1
|
Ouyang Z, Chen X, Wang Z, Xu Y, Deng Z, Xing L, Zhang L, Hu M, Li H, Lian T, Gao F, Liu C, Zhou Y, Sun L, Wang YC, Liu D. Azithromycin-loaded PLGA microspheres coated with silk fibroin ameliorate inflammation and promote periodontal tissue regeneration. Regen Biomater 2024; 12:rbae146. [PMID: 39791015 PMCID: PMC11717352 DOI: 10.1093/rb/rbae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
Periodontitis, a widespread inflammatory disease, is the major cause of tooth loss in adults. While mechanical periodontal therapy benefits the periodontal disease treatment, adjunctive periodontal therapy is also necessary. Topically applied anti-inflammatory agents have gained considerable attention in periodontitis therapy. Although azithromycin (AZM) possesses excellent anti-inflammatory properties, its bioavailability is limited owing to poor water solubility and the absence of sustained release mechanisms. Herein, we synthesized biodegradable microspheres (AZM@PLGA-SF) for sustained AZM release to locally ameliorate periodontal inflammation and facilitate periodontal tissue regeneration. AZM was encapsulated in poly (lactic-co-glycolic acid) (PLGA) microspheres (AZM@PLGA) using single emulsion-solvent evaporation, followed by surface coating with silk fibroin (SF) via electrostatic adsorption, reducing the initial burst release of AZM. In vivo, local treatment with AZM@PLGA-SF microspheres significantly reduced periodontal inflammation and restored periodontal tissue to healthy levels. Mechanically, the formulated microspheres regulated the periodontal inflammatory microenvironment by reducing the levels of pro-inflammatory cytokines (tumor necrosis factor -α, interleukin [IL]-6, interferon-γ, IL-2, and IL-17A) in gingival crevicular fluid and promoted the expression of anti-inflammatory cytokines (IL-4 and IL-10). AZM@PLGA-SF microspheres demonstrated excellent biological safety. Therefore, we introduce an anti-inflammatory therapy for periodontitis with substantial potential for mitigating periodontal inflammation and encouraging the repair and regeneration of periodontal tissues.
Collapse
Affiliation(s)
- Zhaoguang Ouyang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510013, PR China
| | - Xiaoyu Chen
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Zhengyang Wang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Yue Xu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Zhe Deng
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MA 21205, USA
| | - Liangyu Xing
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Li Zhang
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Meilin Hu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Haocong Li
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Tengye Lian
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Feng Gao
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Chunyi Liu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Yangyang Zhou
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
| | - Lu Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
- Periodontal and Implant Microsurgery Academy (PiMA), University of Michigan School of Dentistry, Ann Arbor, MI 48105, USA
| | - Ying ChengYao Wang
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, PR China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, PR China
| | - Dayong Liu
- Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China
- Tianjin Medical University Institute of Stomatology, Tianjin 300070, PR China
- School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, Hebei 050011, PR China
| |
Collapse
|
2
|
Wu Z, Ding Q, Yue M, Zhang X, Han D, Zhang L. Caspase-3/GSDME-mediated pyroptosis leads to osteogenic dysfunction of osteoblast-like cells. Oral Dis 2024; 30:1392-1402. [PMID: 37004144 DOI: 10.1111/odi.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
OBJECTIVE Cell pyroptosis is implicated in progressive bone loss in dental inflammatory diseases. We induced caspase-3/Gasdermin E (GSDME)-mediated pyroptosis in osteoblast-like cells and evaluated the effects on osteogenesis. MATERIALS AND METHODS Osteoblast-like cells were treated with various concentrations of sodium butyrate (NaB) to identify the most appropriate for inducing caspase-3/GSDME-mediated pyroptosis. Cells were divided into control, NaB and NaB+Ac-DEVD-CHO (specific caspase-3 inhibitor) groups. Pyroptosis level was evaluated by immunofluorescence, morphological observation, flow cytometry, lactate dehydrogenase (LDH) release assays, mRNA and protein levels of pyroptosis-related markers. Then, inflammation level, osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL) expression and osteogenic function were detected. RESULTS Treatment with 10 mM NaB increased caspase-3 expression, GSDME cleavage, LDH release and the number of pyroptotic cells, with morphologic changes, indicating GSDME-mediated pyroptosis induction. The pyroptosis-related changes were abolished by caspase-3 inhibition. Caspase-3/GSDME-mediated pyroptosis triggered the expression of inflammatory cytokines and RANKL, downregulated alkaline phosphatase (ALP) activity, mineralisation level, mRNA and protein levels of multiple osteogenic markers. These effects were partly reversed by Ac-DEVD-CHO. CONCLUSION Caspase-3/GSDME-mediated pyroptosis induced by NaB activated the inflammatory response, reduced osteogenic differentiation and disturbed OPG/RANKL axis, leading to osteogenic dysfunction in osteoblast-like cells.
Collapse
Affiliation(s)
- Zhixiao Wu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Qian Ding
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Lei Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
3
|
Liu Y, Yang J, Jiang B, Zheng G, Wang Y. Low-energy LED red light inhibits the NF-κB pathway and promotes hPDLSCs proliferation and osteogenesis in a TNF-α environment in vitro. Lasers Med Sci 2023; 38:240. [PMID: 37851127 DOI: 10.1007/s10103-023-03880-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/11/2023] [Indexed: 10/19/2023]
Abstract
There are few studies on the effect of low-energy LED red light on periodontal tissue regeneration in an inflammatory environment. In this study, Cell Counting Kit-8 (CCK-8) assays were used to detect the effects of TNF-α at three different concentrations (0, 10 ng/ml, and 20 ng/ml) on the proliferation of human periodontal ligament stem cells (hPDLSCs), and 10 ng/ml was selected as the subsequent experimental stimulation concentration. CCK-8 assays were used to detect the effect of LED red light with energy density of 1 J/ cm2, 3 J/ cm2, and 5 J/cm2 on the proliferation of hPDLSCs. The promotion effect of energy density of 5 J/cm2 on the proliferation of hPDLSCS was the most obvious (p < 0.05). Set CON group, ODM group, ODM + 10 ng/ml TNF-α group, and ODM + 10 ng/ml TNF-α + 5 J/ cm2 LED red light group. Alkaline phosphatase staining and activity detection, alizarin red staining and calcium nodules quantitative detection of osteoblast differentiation products, real-time fluorescence quantitative PCR detection of osteoblast gene expression (Runx2, Col-I, OPN, OCN). The results showed that ODM showed the strongest osteoblast ability, followed by ODM + 10 ng/ml TNF-α + 5 J/ cm2 LED red light group. The osteoblast ability of ODM + 10 ng/ml TNF-α was decreased, but was not found in CON group. Western blot was used to detect the expression of NF-κB pathway protein and osteoblast-related proteins (Runx2, Col-I, OPN, OCN) after addition of PDTC inhibitor. The results showed that the expression of p-IκBα was increased and the expression of IκBα was decreased (p < 0.05). The expression of osteoblast protein increased after the addition of inhibitor (p < 0.05). Therefore, in an inflammatory environment constructed by 10 ng/ml TNF-α, 5 J/cm2 LED red light can upregulate the proliferation and osteogenesis of hPDLSCs by inhibiting NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuan Liu
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- The Third Hospital of Mianyang, Department of Stomatology, Mianyang, 621000, China
- Sichuan Mental Health Center, Mianyang, 621000, China
| | - Juan Yang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
- Chenjiaqiao Hospital of Shapingba District Chongqing, Chongqing, 400000, China
| | - Bing Jiang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
- Dazhou Hospital of Integrated TCM & Western Medicine Hospital, Dazhou, 635000, China
| | - Genzi Zheng
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China
- The Third Hospital of Yibin, Department of Stomatology, Yibin, 644000, China
| | - Yao Wang
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, 646000, China.
- The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
Inhibitory effect of polysaccharides extracted from Changbai Mountain Ganoderma lucidum on periodontal inflammation. Heliyon 2023; 9:e13205. [PMID: 36814621 PMCID: PMC9939615 DOI: 10.1016/j.heliyon.2023.e13205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
As the main bioactive substance of Ganoderma lucidum, Ganoderma lucidum polysaccharide (GLP) has anti-inflammatory, antibacterial, and other biological activities. Studies have shown that GLP can regulate the expression of multiple inflammatory cytokines in different inflammatory models and diseases as part of the anti-infection immune response. We extracted crude Changbai Mountain Ganoderma lucidum polysaccharides (CGLPs), analyzed their physical and chemical properties, and then applied them to the periodontitis model to verify whether they have an inhibitory effect on mouse periodontitis. CGLP was determined to be a heteropolysaccharide with dextran as the main component. Its molecular weight was 17.40 kDa. In vivo experiments in mice showed that CGLP can inhibit the alveolar bone loss and reduced inflammation caused of periodontitis by regulating the expression of the inflammatory factors IL-1β, TNF-α, and IL-10 in a concentration-dependent manner.
Collapse
|
5
|
Attik N, Garric X, Bethry A, Subra G, Chevalier C, Bouzouma B, Verdié P, Grosgogeat B, Gritsch K. Amelogenin-Derived Peptide (ADP-5) Hydrogel for Periodontal Regeneration: An In Vitro Study on Periodontal Cells Cytocompatibility, Remineralization and Inflammatory Profile. J Funct Biomater 2023; 14:jfb14020053. [PMID: 36826852 PMCID: PMC9966511 DOI: 10.3390/jfb14020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
A relevant alternative to enamel matrix derivatives from animal origin could be the use of synthetic amelogenin-derived peptides. This study aimed to assess the effect of a synthetic amelogenin-derived peptide (ADP-5), alone or included in an experimental gellan-xanthan hydrogel, on periodontal cell behavior (gingival fibroblasts, periodontal ligament cells, osteoblasts and cementoblasts). The effect of ADP-5 (50, 100, and 200 µg/mL) on cell metabolic activity was examined using Alamar blue assay, and cell morphology was assessed by confocal imaging. An experimental gellan-xanthan hydrogel was then designed as carrier for ADP-5 and compared to the commercial gel Emdogain®. Alizarin Red was used to determine the periodontal ligament and cementoblasts cell mineralization. The inflammatory profile of these two cells was also quantified using ELISA (vascular endothelial growth factor A, tumor necrosis factor α, and interleukin 11) mediators. ADP-5 enhanced cell proliferation and remineralization; the 100 µg/mL concentration was more efficient than 50 and 200 µg/mL. The ADP-5 experimental hydrogel exhibited equivalent good biological behavior compared to Emdogain® in terms of cell colonization, mineralization, and inflammatory profile. These findings revealed relevant insights regarding the ADP-5 biological behavior. From a clinical perspective, these outcomes could instigate the development of novel functionalized scaffold for periodontal regeneration.
Collapse
Affiliation(s)
- Nina Attik
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- Correspondence:
| | - Xavier Garric
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
- Departement of Pharmacy, Nîmes University Hospital, 30900 Nîmes, France
| | - Audrey Bethry
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Charlène Chevalier
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Brahim Bouzouma
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Pascal Verdié
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Brigitte Grosgogeat
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- Service d’Odontologie (UF Recherche Clinique), Hospices Civils de Lyon, 69007 Lyon, France
| | - Kerstin Gritsch
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
- Faculté d’Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- Service d’Odontologie (UF Parodontologie), Hospices Civils de Lyon, 69007 Lyon, France
| |
Collapse
|
6
|
Erythropoietin Activates Autophagy to Regulate Apoptosis and Angiogenesis of Periodontal Ligament Stem Cells via the Akt/ERK1/2/BAD Signaling Pathway under Inflammatory Microenvironment. Stem Cells Int 2022; 2022:9806887. [PMID: 36199627 PMCID: PMC9527112 DOI: 10.1155/2022/9806887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Angiogenic tissue engineering is a vital problem waiting to be settled for periodontal regeneration. Erythropoietin, a multieffect cytokine, has been reported as a protective factor for cell fate. According to our previous study, erythropoietin has a significantly angiogenic effect on periodontal ligament stem cells. To further explore its potential effects and mechanism, we studied biological behaviors of periodontal ligament stem cells under inflammatory microenvironment induced by different concentrations (0, 10, 20, 50, and 100 ng/mL) of tumor necrosis factor-α (TNF-α) and examined how different concentrations (0, 5, 10, 20, and 50 IU/mL) of erythropoietin changed biological behaviors of periodontal ligament stem cells. Materials and Methods. Cell Counting Kit-8 was used for cell proliferation assay. Annexin V-PI-FITC was used for cell apoptosis through flow cytometry. Matrigel plug was adopted to measure the angiogenic capacity in vitro. RNA sequencing was used to detect the downstream signaling pathway. Quantitative real-time polymerase chain reaction was conducted to examine mRNA expression level. Western blot and immunofluorescence were applied to testify the protein expression level. Results. Periodontal ligament stem cells upregulated apoptosis and suppressed autophagy and angiogenesis under inflammatory microenvironment. Erythropoietin could activate autophagy to rescue apoptosis and angiogenesis levels of periodontal ligament stem cells through the Akt/Erk1/2/BAD signaling pathway under inflammatory microenvironment. Conclusions. Erythropoietin could protect periodontal ligament stem cells from inflammatory microenvironment, which provided a novel theory for periodontal regeneration.
Collapse
|
7
|
Effect of Administration of Azithromycin and/or Probiotic Bacteria on Bones of Estrogen-Deficient Rats. Pharmaceuticals (Basel) 2022; 15:ph15080915. [PMID: 35893739 PMCID: PMC9331654 DOI: 10.3390/ph15080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota plays an important role in maintaining homeostasis, including that of the skeletal system. Antibiotics may affect the skeletal system directly or indirectly by influencing the microbiota. Probiotic bacteria have been reported to favorably affect bones in conditions of estrogen deficiency. The aim of this study was to investigate the effects of azithromycin (AZM) administered alone or with probiotic bacteria (Lactobacillus rhamnosus; LR) on bones in estrogen-deficient rats. The experiments were carried out on mature rats divided into five groups: non-ovariectomized (NOVX) control rats, ovariectomized (OVX) control rats, and OVX rats treated with: LR, AZM, or AZM with LR. The drugs were administered for 4 weeks. Serum biochemical parameters, bone mineralization, histomorphometric parameters, and mechanical properties were examined. Estrogen deficiency increased bone turnover and worsened cancellous bone microarchitecture and mechanical properties. The administration of LR or AZM slightly favorably affected some skeletal parameters of estrogen-deficient rats. The administration of AZM with LR did not lead to the addition of the effects observed for the separate treatments, indicating that the effects could be microbiota-mediated.
Collapse
|
8
|
Mo Q, Zhang W, Zhu A, Backman LJ, Chen J. Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1β and TNF-α: current conclusions and controversies. Hum Cell 2022; 35:957-971. [PMID: 35522425 DOI: 10.1007/s13577-022-00711-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/23/2022] [Indexed: 12/09/2022]
Abstract
Treatment of complex bone fracture diseases is still a complicated problem that is urged to be solved in orthopedics. In bone tissue engineering, the use of mesenchymal stromal/stem cells (MSCs) for tissue repair brings hope to the medical field of bone diseases. MSCs can differentiate into osteoblasts and promote bone regeneration. An increasing number of studies show that the inflammatory microenvironment affects the osteogenic differentiation of MSCs. It is shown that TNF-α and IL-1β play different roles in the osteogenic differentiation of MSCs via different signal pathways. The main factors that affect the role of TNF-α and IL-1β in osteogenic differentiation of MSCs include concentration and the source of stem cells (different species and different tissues). This review in-depth analyzes the roles of pro-inflammatory cytokines in the osteogenic differentiation of MSCs and reveals some current controversies to provide a reference of comprehensively understanding.
Collapse
Affiliation(s)
- Qingyun Mo
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Aijing Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, SE-901 87, Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210096, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
9
|
Chen M, Lin X, Zhang L, Hu X. Effects of nuclear factor-κB signaling pathway on periodontal ligament stem cells under lipopolysaccharide-induced inflammation. Bioengineered 2022; 13:7951-7961. [PMID: 35297308 PMCID: PMC9208442 DOI: 10.1080/21655979.2022.2051690] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) induces inflammatory stress and apoptosis. This study focused on the effect of nuclear factor kappa B (NF-κB) signaling pathway on proliferation and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) after LPS induction and its mechanism. We first isolated hPDLSCs from human tooth root samples in vitro. Then, flow cytometry detected positive expression of cell surface antigens CD146 and STRO-1 and negative expression of CD45, suggesting the hPDLSCs were successfully isolated. LPS significantly induced increased apoptosis and diminished proliferation of hPDLSCs. The NF-κB pathway agonist phorbol 12-myristate 13-acetate (PMA) or p65 overexpression inhibited the proliferation of LPS-treated hPDLSCs and promoted apoptosis. PMA also promoted LPS-induced up-regulation of the expression of inflammatory factors TNF-α and IL-6 and down-regulation of the expression of anti-inflammatory factor IL-10. Additionally, LPS was confirmed to lead to a reduction of alkaline phosphatase (ALP) activity, calcium nodules, and expression of osteogenic markers Runt-related transcription factor 2 (Runx2) and osteopontin. This reduction could be promoted by PMA. Western blotting further indicated that PMA could promote LPS-induced decrease of expression of p65 (cytoplasm), and total cellular proteins IKKα and IKKβ in hPDLSCs, while protein expression of p-IκBα (cytoplasm) and p65 (nucleus), and p-IκBα/IκBα ratio was elevated. By contrast, inhibition of the NF-κB pathway (PDTC) or small-interfering RNA targeting NF-κB/p65 (p65 siRNA) showed the opposite results. In conclusion, activation of NF-κB signaling in LPS-induced inflammatory environment can inhibit the proliferation and osteogenic differentiation of hPDLSCs. This study provides a theory foundation for the clinical treatment of periodontitis.
Collapse
Affiliation(s)
- Mingyue Chen
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiaobo Lin
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Li Zhang
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiaoli Hu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China.,Department of Rehabilitation, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| |
Collapse
|
10
|
Yang Y, Miao L, Chang S, Zhang Q, Yu L, He P, Zhang Y, Fan W, Liu J, Hao X. Exosome-Derived LncRNA TCONS_00072128 Mediated Osteogenic Differentiation and Inflammation by Caspase 8 Regulation. Front Genet 2022; 12:831420. [PMID: 35308164 PMCID: PMC8929336 DOI: 10.3389/fgene.2021.831420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a systemic metabolic bone disease in postmenopausal women. It has been known that long non-coding RNAs (lncRNAs) play a regulatory role in the progression of osteoporosis. However, the mechanism underlying the effects of exosome-derived lncRNA on regulating the occurrence and development of PMOP remains unclear. Exosomes in the serum of patients PMOP were collected and identified. RNA sequencing was performed to obtain the expression profile of exosome-derived lncRNAs in the serum of PMOP patients. RNA sequencing identified 26 differentially expressed lncRNAs from the exosomes between healthy people and PMOP patients. Among them, the expression of TCONS_00072128 was dramatically down-regulated. A co-location method was employed and searched its potential target gene caspase 8. TCONS_00072128 knockdown notably decreased the expression of caspase 8, while the osteogenic differentiation of BMSCs was also reduced. Reversely, TCONS_00072128 overexpression enhanced caspase 8 expression and osteogenic differentiation of BMSCs. Moreover, the continuous expression of caspase 8 regulated by TCONS_00072128 significantly activated inflammation pathways including NLRP3 signaling and NF-κB signaling. Simultaneously, RIPK1 which has emerged as a promising therapeutic target for the treatment of a wide range of human neurodegenerative, autoimmune, and inflammatory diseases, was also phosphorylated. The results of the present study suggested that exosome-derived lncRNA TCONS_00072128 could promote the progression of PMOP by regulating caspase 8. In addition, caspase 8 expression in BMSCs was possible to be a key regulator that balanced cell differentiation and inflammation activation.
Collapse
Affiliation(s)
- Yongchang Yang
- Institute of Laboratory Medicine Center of Chinese People’s Liberation Army (PLA), Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
- Department of Clinical Laboratory, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Miao
- Department of Stomatology, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuai Chang
- Department of Clinical Laboratory, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiuli Zhang
- Department of Blood Transfusion, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lijuan Yu
- Institute of Laboratory Medicine Center of Chinese People’s Liberation Army (PLA), Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Ping He
- BMD Testing Room, Department of Orthopedic, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yue Zhang
- Institute of Laboratory Medicine Center of Chinese People’s Liberation Army (PLA), Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
- Department of Clinical Laboratory, Air Force Hospital in the Northern Theater Command, Shenyang, China
| | - Weixiao Fan
- Institute of Laboratory Medicine Center of Chinese People’s Liberation Army (PLA), Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Jie Liu
- Department of Clinical Laboratory, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Xiaoke Hao, ; Jie Liu,
| | - Xiaoke Hao
- Institute of Laboratory Medicine Center of Chinese People’s Liberation Army (PLA), Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
- College of Medicine, Northwest University, Xi’an, China
- *Correspondence: Xiaoke Hao, ; Jie Liu,
| |
Collapse
|
11
|
Yi M, Wang G, Niu J, Peng M, Liu Y. Pterostilbene attenuates the proliferation and differentiation of TNF‑α‑treated human periodontal ligament stem cells. Exp Ther Med 2022; 23:304. [PMID: 35340874 PMCID: PMC8931590 DOI: 10.3892/etm.2022.11233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Min Yi
- Department of Integrative Therapy, Shanghai Huangpu District 2nd Dental Disease Prevention and Treatment Institute, Shanghai 200001, P.R. China
| | - Guanglei Wang
- Department of Stomatology, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Jianhua Niu
- Department of Integrative Therapy, Shanghai Huangpu District 2nd Dental Disease Prevention and Treatment Institute, Shanghai 200001, P.R. China
| | - Minghui Peng
- Department of Integrative Therapy, Shanghai Huangpu District 2nd Dental Disease Prevention and Treatment Institute, Shanghai 200001, P.R. China
| | - Yi Liu
- Department of Stomatology, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| |
Collapse
|
12
|
Zhang Z, Pan X, Chen M, Bai M. Wnt signalling in oral and maxillofacial diseases. Cell Biol Int 2021; 46:34-45. [PMID: 34643311 DOI: 10.1002/cbin.11708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/31/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023]
Abstract
Wnts include more than 19 types of secreted glycoproteins that are involved in a wide range of pathological processes in oral and maxillofacial diseases. The transmission of Wnt signalling from the extracellular matrix into the nucleus includes canonical pathways and noncanonical pathways, which play an important role in tooth development, alveolar bone regeneration, and related diseases. In recent years, with the in-depth study of Wnt signalling in oral and maxillofacial-related diseases, many new conclusions and perspectives have been reached, and there are also some controversies. This article aims to summarise the roles of Wnt signalling in various oral diseases, including periodontitis, dental pulp disease, jaw disease, cleft palate, and abnormal tooth development, to provide researchers with a better and more comprehensive understanding of Wnts in oral and maxillofacial diseases.
Collapse
Affiliation(s)
- Zhaowei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyue Pan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Niessen NM, Gibson PG, Baines KJ, Barker D, Yang IA, Upham JW, Reynolds PN, Hodge S, James AL, Jenkins C, Peters MJ, Marks GB, Baraket M, Simpson JL, Fricker M. Sputum TNF markers are increased in neutrophilic and severe asthma and are reduced by azithromycin treatment. Allergy 2021; 76:2090-2101. [PMID: 33569770 DOI: 10.1111/all.14768] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The AMAZES randomized controlled trial demonstrated that long-term low-dose azithromycin treatment reduces exacerbations of poorly controlled asthma, but the therapeutic mechanisms remain unclear. Dysregulation of the inflammatory tumour necrosis factor (TNF) pathway is implicated in asthma and could be suppressed by azithromycin. We aimed to determine the inflammatory and clinical associations of soluble TNF signalling proteins (TNF receptors [TNFR] 1 and 2, TNF) in sputum and serum, and to test the effect of 48 weeks of azithromycin vs placebo on TNF markers. METHODS Sputum supernatant and serum TNFR1, TNFR2 (n = 142; 75 azithromycin-treated, 67 placebo-treated) and TNF (n = 48; 22 azithromycin-treated, 26 placebo-treated) were measured by ELISA in an AMAZES trial sub-population at baseline and end of treatment. Baseline levels were compared between sputum inflammatory phenotypes, severe/non-severe asthma and frequent/non-frequent exacerbators. Effect of azithromycin on markers was tested using linear mixed models. RESULTS Baseline sputum TNFR1 and TNFR2 were significantly increased in neutrophilic vs non-neutrophilic asthma phenotypes, while serum markers did not differ. Sputum TNFR1 and TNFR2 were increased in severe asthma and correlated with poorer lung function, worse asthma control and increasing age. Serum TNFR1 was also increased in severe asthma. Sputum and serum TNFR2 were increased in frequent exacerbators. Azithromycin treatment significantly reduced sputum TNFR2 and TNF relative to placebo, specifically in non-eosinophilic participants. CONCLUSIONS We demonstrate dysregulation of TNF markers, particularly in the airways, that relates to clinically important phenotypes of asthma including neutrophilic and severe asthma. Suppression of dysregulated TNF signalling by azithromycin could contribute to its therapeutic mechanism.
Collapse
Affiliation(s)
- Natalie M. Niessen
- Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs School of Medicine and Public Health The University of Newcastle Newcastle NSW Australia
- National Health and Medical Research Council Centre for Excellence in Severe Asthma Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Peter G. Gibson
- Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs School of Medicine and Public Health The University of Newcastle Newcastle NSW Australia
- National Health and Medical Research Council Centre for Excellence in Severe Asthma Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| | - Katherine J. Baines
- Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs School of Medicine and Public Health The University of Newcastle Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Daniel Barker
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Ian A. Yang
- Faculty of Medicine Department of Thoracic Medicine The Prince Charles Hospital The University of Queensland Brisbane Qld Australia
| | - John W. Upham
- Diamantina Institute The University of Queensland Brisbane Qld Australia
- Department of Respiratory Medicine Princess Alexandra Hospital Brisbane Qld Australia
| | - Paul N. Reynolds
- Department of Thoracic Medicine Royal Adelaide Hospital Adelaide SA Australia
- Lung Research Laboratory Hanson Institute Adelaide SA Australia
- School of Medicine University of Adelaide Adelaide SA Australia
| | - Sandra Hodge
- Department of Thoracic Medicine Royal Adelaide Hospital Adelaide SA Australia
- Lung Research Laboratory Hanson Institute Adelaide SA Australia
- School of Medicine University of Adelaide Adelaide SA Australia
| | - Alan L. James
- Department of Pulmonary Physiology and Sleep Medicine Sir Charles Gairdner Hospital Perth WA Australia
- Medical School The University of Western Australia Perth WA Australia
| | - Christine Jenkins
- Respiratory Trials The George Institute for Global Health Sydney NSW Australia
- Department of Thoracic Medicine Concord General Hospital Sydney NSW Australia
| | - Matthew J. Peters
- Department of Thoracic Medicine Concord General Hospital Sydney NSW Australia
- Faculty of Medicine and Health Sciences Macquarie University Sydney NSW Australia
| | - Guy B. Marks
- Woolcock Institute of Medical Research Sydney NSW Australia
- South Western Sydney Clinical School University of New South Wales Sydney NSW Australia
| | - Melissa Baraket
- Medicine Faculty Respiratory Medicine Department and Ingham Institute Liverpool Hospital University of New South Wales Sydney NSW Australia
| | - Jodie L. Simpson
- Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs School of Medicine and Public Health The University of Newcastle Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| | - Michael Fricker
- Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs School of Medicine and Public Health The University of Newcastle Newcastle NSW Australia
- National Health and Medical Research Council Centre for Excellence in Severe Asthma Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| |
Collapse
|
14
|
Medara N, Lenzo JC, Walsh KA, Reynolds EC, Darby IB, O'Brien-Simpson NM. A review of T helper 17 cell-related cytokines in serum and saliva in periodontitis. Cytokine 2020; 138:155340. [PMID: 33144024 DOI: 10.1016/j.cyto.2020.155340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Periodontitis is a chronic inflammatory disease with a complex underlying immunopathology. Cytokines, as molecular mediators of inflammation, play a role in all stages of disease progression. T helper 17 (Th17) cells are thought to play a role in periodontitis. Th17 cell development and maintenance requires a pro-inflammatory cytokine milieu, with many of the cytokines implicated in the pathogenesis of periodontitis. Serum and saliva are easily accessible biofluids which can represent the systemic and local environment to promote the development of Th17 cells. Here we review human clinical studies that investigate IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40L and TNF-α in serum and saliva in periodontitis. We highlight their putative role in the pathogenesis of periodontitis and place them within a wider context of animal and other clinical studies.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Jason C Lenzo
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Katrina A Walsh
- Department of Surgery, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia.
| | - Eric C Reynolds
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| | - Neil M O'Brien-Simpson
- Centre for Oral Health Research, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia.
| |
Collapse
|