1
|
Fu Y, Fang Y, Gong S, Xue T, Wang P, She L, Huang J. Deep learning-based network pharmacology for exploring the mechanism of licorice for the treatment of COVID-19. Sci Rep 2023; 13:5844. [PMID: 37037848 PMCID: PMC10086012 DOI: 10.1038/s41598-023-31380-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/10/2023] [Indexed: 04/12/2023] Open
Abstract
Licorice, a traditional Chinese medicine, has been widely used for the treatment of COVID-19, but all active compounds and corresponding targets are still not clear. Therefore, this study proposed a deep learning-based network pharmacology approach to identify more potential active compounds and targets of licorice. 4 compounds (quercetin, naringenin, liquiritigenin, and licoisoflavanone), 2 targets (SYK and JAK2) and the relevant pathways (P53, cAMP, and NF-kB) were predicted, which were confirmed by previous studies to be associated with SARS-CoV-2-infection. In addition, 2 new active compounds (glabrone and vestitol) and 2 new targets (PTEN and MAP3K8) were further validated by molecular docking and molecular dynamics simulations (simultaneous molecular dynamics), as well as the results showed that these active compounds bound well to COVID-19 related targets, including the main protease (Mpro), the spike protein (S-protein) and the angiotensin-converting enzyme 2 (ACE2). Overall, in this study, glabrone and vestitol from licorice were found to inhibit viral replication by inhibiting the activation of Mpro, S-protein and ACE2; related compounds in licorice may reduce the inflammatory response and inhibit apoptosis by acting on PTEN and MAP3K8. Therefore, licorice has been proposed as an effective candidate for the treatment of COVID-19 through PTEN, MAP3K8, Mpro, S-protein and ACE2.
Collapse
Affiliation(s)
- Yu Fu
- Alibaba Business School, Hangzhou Normal University, Hangzhou, 310000, China
| | - Yangyue Fang
- Alibaba Business School, Hangzhou Normal University, Hangzhou, 310000, China
| | - Shuai Gong
- Alibaba Business School, Hangzhou Normal University, Hangzhou, 310000, China
| | - Tao Xue
- Alibaba Business School, Hangzhou Normal University, Hangzhou, 310000, China
| | - Peng Wang
- Alibaba Business School, Hangzhou Normal University, Hangzhou, 310000, China
| | - Li She
- Alibaba Business School, Hangzhou Normal University, Hangzhou, 310000, China
| | - Jianping Huang
- Alibaba Business School, Hangzhou Normal University, Hangzhou, 310000, China.
| |
Collapse
|
2
|
Shinu P, Gupta GL, Sharma M, Khan S, Goyal M, Nair AB, Kumar M, Soliman WE, Rahman A, Attimarad M, Venugopala KN, Altaweel AAA. Pharmacological Features of 18β-Glycyrrhetinic Acid: A Pentacyclic Triterpenoid of Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:1086. [PMID: 36903944 PMCID: PMC10005454 DOI: 10.3390/plants12051086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Glycyrrhiza glabra L. (belonging to the family Leguminosae), commonly known as Licorice, is a popular medicinal plant that has been used in traditional medicine worldwide for its ethnopharmacological efficacy in treating several ailments. Natural herbal substances with strong biological activity have recently received much attention. The main metabolite of glycyrrhizic acid is 18β-glycyrrhetinic acid (18βGA), a pentacyclic triterpene. A major active plant component derived from licorice root, 18βGA has sparked a lot of attention due to its pharmacological properties. The current review thoroughly examines the literature on 18βGA, a major active plant component obtained from Glycyrrhiza glabra L. The current work provides insight into the pharmacological activities of 18βGA and the potential mechanisms of action involved. The plant contains a variety of phytoconstituents such as 18βGA, which has a variety of biological effects including antiasthmatic, hepatoprotective, anticancer, nephroprotective, antidiabetic, antileishmanial, antiviral, antibacterial, antipsoriasis, antiosteoporosis, antiepileptic, antiarrhythmic, and anti-inflammatory, and is also useful in the management of pulmonary arterial hypertension, antipsychotic-induced hyperprolactinemia, and cerebral ischemia. This review examines research on the pharmacological characteristics of 18βGA throughout recent decades to demonstrate its therapeutic potential and any gaps that may exist, presenting possibilities for future drug research and development.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM’s NMIMS University, Shirpur 425405, India
| | - Manu Sharma
- Department of Chemistry, National Forensic Sciences University Delhi Campus, New Delhi 110085, India
| | - Shahzad Khan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manish Kumar
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133201, India
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | | |
Collapse
|
3
|
Banerjee S, Baidya SK, Adhikari N, Ghosh B, Jha T. Glycyrrhizin as a promising kryptonite against SARS-CoV-2: Clinical, experimental, and theoretical evidences. J Mol Struct 2022; 1275:134642. [DOI: 10.1016/j.molstruc.2022.134642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
|
4
|
Kadirvel V, Mithulesh TV, Gururaj PN, Kulathooran R. Formulation and Evaluation of Medicated Lozenges using Traditional Herbs to Treat Sore Throat Infection. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vijayasri Kadirvel
- Department of Food Technology Rajalakshmi Engineering College 602105 Chennai TN India
| | - T. V. Mithulesh
- Department of Food Technology Rajalakshmi Engineering College 602105 Chennai TN India
| | - P. N. Gururaj
- Department of Food Technology Rajalakshmi Engineering College 602105 Chennai TN India
| | | |
Collapse
|
5
|
Vitale S, Colanero S, Placidi M, Di Emidio G, Tatone C, Amicarelli F, D’Alessandro AM. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113566. [PMID: 35684503 PMCID: PMC9182061 DOI: 10.3390/molecules27113566] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complicated process, and the effective management of wounds is a major challenge. Natural herbal remedies have now become fundamental for the management of skin disorders and the treatment of skin infections due to the side effects of modern medicine and lower price for herbal products. The aim of the present study is to summarize the most recent in vitro, in vivo, and clinical studies on major herbal preparations, their phytochemical constituents, and new formulations for wound management. Research reveals that several herbal medicaments have marked activity in the management of wounds and that this activity is ascribed to flavonoids, alkaloids, saponins, and phenolic compounds. These phytochemicals can act at different stages of the process by means of various mechanisms, including anti-inflammatory, antimicrobial, antioxidant, collagen synthesis stimulating, cell proliferation, and angiogenic effects. The application of natural compounds using nanotechnology systems may provide significant improvement in the efficacy of wound treatments. Increasing the clinical use of these therapies would require safety assessment in clinical trials.
Collapse
Affiliation(s)
- Stefania Vitale
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Sara Colanero
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy;
| | - Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
- Correspondence:
| |
Collapse
|
6
|
Wang P, Hao P, Chen X, Li L, Zhou Y, Zhang X, Zhu L, Ying M, Han R, Wang L, Li X. Targeting HMGB1-NFκb Axis and miR-21 by Glycyrrhizin: Role in Amelioration of Corneal Injury in a Mouse Model of Alkali Burn. Front Pharmacol 2022; 13:841267. [PMID: 35586052 PMCID: PMC9108160 DOI: 10.3389/fphar.2022.841267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Corneal neovascularization (CNV) is a sight-threatening condition usually associated with various inflammatory settings including chemical injury. High mobility group box 1 (HMGB1) is identified as an inflammatory alarmin in diverse tissue damage. Here, we evaluate the expression of HMGB1 and the consequences of its inhibition through its selective inhibitor glycyrrhizin (GLY) in alkali burn-induced corneal inflammation and neovascularization. GLY effectively attenuated alkali burn-induced HMGB1 expression at both mRNA and protein levels. Furthermore, slit-lamp analysis, ink perfusion, H&E staining, and CD31 histochemical staining showed that GLY relieved corneal neovascularization, while GLY attenuated VEGF expression via inhibiting HMGB1/NF-κB/HIF-1α signal pathway. In addition, GLY treatment decreased the cytokine expression of CCL2 and CXCL5, accompanied by the reduction of their receptors of CCR2 and CXCR2. GLY diminished the inflammatory cell infiltration of the cornea, as well as reduced the expression of IL-1β, IL-6, and TNF-α. Moreover, treatment with GLY reduced the degree of cornea opacity through inactivating extracellular HMGB1 function, which otherwise induces TGF-β1 release and myofibroblast differentiation. Furthermore, we found that GLY treatment attenuated the upregulation of miR-21 levels in alkali burned cornea; while inhibition of miR-21in keratocytes in vitro, significantly inhibited TGF-β1-induced myofibroblast differentiation. Collectively, our results suggested that targeting HMGB1-NFκb axis and miR-21 by GLY could introduce a therapeutic approach to counter CNV.
Collapse
Affiliation(s)
- Peihong Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Peng Hao
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Xi Chen
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Linghan Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Yongying Zhou
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Xiaohan Zhang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Lin Zhu
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
| | - Ming Ying
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Ruifang Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Liming Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Xuan Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, China
- Nankai University Affiliated Eye Hospital, Tianjin, China
- *Correspondence: Xuan Li,
| |
Collapse
|
7
|
Lee IY, Chang SF, Wu CY, Lin YS, Su HC, Tsai YT, Tsai MS, Chang GH, Yang MY, Yang YH, Yang PR, Hsu CM. Clinical and Cellular Evidence of Glycyrrhiza glabra and Platycodon grandiflorus for Vocal Fold Nodules Complementary Treatment. Int J Med Sci 2022; 19:813-820. [PMID: 35693740 PMCID: PMC9149633 DOI: 10.7150/ijms.68118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
Vocal fold nodules (VFNs) are the most frequent cause of hoarseness. The management comprised medical, surgical and physical therapy but the effectiveness is not always satisfactory. In this study, we try to figure out an alternative treatment from our clinical experience summary. We retrospectively reviewed VFNs patients who received traditional Chinese medicine (TCM) treatments from July 2018 to August 2020 and traced their Chinese Voice Handicap Index-10 (VHI-C10) and multidimensional voice program (MDVP) analysis results. For further evaluation, we conducted an inflammatory response of porcine vocal fold epithelial (PVFE) cells with 50 ng/mL TNF-alpha. The inflamed PVFE cells were separately cultured in the aqueous extract of Glycyrrhiza glabra (G. glabra) and Platycodon grandifloras (P. grandifloras). In these VFNs patients (n = 22), the average VHI-C10 score decreased from 17.6 to 6.6 (p < 0.001). MDVP analysis revealed improvements in jitter, shimmer, noise-harmonic ratio, and GRBAS scoring system. Of the TCM prescription patterns, G. glabra and P. grandiflorus were used most frequently. In the MTT assay of PVFE cells, no adverse effects of our extracts were observed at doses of 1-200 µg/mL. Western blot analysis revealed downregulation of p65 and mitogen activated protein kinase pathway proteins. The results from both the clinical and in vitro aspects of this study revealed that the herbs G. glabra and P. grandiflorus may offer beneficial outcomes as alternative treatments for VFNs after precise diagnosis.
Collapse
Affiliation(s)
- I-Yun Lee
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.,School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Chin-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.,School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Shi Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hui-Chen Su
- Department of Neurology, National Cheng-Kung University Hospital, Tainan, Taiwan
| | - Yao-Te Tsai
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ming-Shao Tsai
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Geng-He Chang
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ming-Yu Yang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.,Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.,School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pei-Rung Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.,School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
8
|
Wahab S, Annadurai S, Abullais SS, Das G, Ahmad W, Ahmad MF, Kandasamy G, Vasudevan R, Ali MS, Amir M. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122751. [PMID: 34961221 PMCID: PMC8703329 DOI: 10.3390/plants10122751] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
There are more than 30 species of Glycyrrhiza genus extensively spread worldwide. It was the most prescribed herb in Ancient Egyptian, Roman, Greek, East China, and the West from the Former Han era. There are various beneficial effects of licorice root extracts, such as treating throat infections, tuberculosis, respiratory, liver diseases, antibacterial, anti-inflammatory, and immunodeficiency. On the other hand, traditional medicines are getting the attraction to treat many diseases. Therefore, it is vital to screen the medicinal plants to find the potential of new compounds to treat chronic diseases such as respiratory, cardiovascular, anticancer, hepatoprotective, etc. This work comprehensively reviews ethnopharmacological uses, phytochemistry, biological activities, clinical evidence, and the toxicology of licorice, which will serve as a resource for future clinical and fundamental studies. An attempt has been made to establish the pharmacological effect of licorice in different diseases. In addition, the focus of this review article is on the molecular mechanism of licorice extracts and their four flavonoids (isoliquiritigenin, liquiritigenin, lichalocone, and glabridin) pharmacologic activities. Licorice could be a natural alternative for current therapy to exterminate new emerging disorders with mild side effects. This review will provide systematic insights into this ancient drug for further development and clinical use.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
- Correspondence:
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gotam Das
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Safaa, Dammam 34222, Saudi Arabia;
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohd Amir
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| |
Collapse
|
9
|
Shivkumar AT, Kalgeri SH, Avinash B, Shashidar HRB, Sheshadri R. Analysis of an Herbal Ayurdantham Medicated Tooth liquid on Dentinal Tubule Occlusion using Scanning Electron Microscopy. J Pharm Bioallied Sci 2021; 13:S1184-S1187. [PMID: 35017953 PMCID: PMC8686859 DOI: 10.4103/jpbs.jpbs_275_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/06/2021] [Accepted: 05/02/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Dentin hypersensitivity is described as "short sharp pain arising from exposed dentin in response to various stimuli typically thermal, evaporative, tactile, osmotic or chemical and cannot be ascribed to any other form of dental defect or disease." Dentine hypersensitivity can be treated with various desensitizing agents ,where oral rinse has a promising effect in delivering the therapeutic effect all over the tooth surface including interproximal areas, as they can flow and reach areas where toothpastes are not much effective, hence the occlusion of dentinal tubules using Ayurdhantam medicated an herbal mouthwash was evaluated. METHODOLOGY Twenty such dentinal blocks were obtained; the surfaces of each dentin block were polished using a silicon carbide disc for 30 s to create a basic smear layer. The smear layer is finally detached by applying 17% EDTA solution onto the dentin blocks for 5 min to ensure the patency of the dentinal tubules, following which they were rinsed with distilled water. The specimens were placed into the Ayurdhantam solution (medicated) for 2 min every day for 7 days. The specimens were stored in artificial saliva during the study. The specimens were analyzed under scanning electron microscope (SEM) for the occlusion of dentinal tubules. RESULTS SEM images showed the partial occlusion of the tubules and a large amount of smear layer. CONCLUSIONS Based on this in vitro experiment carried out, it is shown that Ayurdhantam-medicated mouthwash can be used for treating dentine hypersensitivity effectively.
Collapse
Affiliation(s)
- Ashwini Tumkur Shivkumar
- Department of Conservative Dentistry and Endodontics, JSS Dental College and Hospital, JSSAHER, Mysore, Karnataka, India
| | - Sowmya Halasabalu Kalgeri
- Department of Conservative Dentistry and Endodontics, JSS Dental College and Hospital, JSSAHER, Mysore, Karnataka, India,Address for correspondence: Dr. Sowmya Halasabalu Kalgeri, Department of Conservative Dentistry and Endodontics, JSS Dental College and Hospital, JSSAHER, Mysore - 570 015, Karnataka, India. E-mail:
| | - Bhagyalakshmi Avinash
- Department of Orthodontics and Dentofacial Orthopedics, JSS Dental College and Hospital, JSSAHER, Mysore, Karnataka, India
| | - Harsha Raj Bassapa Shashidar
- Department of Oral and Maxillofacial Surgery, JSS Dental College and Hospital, JSSAHER, Mysore, Karnataka, India
| | - Ramya Sheshadri
- Department of Conservative Dentistry and Endodontics, JSS Dental College and Hospital, JSSAHER, Mysore, Karnataka, India
| |
Collapse
|
10
|
Singh R, Goel S, Bourgeade P, Aleya L, Tewari D. Ayurveda Rasayana as antivirals and immunomodulators: potential applications in COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55925-55951. [PMID: 34491498 PMCID: PMC8422837 DOI: 10.1007/s11356-021-16280-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/27/2021] [Indexed: 05/08/2023]
Abstract
Coronavirus disease (COVID-19) has been declared as a pandemic by the World Health Organization with rapid spread across 216 countries. COVID-19 pandemic has left its imprints on various health systems globally and caused immense social and economic disruptions. The scientific community across the globe is in a quest for digging the effective treatment for COVID-19 and exploring potential leads from traditional systems of healthcare across the world too. Ayurveda (Indian traditional system of medicine) has a comprehensive aspect of immunity through Rasayana which is a rejuvenation therapy. Here we attempt to generate the potential leads based on the classical text from Ayurveda in general and Rasayana in particular to develop effective antiviral and/or immunomodulator for potential or adjunct therapy in SARS-CoV-2. The Rasayana acts not only by resisting body to restrain or withstand the strength, severity or progression of a disease but also by promoting power of the body to prevent the manifestation of a disease. These Rasayana herbs are common in practice as immunomodulator, antiviral and protectives. The studies on Rasayana can provide an insight into the future course of research for the plausible development of effective management of COVID-19 by the utilization and development of various traditional systems of healthcare. Keeping in view the current pandemic situation, there is an urgent need of developing potential medicines. This study proposes certain prominent medicinal plants which may be further studied for drug development process and also in clinical setup under repurposing of these herbs.
Collapse
Affiliation(s)
- Rajeshwari Singh
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Sumeet Goel
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Pascale Bourgeade
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
11
|
Sheikhi S, Khamesipour A, Radjabian T, Ghazanfari T, Miramin Mohammadi A. Immunotherapeutic effects of Glycyrrhiza glabra and Glycyrrhizic Acid on Leishmania major-infection BALB/C mice. Parasite Immunol 2021; 44:e12879. [PMID: 34559893 DOI: 10.1111/pim.12879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022]
Abstract
Treatment of cutaneous leishmaniasis (CL) is a public health problem in endemic areas. The objective of the current study was to investigate the immunotherapeutic activities of the hydroalcoholic extract of Glycyrrhiza glabra (HEG) and glycyrrhizic acid (GA) in the treatment of Leishmania major (L. major)-infected BALB/c mice. In this study, the effect of HEG and GA was checked in vitro on growth of L. major promastigote and amastigote using MTT assay and microscopic counting, respectively. For in vivo experiment, the lesion induced by L. major on BALB/c mice were treated intraperitoneally with HEG, GA, meglumine antimoniate or phosphate buffer saline (negative control) for one month. Then, the lesion development and the parasite burden of the lymph node was assessed, the cytokine response (IFN-γ and IL-4) to Leishmania antigens was evaluated using ELISA method. The results showed that HEG and GA significantly inhibited the growth of L. major promastigotes and amastigotes, the lesion development, parasite burden in the lymph nodes, level of IFN-γ and the ratio of IFN-γ/IL-4 in HEG, GA and meglumine antimoniate-treated mice were significantly higher compared with the negative control group, there was no difference between the HEG, GA and meglumine antimoniate group. It is concluded that hydroalcoholic extract of G. glabra and glycyrrhizic acid showed therapeutic and immunomodulatory effects on L. major-infected BALB/c mice.
Collapse
Affiliation(s)
- Shima Sheikhi
- Department of Immunology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Radjabian
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Akram Miramin Mohammadi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Gomaa AA, Abdel-Wadood YA. The potential of glycyrrhizin and licorice extract in combating COVID-19 and associated conditions. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 1:100043. [PMID: 35399823 PMCID: PMC7886629 DOI: 10.1016/j.phyplu.2021.100043] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 04/28/2023]
Abstract
BACKGROUND Several recent studies have stated that glycyrrhizin and licorice extract are present in most traditional Chinese medicine formulas used against SARS-CoV-2 in China. Significant data are showing that glycyrrhizin and licorice extract have multiple beneficial activities in combating most features of SARS-CoV-2. PURPOSE The aim of current review was to highlight recent progresses in research that showed the evidence of the potential use of glycyrrhizin and licorice extract against COVID-19. METHODOLOGY We have reviewed the information published from 1979 to October 2020. These studies demonstrated the effects , use and safety of glycyrrhizin and icorice extract against viral infections,bacterial infections, inflammatory disorders of lung ( in vitro and in vivo). These studies were collated through online electronic databases research (Academic libraries as PubMed, Scopus, Web of Science and Egyptian Knowledge Bank). RESULTS Pooled effect size of articles provides information about the rationale for using glycyrrhizin and licorice extract to treat COVID-19. Fifty studies demonstrate antiviral activity of glycyrrhizin and licorice extract. The most frequent mechanism of the antiviral activity is due to disrupting viral uptake into the host cells and disrupting the interaction between receptor- binding domain (RBD) of SARS-COV2 and ACE2 in recent articles. Fifty studies indicate that glycyrrhizin and licorice extract have significant antioxidant, anti-inflammatory and immunomodulatory effects. Twenty five studies provide evidence for the protective effect of glycyrrhizin and licorice extract against inflammation-induced acute lung injury and cardiovascular disorders. CONCLUSION The current study showed several evidence regarding the beneficial effects of glycyrrhizin and licorice extract in combating COVID-19. More randomized clinical trials are needed to obtain a precise conclusion.
Collapse
Key Words
- 18β-GA, 18β-glycyrrhetinic acid
- : ACE2, angiotensin-converting enzyme 2
- ALI, acute lung injury
- ARDS, acute Respiratory Distress Syndrome
- Acute lung injury protector
- COVID-19
- COVID-19, Coronavirus disease 2019
- COX-2, cyclooxygenase-2
- DCs, dendritic cells
- Gl, glycyrrhizin
- Glycyrrhizin and licorice extract;Antiviral and antimicrobial, Anti-inflammatory and antioxidant
- HBsAg, hepatitis B surface antigen
- HCV, hepatitis C virus
- HMGB1, high-mobility group box 1
- IL, interleukin
- Immunododulator
- MAPKs, mitogen-activated protein kinases
- MERS, Middle East respiratory syndrome
- MR, mineralocorticoid receptor
- MRSA, Methicillin-resistant Staphylococcus aureus
- NO, nitric oxide
- RBD, receptor-binding domain
- ROS, reactive oxygen species
- S, Spike
- SARS, severe acute respiratory syndrome
- TCM, traditional Chinese medicine
- TLR, toll-like receptor
- TMPRSS2, type 2 transmembrane serine protease
- TNF-α, tumor necrosis factor alpha
- h, hour
- iNOS, inducible nitric oxide synthase
- licorice extract, LE
Collapse
Affiliation(s)
- Adel A Gomaa
- Department of Medical Pharmacology, Faculty of Medicine, Assiut Universitya, Beni-Suif, Egypt
| | | |
Collapse
|
13
|
Abiri R, Abdul-Hamid H, Sytar O, Abiri R, Bezerra de Almeida E, Sharma SK, Bulgakov VP, Arroo RRJ, Malik S. A Brief Overview of Potential Treatments for Viral Diseases Using Natural Plant Compounds: The Case of SARS-Cov. Molecules 2021; 26:molecules26133868. [PMID: 34202844 PMCID: PMC8270261 DOI: 10.3390/molecules26133868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic, as well as the more general global increase in viral diseases, has led researchers to look to the plant kingdom as a potential source for antiviral compounds. Since ancient times, herbal medicines have been extensively applied in the treatment and prevention of various infectious diseases in different traditional systems. The purpose of this review is to highlight the potential antiviral activity of plant compounds as effective and reliable agents against viral infections, especially by viruses from the coronavirus group. Various antiviral mechanisms shown by crude plant extracts and plant-derived bioactive compounds are discussed. The understanding of the action mechanisms of complex plant extract and isolated plant-derived compounds will help pave the way towards the combat of this life-threatening disease. Further, molecular docking studies, in silico analyses of extracted compounds, and future prospects are included. The in vitro production of antiviral chemical compounds from plants using molecular pharming is also considered. Notably, hairy root cultures represent a promising and sustainable way to obtain a range of biologically active compounds that may be applied in the development of novel antiviral agents.
Collapse
Affiliation(s)
- Rambod Abiri
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
| | - Hazandy Abdul-Hamid
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Oksana Sytar
- Educational and Scientific Center “Institute of Biology and Medicine”, Department of Plant Biology, Taras Shevchenko National University of Kyiv, Volodymyrska 60, 01033 Kyiv, Ukraine;
- Department of Plant Physiology, Slovak University of Agriculture Nitra, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran;
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran
| | - Eduardo Bezerra de Almeida
- Biological and Health Sciences Centre, Laboratory of Botanical Studies, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil;
| | - Surender K. Sharma
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | - Victor P. Bulgakov
- Department of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity (Institute of Biology and Soil Science), Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Sonia Malik
- Health Sciences Graduate Program, Biological & Health Sciences Centre, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orléans, 1 Rue de Chartres-BP 6759, 45067 Orleans, France
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| |
Collapse
|
14
|
Citi V, Neggiani F, Sansò M, Calderone V. Pharmacological evaluation of innovative eye drop formulations containing TS-polysaccaride, hyaluronic acid and glycyrrhizin for irritative ocular diseases using in vitro reconstituted human corneal epithelium model. Toxicol In Vitro 2021; 75:105199. [PMID: 34097953 DOI: 10.1016/j.tiv.2021.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
In vitro reconstructed human corneal tissue models are closer to in vivo human corneal tissue in term of morphology, biochemical and physiological properties, and represent a valid alternative to animal use for evaluating the pharmacological effects ophthalmic topically applied medical devices. In this experimental work the in vitro reconstructed human corneal tissues have been used for assessing the potential beneficial effects of an innovative ophthalmic formulation containing hyaluronic acid, glycyrrhizin and TS-polysaccharide for the treatment of symptomatic states on the eye surface including dry eye, itching, foreign body sensation and redness due allergic reaction. Corneal tissues have been treated with benzalkonium chloride for 24 h to induce cell damage and then treated with the tested items for 16 h. After the incubation period, tissue viability, TNF-α, IL-6 and MMP-9 have been assessed. Diclofenac has been used as reference anti-inflammatory drug. The novel formulation protected the tissues against benzalkonium chloride damage, while exerted a mild but not significant reduction of the anti-inflammatory mediator TNF-α.
Collapse
Affiliation(s)
- Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56125 Pisa, Italy.
| | | | - Marco Sansò
- Farmigea S.p.A., via G.B. Oliva 6/8, 56121 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56125 Pisa, Italy
| |
Collapse
|
15
|
Hasan MK, Ara I, Mondal MSA, Kabir Y. Phytochemistry, pharmacological activity, and potential health benefits of Gly cyrrhiza glabra. Heliyon 2021; 7:e07240. [PMID: 34189299 PMCID: PMC8220166 DOI: 10.1016/j.heliyon.2021.e07240] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Nature has always been an excellent source for many therapeutic compounds providing us with many medicinal plants and microorganisms producing beneficial chemicals. Therefore, the demand for medicinal plants, cosmetics, and health products is always on the rise. One such plant from the Leguminosae family is licorice and the scientific name is Glycyrrhiza glabra Linn. It is an herb-type plant with medicinal value. In the following article, we shall elaborately look at the plants' phytochemical constituents and the pharmacological impact of those substances. Several compounds such as glycyrrhizin, glycyrrhizinic acid, isoliquiritin, and glycyrrhizic acid have been found in this plant, which can provide pharmacological benefit to us with its anti-cancer, anti-atherogenic, anti-diabetic, anti-asthmatic, anti-inflammatory, anti-microbial, and antispasmodic activity. Alongside, these products have a different role in hepatoprotective, immunologic, memory-enhancing activity. They can stimulate hair growth, control obesity, and have anti-depressants, sedatives, and anticoagulant activity. This review examines recent studies on the phytochemical and pharmacological data and describes some side effects and toxicity of licorice and its bioactive components.
Collapse
Affiliation(s)
- Md. Kamrul Hasan
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | - Iffat Ara
- Department of Biochemistry and Molecular Biology, Tejgaon College, National University, Gazipur, 1704, Bangladesh
| | | | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
16
|
Aloum L, Alefishat E, Shaya J, Petroianu GA. Remedia Sternutatoria over the Centuries: TRP Mediation. Molecules 2021; 26:1627. [PMID: 33804078 PMCID: PMC7998681 DOI: 10.3390/molecules26061627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants.
Collapse
Affiliation(s)
- Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan
| | - Janah Shaya
- Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
| | - Georg A. Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; (L.A.); (E.A.)
| |
Collapse
|
17
|
Yu J, Chu C, Wu Y, Liu G, Li W. The phototherapy toward corneal neovascularization elimination: An efficient, selective and safe strategy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Rajapaksha H, Perera BT, Meepage J, Perera RT, Dissanayake C. Mitigate the cytokine storm due to the severe COVID-19: A computational investigation of possible allosteric inhibitory actions on IL-6R and IL-1R using selected phytochemicals. ACTA ACUST UNITED AC 2020. [DOI: 10.5155/eurjchem.11.4.351-363.2043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The novel corona virus 2019 (COVID 19) is growing at an increasing rate with high mortality. Meanwhile, the cytokine storm is the most dangerous and potentially life-threatening event related to COVID 19. Phyto-compounds found in existing Ayurveda drugs have the ability to inhibit the Interleukin 6 (IL-6R) and Interleukin 1 (IL-1R) receptors. IL-6R and IL-1R receptors involve in cytokine storm and recognition of phytochemicals with proven safety profiles could open a pathway to the development of the most effective drugs against cytokine storm. In this study, we intend to perform an in silico investigation of effective phyto compounds, which can be isolated from selected medicinal herbs to avoid cytokine storm, inhibiting the IL-6 and IL-1 receptor binding process. An extensive literature survey followed by virtual screening was carried out to identify phytochemicals with potential anti-hyper-inflammatory action. Flexible docking was conducted for validated models of IL-1R and IL-6R-α with the most promising phytochemicals at possible allosteric sites using AutoDock Vina. Molecular dynamics (MD) studies were conducted for selected protein-ligand complexes using LARMD server and conformational changes were evaluated. According to the results, taepeenin J had Gibbs energy (ΔG) of -10.85 kcal/mol towards IL-1R but had limited oral bioavailability. MD analysis revealed that taepeenin J can cause significant conformational movements in IL-1R. Nortaepeenin B showed a ΔG of -8.5 kcal/mol towards IL-6R-α with an excellent oral bioavailability. MD analysis predicted that it can cause significant conformational movements in IL-6R-α. Hence, the evaluated phytochemicals are potential candidates for further in vitro studies for the development of medicine against cytokine storm on behalf of SARS-COV-2 infected patients.
Collapse
Affiliation(s)
- Harindu Rajapaksha
- Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, 11 300, Sri Lanka
| | - Bingun Tharusha Perera
- Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, 11 300, Sri Lanka
| | - Jeewani Meepage
- Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, 11 300, Sri Lanka
| | - Ruwan Tharanga Perera
- Graduate Studies Division, Gampaha Wickramarachchi Ayurveda Institute, University of Kelaniya, Yakkala, 11870, Sri Lanka
| | - Chithramala Dissanayake
- Department of Cikitsa, Gampaha Wickramarachchi Ayurveda Institute, University of Kelaniya, Yakkala, 11870, Sri Lanka
| |
Collapse
|
19
|
Chauhan P, Sharma H, Kumar U, Mayachari A, Sangli G, Singh S. Protective effects of Glycyrrhiza glabra supplementation against methotrexate-induced hepato-renal damage in rats: An experimental approach. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113209. [PMID: 32738390 DOI: 10.1016/j.jep.2020.113209] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/21/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional medicine, Glycyrrhiza glabra, commonly known as liquorice, is known to possess promising pharmacological properties including anti-oxidative, anti-inflammatory, gastro, hepato and nephro-protective activities. AIM The present study investigated the protective effects of Glycyrrhiza glabra rhizome extract (GGE) on MTX-induced hepato-renal damage in Wistar albino rats. MATERIALS AND METHODS Rats were pre-treated with GGE (100, 200 or 400 mg/kg) from day 1 to 15 and administered MTX (20 mg/kg) on day 4. Methotrexate-induced hepato-renal damage was assessed by serum toxicity biomarkers (AST, ALT, BUN and creatinine), oxidative stress estimation (MDA, GSH, SOD, CAT, peroxidase and glutathione reductase), interleukins profiling (TNF-α, IL-1β, IL-6 and IL-12), tissue histopathology and immunohistochemical (caspase-3 and NFkB) examination. RESULTS MTX induced hepato-renal damage resulted in elevated serum levels of AST, ALT, BUN and creatinine, increased pro-inflammatory cytokines concentration and accumulation of MDA and reduced levels of GSH, SOD, CAT, peroxidase and glutathione reductase. Conversely, co-treatment with GGE dose-dependently ameliorated oxidative stress, serum interleukins, hepato-renal toxicity biomarkers (p < 0.001), preserved tissue architecture and downregulated both caspase-3 and NFkB expression in hepato-renal tissue. CONCLUSION The above results suggested that GGE can alleviate MTX-induced hepato-renal damage by decreasing oxidative stress and suppressing the ensuing activation of pro-apoptotic and pro-inflammatory pathways.
Collapse
Affiliation(s)
- Prerna Chauhan
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Himanshu Sharma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India.
| | | | | | - Surender Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
20
|
Pharmacological Potential of Small Molecules for Treating Corneal Neovascularization. Molecules 2020; 25:molecules25153468. [PMID: 32751576 PMCID: PMC7435801 DOI: 10.3390/molecules25153468] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Under healthy conditions, the cornea is an avascular structure which allows for transparency and optimal visual acuity. Its avascular nature is maintained by a balance of proangiogenic and antiangiogenic factors. An imbalance of these factors can result in abnormal blood vessel proliferation into the cornea. This corneal neovascularization (CoNV) can stem from a variety of insults including hypoxia and ocular surface inflammation caused by trauma, infection, chemical burns, and immunological diseases. CoNV threatens corneal transparency, resulting in permanent vision loss. Mainstay treatments of CoNV have partial efficacy and associated side effects, revealing the need for novel treatments. Numerous natural products and synthetic small molecules have shown potential in preclinical studies in vivo as antiangiogenic therapies for CoNV. Such small molecules include synthetic inhibitors of the vascular endothelial growth factor (VEGF) receptor and other tyrosine kinases, plus repurposed antimicrobials, as well as natural source-derived flavonoid and non-flavonoid phytochemicals, immunosuppressants, vitamins, and histone deacetylase inhibitors. They induce antiangiogenic and anti-inflammatory effects through inhibition of VEGF, NF-κB, and other growth factor receptor pathways. Here, we review the potential of small molecules, both synthetics and natural products, targeting these and other molecular mechanisms, as antiangiogenic agents in the treatment of CoNV.
Collapse
|
21
|
In Vitro Wound Healing Activities of Three Most Commonly Used Thai Medicinal Plants and Their Three Markers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6795383. [PMID: 32714411 PMCID: PMC7341384 DOI: 10.1155/2020/6795383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/03/2020] [Accepted: 05/13/2020] [Indexed: 11/17/2022]
Abstract
Skin ensures that a constant internal environment can be maintained in an ever-changing external environment. When a wound occurs on the skin, the inflammatory and proliferative phases are initiated in response to injury. Thai traditional medicine (TTM), using medicinal plants and ancient knowledge, has been used to treat wounds. Eight Thai medicinal plants, most commonly used to treat wounds, were evaluated for their in vitro biological activities such as antioxidation by NBT assay, anti-inflammation by production inhibition of NO, promoting fibroblast cell proliferation, and wound closure activities. Plant materials were extracted with 95% ethanol or distilled water and then concentrated and dried. Statistical analysis of data was done using one-way ANOVA at p value of 0.05. The ethanolic extracts of Garcinia mangostana L., Glycyrrhiza glabra L., and Nigella sativa L. could inhibit the production of superoxide anion with the IC50 values of 13.97 ± 0.38, 28.62 ± 1.91, and 71.54 ± 3.22 μg/ml and nitric oxide with the IC50 values of 23.97 ± 0.91, 46.35 ± 0.43, and 78.48 ± 4.46 μg/ml, respectively. These extracts could promote cell proliferation and accelerate wound recovery at the rate of 2.02 ± 0.03, 2.12 ± 0.03, and 2.65 ± 0.05% per hour, respectively. Three established markers from these three plants were selected according to the selection criteria. Alpha-mangostin, glycyrrhizin, and thymoquinone were found to be the active markers for wound closure activities. The ethanolic extracts of G. mangostana, G. glabra, and N. sativa could scavenge superoxide anion and inhibit the production of nitric oxide; therefore these extracts could assist in surpassing the inflammatory phase and protected the cells surrounding the wound area. Most importantly, these extracts also increased the proliferation and accelerated wound closure, indicating that these plant extracts could be promoting wound healing processes and support the use of TTM.
Collapse
|
22
|
Swain SS, Paidesetty SK, Padhy RN, Hussain T. Isoniazid-phytochemical conjugation: A new approach for potent and less toxic anti-TB drug development. Chem Biol Drug Des 2020; 96:714-730. [PMID: 32237023 DOI: 10.1111/cbdd.13685] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis (Mtb) causes one of the most grievous pandemic infectious diseases, tuberculosis (TB), with long-term morbidity and high mortality. The emergence of drug-resistant Mtb strains, and the co-infection with human immunodeficiency virus, challenges the current WHO-TB stewardship programs. The first-line anti-TB drugs, isoniazid (INH) and rifampicin (RIF), have become extensively obsolete in TB control from chromosomal mutations during the last decades. However, based on clinical trial statistics, the production of well-tolerated anti-TB drug(s) is miserably low. Alternately, semi-synthesis or structural modifications of first-line obsolete antitubercular drugs remain as the versatile approach for getting some potential medicines. The use of any suitable phytochemicals with INH in a hybrid formulation could be an ideal approach for the development of potent anti-TB drug(s). The primary objective of this review was to highlight and analyze available INH-phytochemical hybrid research works. The utilization of phytochemicals through chemical conjugation is a new trend toward the development of safer/non-toxic anti-TB drugs.
Collapse
Affiliation(s)
- Shasank S Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India.,Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| |
Collapse
|
23
|
Bai H, Bao F, Fan X, Han S, Zheng W, Sun L, Yan N, Du H, Zhao H, Yang Z. Metabolomics study of different parts of licorice from different geographical origins and their anti-inflammatory activities. J Sep Sci 2020; 43:1593-1602. [PMID: 32032980 DOI: 10.1002/jssc.201901013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 01/04/2023]
Abstract
Glycyrrhiza uralensis Fisch., known as licorice, is one of the most famous traditional Chinese medicines. In this study, we perform a metabolome analysis using liquid chromatography-tandem mass spectrometry to assign bioactive components in different parts of licorice from different geographical origins in Gansu province of China. Sixteen potential biomarkers of taproots from different geographical origins were annotated, such as glycycoumarin, gancaonin Z, licoricone, and dihydroxy kanzonol H mainly exist in the sample of Jiuquan; neoliquiritin, 6'-acetylliquiritin, licochalcone B, isolicoflavonol, glycyrol, and methylated uralenin mainly exist in Glycyrrhiza uralensis from Lanzhou; gancaonin L, uralenin, and glycybridin I mainly exist in licorice from Wuwei for the first time.
Collapse
Affiliation(s)
- Haiying Bai
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Fang Bao
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Xiaorui Fan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Shu Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Wenhui Zheng
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Lili Sun
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Na Yan
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| | - Hong Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
24
|
El-Saber Batiha G, Magdy Beshbishy A, El-Mleeh A, M. Abdel-Daim M, Prasad Devkota H. Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020; 10:E352. [PMID: 32106571 PMCID: PMC7175350 DOI: 10.3390/biom10030352] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Traditional herbal remedies have been attracting attention as prospective alternative resources of therapy for diverse diseases across many nations. In recent decades, medicinal plants have been gaining wider acceptance due to the perception that these plants, as natural products, have fewer side effects and improved efficacy compared to their synthetic counterparts. Glycyrrhiza glabra L. (Licorice) is a small perennial herb that has been traditionally used to treat many diseases, such as respiratory disorders, hyperdipsia, epilepsy, fever, sexual debility, paralysis, stomach ulcers, rheumatism, skin diseases, hemorrhagic diseases, and jaundice. Moreover, chemical analysis of the G. glabra extracts revealed the presence of several organic acids, liquirtin, rhamnoliquirilin, liquiritigenin, prenyllicoflavone A, glucoliquiritin apioside, 1-metho-xyphaseolin, shinpterocarpin, shinflavanone, licopyranocoumarin, glisoflavone, licoarylcoumarin, glycyrrhizin, isoangustone A, semilicoisoflavone B, licoriphenone, and 1-methoxyficifolinol, kanzonol R and several volatile components. Pharmacological activities of G. glabra have been evaluated against various microorganisms and parasites, including pathogenic bacteria, viruses, and Plasmodium falciparum, and completely eradicated P. yoelii parasites. Additionally, it shows antioxidant, antifungal, anticarcinogenic, anti-inflammatory, and cytotoxic activities. The current review examined the phytochemical composition, pharmacological activities, pharmacokinetics, and toxic activities of G. glabra extracts as well as its phytoconstituents.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan;
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan;
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Menofia Governorate 32511, Egypt;
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan;
| |
Collapse
|
25
|
Zhao G, Zhang J, Nie D, Zhou Y, Li F, Onishi K, Billiar T, Wang JHC. HMGB1 mediates the development of tendinopathy due to mechanical overloading. PLoS One 2019; 14:e0222369. [PMID: 31560698 PMCID: PMC6764662 DOI: 10.1371/journal.pone.0222369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022] Open
Abstract
Mechanical overloading is a major cause of tendinopathy, but the underlying pathogenesis of tendinopathy is unclear. Here we report that high mobility group box1 (HMGB1) is released to the tendon extracellular matrix and initiates an inflammatory cascade in response to mechanical overloading in a mouse model. Moreover, administration of glycyrrhizin (GL), a naturally occurring triterpene and a specific inhibitor of HMGB1, inhibits the tendon’s inflammatory reactions. Also, while prolonged mechanical overloading in the form of long-term intensive treadmill running induces Achilles tendinopathy in mice, administration of GL completely blocks the tendinopathy development. Additionally, mechanical overloading of tendon cells in vitro induces HMGB1 release to the extracellular milieu, thereby eliciting inflammatory and catabolic responses as marked by increased production of prostaglandin E2 (PGE2) and matrix metalloproteinase-3 (MMP-3) in tendon cells. Application of GL abolishes the cellular inflammatory/catabolic responses. Collectively, these findings point to HMGB1 as a key molecule that is responsible for the induction of tendinopathy due to mechanical overloading placed on the tendon.
Collapse
Affiliation(s)
- Guangyi Zhao
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jianying Zhang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Daibang Nie
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yiqin Zhou
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Joint Surgery and Sports Medicine Department, Shanghai Changzheng Hospital, Second Military Medical University, Huangpu, Shanghai, China
| | - Feng Li
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kentaro Onishi
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Billiar
- Department of Surgery, University of Pittsburgh, Pennsylvania, United States of America
| | - James H-C. Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|