, ERAs show promise in decreasing proteinuria and slowing tissue damage. ET-1 is a potential biomarker for autosomal dominant polycystic kidney disease progression and so it is thought that ERAs may be of some therapeutic benefit. Key Messages Multiple studies have shown the utility of ERAs in CKD. These agents have shown to reduce blood pressure, proteinuria, and arterial stiffness. However, more clinical trials are needed, and the results of active or recently concluded studies are eagerly awaited.
Collapse
Affiliation(s)
- Rupesh Raina
- Department of Nephrology, Cleveland Clinic Akron General/Akron Nephrology Associates, Akron, Ohio, USA.,Akron Children's Hospital, Akron, Ohio, USA
| | | | - Ronith Chakraborty
- Department of Nephrology, Cleveland Clinic Akron General/Akron Nephrology Associates, Akron, Ohio, USA
| | - Nikhil Nair
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Haikoo Shah
- Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Vinod Krishnappa
- Department of Nephrology, Cleveland Clinic Akron General/Akron Nephrology Associates, Akron, Ohio, USA.,Northeast Ohio Medical University, Rootstown, Ohio, USA
| | | |
Collapse
|
46
|
Mammadzada P, Bayle J, Gudmundsson J, Kvanta A, André H. Identification of Diagnostic and Prognostic microRNAs for Recurrent Vitreous Hemorrhage in Patients with Proliferative Diabetic Retinopathy. J Clin Med 2019; 8:jcm8122217. [PMID: 31847440 PMCID: PMC6947310 DOI: 10.3390/jcm8122217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) can provide insight into the pathophysiological states of ocular tissues such as proliferative diabetic retinopathy (PDR). In this study, differences in miRNA expression in vitreous from PDR patients with and without incidence of recurrent vitreous hemorrhage (RVH) after the initial pars-plana vitrectomy (PPV) were analyzed, with the aim of identifying biomarkers for RVH. Fifty-four consented vitreous samples were analyzed from patients undergoing PPV for PDR, of which eighteen samples underwent a second surgery due to RVH. Ten of the sixty-six expressed miRNAs (miRNAs-19a, -20a, -22, -27a, -29a, -93, -126, -128, -130a, and -150) displayed divergences between the PDR vitreous groups and to the control. A significant increase in the miRNA-19a and -27a expression was determined in PDR patients undergoing PPV as compared to the controls. miRNA-20a and -93 were significantly upregulated in primary PPV vitreous samples of patients afflicted with RVH. Moreover, this observed upregulation was not significant between the non-RVH and control group, thus emphasizing the association with RVH incidence. miRNA-19a and -27a were detected as putative vitreous biomarkers for PDR, and elevated levels of miRNA-20a and -93 in vitreous with RVH suggest their biomarker potential for major PDR complications such as recurrent hemorrhage incidence.
Collapse
Affiliation(s)
- Parviz Mammadzada
- Department of Clinical Neurosciences, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm 11282, Sweden; (P.M.); (J.B.); (J.G.); (A.K.)
| | - Juliette Bayle
- Department of Clinical Neurosciences, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm 11282, Sweden; (P.M.); (J.B.); (J.G.); (A.K.)
| | - Johann Gudmundsson
- Department of Clinical Neurosciences, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm 11282, Sweden; (P.M.); (J.B.); (J.G.); (A.K.)
- Department of Ophthalmology, University of Iceland, Reykjavik 101, Iceland
| | - Anders Kvanta
- Department of Clinical Neurosciences, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm 11282, Sweden; (P.M.); (J.B.); (J.G.); (A.K.)
| | - Helder André
- Department of Clinical Neurosciences, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm 11282, Sweden; (P.M.); (J.B.); (J.G.); (A.K.)
- Correspondence:
| |
Collapse
|
47
|
Solini A, Seghieri M, Giannini L, Biancalana E, Parolini F, Rossi C, Dardano A, Taddei S, Ghiadoni L, Bruno RM. The Effects of Dapagliflozin on Systemic and Renal Vascular Function Display an Epigenetic Signature. J Clin Endocrinol Metab 2019; 104:4253-4263. [PMID: 31162549 DOI: 10.1210/jc.2019-00706] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
CONTEXT Mechanisms mediating the cardiovascular and renal protection exerted by SGLT2 inhibitors are still partially unknown. We investigated whether dapagliflozin modulates systemic and renal vascular function and structure, and induces epigenetic modifications. SUBJECTS AND METHODS Forty hypertensive patients with type 2 diabetes were randomly assigned to 4-week treatment with dapagliflozin 10 mg or hydrochlorothiazide (HCT) 12.5 mg. Routine analyses; plasma renin activity; aldosterone, catecholamine, and 24-hour urinary electrolyte levels; flow-mediated dilation (FMD) of the brachial artery; carotid-femoral pulse-wave velocity (PWV); augmentation index; and resistive index and dynamic renal resistive index (DRIN) were measured at baseline and after treatment. Circulating miRNAs (miRs) related to heart failure (miR30e-5p, miR199a-3p), endothelial dysfunction (miR27b and miR200b), and renal function (miR130b-3p, miR21-5p) were assessed and related to the effects of treatments. RESULTS Dapagliflozin and HCT marginally lowered blood pressure. Fasting glucose was lowered, whereas 24-hour diuresis, glycosuria, and osmolar clearance were increased by dapagliflozin (P < 0.001 for all), without affecting sodium excretion and glomerular filtration rate. Magnesium levels significantly increased after dapagliflozin treatment (P = 0.02). Neither dapagliflozin nor HCT modified FMD or PWV. DRIN did not vary in the dapagliflozin group, whereas it increased in the HCT group (P = 0.047 for time by treatment interaction). Both treatments induced variations in the expression of some miRs; dapagliflozin, but not HCT, significantly up-regulated miR30e-5p and downregulated miR199a-3p. CONCLUSION A putative epigenetic regulation of the protecting cardiovascular effect exerted by SGLT2 inhibitors was found. Dapagliflozin might exert nephroprotection by preserving renal vasodilating capacity.
Collapse
Affiliation(s)
- Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Marta Seghieri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Livia Giannini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Edoardo Biancalana
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Parolini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Rossi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Ghiadoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosa Maria Bruno
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
48
|
Kim H, Bae YU, Jeon JS, Noh H, Park HK, Byun DW, Han DC, Ryu S, Kwon SH. The circulating exosomal microRNAs related to albuminuria in patients with diabetic nephropathy. J Transl Med 2019; 17:236. [PMID: 31331349 PMCID: PMC6647278 DOI: 10.1186/s12967-019-1983-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/12/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is associated with high risk of cardiovascular disease and mortality. Exosomal microRNAs (miRNAs) regulate gene expression in a variety of tissues and play important roles in the pathology of various diseases. We hypothesized that the exosomal miRNA profile would differ between DN patients and patients without nephropathy. METHODS We prospectively enrolled 74 participants, including healthy volunteers (HVs), diabetic patients without nephropathy, and those with DN. The serum exosomal miRNA profiles of participants were examined using RNA sequencing. RESULTS The expression levels of 107 miRNAs differed between HVs and patients without DN, whereas the expression levels of 95 miRNAs differed between HVs and patients with DN. Among these miRNAs, we found 7 miRNAs (miR-1246, miR-642a-3p, let-7c-5p, miR-1255b-5p, let-7i-3p, miR-5010-5p, miR-150-3p) that were uniquely up-regulated in DN patients compared to HVs, and miR-4449 that was highly expressed in DN patients compared to patients without DN. A pathway analysis revealed that these eight miRNAs are likely involved in MAPK signaling, integrin function in angiogenesis, and regulation of the AP-1 transcription factor. Moreover, they were all significantly correlated with the degree of albuminuria. CONCLUSIONS Patients with DN have a different serum exosomal miRNA profile compared to HVs. These miRNAs may be promising candidates for the diagnosis and treatment of DN and cardiovascular disease.
Collapse
Affiliation(s)
- Hyoungnae Kim
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea.,Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, South Korea
| | - Yun-Ui Bae
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Chonan, South Korea
| | - Jin Seok Jeon
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea.,Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, South Korea
| | - Hyunjin Noh
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea.,Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, South Korea
| | - Hyeong Kyu Park
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea
| | - Dong Won Byun
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea
| | - Dong Cheol Han
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea.,Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, South Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Chonan, South Korea. .,Soonchunhyang Institute of Med-bio Sciences (SIMS) and Laboratory of Pathology, Department of Medicine, Soonchunhyang University, Chonan, 336-745, South Korea.
| | - Soon Hyo Kwon
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea. .,Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Youngsan-gu, Seoul, South Korea.
| |
Collapse
|
49
|
Matveeva MV, Samoilova YG, Zhukova NG, Kudlay DA, Rotkank MA, Leyman OP. Rare genetic markers of cognitive impairment in diabetes mellitus. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:76-79. [DOI: 10.17116/jnevro201911902176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Grieco GE, Cataldo D, Ceccarelli E, Nigi L, Catalano G, Brusco N, Mancarella F, Ventriglia G, Fondelli C, Guarino E, Crisci I, Sebastiani G, Dotta F. Serum Levels of miR-148a and miR-21-5p Are Increased in Type 1 Diabetic Patients and Correlated with Markers of Bone Strength and Metabolism. Noncoding RNA 2018; 4:ncrna4040037. [PMID: 30486455 PMCID: PMC6315714 DOI: 10.3390/ncrna4040037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by bone loss and altered bone remodeling, resulting into reduction of bone mineral density (BMD) and increased risk of fractures. Identification of specific biomarkers and/or causative factors of diabetic bone fragility is of fundamental importance for an early detection of such alterations and to envisage appropriate therapeutic interventions. MicroRNAs (miRNAs) are small non-coding RNAs which negatively regulate genes expression. Of note, miRNAs can be secreted in biological fluids through their association with different cellular components and, in such context, they may represent both candidate biomarkers and/or mediators of bone metabolism alterations. Here, we aimed at identifying miRNAs differentially expressed in serum of T1D patients and potentially involved in bone loss in type 1 diabetes. We selected six miRNAs previously associated with T1D and bone metabolism: miR-21; miR-24; miR-27a; miR-148a; miR-214; and miR-375. Selected miRNAs were analyzed in sera of 15 T1D patients (age: 33.57 ± 8.17; BMI: 21.4 ± 1.65) and 14 non-diabetic subjects (age: 31.7 ± 8.2; BMI: 24.6 ± 4.34). Calcium, osteocalcin, parathormone (PTH), bone ALkaline Phoshatase (bALP), and Vitamin D (VitD) as well as main parameters of bone health were measured in each patient. We observed an increased expression of miR-148a (p = 0.012) and miR-21-5p (p = 0.034) in sera of T1D patients vs. non-diabetic subjects. The correlation analysis between miRNAs expression and the main parameters of bone metabolism, showed a correlation between miR-148a and Bone Mineral Density (BMD) total body (TB) values (p = 0.042) and PTH circulating levels (p = 0.033) and the association of miR-21-5p to Bone Mineral Content-Femur (BMC-FEM). Finally, miR-148a and miR-21-5p target genes prediction analysis revealed several factors involved in bone development and remodeling, such as MAFB, WNT1, TGFB2, STAT3, or PDCD4, and the co-modulation of common pathways involved in bone homeostasis thus potentially assigning a role to both miR-148a and miR-21-5p in bone metabolism alterations. In conclusion, these results lead us to hypothesize a potential role for miR-148a and miR-21-5p in bone remodeling, thus representing potential biomarkers of bone fragility in T1D.
Collapse
Affiliation(s)
- Giuseppina E Grieco
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Dorica Cataldo
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy.
| | - Elena Ceccarelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
| | - Laura Nigi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Giovanna Catalano
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
| | - Noemi Brusco
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Francesca Mancarella
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Giuliana Ventriglia
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Cecilia Fondelli
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy.
| | - Elisa Guarino
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy.
| | - Isabella Crisci
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy.
| | - Guido Sebastiani
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
| | - Francesco Dotta
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, 53100, Italy.
- Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, 53100, Italy.
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, 53100, Italy.
| |
Collapse
|