1
|
Zhang L, Wang W, Chen M, Wang Z, Yang H, Duan Y, Hu C, Tang S, Liu P, Zhou X, Yang X. Deciphering the Genetic Basis of Sugar Cane ( Saccharum spontaneum L) Root System and Related Traits under Nitrogen Stress through the Integration of Genome-Wide Association Studies and RNA-seq. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39838610 DOI: 10.1021/acs.jafc.4c08169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Nitrogen (N) is an essential element for plant growth and development. Identifying functional gene loci associated with nitrogen absorption and utilization in sugar cane can facilitate the development of nutrient-efficient sugar cane varieties. In this study, sugar cane seedlings were subjected to normal and low nitrogen stress treatments within a hydroponic system for the identification of candidate genes related to six root-associated traits using a diversity population of 297 accessions. A total of 262 single nucleotide polymorphisms were found to be significantly associated with the mutation, including 30 stable or pleiotropic loci. The integration of genome-wide association studies and differential gene analysis from RNA sequencing (RNA-seq) identified five key candidate genes. Overexpression of one of them, ScMYB-CC gene, in Arabidopsis significantly affected root growth and development. In summary, the findings of this study provide valuable genetic resources for the breeding of nitrogen-efficient sugar cane varieties.
Collapse
Affiliation(s)
- Lijun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530005, China
- College of Agriculture, Guangxi University, Nanning 530005, China
| | - Wanru Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Meiyan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Zhen Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Hao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Yong Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Chunyu Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Shanrui Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Peng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Xunbo Zhou
- College of Agriculture, Guangxi University, Nanning 530005, China
| | - Xiping Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530005, China
- College of Agriculture, Guangxi University, Nanning 530005, China
| |
Collapse
|
2
|
Jiang H, Qi CH, Gao HN, Feng ZQ, Wu YT, Xu XX, Cui JY, Wang XF, Lv YH, Gao WS, Jiang YM, You CX, Li YY. MdBT2 regulates nitrogen-mediated cuticular wax biosynthesis via a MdMYB106-MdCER2L1 signalling pathway in apple. NATURE PLANTS 2024; 10:131-144. [PMID: 38172573 DOI: 10.1038/s41477-023-01587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Cuticular waxes play important roles in plant development and the interaction between plants and their environment. Researches on wax biosynthetic pathways have been reported in several plant species. Also, wax formation is closely related to environmental condition. However, the regulatory mechanism between wax and environmental factors, especially essential mineral elements, is less studied. Here we found that nitrogen (N) played a negative role in the regulation of wax synthesis in apple. We therefore analysed wax content, composition and crystals in BTB-TAZ domain protein 2 (MdBT2) overexpressing and antisense transgenic apple seedlings and found that MdBT2 could downregulate wax biosynthesis. Furthermore, R2R3-MYB transcription factor 16-like protein (MdMYB106) interacted with MdBT2, and MdBT2 mediated its ubiquitination and degradation through the 26S proteasome pathway. Finally, HXXXD-type acyl-transferase ECERIFERUM 2-like1 (MdCER2L1) was confirmed as a downstream target gene of MdMYB106. Our findings reveal an N-mediated apple wax biosynthesis pathway and lay a foundation for further study of the environmental factors associated with wax regulatory networks in apple.
Collapse
Affiliation(s)
- Han Jiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chen-Hui Qi
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Huai-Na Gao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zi-Quan Feng
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ya-Ting Wu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xin-Xiang Xu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Jian-Ying Cui
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiao-Fei Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yan-Hui Lv
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Wen-Sheng Gao
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Yuan-Mao Jiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chun-Xiang You
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuan-Yuan Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
3
|
Wu H, Li J, Pu Q, Mi C, Zeng G, Chen Y, Kong D, Zuo X, Hu X, Li O. Physiological and transcriptome analysis of Dendrobium officinale under low nitrogen stress. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:314-334. [PMID: 36872310 DOI: 10.1071/fp22061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) is the main nutrient of plants, and low nitrogen usually affects plant growth and crop yield. The traditional Chinese herbal medicine Dendrobium officinale Kimura et. Migo is a typical low nitrogen-tolerant plant, and its mechanism in response to low nitrogen stress has not previously been reported. In this study, physiological measurements and RNA-Seq analysis were used to analyse the physiological changes and molecular responses of D. officinale under different nitrogen concentrations. The results showed that under low nitrogen levels, the growth, photosynthesis and superoxide dismutase activity were found to be significantly inhibited, while the activities of peroxidase and catalase, the content of polysaccharides and flavonoids significantly increased. Differentially expressed genes (DEGs) analysis showed that nitrogen and carbon metabolisms, transcriptional regulation, antioxidative stress, secondary metabolite synthesis and signal transduction all made a big difference in low nitrogen stress. Therefore, copious polysaccharide accumulation, efficient assimilation and recycling of nitrogen, as well as rich antioxidant components play critical roles. This study is helpful for understanding the response mechanism of D. officinale to low nitrogen levels, which might provide good guidance for practical production of high quality D. officinale .
Collapse
Affiliation(s)
- Hangtao Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Qian Pu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Chunyi Mi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Guohong Zeng
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Ying Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Dedong Kong
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310018, P. R. China
| | - Xiaorong Zuo
- Xi'an Ande Pharmaceutical Co., Ltd, Zhenping Branch, Xi'an 710000, P. R. China
| | - Xiufang Hu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Ou Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
4
|
Semagn K, Crossa J, Cuevas J, Iqbal M, Ciechanowska I, Henriquez MA, Randhawa H, Beres BL, Aboukhaddour R, McCallum BD, Brûlé-Babel AL, N'Diaye A, Pozniak C, Spaner D. Comparison of single-trait and multi-trait genomic predictions on agronomic and disease resistance traits in spring wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2747-2767. [PMID: 35737008 DOI: 10.1007/s00122-022-04147-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
This study performed comprehensive analyses on the predictive abilities of single-trait and two multi-trait models in three populations. Our results demonstrated the superiority of multi-traits over single-trait models across seven agronomic and four to seven disease resistance traits of different genetic architecture. The predictive ability of multi-trait and single-trait prediction models has not been investigated on diverse traits evaluated under organic and conventional management systems. Here, we compared the predictive abilities of 25% of a testing set that has not been evaluated for a single trait (ST), not evaluated for multi-traits (MT1), and evaluated for some traits but not others (MT2) in three spring wheat populations genotyped either with the wheat 90K single nucleotide polymorphisms array or DArTseq. Analyses were performed on seven agronomic traits evaluated under conventional and organic management systems, four to seven disease resistance traits, and all agronomic and disease resistance traits simultaneously. The average prediction accuracies of the ST, MT1, and MT2 models varied from 0.03 to 0.78 (mean 0.41), from 0.05 to 0.82 (mean 0.47), and from 0.05 to 0.92 (mean 0.67), respectively. The predictive ability of the MT2 model was significantly greater than the ST model in all traits and populations except common bunt with the MT1 model being intermediate between them. The MT2 model increased prediction accuracies over the ST and MT1 models in all traits by 9.0-82.4% (mean 37.3%) and 2.9-82.5% (mean 25.7%), respectively, except common bunt that showed up to 7.7% smaller accuracies in two populations. A joint analysis of all agronomic and disease resistance traits further improved accuracies within the MT1 and MT2 models on average by 21.4% and 17.4%, respectively, as compared to either the agronomic or disease resistance traits, demonstrating the high potential of the multi-traits models in improving prediction accuracies.
Collapse
Affiliation(s)
- Kassa Semagn
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | | | - Muhammad Iqbal
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Izabela Ciechanowska
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Maria Antonia Henriquez
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Harpinder Randhawa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Brian L Beres
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Reem Aboukhaddour
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Brent D McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Anita L Brûlé-Babel
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB, R3T 2N2, Canada
| | - Amidou N'Diaye
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Dean Spaner
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
5
|
Iqbal M, Semagn K, Céron-Rojas JJ, Crossa J, Jarquin D, Howard R, Beres BL, Strenzke K, Ciechanowska I, Spaner D. Identification of Spring Wheat with Superior Agronomic Performance under Contrasting Nitrogen Managements Using Linear Phenotypic Selection Indices. PLANTS (BASEL, SWITZERLAND) 2022; 11:1887. [PMID: 35890521 PMCID: PMC9317689 DOI: 10.3390/plants11141887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
Both the Linear Phenotypic Selection Index (LPSI) and the Restrictive Linear Phenotypic Selection Index (RLPSI) have been widely used to select parents and progenies, but the effect of economic weights on the selection parameters (the expected genetic gain, response to selection, and the correlation between the indices and genetic merits) have not been investigated in detail. Here, we (i) assessed combinations of 2304 economic weights using four traits (maturity, plant height, grain yield and grain protein content) recorded under four organically (low nitrogen) and five conventionally (high nitrogen) managed environments, (ii) compared single-trait and multi-trait selection indices (LPSI vs. RLPSI by imposing restrictions to the expected genetic gain of either yield or grain protein content), and (iii) selected a subset of about 10% spring wheat cultivars that performed very well under organic and/or conventional management systems. The multi-trait selection indices, with and without imposing restrictions, were superior to single trait selection. However, the selection parameters differed quite a lot depending on the economic weights, which suggests the need for optimizing the weights. Twenty-two of the 196 cultivars that showed superior performance under organic and/or conventional management systems were consistently selected using all five of the selected economic weights, and at least two of the selection scenarios. The selected cultivars belonged to the Canada Western Red Spring (16 cultivars), the Canada Northern Hard Red (3), and the Canada Prairie Spring Red (3), and required 83-93 days to maturity, were 72-100 cm tall, and produced from 4.0 to 6.2 t ha-1 grain yield with 14.6-17.7% GPC. The selected cultivars would be highly useful, not only as potential trait donors for breeding under an organic management system, but also for other studies, including nitrogen use efficiency.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (M.I.); (K.S.); (I.C.)
| | - Kassa Semagn
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (M.I.); (K.S.); (I.C.)
| | - J. Jesus Céron-Rojas
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Km 45 Carretera, Veracruz 52640, Mexico; (J.J.C.-R.); (J.C.)
| | - José Crossa
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Km 45 Carretera, Veracruz 52640, Mexico; (J.J.C.-R.); (J.C.)
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA;
| | - Reka Howard
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Brian L. Beres
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada;
| | - Klaus Strenzke
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (M.I.); (K.S.); (I.C.)
| | - Izabela Ciechanowska
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (M.I.); (K.S.); (I.C.)
| | - Dean Spaner
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (M.I.); (K.S.); (I.C.)
| |
Collapse
|
6
|
Rapid Generation and Analysis of a Barley Doubled Haploid Line with Higher Nitrogen Use Efficiency Than Parental Lines by F1 Microspore Embryogenesis. PLANTS 2021; 10:plants10081588. [PMID: 34451633 PMCID: PMC8401716 DOI: 10.3390/plants10081588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022]
Abstract
Creating varieties with high nitrogen use efficiency (NUE) is crucial for sustainable agriculture development. In this study, a superior barley doubled haploid line (named DH45) with improved NUE was produced via F1 microspore embryogenesis with three rounds of screening in different nitrogen levels by hydroponic and field experiments. The molecular mechanisms responsible for the NUE of DH45 surpassing that of its parents were investigated by RNA-seq analysis. A total of 1027 differentially expressed genes (DEGs) were identified that were up- or down-regulated in DH45 under low nitrogen conditions but showed no significant differences in the parents. GO analysis indicated that genes involved in nitrogen compound metabolic processes were significantly enriched in DH45 compared with the parents. KEGG analysis showed the MAPK signaling pathway plant to be highly enriched in DH45 relative to its parents, as well as genes involved in alanine, aspartate and glutamate metabolism, and arginine biosynthesis. In conclusion, our study revealed the potential to fix trait superiority in a line by combining crossing with F1 microspore culture technologies in future crop breeding and also identified several candidate genes that are expressed in shoots and may enable barley to cope with low-nitrogen stress.
Collapse
|
7
|
Semagn K, Iqbal M, Chen H, Perez-Lara E, Bemister DH, Xiang R, Zou J, Asif M, Kamran A, N'Diaye A, Randhawa H, Pozniak C, Spaner D. Physical Mapping of QTL in Four Spring Wheat Populations under Conventional and Organic Management Systems. I. Earliness. PLANTS 2021; 10:plants10050853. [PMID: 33922551 PMCID: PMC8144964 DOI: 10.3390/plants10050853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
In previous studies, we reported quantitative trait loci (QTL) associated with the heading, flowering, and maturity time in four hard red spring wheat recombinant inbred line (RIL) populations but the results are scattered in population-specific genetic maps, which is challenging to exploit efficiently in breeding. Here, we mapped and characterized QTL associated with these three earliness traits using the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v2.0 physical map. Our data consisted of (i) 6526 single nucleotide polymorphisms (SNPs) and two traits evaluated at five conventionally managed environments in the 'Cutler' × 'AC Barrie' population; (ii) 3158 SNPs and two traits evaluated across three organic and seven conventional managements in the 'Attila' × 'CDC Go' population; (iii) 5731 SilicoDArT and SNP markers and the three traits evaluated at four conventional and organic management systems in the 'Peace' × 'Carberry' population; and (iv) 1058 SNPs and two traits evaluated across two conventionally and organically managed environments in the 'Peace' × 'CDC Stanley' population. Using composite interval mapping, the phenotypic data across all environments, and the IWGSC RefSeq v2.0 physical maps, we identified a total of 44 QTL associated with days to heading (11), flowering (10), and maturity (23). Fifteen of the 44 QTL were common to both conventional and organic management systems, and the remaining QTL were specific to either the conventional (21) or organic (8) management systems. Some QTL harbor known genes, including the Vrn-A1, Vrn-B1, Rht-A1, and Rht-B1 that regulate photoperiodism, flowering time, and plant height in wheat, which lays a solid basis for cloning and further characterization.
Collapse
Affiliation(s)
- Kassa Semagn
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Muhammad Iqbal
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Hua Chen
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Enid Perez-Lara
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Darcy H Bemister
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Rongrong Xiang
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Jun Zou
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Muhammad Asif
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Agronomy, 2004 Throckmorton Plant Science Center, Kansas State University, Manhattan, KS 66506, USA
- Heartland Plant Innovations, Kansas Wheat Innovation Center, 1990 Kimball Avenue, Manhattan, KS 66502, USA
| | - Atif Kamran
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Seed Centre, Department of Botany, The University of Punjab, New Campus, Lahore 54590, Pakistan
| | - Amidou N'Diaye
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Harpinder Randhawa
- Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Curtis Pozniak
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Dean Spaner
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
8
|
Chen Z, Jiang Q, Jiang P, Zhang W, Huang J, Liu C, Halford NG, Lu R. Novel low-nitrogen stress-responsive long non-coding RNAs (lncRNA) in barley landrace B968 (Liuzhutouzidamai) at seedling stage. BMC PLANT BIOLOGY 2020; 20:142. [PMID: 32252633 PMCID: PMC7137197 DOI: 10.1186/s12870-020-02350-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/23/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Reducing the dependence of crop production on chemical fertilizer with its associated costs, carbon footprint and other environmental problems is a challenge for agriculture. New solutions are required to solve this problem, and crop breeding for high nitrogen use efficiency or tolerance of low nitrogen availability has been widely considered to be a promising approach. However, the molecular mechanisms of high nitrogen use efficiency or low-nitrogen tolerance in crop plants are still to be elucidated, including the role of long non-coding RNAs (lncRNAs). RESULTS In this study, we identified 498 lncRNAs in barley (Hordeum vulgare) landrace B968 (Liuzhutouzidamai), of which 487 were novel, and characterised 56 that were responsive to low-nitrogen stress. For functional analysis of differentially-expressed lncRNAs, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of co-expressed and co-located protein-coding genes were analyzed, and interactions with annotated co-expressed protein coding genes or micro RNAs (miRNAs) were further predicted. Target mimicry prediction between differentially-expressed lncRNAs and miRNAs identified 40 putative target mimics of lncRNAs and 58 target miRNAs. Six differentially-expressed lncRNAs were further validated by qPCR, and one in particular showed consistent differential expression using both techniques. Expression levels of most of the lncRNAs were found to be very low, and this may be the reason for the apparent inconsistency between RNA-seq and qPCR data. CONCLUSIONS The analysis of lncRNAs that are differentially-expressed under low-nitrogen stress, as well as their co-expressed or co-located protein coding genes and target mimics, could elucidate complex and hitherto uncharacterised mechanisms involved in the adaptation to low-nitrogen stress in barley and other crop plants.
Collapse
Affiliation(s)
- Zhiwei Chen
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106 China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106 China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306 China
| | - Qi Jiang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106 China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306 China
| | - Panpan Jiang
- Shenzhen RealOm ics (Biotech) Co., Ltd., Shenzhen, 518081 China
| | - Wan Zhang
- Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008 Jiangsu China
| | - Jianhua Huang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106 China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106 China
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106 China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106 China
| | - Nigel G. Halford
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | - Ruiju Lu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106 China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106 China
| |
Collapse
|
9
|
Liao L, Dong T, Liu X, Dong Z, Qiu X, Rong Y, Sun G, Wang Z. Effect of nitrogen supply on nitrogen metabolism in the citrus cultivar 'Huangguogan'. PLoS One 2019; 14:e0213874. [PMID: 30897177 PMCID: PMC6428318 DOI: 10.1371/journal.pone.0213874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/01/2019] [Indexed: 11/24/2022] Open
Abstract
Nitrogen metabolism in citrus has received increased attention due to its effects on plant growth and productivity. However, little is known about the effects of nitrogen fertilization on nitrogen metabolism in young trees of citrus cultivar ‘Huangguogan’ (Citrus reticulata × Citrus sinensis). Here, genes encoding nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate dehydrogenase (GDH), and asparagine synthetase (AS), represented as HgNR, HgNiR, HgGS, HgGDH, and HgAS, respectively, were cloned from Huangguogan. Deduced protein sequences were analyzed and proteins were confirmed to be localized in their respective cellular organelles. Moreover, pot-cultured ‘Huangguogan’ seedlings were fertilized with 0 (N1), 1.36 (N2), 1.81 (N3), 2.26 (N4), or 2.72 (N5) kg N/year, for 12 months. Enzyme activity and enzyme-gene expression were studied in roots, leaves, and fruits at different stages. Finally, the effects of N application rate on root activity, leaf N, soluble protein, yield, and fruit quality at the ripening stage were measured. The results showed that: 1) HgNR, HgNiR, HgGDH, and HgAS gene products were found mainly in the cytoplasm and plasma membrane, while HgGS gene product was found mainly in cytoplasm and mitochondria. 2) Gene expression and enzyme activity differed among plant organs. As the root is in permanent direct contact with the soil we suggest that root gene expression and enzyme activity can be used as reference to determine N application rate. 3) Yield, fruit quality, enzyme activity, and enzyme-related gene expression were considerably lower at low than at high-N supply. However, they were all inhibited by excess nitrogen (i.e., 2.72 kg/year). Therefore, we recommend 1.81 kg N/year as the optimal N application rate for young ‘Huangguogan’ trees.
Collapse
Affiliation(s)
- Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Tiantian Dong
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xinya Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zhixiang Dong
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xia Qiu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yi Rong
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
- * E-mail:
| |
Collapse
|