1
|
Kaçar D, Çavdarlı B, Koca Yozgat A, Işık M, Kurtipek FB, Yıldırım FT, Bayhan T, Gürlek Gökçebay D, Özbek NY, Yaralı N. The importance of targeted next-generation sequencing based genomic profiling in the diagnosis of childhood acute myeloid leukemia: a single center experience. Turk J Pediatr 2024; 66:727-736. [PMID: 39807739 DOI: 10.24953/turkjpediatr.2024.4699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/02/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND The management of pediatric acute myeloid leukemia (AML) is based on the prognostic risk classification of initial leukemia. Targeted next-generation sequencing (NGS) is a reliable method used to identify recurrently mutated genes of pediatric AML and associated prognosis. METHODS In this study, we retrospectively evaluated the prognostic, and therapeutic utility of a targeted NGS panel covering twenty-five genes, in 21 children with de novo and 8 with relapsed or secondary AML. Results. Variants were detected in 44.8% of patients, and 63.2% of them were in the signaling pathway genes. The number of variants per patient and diversity increased with age. The panel results affected hematopoietic stem cell transplantation decisions, especially in core binding factor AML, and allowed the categorization of diseases according to current classifications. Panel results also pointed out predisposition to germline leukemia to the extent of the panel coverage. No targeted therapy was used based on the variants, and none of the variants were used to monitor minimal residual disease. CONCLUSIONS Targeted NGS results, along with well-known genetic aberrations and treatment responses, can guide treatment modalities. The coverage of the routine panels should include proven mutations of childhood AML and germline leukemia predisposition genes.
Collapse
Affiliation(s)
- Dilek Kaçar
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Büşranur Çavdarlı
- Department of Medical Genetics, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Ayça Koca Yozgat
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Melek Işık
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Fatma Burçin Kurtipek
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Fatma Tuba Yıldırım
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Turan Bayhan
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Dilek Gürlek Gökçebay
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Namık Yaşar Özbek
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Türkiye
| | - Neşe Yaralı
- Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| |
Collapse
|
2
|
Rasouli M, Troester S, Grebien F, Goemans BF, Zwaan CM, Heidenreich O. NUP98 oncofusions in myeloid malignancies: An update on molecular mechanisms and therapeutic opportunities. Hemasphere 2024; 8:e70013. [PMID: 39323480 PMCID: PMC11423334 DOI: 10.1002/hem3.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a heterogeneous molecular landscape. In the pediatric context, the NUP98 gene is a frequent target of chromosomal rearrangements that are linked to poor prognosis and unfavorable treatment outcomes in different AML subtypes. The translocations fuse NUP98 to a diverse array of partner genes, resulting in fusion proteins with novel functions. NUP98 fusion oncoproteins induce aberrant biomolecular condensation, abnormal gene expression programs, and re-wired protein interactions which ultimately cause alterations in the cell cycle and changes in cellular structures, all of which contribute to leukemia development. The extent of these effects is steered by the functional domains of the fusion partners and the influence of concomitant somatic mutations. In this review, we discuss the complex characteristics of NUP98 fusion proteins and potential novel therapeutic approaches for NUP98 fusion-driven AML.
Collapse
Affiliation(s)
- Milad Rasouli
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatric Hematology/OncologyErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Selina Troester
- Department of Biological Sciences and PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Florian Grebien
- Department of Biological Sciences and PathobiologyUniversity of Veterinary Medicine ViennaViennaAustria
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | | | - C. Michel Zwaan
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Pediatric Hematology/OncologyErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of HematologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
3
|
Sheikhi M, Siyadat P, Rostami M, Sadeghian MH, Zahiri E, Ghorbani M, Ayatollahi H, Ayatollahi A, Hemmatan Attarbashi R, Khoshnegah Z. Prognostic importance of NUP98-rearrangements in acute myeloid leukemia: A systematic review and meta-analysis. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:579-588. [PMID: 39359452 PMCID: PMC11444110 DOI: 10.22088/cjim.15.4.579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 10/04/2024]
Abstract
Background NUP98 gene fusions in acute myeloid leukemia (AML) have recently attracted much interest. Despite substantial research illuminating the roles of NUP98 fusions in the course of AML, their impacts on the outcome of patients with AML should be explored in more detail. As a result, this meta-analysis was designed to provide further light on the prognostic implications of NUP98 fusions in AML. Methods We completed an extensive search in PubMed, Scopus, and Web of Science to identify papers evaluating the prognostic effects of NUP98 rearrangements in patients with AML until August 22, 2022. In total, 15 publications with 6142 participants fulfilled the requirements for the current meta-analysis. All the qualified studies were examined for information regarding HRs and 95% confidence interval (95%CI) for overall survival (OS) and event-free survival (EFS). In addition, we utilized Comprehensive Meta-analysis software version 2 (CMA2) for calculating pooled HRs and 95% CI. Section Title Our Results : analyses for NUP98-NSD1 indicated that this fusion could significantly impact the outcome of patients with AML (pooled HR: 2.84; 95% CI: 2.49-3.24, P=0.000). Additionally, we observed a strong correlation between NUP98-KDM5A rearrangement and poor prognosis in AML (pooled HR: 2.65; 95% CI: 2.5-2.81; P=0.000). A subgroup analysis also showed that the NUP98-NSD1 and FLT3-ITD together confer a poor prognostic effect (pooled HR: 2.60, 95% CI: 1.61-4.18; P=0.000). Conclusions NUP98 fusions could significantly impact the outcome of patients with AML. The use of these fusions as prognostic indicators in AML seems rational.
Collapse
Affiliation(s)
- Maryam Sheikhi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Payam Siyadat
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehrdad Rostami
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Sadeghian
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Zahiri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ghorbani
- Department of Pathology, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hossein Ayatollahi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirali Ayatollahi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Hemmatan Attarbashi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshnegah
- Department of Laboratory Hematology and Blood Banking, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Ma S, Tang L, Tang H, Wu C, Pu X, Yang J, Niu N. WT1 And DNMT3A Mutations in Prognostic Significance of Acute Myeloid Leukemia: A Meta-Analysis. Cancer Biother Radiopharm 2024. [PMID: 39207267 DOI: 10.1089/cbr.2024.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Background: Adult acute leukemia most commonly manifests as acute myeloid leukemia (AML), a highly heterogeneous malignant tumor of the blood system. The application of genetic diagnostic technology is currently prevalent in numerous clinical sectors. According to recent research, the presence of specific gene mutations or rearrangements in leukemia cells is the primary cause of the disease. As different types of leukemia are caused by atypical mutated genes, testing for these mutations or rearrangements can help diagnose leukemia and identify the disease's molecular targets for treatment. Methods: Using the search fields "WT1," "DNMT3A," "Acute myeloid leukemia," and "survival," the CBM, Cochrane Library, Scopus, EMBASE, and PUBMED databases were separately reviewed. The methodology for evaluating the risk of bias developed by the Cochrane Collaboration was used in conjunction with a methodical evaluation of pertinent literature. Excluded studies with the following characteristics: (1) incomplete and repetitive publications, (2) unable to retrieve or convert data, (3) non-English or Chinese articles. Results: This analysis included 13 studies covering a total of 3478 subjects. The frequency of Wilms' Tumor 1 (WT1) mutations is 6.7%-35.73%, and the frequency of DNMT3A mutations is 12.06%-51.1%. The remission rate of patients with WT1 mutations was less than that of patients without WT1 mutations (OR = 0.22; 95% confidence interval [CI]: 0.14, 0.36; p < 0.00001; I2 = 55%). The DNMT3A mutation has no statistical significance for the prognosis of AML (OR = 1.21; 95% CI: 0.93, 1.58; p = 0.16; I2 = 80%). After removing one study, the heterogeneity of the indicator (mitigation rate) among other studies of DNMT3A mutation was dramatically reduced (OR = 0.63; 95% CI: 0.43, 0.93; p = 0.02; I2 = 0%). Conclusions: Our meta-analysis shows that WT1 mutations hurt the remission rate of AML. Moreover, the impact of DNMT3A mutations on AML needs to be treated with caution. Gene diagnosis is critical for the prognosis and clinical management of AML.
Collapse
Affiliation(s)
- Shiyue Ma
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Lingjian Tang
- Department of Rehabilitative Medicine, Affiliated Hospital of Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Hui Tang
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Chaoli Wu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xue Pu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jun Yang
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Ninhong Niu
- Department of Medical Administration, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guangxi Zhuang Autonomous Region, Guilin, China
| |
Collapse
|
5
|
Wang JW, Yu-Li, Yang XG, Xu LH. NUP98::NSD1 and FLT3/ITD co-expression is an independent predictor of poor prognosis in pediatric AML patients. BMC Pediatr 2024; 24:547. [PMID: 39182032 PMCID: PMC11344362 DOI: 10.1186/s12887-024-05007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Patients who carry NUP98::NSD1 or FLT3/ITD mutations are reported to have poor prognosis. Previous studies have confidently reported that the poor outcome in younger AML patients is owning to dual NUP98::NSD1 and FLT3/ITD positivity, with a high overlap for those two genetic lesions. In this study, we assessed the prognostic value of the presence of both NUP98::NSD1 and FLT3/ITD in pediatric AML patients. METHODS We screened a large cohort of 885 pediatric cases from the COG-National Cancer Institute (NCI) TARGET AML cohort and found 57 AML patients with NUP98 rearrangements. RESULTS The frequency of NUP98 gene fusion was 10.8% in 529 patients. NUP98::NSD1 fusion was the most common NUP98 rearrangement, with a frequency of 59.6%(34 of 57). NUP98::NSD1 -positive patients who carried FLT3/ITD mutations had a decreased CR1 or CR2 rate than those patients carried FLT3/ITD mutation alone (P = 0.0001). Moreover, patients harboring both NUP98::NSD1 fusion and FLT3/ITD mutation exhibited inferior event-free survival (EFS, P < 0.001) and overall survival (OS, P = 0.004) than patients who were dual negative for these two genetic lesions. The presence of only NUP98::NSD1 fusion had no significant impact on EFS or OS. We also found that cases with high FLT3/ITD AR levels ( > = 0.5) with or without NUP98::NSD1 had inferior prognosis. Multivariate analysis demonstrated that the presence of both NUP98::NSD1 and FLT3/ITD was an independent prognostic factors for EFS (hazard ratio: 3.2, P = 0.001) in patients with pediatric AML. However, there was no obvious correlation with OS (hazard ratio: 1.3, P = 0.618). Stem cell transplantation did not improve the survival rate of cases with NUP98 fusion or NUP98::NSD1 AML in terms of EFS or OS. CONCLUSION Presence of both NUP98::NSD1 and FLT3/ITD was found to be an independent factor for dismal prognosis in pediatric AML patients. Notably, lack of FLT3/ITD mutations in NUP98::NSD1 -positive patients did not retain its prognostic value.
Collapse
Affiliation(s)
- Jing-Wen Wang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, China
| | - Yu-Li
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, China
| | - Xing-Ge Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China.
| | - Lu-Hong Xu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
6
|
Miao H, Chen D, Ropa J, Purohit T, Kim E, Sulis ML, Ferrando A, Cierpicki T, Grembecka J. Combination of menin and kinase inhibitors as an effective treatment for leukemia with NUP98 translocations. Leukemia 2024; 38:1674-1687. [PMID: 38890447 DOI: 10.1038/s41375-024-02312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Chromosomal translocations of the nucleoporin 98 (NUP98) gene are found in acute myeloid leukemia (AML) patients leading to very poor outcomes. The oncogenic activity of NUP98 fusion proteins is dependent on the interaction between Mixed Lineage Leukemia 1 and menin. NUP98-rearranged (NUP98-r) leukemia cells also rely on specific kinases, including CDK6 and/or FLT3, suggesting that simultaneous targeting of these kinases and menin could overcome limited sensitivity to single agents. Here, we found that combinations of menin inhibitor, MI-3454, with kinase inhibitors targeting either CDK6 (Palbociclib) or FLT3 (Gilteritinib) strongly enhance the anti-leukemic effect of menin inhibition in NUP98-r leukemia models. We found strong synergistic effects of both combinations on cell growth, colony formation and differentiation in patient samples with NUP98 translocations. These combinations also markedly augmented anti-leukemic efficacy of menin inhibitor in Patient Derived Xenograft models of NUP98-r leukemia. Despite inhibiting two unrelated kinases, when Palbociclib or Gilteritinib were combined with the menin inhibitor, they affected similar pathways relevant to leukemogenesis, including cell cycle regulation, cell proliferation and differentiation. This study provides strong rationale for clinical translation of the combination of menin and kinase inhibitors as novel treatments for NUP98-r leukemia, supporting the unexplored combinations of epigenetic drugs with kinase inhibitors.
Collapse
Affiliation(s)
- Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dong Chen
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James Ropa
- Department of Microbiology and Immunology, Indiana University, School of Medicine, Indianapolis, IN, 46202, USA
| | - Trupta Purohit
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - EunGi Kim
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria-Luisa Sulis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
- Regeneron Genetics Center, Tarrytown, NY, 10591, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Liu L, Nie Q, Xiao Z, Chen X, Yang C, Mao X, Li N, Zhou Y, Guo Q, Tian X. Treatment of three pediatric AML co-expressing NUP98-NSD1, FLT3-ITD, and WT1. BMC Pediatr 2024; 24:483. [PMID: 39068406 PMCID: PMC11282587 DOI: 10.1186/s12887-024-04954-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
During the treatment of 89 pediatric patients with Acute Myeloid Leukemia (AML) at the Hematology Department of Kunming Medical University's Children's Hospital from 2020 to 2023, three patients were identified to co-express the NUP98-NSD1, FLT3-ITD, and WT1 gene mutations. The bone marrow of these three patients was screened for high-risk genetic mutations using NGS and qPCR at the time of diagnosis. The treatment was administered following the China Children's Leukemia Group (CCLG)-AML-2019 protocol. All three patients exhibited a fusion of the NUP98 exon 12 with the NSD1 exon 6 and co-expressed the FLT3-ITD and WT1 mutations; two of the patients displayed normal karyotypes, while one presented chromosomal abnormalities. During the induction phase of the CCLG-AML-2019 treatment protocol, the DAH (Daunorubicin, Cytarabine, and Homoharringtonine) and IAH (Idarubicin, Cytarabine, and Homoharringtonine) regimens, in conjunction with targeted drug therapy, did not achieve remission. Subsequently, the patients were shifted to the relapsed/refractory chemotherapy regimen C + HAG (Cladribine, Homoharringtonine, Cytarabine, and G-CSF) for two cycles, which also failed to induce remission. One patient underwent Haploidentical Hematopoietic Stem Cell Transplantation (Haplo-HSCT) and achieved complete molecular remission during a 12-month follow-up period. Regrettably, the other two patients, who did not receive transplantation, passed away. The therapeutic conclusion is that pediatric AML patients with the aforementioned co-expression do not respond to chemotherapy. Non-remission transplantation, supplemented with tailor-made pre- and post-transplant strategies, may enhance treatment outcomes.
Collapse
Affiliation(s)
- Li Liu
- Department of Hematology, The Affiliated Children's Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Department of Pediatrics, QuJing Medical College, Qujing, China
| | - Qi Nie
- Department of Pediatrics, Da Li University, Da Li, China
| | - Zugang Xiao
- Kunming Kingmed Institute for Clinical Laboratory Co., Kunming, China
| | - Xin Chen
- Department of Hematology, Kunming Children's Hospital, Kunming, China
| | - Chunhui Yang
- Kunming Kingmed Institute for Clinical Laboratory Co., Kunming, China
| | - Xiaoyan Mao
- Department of Pediatrics, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Na Li
- Kunming Kingmed Institute for Clinical Laboratory Co., Kunming, China
| | - Yan Zhou
- Kunming Kingmed Institute for Clinical Laboratory Co., Kunming, China
| | - Qulian Guo
- Department of Pediatrics, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Tian
- Department of Hematology, The Affiliated Children's Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.
- Department of Hematology, Kunming Children's Hospital, Kunming, China.
| |
Collapse
|
8
|
Tarlock K, Gerbing RB, Ries RE, Smith JL, Leonti A, Huang BJ, Kirkey D, Robinson L, Peplinksi JH, Lange B, Cooper TM, Gamis AS, Kolb EA, Aplenc R, Pollard JA, Alonzo TA, Meshinchi S. Prognostic impact of cooccurring mutations in FLT3-ITD pediatric acute myeloid leukemia. Blood Adv 2024; 8:2094-2103. [PMID: 38295280 PMCID: PMC11063409 DOI: 10.1182/bloodadvances.2023011980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
ABSTRACT We sought to define the cooccurring mutational profile of FLT3-ITD-positive (ITDpos) acute myeloid leukemia (AML) in pediatric and young adult patients and to define the prognostic impact of cooperating mutations. We identified 464 patients with FLT3-ITD mutations treated on Children's Oncology Group trials with available sequencing and outcome data. Overall survival, event-free survival (EFS), and relapse risk were determined according to the presence of cooccurring risk stratifying mutations. Among the cohort, 79% of patients had cooccurring alterations across 239 different genes that were altered through mutations or fusions. Evaluation of the prognostic impact of the cooccurring mutations demonstrated that patients with ITDpos AML experienced significantly different outcomes according to the cooccurring mutational profile. Patients with ITDpos AML harboring a cooccurring favorable-risk mutation of NPM1, CEBPA, t(8;21), or inv(16) experienced a 5-year EFS of 64%, which was significantly superior to of 22.2% for patients with ITDpos AML and poor-risk mutations of WT1, UBTF, or NUP98::NSD1 as well to 40.9% for those who lacked either favorable-risk or poor-risk mutation (ITDpos intermediate; P < .001 for both). Multivariable analysis demonstrated that cooccurring mutations had significant prognostic impact, whereas allelic ratio had no impact. Therapy intensification, specifically consolidation transplant in remission, resulted in significant improvements in survival for ITDpos AML. However, patients with ITDpos/NUP98::NSD1 continued to have poor outcomes with intensified therapy, including sorafenib. Cooccurring mutational profile in ITDpos AML has significant prognostic impacts and is critical to determining risk stratification and therapeutic allocation. These clinical trials were registered at www.clinicaltrials.gov as NCT00002798, NCT00070174, NCT00372593, and NCT01371981.
Collapse
Affiliation(s)
- Katherine Tarlock
- Division of Hematology/Oncology, Seattle Children’s Hospital, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jenny L. Smith
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Amanda Leonti
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Benjamin J. Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Danielle Kirkey
- Division of Hematology/Oncology, Seattle Children’s Hospital, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Leila Robinson
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jack H. Peplinksi
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Beverly Lange
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Todd M. Cooper
- Division of Hematology/Oncology, Seattle Children’s Hospital, Seattle, WA
| | - Alan S. Gamis
- Divisions of Hematology/Oncology, Children’s Mercy Hospital and Clinics, Kansas City, MO
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Richard Aplenc
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jessica A. Pollard
- Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Todd A. Alonzo
- Children’s Oncology Group, Monrovia, CA
- University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
9
|
Rørvik SD, Torkildsen S, Bruserud Ø, Tvedt THA. Acute myeloid leukemia with rare recurring translocations-an overview of the entities included in the international consensus classification. Ann Hematol 2024; 103:1103-1119. [PMID: 38443661 PMCID: PMC10940453 DOI: 10.1007/s00277-024-05680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Two different systems exist for subclassification of acute myeloid leukemia (AML); the World Health Organization (WHO) Classification and the International Consensus Classification (ICC) of myeloid malignancies. The two systems differ in their classification of AML defined by recurrent chromosomal abnormalities. One difference is that the ICC classification defines an AML subset that includes 12 different genetic abnormalities that occur in less than 4% of AML patients. These subtypes exhibit distinct clinical traits and are associated with treatment outcomes, but detailed description of these entities is not easily available and is not described in detail even in the ICC. We searched in the PubMed database to identify scientific publications describing AML patients with the recurrent chromosomal abnormalities/translocations included in this ICC defined patient subset. This patient subset includes AML with t(1;3)(p36.3;q21.3), t(3;5)(q25.3;q35.1), t(8;16)(p11.2;p13.3), t(1;22)(p13.3;q13.1), t(5;11)(q35.2;p15.4), t(11;12)(p15.4;p13.3) (involving NUP98), translocation involving NUP98 and other partner, t(7;12)(q36.3;p13.2), t(10;11)(p12.3;q14.2), t(16;21)(p11.2;q22.2), inv(16)(p13.3q24.3) and t(16;21)(q24.3;q22.1). In this updated review we describe the available information with regard to frequency, biological functions of the involved genes and the fusion proteins, morphology/immunophenotype, required diagnostic procedures, clinical characteristics (including age distribution) and prognostic impact for each of these 12 genetic abnormalities.
Collapse
Affiliation(s)
- Synne D Rørvik
- Department of Cardiology, Haukeland University Hospital, Bergen, Norway
| | - Synne Torkildsen
- Department of Haematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
10
|
Shang YK, Pan XA, Chang YJ, Qin YQ, Wang Y, Yan CH, Sun YQ, Huang XJ, Zhao XS. [Clinical significance of monitoring NUP98::NSD1 fusion genes before and after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:1010-1015. [PMID: 38503524 PMCID: PMC10834866 DOI: 10.3760/cma.j.issn.0253-2727.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 03/21/2024]
Abstract
Objective: This study aimed to observe the dynamic changes of NUP98::NSD1 expression before and after allogeneic hematopoietic stem cell transplantation (allo-HSCT) . Moreover, the clinical value of measurable residual disease (MRD) was analyzed. Methods: Sixteen AML patients who were diagnosed with the NUP98::NSD1 fusion gene and received allo-HSCT at Peking University People's Hospital were included. The NUP98::NSD1 fusion gene and leukemia-associated immunophenotype (LAIP) were monitored before and after transplantation to evaluate their MRD status. Results: The median follow-up time for all patients was 526 days (139-1136 days) , with four patients (25.0%) experiencing hematological recurrence at a median of 474 days (283-607 days) after transplantation. Three patients (18.8%) died, two of whom (12.5%) died of leukemia recurrence. The median expression level of NUP98::NSD1 in newly diagnosed patients with complete data was 78.5% (18.9%-184.4%) at the time of initial diagnosis. The recurrence rate was higher in NUP98::NSD1-positive patients after transplantation, with 44.4% of patients experiencing recurrence, whereas no recurrence occurred in NUP98::NSD1-negative patients after transplantation. The area under the receiver operating characteristic curve predicted by the NUP98::NSD1 level after transplantation was 1.000 (95% confidence interval: 1.000-1.000, P=0.003) . Among the four patients with recurrence, NUP98::NSD1 was more sensitive than flow cytometry residual (FCM) and Wilms' tumor gene 1 (WT1) . Conclusions: The NUP98::NSD1 fusion gene can be used to evaluate the MRD status of allo-HSCT. NUP98::NSD1-positive patients after transplantation have a high relapse rate and poor prognosis. NUP98::NSD1 was more sensitive than FCM and WT1 in predicting posttransplant relapse.
Collapse
Affiliation(s)
- Y K Shang
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X A Pan
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y J Chang
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Q Qin
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - C H Yan
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Q Sun
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X S Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, National Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
11
|
Juul-Dam KL, Shukla NN, Cooper TM, Cuglievan B, Heidenreich O, Kolb EA, Rasouli M, Hasle H, Zwaan CM. Therapeutic targeting in pediatric acute myeloid leukemia with aberrant HOX/MEIS1 expression. Eur J Med Genet 2023; 66:104869. [PMID: 38174649 PMCID: PMC11195042 DOI: 10.1016/j.ejmg.2023.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/21/2023] [Accepted: 10/22/2023] [Indexed: 01/05/2024]
Abstract
Despite advances in the clinical management of childhood acute myeloid leukemia (AML) during the last decades, outcome remains fatal in approximately one third of patients. Primary chemoresistance, relapse and acute and long-term toxicities to conventional myelosuppressive therapies still constitute significant challenges and emphasize the unmet need for effective targeted therapies. Years of scientific efforts have translated into extensive insights on the heterogeneous spectrum of genetics and oncogenic signaling pathways of AML and identified a subset of patients characterized by upregulation of HOXA and HOXB homeobox genes and myeloid ecotropic virus insertion site 1 (MEIS1). Aberrant HOXA/MEIS1 expression is associated with genotypes such as rearrangements in Histone-lysine N-methyltransferase 2A (KMT2A-r), nucleoporin 98 (NUP98-r) and mutated nucleophosmin (NPM1c) that are found in approximately one third of children with AML. AML with upregulated HOXA/MEIS1 shares a number of molecular vulnerabilities amenable to recently developed molecules targeting the assembly of protein complexes or transcriptional regulators. The interaction between the nuclear scaffold protein menin and KMT2A has gained particular interest and constitutes a molecular dependency for maintenance of the HOXA/MEIS1 transcription program. Menin inhibitors disrupt the menin-KMT2A complex in preclinical models of KMT2A-r, NUP98-r and NPM1c acute leukemias and its occupancy at target genes leading to leukemic cell differentiation and apoptosis. Early-phase clinical trials are either ongoing or in development and preliminary data suggests tolerable toxicities and encouraging efficacy of menin inhibitors in adults with relapsed or refractory KMT2A-r and NPM1c AML. The Pediatric Acute Leukemia/European Pediatric Acute Leukemia (PedAL/EUPAL) project is focused to advance and coordinate informative clinical trials with new agents and constitute an ideal framework for testing of menin inhibitors in pediatric study populations. Menin inhibitors in combination with standard chemotherapy or other targeting agents may enhance anti-leukemic effects and constitute rational treatment strategies for select genotypes of childhood AML, and provide enhanced safety to avoid differentiation syndrome. In this review, we discuss the pathophysiological mechanisms in KMT2A-r, NUP98-r and NPM1c AML, emerging molecules targeting the HOXA/MEIS1 transcription program with menin inhibitors as the most prominent examples and future therapeutic implications of these agents in childhood AML.
Collapse
Affiliation(s)
- Kristian L Juul-Dam
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Todd M Cooper
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Branko Cuglievan
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - E Anders Kolb
- Division of Oncology, Nemours/Alfred I. Dupont Hospital for Children, Wilmington, DE, USA
| | - Milad Rasouli
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Wu J, Yan H, Xiang C. Wilms' tumor gene 1 in hematological malignancies: friend or foe? Hematology 2023; 28:2254557. [PMID: 37668240 DOI: 10.1080/16078454.2023.2254557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
Wilms' tumor gene 1 (WT1) is a transcription and post-translational factor that has a crucial role in the biological and pathological processes of several human malignancies. For hematological malignancies, WT1 overexpression or mutation has been found in leukemia and myelodysplastic syndrome. About 70-90% of acute myeloid leukemia patients showed WT1 overexpression, and 6-15% of patients carried WT1 mutations. WT1 has been widely regarded as a marker for monitoring minimal residual disease in acute myeloid leukemia. Many researchers were interested in developing WT1 targeting therapy. In this review, we summarized biological and pathological functions, correlation with other genes and clinical features, prognosis value and targeting therapy of WT1 in hematological features.
Collapse
Affiliation(s)
- Jie Wu
- Department of Emergency Medicine, The Fifth People's Hospital of Huai'an and Huai'an Hospital Affiliated to Yangzhou University, Huai'an, People's Republic of China
| | - Hui Yan
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Chunli Xiang
- Department of General Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, People's Republic of China
| |
Collapse
|
13
|
Miyajima T, Onozawa M, Yoshida S, Miyashita N, Kimura H, Takahashi S, Yokoyama S, Matsukawa T, Goto H, Sugita J, Fujisawa S, Hidaka D, Ogasawara R, Mori A, Matsuoka S, Shigematsu A, Wakasa K, Kasahara I, Saga T, Hashiguchi J, Takeda Y, Ibata M, Yutaka T, Fujimoto K, Kondo T, Teshima T. Clinical implications of NUP98::NSD1 fusion at diagnosis in adult FLT3-ITD positive AML. Eur J Haematol 2023; 111:620-627. [PMID: 37465857 DOI: 10.1111/ejh.14055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVES The cryptic fusion oncogene NUP98::NSD1 is known to be associated with FLT3-ITD mutation in acute myeloid leukemia (AML), and an independent poor prognostic factor in pediatric AML. However, there are little data regarding the clinical significance of NUP98::NSD1 in adult cohort. METHODS We conducted a multicenter retrospective study to investigate the prevalence, clinical characteristics, and prognostic impact of NUP98::NSD1 in adult FLT3-ITD-positive AML patients. RESULTS In a total of 97 FLT3-ITD-positive AML patients, six cases (6.2%) were found to harbor the NUP98::NSD1 fusion transcript. NUP98::NSD1 positive cases had significantly higher platelet counts and a higher frequency of FAB-M4 morphology than NUP98::NSD1 negative cases. NUP98::NSD1 was found to be mutually exclusive with NPM1 mutation, and was accompanied by the WT1 mutation in three of the six cases. The presence of NUP98::NSD1 fusion at the time of diagnosis predicted poor response to cytarabine-anthracycline-based intensive induction chemotherapy (induction failure rate: 83% vs. 36%, p = .038). Five of the six cases with NUP98::NSD1 underwent allogeneic hematopoietic stem cell transplantation (HSCT). Two of the five cases have successfully maintained remission, with one of them being rescued through a second HSCT. CONCLUSIONS Detecting NUP98::NSD1 in adult FLT3-ITD-positive AML is crucial to recognizing chemotherapy-resistant group.
Collapse
Affiliation(s)
- Toru Miyajima
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shota Yoshida
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Naoki Miyashita
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hiroyuki Kimura
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shogo Takahashi
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shota Yokoyama
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Toshihiro Matsukawa
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hideki Goto
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Junichi Sugita
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Shinichi Fujisawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Daisuke Hidaka
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Reiki Ogasawara
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Akio Mori
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Satomi Matsuoka
- Department of Hematology, Asahikawa City Hospital, Asahikawa, Japan
| | - Akio Shigematsu
- Department of Hematology, Kushiro Rosai Hospital, Kushiro, Japan
| | - Kentaro Wakasa
- Department of Hematology, Obihiro Kosei Hospital, Obihiro, Japan
| | - Ikumi Kasahara
- Department of Hematology, Sapporo City General Hospital, Sapporo, Japan
| | - Tomoyuki Saga
- Department of Hematology, Kin-Ikyo Chuo Hospital, Sapporo, Japan
| | - Junichi Hashiguchi
- Department of Internal Medicine/General Medicine, Kitami Red Cross Hospital, Kitami, Japan
| | - Yukari Takeda
- Department of Hematology, Tonan Hospital, Sapporo, Japan
| | - Makoto Ibata
- Department of Hematology, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Tsutsumi Yutaka
- Department of Hematology, Hakodate Municipal Hospital, Hakodate, Japan
| | - Katsuya Fujimoto
- Department of Hematology, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Graduate School of Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
14
|
Shen Y, Zhang T, Zhang L, Zhen S, Chen Z, Zhang R, Yang D, Wei J, He Y, Jiang E, Feng S. Allogeneic stem cell transplantation can prolong the survival of patients with NUP98-rearranged acute myeloid leukemia. Bone Marrow Transplant 2023; 58:1149-1151. [PMID: 37420010 DOI: 10.1038/s41409-023-02030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Affiliation(s)
- Yuyan Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tingting Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lining Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Sisi Zhen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhangjie Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
15
|
Czogała M, Czogała W, Pawińska-Wąsikowska K, Książek T, Bukowska-Strakova K, Sikorska-Fic B, Łaguna P, Fałkowska A, Drabko K, Muszyńska-Rosłan K, Krawczuk-Rybak M, Kozłowska M, Irga-Jaworska N, Zielezińska K, Urasiński T, Bartoszewicz N, Styczyński J, Skalska-Sadowska J, Wachowiak J, Rodziewicz-Konarska A, Kałwak K, Ciebiera M, Chaber R, Mizia-Malarz A, Chodała-Grzywacz A, Karolczyk G, Bobeff K, Młynarski W, Mycko K, Badowska W, Tomaszewska R, Szczepański T, Machnik K, Zamorska N, Balwierz W, Skoczeń S. Characteristics and Outcome of FLT3-ITD-Positive Pediatric Acute Myeloid Leukemia-Experience of Polish Pediatric Leukemia and Lymphoma Study Group from 2005 to 2022. Cancers (Basel) 2023; 15:4557. [PMID: 37760526 PMCID: PMC10526903 DOI: 10.3390/cancers15184557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The FMS-like tyrosine kinase 3 (FLT3) gene mutated in 10-15% of pediatric acute myeloid leukemia (AML) is associated with an inferior outcome. The aim of the study was to analyze the outcome and characteristics of FLT3-ITD-positive pediatric AML. METHODS We retrospectively analyzed the nationwide pediatric AML database from between 2005 and 2022. FLT3-ITD was found in 54/497 (10.7%) patients with available analysis. Three consecutive treatment protocols were used (AML-BFM 2004 Interim, AML-BFM 2012 Registry, AML-BFM 2019 recommendations). RESULTS Probabilities of 5-year overall (OS), event-free (EFS) and relapse-free survival were significantly lower in the FLT3-ITD-positive patients compared to FLT3-ITD-negative (0.54 vs. 0.71, p = 0.041; 0.36 vs. 0.59, p = 0.0004; 0.47 vs. 0.70, p = 0.0029, accordingly). An improvement in the outcome was found in the analyzed period of time, with a trend of better survival in patients treated under the AML-BFM 2012 and AML-BFM 2019 protocols compared to the AML-BFM 2004 protocol (5-year EFS 0.52 vs. 0.27, p = 0.069). There was a trend of improved outcomes in patients treated with FLT3 inhibitors (n = 9, 2-year EFS 0.67 vs. 0.33, p = 0.053) and those who received stem cell transplantation (SCT) (n = 26; 5-year EFS 0.70 vs. 0.27, p = 0.059). The co-occurrence of the WT1 mutation had a dismal impact on the prognosis (5-year EFS 0.23 vs. 0.69, p = 0.002), while the NPM1 mutation improved survival (5-year OS 1.0 vs. 0.44, p = 0.036). CONCLUSIONS It seems that SCT and FLT3 inhibitors have a beneficial impact on the prognosis. Additional genetic alterations, like the WT1 and NPM1 mutations, significantly influence the outcome.
Collapse
Affiliation(s)
- Małgorzata Czogała
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.C.); (K.P.-W.); (W.B.); (S.S.)
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-683 Krakow, Poland;
| | - Wojciech Czogała
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.C.); (K.P.-W.); (W.B.); (S.S.)
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-683 Krakow, Poland;
| | - Katarzyna Pawińska-Wąsikowska
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.C.); (K.P.-W.); (W.B.); (S.S.)
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-683 Krakow, Poland;
| | - Teofila Książek
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-683 Krakow, Poland;
- Department of Medical Genetics, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Karolina Bukowska-Strakova
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Barbara Sikorska-Fic
- Department of Pediatrics, Oncology, Hematology and Transplantology, Medical University of Warsaw, 02-091 Warszawa, Poland; (B.S.-F.); (P.Ł.)
| | - Paweł Łaguna
- Department of Pediatrics, Oncology, Hematology and Transplantology, Medical University of Warsaw, 02-091 Warszawa, Poland; (B.S.-F.); (P.Ł.)
| | - Anna Fałkowska
- Department of Paediatric Haematology and Oncology and Transplantology, Medical University of Lublin, 20-095 Lublin, Poland; (A.F.); (K.D.)
| | - Katarzyna Drabko
- Department of Paediatric Haematology and Oncology and Transplantology, Medical University of Lublin, 20-095 Lublin, Poland; (A.F.); (K.D.)
| | - Katarzyna Muszyńska-Rosłan
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.M.-R.); (M.K.-R.)
| | - Maryna Krawczuk-Rybak
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.M.-R.); (M.K.-R.)
| | - Marta Kozłowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.K.); (N.I.-J.)
| | - Ninela Irga-Jaworska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.K.); (N.I.-J.)
| | - Karolina Zielezińska
- Department of Paediatrics, Hemato-Oncology and Gastroenterology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (K.Z.); (T.U.)
| | - Tomasz Urasiński
- Department of Paediatrics, Hemato-Oncology and Gastroenterology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland; (K.Z.); (T.U.)
| | - Natalia Bartoszewicz
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, 85-094 Bydgoszcz, Poland; (N.B.); (J.S.)
| | - Jan Styczyński
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, 85-094 Bydgoszcz, Poland; (N.B.); (J.S.)
| | - Jolanta Skalska-Sadowska
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (J.S.-S.); (J.W.)
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (J.S.-S.); (J.W.)
| | - Anna Rodziewicz-Konarska
- Department of Bone Marrow Transplantation, Pediatric Oncology and Hematology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (A.R.-K.); (K.K.)
| | - Krzysztof Kałwak
- Department of Bone Marrow Transplantation, Pediatric Oncology and Hematology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (A.R.-K.); (K.K.)
| | - Małgorzata Ciebiera
- Clinic of Pediatric Oncology and Hematology, State Hospital 2, 35-301 Rzeszów, Poland; (M.C.); (R.C.)
| | - Radosław Chaber
- Clinic of Pediatric Oncology and Hematology, State Hospital 2, 35-301 Rzeszów, Poland; (M.C.); (R.C.)
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszów, Poland
| | - Agnieszka Mizia-Malarz
- Department of Oncology, Hematology and Chemotherapy, Upper Silesia Children’s Care Health Centre, 40-752 Katowice, Poland;
- Department of Pediatrics, Medical University of Silesia, Upper Silesia Children’s Care Health Centre, 40-752 Katowice, Poland
| | - Agnieszka Chodała-Grzywacz
- Department of Pediatric Hematology and Oncology, Regional Polyclinic Hospital in Kielce, 25-736 Kielce, Poland; (A.C.-G.); (G.K.)
| | - Grażyna Karolczyk
- Department of Pediatric Hematology and Oncology, Regional Polyclinic Hospital in Kielce, 25-736 Kielce, Poland; (A.C.-G.); (G.K.)
| | - Katarzyna Bobeff
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland; (K.B.); (W.M.)
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland; (K.B.); (W.M.)
| | - Katarzyna Mycko
- Department of Pediatrics and Hematology and Oncology, Province Children’s Hospital, 10-561 Olsztyn, Poland; (K.M.); (W.B.)
| | - Wanda Badowska
- Department of Pediatrics and Hematology and Oncology, Province Children’s Hospital, 10-561 Olsztyn, Poland; (K.M.); (W.B.)
| | - Renata Tomaszewska
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (R.T.); (T.S.)
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (R.T.); (T.S.)
| | - Katarzyna Machnik
- Department of Pediatrics, Hematology and Oncology, City Hospital, 41-500 Chorzow, Poland;
| | - Natalia Zamorska
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.C.); (K.P.-W.); (W.B.); (S.S.)
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-683 Krakow, Poland;
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.C.); (K.P.-W.); (W.B.); (S.S.)
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-683 Krakow, Poland;
| |
Collapse
|
16
|
Tosic N, Marjanovic I, Lazic J. Pediatric acute myeloid leukemia: Insight into genetic landscape and novel targeted approaches. Biochem Pharmacol 2023; 215:115705. [PMID: 37532055 DOI: 10.1016/j.bcp.2023.115705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous hematological malignancy that accounts for approximately 20% of all pediatric leukemia cases. The outcome of pediatric AML has improved over the last decades, with overall survival rates reaching up to 70%. Still, AML is among the leading types of pediatric cancers by its high mortality rate. Modulation of standard therapy, like chemotherapy intensification, hematopoietic stem cell transplantation and optimized supportive care, could only get this far, but for the significant improvement of the outcome in pediatric AML, development of novel targeted therapy approaches is necessary. In recent years the advances in genomic techniques have greatly expanded our knowledge of the AML biology, revealing molecular landscape and complexity of the disease, which in turn have led to the identification of novel therapeutic targets. This review provides a brief overview of the genetic landscape of pediatric AML, and how it's used for precise molecular characterization and risk stratification of the patients, and also for the development of effective targeted therapy. Furthermore, this review presents recent advances in molecular targeted therapy and immunotherapy with an emphasis on the therapeutic approaches with significant clinical benefits for pediatric AML.
Collapse
Affiliation(s)
- Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, University of Belgrade, Serbia.
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, University of Belgrade, Serbia
| | - Jelena Lazic
- University Children's Hospital, Department for Hematology and Oncology, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
17
|
Wu A, Liu Y, Wei S, Li Y, Liu K, Fang Q, Lin D, Gong B, Zhang G, Gong X, Liu B, Wang Y, Mi Y, Wei H, Wang J. Clinical features of patients with acute myeloid leukaemia and the NUP98::NSD1 fusion gene. Int J Lab Hematol 2023; 45:589-591. [PMID: 36751862 DOI: 10.1111/ijlh.14032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023]
Affiliation(s)
- An Wu
- Department of Hematology, Ningbo First Hospital, Ningbo Clinical Research Center for Hematologic malignancies, Ningbo, China
| | - Yuntao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shuning Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Kaiqi Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiuyun Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Dong Lin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Benfa Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Guangji Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoyuan Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Bingcheng Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
18
|
Rasouli M, Blair H, Troester S, Szoltysek K, Cameron R, Ashtiani M, Krippner-Heidenreich A, Grebien F, McGeehan G, Zwaan CM, Heidenreich O. The MLL-Menin Interaction is a Therapeutic Vulnerability in NUP98-rearranged AML. Hemasphere 2023; 7:e935. [PMID: 37520776 PMCID: PMC10378738 DOI: 10.1097/hs9.0000000000000935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Chromosomal translocations involving the NUP98 locus are among the most prevalent rearrangements in pediatric acute myeloid leukemia (AML). AML with NUP98 fusions is characterized by high expression of HOXA and MEIS1 genes and is associated with poor clinical outcome. NUP98 fusion proteins are recruited to their target genes by the mixed lineage leukemia (MLL) complex, which involves a direct interaction between MLL and Menin. Here, we show that therapeutic targeting of the Menin-MLL interaction inhibits the propagation of NUP98-rearrranged AML both ex vivo and in vivo. Treatment of primary AML cells with the Menin inhibitor revumenib (SNDX-5613) impairs proliferation and clonogenicity ex vivo in long-term coculture and drives myeloid differentiation. These phenotypic effects are associated with global gene expression changes in primary AML samples that involve the downregulation of many critical NUP98 fusion protein-target genes, such as MEIS1 and CDK6. In addition, Menin inhibition reduces the expression of both wild-type FLT3 and mutated FLT3-ITD, and in combination with FLT3 inhibitor, suppresses patient-derived NUP98-r AML cells in a synergistic manner. Revumenib treatment blocks leukemic engraftment and prevents leukemia-associated death of immunodeficient mice transplanted with NUP98::NSD1 FLT3-ITD-positive patient-derived AML cells. These results demonstrate that NUP98-rearranged AMLs are highly susceptible to inhibition of the MLL-Menin interaction and suggest the inclusion of AML patients harboring NUP98 fusions into the clinical evaluation of Menin inhibitors.
Collapse
Affiliation(s)
- Milad Rasouli
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Selina Troester
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Austria
| | - Katarzyna Szoltysek
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Maria Sklodowska-Curie Institute – Oncology Center, Gliwice Branch, Poland
| | - Rachel Cameron
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Minoo Ashtiani
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
| | | | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Austria
| | | | - C. Michel Zwaan
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for pediatric Oncology, Utrecht, The Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
19
|
Niktoreh N, Weber L, Walter C, Karimifard M, Hoffmeister LM, Breiter H, Thivakaran A, Soldierer M, Drexler HG, Schaal H, Sendker S, Reinhardt D, Schneider M, Hanenberg H. Understanding WT1 Alterations and Expression Profiles in Hematological Malignancies. Cancers (Basel) 2023; 15:3491. [PMID: 37444601 DOI: 10.3390/cancers15133491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
WT1 is a true chameleon, both acting as an oncogene and tumor suppressor. As its exact role in leukemogenesis is still ambiguous, research with model systems representing natural conditions surrounding the genetic alterations in WT1 is necessary. In a cohort of 59 leukemia/lymphoma cell lines, we showed aberrant expression for WT1 mRNA, which does not always translate into protein levels. We also analyzed the expression pattern of the four major WT1 protein isoforms in the cell lines and primary AML blasts with/without WT1 mutations and demonstrated that the presence of mutations does not influence these patterns. By introduction of key intronic and exonic sequences of WT1 into a lentiviral expression vector, we developed a unique tool that can stably overexpress the four WT1 isoforms at their naturally occurring tissue-dependent ratio. To develop better cellular model systems for WT1, we sequenced large parts of its gene locus and also other important myeloid risk factor genes and revealed previously unknown alterations. Functionally, inhibition of the nonsense-mediated mRNA decay machinery revealed that under natural conditions, the mutated WT1 alleles go through a robust degradation. These results offer new insights and model systems regarding the characteristics of WT1 in leukemia and lymphoma.
Collapse
Affiliation(s)
- Naghmeh Niktoreh
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lisa Weber
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christiane Walter
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Mahshad Karimifard
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lina Marie Hoffmeister
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hannah Breiter
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Aniththa Thivakaran
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Maren Soldierer
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hans Günther Drexler
- Faculty of Life Sciences, Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Stephanie Sendker
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Markus Schneider
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Wen X, Wu Y, Huang P, Zheng H. Combined treatment with venetoclax, dasatinib, and FLT3 inhibitors for NUP98-NSD1+/FLT3-ITD+ acute myeloid leukemia: A pediatric case report. Pediatr Blood Cancer 2023; 70:e30308. [PMID: 36965174 DOI: 10.1002/pbc.30308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/27/2023]
Affiliation(s)
- Xiaojia Wen
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ying Wu
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Pengli Huang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Huyong Zheng
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing, China
- National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
21
|
Xu H, Yu H, Xu J, Zhou F, Tang S, Feng X, Luo Q, Zhang B, Wu X, Jin R, Chen H. Refractory pediatric acute myeloid leukemia expressing NUP98-NSD1 fusion gene responsive to chemotherapy combined with venetoclax and decitabine. Pediatr Blood Cancer 2023; 70:e30021. [PMID: 36184746 DOI: 10.1002/pbc.30021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Huan Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Yu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Tang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingxing Feng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Luo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingyu Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Identification of alternative transcripts of NSD1 gene in Sotos Syndrome patients and healthy subjects. Gene 2023; 851:146970. [DOI: 10.1016/j.gene.2022.146970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
|
23
|
Shah A, Sharma A, Katiyar S, Gupta A, Chaturvedi CP. Upfront Screening by Quantitative Real-Time PCR Assay Identifies NUP98::NSD1 Fusion Transcript in Indian AML Patients. Diagnostics (Basel) 2022; 12:diagnostics12123001. [PMID: 36553008 PMCID: PMC9777445 DOI: 10.3390/diagnostics12123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
NUP98::NSD1 fusion, a cryptic translocation of t(5;11)(q35;p15.5), occurs predominantly in pediatric AML, having a poor prognostic outcome. There are limited studies on the diagnosis of NUP98::NSD1 fusion in a clinical setting, and most of the data are from Western countries. No study on the detection of this translocation has been reported from the Indian subcontinent to date. One possible reason could be the lack of availability of a potential tool to detect the fusion transcript. We have developed a real-time quantitative PCR (qRT-PCR)-based assay to detect NUP98::NSD1 fusion transcript with high sensitivity and specificity. Screening 150 AML patients (38 pediatric and 112 adults) using the assay showed the presence of fusion transcript in six patients including 03 pediatric, and 03 adult patients. We observed a prevalence rate of 7.89% (3/38) and 2.67% (3/112) fusion transcript in pediatric and adult patients, respectively. Sanger sequencing further validated the occurrence of NUP98::NSD1 fusion in all six patients. Molecular characterization of these patients revealed a co-occurrence of FLT3-ITD mutation, accompanied by altered expression of the HOX and other genes associated with AML. All six patients responded poorly to induction therapy. Overall, this is the first study to show the presence of the NUP98::NSD1 fusion transcript in Indian AML patients. Further, we demonstrate that our in-house developed qRT-PCR assay can be used to screen NUP98::NSD1 fusion in clinical settings.
Collapse
Affiliation(s)
- Arunim Shah
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, India
| | - Akhilesh Sharma
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, India
| | - Shobhita Katiyar
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, India
| | - Anshul Gupta
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, India
| | - Chandra Prakash Chaturvedi
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, India
- Correspondence: ; Tel.: +91-522-2495891; Fax: +91-522-2668017
| |
Collapse
|
24
|
Meena JP, Pathak N, Gupta AK, Bakhshi S, Gupta R, Makkar H, Seth R. Molecular evaluation of gene mutation profiles and copy number variations in pediatric acute myeloid leukemia. Leuk Res 2022; 122:106954. [PMID: 36162216 DOI: 10.1016/j.leukres.2022.106954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/19/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The objectives of this study were to investigate the mutation profiles of targeted genes and copy number variations (CNVs) in normal cytogenetics (CN) pediatric acute myeloid leukemia (AML). METHODS This prospective study was conducted from October 2018 to December 2020. The next-generation sequencing (NGS) and chromosomal microarray analyses (CMA) were performed in pediatric CN-AML patients. RESULTS Out of 94 children (aged ≤18 years), 70 patients with AML (24 excluded) underwent conventional karyotyping/cytogenetic analyses. Forty-five (64.3%) of patients had abnormal/ recurrent cytogenetic abnormalities and 25 (35.7%) had normal cytogenetics. Twenty-three out of 25 CN-AML were further processed for gene mutation profile and CNVs using NGS and CMA, respectively. Twenty-two out of 23 (95.7%) patients were detected to have mutations in various genes. The common mutations were: NRAS, NPM1, CEBPA, KRAS, KIT, RUNX1, NOTCH1, WT1, GATA1, GATA2, FLT3, KMT2D, FLT3-TKD, and PHF6. Copy number variations (CNVs) were detected in nine patients (39%), and eight (34.8%) had a long contiguous stretch of homozygosity (LCSH) /loss of heterozygosity (LOH). An LCSH was detected on chromosomes 5, 7, 11, and 19. The gains were more common than losses (8 vs 2). The gains were observed on chromosomes 8, 9, 14, 19, 21, and 22, and the losses were detected on chromosomes 7 and 10. Monosomy was observed in three patients. Three patients (monosomy7, n = 2, and FLT-ITD, n = 1) were reclassified into the high-risk category. Post-induction, complete remission was achieved in all evaluable patients. CONCLUSION CN-AML patients have genetic abnormalities that can be detected by more advanced techniques like NGS and CMA. These genetic abnormalities play a role in risk stratification that may remain hidden in otherwise CN-AML.
Collapse
Affiliation(s)
- Jagdish Prasad Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Nivedita Pathak
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Harshita Makkar
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Rachna Seth
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
25
|
Ramdas B, Lakshmi Reddy P, Mali RS, Pasupuleti SK, Zhang J, Kelley MR, Paczesny S, Zhang C, Kapur R. Combined heterozygosity of FLT3 ITD, TET2, and DNMT3A results in aggressive leukemia. JCI Insight 2022; 7:e162016. [PMID: 36073548 PMCID: PMC9536269 DOI: 10.1172/jci.insight.162016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Heterozygous mutations in FLT3ITD, TET2, and DNMT3A are associated with hematologic malignancies in humans. In patients, cooccurrence of mutations in FLT3ITD combined with TET2 (TF) or FLT3ITD combined with DNMT3A (DF) are frequent. However, in some rare complex acute myeloid leukemia (AML), all 3 mutations cooccur - i.e., FLT3ITD, TET2, and DNMT3A (TFD). Whether the presence of these mutations in combination result in quantitative or qualitative differences in disease manifestation has not been investigated. We generated mice expressing heterozygous Flt3ITD and concomitant for either heterozygous loss of Tet2 (TF) or Dnmt3a (DF) or both (TFD). TF and DF mice did not induce disease early on, in spite of similar changes in gene expression; during the same time frame, an aggressive form of transplantable leukemia was observed in TFD mice, which was mostly associated with quantitative but not qualitative differences in gene expression relative to TF or DF mice. The gene expression signature of TFD mice showed remarkable similarity to the human TFD gene signature at the single-cell RNA level. Importantly, TFD-driven AML responded to a combination of drugs that target Flt3ITD, inflammation, and methylation in a mouse model, as well as in a PDX model of AML bearing 3 mutations.
Collapse
Affiliation(s)
- Baskar Ramdas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Palam Lakshmi Reddy
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raghuveer Singh Mali
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Santhosh Kumar Pasupuleti
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ji Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark R. Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics
- Department of Molecular Biology and Biochemistry, and
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
26
|
Rong D, Chen X, Xiao J, Liu D, Ni X, Tong X, Wang H. Histone methylation modification patterns and relevant M-RiskScore in acute myeloid leukemia. Heliyon 2022; 8:e10610. [PMID: 36164519 PMCID: PMC9508520 DOI: 10.1016/j.heliyon.2022.e10610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/13/2022] [Accepted: 09/07/2022] [Indexed: 12/05/2022] Open
Abstract
Objective We tried to identify novel molecular subtypes of acute myeloid leukemia (AML) associated with histone methylation and established a relevant scoring system to predict treatment response and prognosis of AML. Methods Gene expression data and clinical characteristics of patients with AML were obtained from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. Molecular subtyping was carried out by consensus clustering analysis, based on the expression of 24 histone methylation modification regulators (HMMRs). The clinical and biological features of each clustered pattern were taken into account. The scoring system was constructed by using differential expression analysis, Cox regression method and lasso regression analysis. Subsequently, the scoring system in the roles of prognostic and chemotherapeutic prediction of AML were explored. Finally, an independent GSE dataset was used for validating the established clustering system. Results Two distinct subtypes of AML were identified based on the expression of the 24 HMMRs, which exhibited remarkable differences in several clinical and biological characteristics, including HMMRs expression, AML-M0 distribution, NPM1 mutation, tumor mutation burden, somatic mutations, pathway activation, immune cell infiltration and patient survival. The scoring system, M-RiskScore, was established. Integrated analysis demonstrated that patients with the low M-RiskScore displayed a prominent survival advantage and a good response to decitabine treatment, while patients with high M-RiskScore have resistance to decitabine, but they could benefit from IA regimen therapy. Conclusion Detection of HMMRs expression would be a potential strategy for AML subtyping. Meanwhile, targeting histone methylation would be a preferred strategy for either AML-M0 or NPM1 mutant patients. M-RiskScore was a useful prognostic biomarker and a guide for the choice of appropriate chemotherapy strategy.
Collapse
Affiliation(s)
- Dade Rong
- The First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.,Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiaomin Chen
- The First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,GenePlus, Beijing, China
| | - Jing Xiao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Daiyuan Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Xiangna Ni
- The First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China
| | - Xiuzhen Tong
- The First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| |
Collapse
|
27
|
Lu H, Ding Y, Dong Y, Luo X, Wang X, Xiu B, Liang A, Zhang W. MicroRNA‑181b‑5p insufficiency predicts treatment response failure risk and unfavorable event‑free survival as well as overall survival in acute myeloid leukemia patients. Oncol Lett 2022; 24:330. [PMID: 36039054 PMCID: PMC9404701 DOI: 10.3892/ol.2022.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/10/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Huina Lu
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Yi Ding
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Yan Dong
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Xiu Luo
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Xiuqin Wang
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Bing Xiu
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Wenjun Zhang
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
28
|
EAHP 2020 workshop proceedings, pediatric myeloid neoplasms. Virchows Arch 2022; 481:621-646. [PMID: 35819517 PMCID: PMC9534825 DOI: 10.1007/s00428-022-03375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022]
Abstract
The first section of the bone marrow workshop of the European Association of Haematopathology (EAHP) 2020 Virtual Meeting was dedicated to pediatric myeloid neoplasms. The section covered the whole spectrum of myeloid neoplasms, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), myelodysplastic/myeloproliferative neoplasms (MDS/MPN), and acute myeloid leukemia (AML). The workshop cases are hereby presented, preceded by an introduction on these overall rare diseases in this age group. Very rare entities such as primary myelofibrosis, pediatric MDS with fibrosis, and MDS/MPN with JMML-like features and t(4;17)(q12;q21); FIP1L1::RARA fusion, are described in more detail.
Collapse
|
29
|
Xie W, Raess PW, Dunlap J, Hoyos CM, Li H, Li P, Swords R, Olson SB, Yang F, Anekpuritanang T, Hu S, Wiszniewska J, Fan G, Press RD, Moore SR. Adult acute myeloid leukemia patients with NUP98 rearrangement have frequent cryptic translocations and unfavorable outcome. Leuk Lymphoma 2022; 63:1907-1916. [DOI: 10.1080/10428194.2022.2047672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wei Xie
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Philipp W. Raess
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer Dunlap
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Cristina Magallanes Hoyos
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Hongmei Li
- Pathology and Laboratory, and North Shore Pathologists, Ascension Wisconsin Health Care, Milwaukee, WI, USA
| | - Peng Li
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ronan Swords
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Susan B. Olson
- Knight Diagnostic Laboratories, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Fei Yang
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Tauangtham Anekpuritanang
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Shimin Hu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joanna Wiszniewska
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Guang Fan
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Richard D. Press
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Stephen R. Moore
- Knight Diagnostic Laboratories, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
30
|
Inaba H, van Oosterwijk JG, Panetta JC, Li L, Buelow DR, Blachly JS, Shurtleff S, Pui CH, Ribeiro RC, Rubnitz JE, Pounds S, Baker SD. Preclinical and Pilot Study of Type I FLT3 Tyrosine Kinase Inhibitor, Crenolanib, with Sorafenib in Acute Myeloid Leukemia and FLT3-Internal Tandem Duplication. Clin Cancer Res 2022; 28:2536-2546. [PMID: 35344039 PMCID: PMC9197875 DOI: 10.1158/1078-0432.ccr-21-4450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE To evaluate the safety, activity, and emergence of FLT3-kinase domain (KD) mutations with combination therapy of crenolanib and sorafenib in acute myeloid leukemia (AML) with FLT3-internal tandem duplication (ITD). PATIENTS AND METHODS After in vitro and xenograft efficacy studies using AML cell lines that have FLT3-ITD with or without FLT3-KD mutation, a pilot study was performed with crenolanib (67 mg/m2/dose, three times per day on days 1-28) and two dose levels of sorafenib (150 and 200 mg/m2/day on days 8-28) in 9 pediatric patients with refractory/relapsed FLT3-ITD-positive AML. Pharmacokinetic, pharmacodynamic, and FLT3-KD mutation analysis were done in both preclinical and clinical studies. RESULTS The combination of crenolanib and sorafenib in preclinical models showed synergy without affecting pharmacokinetics of each agent, inhibited p-STAT5 and p-ERK for up to 8 hours, and led to significantly better leukemia response (P < 0.005) and survival (P < 0.05) compared with single agents. Fewer FLT3-KD mutations emerged with dose-intensive crenolanib (twice daily) and low-intensity sorafenib (three times/week) compared with daily crenolanib or sorafenib (P < 0.05). The crenolanib and sorafenib combination was tolerable without dose-limiting toxicities, and three complete remissions (one with incomplete count recovery) and one partial remission were observed in 8 evaluable patients. Median crenolanib apparent clearance showed a nonsignificant decrease during treatment (45.0, 40.5, and 20.3 L/hour/m2 on days 1, 7, and 14, respectively) without drug-drug interaction. Only 1 patient developed a FLT3-KD mutation (FLT3 F691L). CONCLUSIONS The combination of crenolanib and sorafenib was tolerable with antileukemic activities and rare emergence of FLT3-TKD mutations, which warrants further investigation.
Collapse
Affiliation(s)
- Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - John C. Panetta
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Lie Li
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Daelynn R. Buelow
- College of Pharmacy, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - James S. Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Sheila Shurtleff
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jeffrey E. Rubnitz
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sharyn D. Baker
- College of Pharmacy, Department of Internal Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
31
|
Saadi MI, Tahmasebijaroubi F, Noshadi E, Rahimikian R, Karimi Z, Owjfard M, Niknam A, Abdolyousefi EN, Salek S, Tabrizi R, Jamali E. Dysregulated Expression of MiR-19b, MiR-25, MiR-17, WT1, and CEBPA in Patients with Acute Myeloid Leukemia and Association with Graft versus Host Disease after Hematopoietic Stem Cell Transplantation. South Asian J Cancer 2022; 11:346-352. [PMID: 36756106 PMCID: PMC9902101 DOI: 10.1055/s-0042-1742593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Elham JamaliObjectives Acute myeloid leukemia (AML) is a blood malignancy characterized by the proliferation of aberrant cells in the bone marrow and blood that interfere with normal blood cells. We have investigated whether changes in the level of micro-ribonucleic acid (miR)-19b, miR-17, and miR-25, Wilms' tumor (WT1), and CCAAT enhancer-binding protein α (CEBPA) genes expression affect disease prognosis and clinical outcome in AML patients. Materials and Methods The expression level of miR-19-b, miR-17, and miR-25, as well as WT1 and CEBPA genes in a group of patients and controls as well as different risk groups (high, intermediate, and favorite risk), M3 versus non-M3, and graft-versus-host disease (GvHD) versus non-GvHD patients were assessed using a quantitative SYBR Green real-time polymerase chain reaction method. Results When compared with the baseline level at the period of diagnosis before chemotherapy, the expression of miR-19b and miR-17 in AML patients increased significantly after chemotherapy. The level of miR-19b and miR-25 expression in AML patients with M3 and non-M3 French-American-British subgroups differ significantly. MiR-19b and miR-25 expression was elevated in GvHD patients, while miR-19b and miR-25 expression was somewhat decreased in GvHD patients compared with non-GvHD patients, albeit the difference was not statistically significant. Also, patients with different cytogenetic aberrations had similar levels of miR-19-b and miR-25 expression. Conclusion MiR-19b, miR-17, and miR-25 are aberrantly expressed in AML patients' peripheral blood leukocytes, which may play a role in the development of acute GvHD following hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
| | | | - Esmat Noshadi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raha Rahimikian
- Department of Biochemistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahed Karimi
- Hematology and Oncology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran,Address for correspondence Elham Jamali, MSc Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical SciencesShirazIran
| | - Ahmad Niknam
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sanaz Salek
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran,Non Communicable Diseases Research Center (NCDC), Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Jamali
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Address for correspondence Elham Jamali, MSc Hematology Research Center and Department of Bone Marrow Transplantation, Shiraz University of Medical SciencesShirazIran
| |
Collapse
|
32
|
Chandra B, Michmerhuizen NL, Shirnekhi HK, Tripathi S, Pioso BJ, Baggett DW, Mitrea DM, Iacobucci I, White MR, Chen J, Park CG, Wu H, Pounds S, Medyukhina A, Khairy K, Gao Q, Qu C, Abdelhamed S, Gorman SD, Bawa S, Maslanka C, Kinger S, Dogra P, Ferrolino MC, Di Giacomo D, Mecucci C, Klco JM, Mullighan CG, Kriwacki RW. Phase Separation Mediates NUP98 Fusion Oncoprotein Leukemic Transformation. Cancer Discov 2022; 12:1152-1169. [PMID: 34903620 PMCID: PMC8983581 DOI: 10.1158/2159-8290.cd-21-0674] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 01/07/2023]
Abstract
NUP98 fusion oncoproteins (FO) are drivers in pediatric leukemias and many transform hematopoietic cells. Most NUP98 FOs harbor an intrinsically disordered region from NUP98 that is prone to liquid-liquid phase separation (LLPS) in vitro. A predominant class of NUP98 FOs, including NUP98-HOXA9 (NHA9), retains a DNA-binding homeodomain, whereas others harbor other types of DNA- or chromatin-binding domains. NUP98 FOs have long been known to form puncta, but long-standing questions are how nuclear puncta form and how they drive leukemogenesis. Here we studied NHA9 condensates and show that homotypic interactions and different types of heterotypic interactions are required to form nuclear puncta, which are associated with aberrant transcriptional activity and transformation of hematopoietic stem and progenitor cells. We also show that three additional leukemia-associated NUP98 FOs (NUP98-PRRX1, NUP98-KDM5A, and NUP98-LNP1) form nuclear puncta and transform hematopoietic cells. These findings indicate that LLPS is critical for leukemogenesis by NUP98 FOs. SIGNIFICANCE We show that homotypic and heterotypic mechanisms of LLPS control NUP98-HOXA9 puncta formation, modulating transcriptional activity and transforming hematopoietic cells. Importantly, these mechanisms are generalizable to other NUP98 FOs that share similar domain structures. These findings address long-standing questions on how nuclear puncta form and their link to leukemogenesis. This article is highlighted in the In This Issue feature, p. 873.
Collapse
Affiliation(s)
- Bappaditya Chandra
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Hazheen K. Shirnekhi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Swarnendu Tripathi
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brittany J. Pioso
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - David W. Baggett
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Diana M. Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael R. White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jingjing Chen
- Integrated Biomedical Sciences Program, the University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Cheon-Gil Park
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anna Medyukhina
- Center for Bioimage Informatics, St. Jude Children's Research Hospital Memphis, Tennessee
| | - Khaled Khairy
- Center for Bioimage Informatics, St. Jude Children's Research Hospital Memphis, Tennessee
| | - Qingsong Gao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott D. Gorman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Simranjot Bawa
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Carolyn Maslanka
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Rhodes College, Memphis, Tennessee
| | - Swati Kinger
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Rhodes College, Memphis, Tennessee
| | - Priyanka Dogra
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Mylene C. Ferrolino
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Danika Di Giacomo
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cristina Mecucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Corresponding Authors: Richard W. Kriwacki, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105. Phone: 901-595-3290; Fax: 901-595-3032; E-mail: ; and Charles G. Mullighan,
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, Tennessee
- Corresponding Authors: Richard W. Kriwacki, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105. Phone: 901-595-3290; Fax: 901-595-3032; E-mail: ; and Charles G. Mullighan,
| |
Collapse
|
33
|
WT1 Gene Mutations, rs16754 Variant, and WT1 Overexpression as Prognostic Factors in Acute Myeloid Leukemia Patients. J Clin Med 2022; 11:jcm11071873. [PMID: 35407481 PMCID: PMC9000045 DOI: 10.3390/jcm11071873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: The aim of our study was the complex assessment of WT1 variants and their expression in relation to chromosomal changes and molecular prognostic markers in acute myeloid leukemia (AML). It is the first multidimensional study in Polish AML patients; (2) Methods: Bone marrow aspirates of 90 AML patients were used for cell cultures (banding techniques and fluorescence in situ hybridization), and to isolate DNA (WT1 genotyping, array comparative genomic hybridization), and RNA (WT1 expression). Peripheral blood samples from 100 healthy blood donors were used to analyze WT1 rs16754; (3) Results: Allele frequency and distribution of WT1 variant rs16754 (A;G) did not differ significantly among AML patients and controls. Higher expression of WT1 gene was observed in AA genotype (of rs16754) in comparison with GA or GG genotypes—10,556.7 vs. 25,836.5 copies (p = 0.01), respectively. WT1 mutations were more frequent in AML patients under 65 years of age (p < 0.0001) and affected relapse-free survival (RFS). The presence of NPM1 or CEBPA mutations decreased the risk of WT1 mutation presence, odds ratio (OR) = 0.11, 95% CI 0.02−0.46, p = 0.002 or OR = 0.05, 95% CI 0.006−0.46, p = 0.002, respectively. We observed significantly higher WT1 expression in AML CD34+ vs. CD34−, −20,985 vs. 8304 (p = 0.039), respectively. The difference in WT1 expression between patients with normal and abnormal karyotype was statistically insignificant; (4) Conclusions: WT1 gene expression and its rs16754 variant at diagnosis did not affect AML outcome. WT1 mutation may affect RFS in AML.
Collapse
|
34
|
Heikamp EB, Henrich JA, Perner F, Wong EM, Hatton C, Wen Y, Barwe SP, Gopalakrishnapillai A, Xu H, Uckelmann HJ, Takao S, Kazansky Y, Pikman Y, McGeehan GM, Kolb EA, Kentsis A, Armstrong SA. The menin-MLL1 interaction is a molecular dependency in NUP98-rearranged AML. Blood 2022; 139:894-906. [PMID: 34582559 PMCID: PMC8832476 DOI: 10.1182/blood.2021012806] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Translocations involving the NUP98 gene produce NUP98-fusion proteins and are associated with a poor prognosis in acute myeloid leukemia (AML). MLL1 is a molecular dependency in NUP98-fusion leukemia, and therefore we investigated the efficacy of therapeutic blockade of the menin-MLL1 interaction in NUP98-fusion leukemia models. Using mouse leukemia cell lines driven by NUP98-HOXA9 and NUP98-JARID1A fusion oncoproteins, we demonstrate that NUP98-fusion-driven leukemia is sensitive to the menin-MLL1 inhibitor VTP50469, with an IC50 similar to what we have previously reported for MLL-rearranged and NPM1c leukemia cells. Menin-MLL1 inhibition upregulates markers of differentiation such as CD11b and downregulates expression of proleukemogenic transcription factors such as Meis1 in NUP98-fusion-transformed leukemia cells. We demonstrate that MLL1 and the NUP98 fusion protein itself are evicted from chromatin at a critical set of genes that are essential for the maintenance of the malignant phenotype. In addition to these in vitro studies, we established patient-derived xenograft (PDX) models of NUP98-fusion-driven AML to test the in vivo efficacy of menin-MLL1 inhibition. Treatment with VTP50469 significantly prolongs survival of mice engrafted with NUP98-NSD1 and NUP98-JARID1A leukemias. Gene expression analysis revealed that menin-MLL1 inhibition simultaneously suppresses a proleukemogenic gene expression program, including downregulation of the HOXa cluster, and upregulates tissue-specific markers of differentiation. These preclinical results suggest that menin-MLL1 inhibition may represent a rational, targeted therapy for patients with NUP98-rearranged leukemias.
Collapse
Affiliation(s)
- Emily B Heikamp
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Jill A Henrich
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Florian Perner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
- Internal Medicine C, Greifswald University Medical Center, Greifswald, Germany
| | - Eric M Wong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Charles Hatton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Yanhe Wen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Sonali P Barwe
- Nemours Center for Cancer and Blood Disorders/Alfred I. DuPont Hospital for Children, Wilmington, DE
| | | | - Haiming Xu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Hannah J Uckelmann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Sumiko Takao
- Tow Center for Developmental Oncology, Sloan Kettering Institute, and Department of Pediatrics, Weill Medical College of Cornell University, and Memorial Sloan-Kettering Cancer Center, New York, NY; and
| | - Yaniv Kazansky
- Tow Center for Developmental Oncology, Sloan Kettering Institute, and Department of Pediatrics, Weill Medical College of Cornell University, and Memorial Sloan-Kettering Cancer Center, New York, NY; and
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | | | - Edward A Kolb
- Nemours Center for Cancer and Blood Disorders/Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Alex Kentsis
- Tow Center for Developmental Oncology, Sloan Kettering Institute, and Department of Pediatrics, Weill Medical College of Cornell University, and Memorial Sloan-Kettering Cancer Center, New York, NY; and
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| |
Collapse
|
35
|
Bessonova AA, Ghukasyan LG, Baidun LV, Chudinov AV, Nasedkina TV. Detection of Chimeric Transcript NUP98-NSD1 in Pediatric Acute Myeloid Leukemia. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021060054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Yang C, Wang K, Liang Q, Tian TT, Zhong Z. Role of NSD1 as potential therapeutic target in tumor. Pharmacol Res 2021; 173:105888. [PMID: 34536546 DOI: 10.1016/j.phrs.2021.105888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022]
Abstract
Nuclear receptor binding SET Domain Protein 1 (NSD1) is a bifunctional transcriptional regulatory protein that encodes histone methyltransferase. Mono- and di-methylation of H3K36 by NSD1 is mainly primarily involved in the regulation of gene expression, DNA repair, alternative splicing, and other important biological processes. Many types of cancers, including acute myelogenous leukemia (AML), liver cancer, lung cancer, endometrial carcinoma, colorectal cancer, and pancreatic cancer, are associated with NSD1 fusion, missense mutation, nonsense mutation, silent mutation, deletion, and insertion of frameshift, and deletion in a frame. Therefore, targeting NSD1 may be a potential strategy for tumor therapy. An in-depth study of the structure and biological activities of NSD1 sets the groundwork for improving tumor therapy and creating NSD1 inhibitors. This article emphasizes the role of NSD1 in tumorigenesis and the development of NSD1 targeted small-molecule inhibitors.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Tian-Tian Tian
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, Guangdong Province 519087, China.
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
37
|
Czogała M, Balwierz W, Pawińska-Wąsikowska K, Książek T, Bukowska-Strakova K, Czogała W, Sikorska-Fic B, Matysiak M, Skalska-Sadowska J, Wachowiak J, Moj-Hackemer M, Kałwak K, Muszyńska-Rosłan K, Krawczuk-Rybak M, Grabowski D, Kowalczyk J, Maciejka-Kembłowska L, Irga-Jaworska N, Bobeff K, Młynarski W, Tomaszewska R, Szczepański T, Chodała-Grzywacz A, Karolczyk G, Mizia-Malarz A, Mycko K, Badowska W, Zielezińska K, Urasiński T, Urbańska-Rakus J, Ciebiera M, Chaber R, Bartoszewicz N, Wysocki M, Skoczeń S. Advances in the First Line Treatment of Pediatric Acute Myeloid Leukemia in the Polish Pediatric Leukemia and Lymphoma Study Group from 1983 to 2019. Cancers (Basel) 2021; 13:cancers13184536. [PMID: 34572762 PMCID: PMC8472575 DOI: 10.3390/cancers13184536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary We retrospectively analyzed the results of the five consecutive treatment protocols for pediatric acute myeloid leukemia (AML) used in Poland from 1983 to 2019 (excluding promyelocytic, secondary, biphenotypic, and Down syndrome AML). The study included 899 children. The probability of three-year overall, event-free, and relapse-free survival increased from 0.34 ± 0.03 to 0.75 ± 0.05, 0.31 ± 0.03 to 0.67 ± 0.05, and 0.52 ± 0.03 to 0.78 ± 0.05, respectively. A systematic reduction of early deaths and deaths in remission was achieved, while the percentage of relapses decreased only in the last therapeutic period. Surprisingly good results were obtained in the group of patients with unfavorable genetic abnormalities like KMT2A-MLLT10/t(10;11)(p12;q23) and DEK-NUP214/t(6;9)(p23;q24) who were treated in the AML-BFM 2012 Registry, while an unsatisfactory outcome was found in patients with FLT3-ITD. The use of standardized therapeutic protocols with the successive consideration of genetic prognostic factors and advances in supportive care led to a significant improvement in AML treatment outcomes over the last 40 years. Abstract Background: From 1983, standardized therapeutic protocols for pediatric acute myeloid leukemia (AML) based on the BFM group experience were introduced in Poland. We retrospectively analyzed the results of pediatric AML treatment in Poland from 1983 to 2019 (excluding promyelocytic, therapy-related, biphenotypic, and Down syndrome AML). Methods: The study included 899 children suffering from AML treated with the following: AML-PPPLBC 83 (1983–1993, n = 187), AML-PPGLBC 94 (1994–1997, n = 74), AML-PPGLBC 98 (1998–2004, n = 151), AML-BFM 2004 Interim (2004–2015, n = 356), and AML-BFM 2012 (2015–2019, n = 131). Results: The probability of three-year overall survival was 0.34 ± 0.03, 0.37 ± 0.05, 0.54 ± 0.04, 0.67 ± 0.03, and 0.75 ± 0.05; event-free survival was 0.31 ± 0.03, 0.34 ± 0.05, 0.44 ± 0.04, 0.53 ± 0.03, and 0.67 ± 0.05; and relapse-free survival was 0.52 ± 0.03, 0.65 ± 0.05, 0.58 ± 0.04, 0.66 ± 0.03, and 0.78 ± 0.05, respectively, in the subsequent periods. A systematic reduction of early deaths and deaths in remission was achieved, while the percentage of relapses decreased only in the last therapeutic period. Surprisingly good results were obtained in the group of patients treated with AML-BFM 2012 with unfavorable genetic abnormalities like KMT2A-MLLT10/t(10;11)(p12;q23) and DEK-NUP214/t(6;9)(p23;q24), while unsatisfactory outcomes were found in the patients with FLT3-ITD. Conclusions: The use of standardized, systematically modified therapeutic protocols, with the successive consideration of genetic prognostic factors, and advances in supportive care led to a significant improvement in AML treatment outcomes over the last 40 years.
Collapse
Affiliation(s)
- Małgorzata Czogała
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 31-663 Krakow, Poland; (M.C.); (W.B.); (K.P.-W.)
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-663 Krakow, Poland;
| | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 31-663 Krakow, Poland; (M.C.); (W.B.); (K.P.-W.)
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-663 Krakow, Poland;
| | - Katarzyna Pawińska-Wąsikowska
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 31-663 Krakow, Poland; (M.C.); (W.B.); (K.P.-W.)
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-663 Krakow, Poland;
| | - Teofila Książek
- Department of Medical Genetics, Institute of Pediatrics, Jagiellonian University Medical College, 31-663 Krakow, Poland;
| | - Karolina Bukowska-Strakova
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, 31-663 Krakow, Poland;
| | - Wojciech Czogała
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-663 Krakow, Poland;
| | - Barbara Sikorska-Fic
- Department of Oncology, Pediatric Hematology, Transplantology and Pediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland; (B.S.-F.); (M.M.)
| | - Michał Matysiak
- Department of Oncology, Pediatric Hematology, Transplantology and Pediatrics, Medical University of Warsaw, 02-091 Warsaw, Poland; (B.S.-F.); (M.M.)
| | - Jolanta Skalska-Sadowska
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (J.S.-S.); (J.W.)
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (J.S.-S.); (J.W.)
| | - Małgorzata Moj-Hackemer
- Department of Bone Marrow Transplantation, Pediatric Oncology and Hematology, Wroclaw Medical University, 50-556 Wrocław, Poland; (M.M.-H.); (K.K.)
| | - Krzysztof Kałwak
- Department of Bone Marrow Transplantation, Pediatric Oncology and Hematology, Wroclaw Medical University, 50-556 Wrocław, Poland; (M.M.-H.); (K.K.)
| | - Katarzyna Muszyńska-Rosłan
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-276 Bialystok, Poland; (K.M.-R.); (M.K.-R.)
| | - Maryna Krawczuk-Rybak
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, 15-276 Bialystok, Poland; (K.M.-R.); (M.K.-R.)
| | - Dominik Grabowski
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-090 Lublin, Poland; (D.G.); (J.K.)
| | - Jerzy Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-090 Lublin, Poland; (D.G.); (J.K.)
| | - Lucyna Maciejka-Kembłowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-211 Gdansk, Poland; (L.M.-K.); (N.I.-J.)
| | - Ninela Irga-Jaworska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-211 Gdansk, Poland; (L.M.-K.); (N.I.-J.)
| | - Katarzyna Bobeff
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland; (K.B.); (W.M.)
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland; (K.B.); (W.M.)
| | - Renata Tomaszewska
- Department of Pediatrics Hematology and Oncology, Medical University of Silesia, 41-800 Zabrze, Poland; (R.T.); (T.S.)
| | - Tomasz Szczepański
- Department of Pediatrics Hematology and Oncology, Medical University of Silesia, 41-800 Zabrze, Poland; (R.T.); (T.S.)
| | - Agnieszka Chodała-Grzywacz
- Department of Pediatric Hematology and Oncology, Regional Polyclinic Hospital in Kielce, 25-736 Kielce, Poland; (A.C.-G.); (G.K.)
| | - Grażyna Karolczyk
- Department of Pediatric Hematology and Oncology, Regional Polyclinic Hospital in Kielce, 25-736 Kielce, Poland; (A.C.-G.); (G.K.)
| | - Agnieszka Mizia-Malarz
- Department of Oncology, Hematology and Chemotherapy, Upper Silesia Children’s Care Health Centre, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Katarzyna Mycko
- Department of Pediatrics and Hematology and Oncology, Province Children’s Hospital, 10-561 Olsztyn, Poland; (K.M.); (W.B.)
| | - Wanda Badowska
- Department of Pediatrics and Hematology and Oncology, Province Children’s Hospital, 10-561 Olsztyn, Poland; (K.M.); (W.B.)
| | - Karolina Zielezińska
- Department of Pediatrics, Hematology and Oncology, Pomeranian Medical University, 71-252 Szczecin, Poland; (K.Z.); (T.U.)
| | - Tomasz Urasiński
- Department of Pediatrics, Hematology and Oncology, Pomeranian Medical University, 71-252 Szczecin, Poland; (K.Z.); (T.U.)
| | - Justyna Urbańska-Rakus
- Department of Pediatrics, Hematology and Oncology, City Hospital, 41-500 Chorzow, Poland;
| | - Małgorzata Ciebiera
- Department of Pediatric Oncohematology, Clinical Province Hospital of Rzeszow, 35-301 Rzeszów, Poland; (M.C.); (R.C.)
| | - Radosław Chaber
- Department of Pediatric Oncohematology, Clinical Province Hospital of Rzeszow, 35-301 Rzeszów, Poland; (M.C.); (R.C.)
- Department of Pediatrics, Institute of Medical Sciences, Medical College, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Natalia Bartoszewicz
- Department of Paediatrics, Haematology and Oncology, Nicolaus Copernicus University in Toruń Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (N.B.); (M.W.)
| | - Mariusz Wysocki
- Department of Paediatrics, Haematology and Oncology, Nicolaus Copernicus University in Toruń Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland; (N.B.); (M.W.)
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, 31-663 Krakow, Poland; (M.C.); (W.B.); (K.P.-W.)
- Department of Pediatric Oncology and Hematology, University Children Hospital, 30-663 Krakow, Poland;
- Correspondence: ; Tel.: +48-123339220
| |
Collapse
|
38
|
Lim HJ, Lee JH, Lee YE, Baek HJ, Kook H, Park JH, Lee SY, Choi HW, Choi HJ, Kee SJ, Shin JH, Shin MG. The First Korean Case of NUP98-NSD1 and a Novel SNRK-ETV6 Fusion in a Pediatric Therapy-related Acute Myeloid Leukemia Patient Detected by Targeted RNA Sequencing. Ann Lab Med 2021; 41:443-446. [PMID: 33536367 PMCID: PMC7884187 DOI: 10.3343/alm.2021.41.4.443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ha Jin Lim
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jun Hyung Lee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Young Eun Lee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea.,Brain Korea 21 Plus Project, Chonnam National University Medical School, Gwangju, Korea
| | - Hee-Jo Baek
- Department of Pediatrics, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hoon Kook
- Department of Pediatrics, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Ju Heon Park
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Seung Yeob Lee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyun-Woo Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyun-Jung Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea.,Brain Korea 21 Plus Project, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
39
|
Quessada J, Cuccuini W, Saultier P, Loosveld M, Harrison CJ, Lafage-Pochitaloff M. Cytogenetics of Pediatric Acute Myeloid Leukemia: A Review of the Current Knowledge. Genes (Basel) 2021; 12:924. [PMID: 34204358 PMCID: PMC8233729 DOI: 10.3390/genes12060924] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023] Open
Abstract
Pediatric acute myeloid leukemia is a rare and heterogeneous disease in relation to morphology, immunophenotyping, germline and somatic cytogenetic and genetic abnormalities. Over recent decades, outcomes have greatly improved, although survival rates remain around 70% and the relapse rate is high, at around 30%. Cytogenetics is an important factor for diagnosis and indication of prognosis. The main cytogenetic abnormalities are referenced in the current WHO classification of acute myeloid leukemia, where there is an indication for risk-adapted therapy. The aim of this article is to provide an updated review of cytogenetics in pediatric AML, describing well-known WHO entities, as well as new subgroups and germline mutations with therapeutic implications. We describe the main chromosomal abnormalities, their frequency according to age and AML subtypes, and their prognostic relevance within current therapeutic protocols. We focus on de novo AML and on cytogenetic diagnosis, including the practical difficulties encountered, based on the most recent hematological and cytogenetic recommendations.
Collapse
Affiliation(s)
- Julie Quessada
- Hematological Cytogenetics Laboratory, Timone Children’s Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille University, 13005 Marseille, France;
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France;
| | - Wendy Cuccuini
- Hematological Cytogenetics Laboratory, Saint-Louis Hospital, Assistance Publique des Hôpitaux de Paris (APHP), 75010 Paris, France;
- Groupe Francophone de Cytogénétique Hématologique (GFCH), 1 Avenue Claude Vellefaux, 75475 Paris, France
| | - Paul Saultier
- APHM, La Timone Children’s Hospital Department of Pediatric Hematology and Oncology, 13005 Marseille, France;
- Faculté de Médecine, Aix Marseille University, INSERM, INRAe, C2VN, 13005 Marseille, France
| | - Marie Loosveld
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France;
- Hematology Laboratory, Timone Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group Translational and Clinical Research Institute, Newcastle University Centre for Cancer Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Marina Lafage-Pochitaloff
- Hematological Cytogenetics Laboratory, Timone Children’s Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille University, 13005 Marseille, France;
- Groupe Francophone de Cytogénétique Hématologique (GFCH), 1 Avenue Claude Vellefaux, 75475 Paris, France
| |
Collapse
|
40
|
Ma Q, Guo Y, Lan X, Wang G, Sun W. Novel combined variants of WT1 and TET2 in a refractory and recurrent AML patient. BMC Med Genomics 2021; 14:158. [PMID: 34120595 PMCID: PMC8201863 DOI: 10.1186/s12920-021-01002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Somatic mutations in Wilms' tumor 1 (WT1) and tet methylcytosine dioxygenase 2 (TET2) genes were separately perceived as contributors to hematopoietic disorders and usually thought to have a mutually exclusive effect in acute myeloid leukemia (AML). However, we found novel WT1 and TET2 variants persistently co-existed in a refractory and recurrent AML patient with t(9;11)(p21.3;q23.3); KMT2A-MLLT3, and were only detectable genetic alteration in early recurrence. Hence, these two novel variants were further investigated in patient's family, and the potential effect on disease progression was evaluated at follow-up. CASE PRESENTATION A 27-year-old male was diagnosed with AML, having t(9;11)(p21.3;q23.3); KMT2A-MLLT3, accompanied by WT1 (NM_024426.6:exon7:c.1109G>C:p.Arg370Pro) and TET2 (NM_001127208.3:exon11:c.5530G>A:p.Asp1844Asn) variants. After two cycles of induction chemotherapy, complete remission was achieved. A consolidation treatment was then completed. However, the evaluation of the bone marrow revealed that early recurrence, WT1 (p.Arg370Pro) and TET2 (p.Asp1844Asn) variants still detectable, instead of KMT2A-MLLT3. Subsequently, these two variants were proved to be germline variants, which inherited from father and mother respectively. And the patient's elder brother also carried TET2 (p.Asp1844Asn) variant. A sequential allogeneic HLA-matched sible hematopoietic stem cell transplantation (allo-HSCT) was carried out, and the donor is the patient's elder brother, the original two variants of patient were replaced by the donor-derived TET2 (p.Asp1844Asn) variant after allo-HSCT; the patient has remained in complete remission with regular follow-up. CONCLUSIONS In brief, it is firstly reported that WT1 p.Arg370Pro and TET2 p.Asp1844Asn variants co-existed in a refractory and recurrent AML patient by inheritance. These two variants of the patient were replaced with donor-derived TET2 p.Asp1844Asn after allo-HSCT, and the patient has remained in complete remission with regular follow-up.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Hematology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing, 100053, People's Republic of China
| | - Yixian Guo
- Department of Hematology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing, 100053, People's Republic of China
| | - Xiaoxi Lan
- Department of Hematology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing, 100053, People's Republic of China
| | - Guoxiang Wang
- Department of Hematology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing, 100053, People's Republic of China
| | - Wanling Sun
- Department of Hematology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing, 100053, People's Republic of China.
| |
Collapse
|
41
|
Fu W, Huang A, Cheng H, Luo Y, Gao L, Tang G, Yang J, Wang J, Ni X. First case report of a NUP98-PMX1 rearrangement in de novo acute myeloid leukemia and literature review. BMC Med Genomics 2021; 14:130. [PMID: 34001105 PMCID: PMC8130325 DOI: 10.1186/s12920-021-00979-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nucleoporin 98 (NUP98)-paired related homeobox 1 (PMX1) fusion gene, which results from t(1;11)(q23;p15), is rare in patients with acute myeloid leukemia (AML). Currently, only two cases of chronic myeloid leukemia in the accelerated phase or blast crisis and three cases of therapy-related AML have been reported. Here, we first report a patient with de novo AML carrying the NUP98-PMX1 fusion gene. CASE PRESENTATION A 49-year-old man diagnosed with AML presented the karyotype 46,XY,t(1;11)(q23;p15)[20] in bone marrow (BM) cells. Fluorescence in situ hybridization analysis using dual-color break-apart probes showed the typical signal pattern. Reverse transcription-polymerase chain reaction (RT-PCR) analysis suggested the presence of the NUP98-PMX1 fusion transcript. The patient received idarubicin and cytarabine as induction chemotherapy. After 3 weeks, the BM aspirate showed complete remission, and the RT-PCR result for the NUP98-PMX1 fusion gene was negative. Subsequently, the patient received three cycles of high-dose Ara-c as consolidation chemotherapy, after which he underwent partially matched (human leukocyte antigen-DP locus mismatch) unrelated allogeneic hematopoietic stem cell transplantation (HSCT). The follow-up period ended on September 30, 2020 (6 months after HSCT), and the patient exhibited no recurrence or transplantation-related complications. CONCLUSION This is the first report of a patient with de novo AML carrying the NUP98-PMX1 fusion gene. The reported case may contribute to a more comprehensive profile of the NUP98-PMX1 rearrangement, but mechanistic studies are warranted to fully understand the role of this fusion gene in leukemia pathogenesis.
Collapse
Affiliation(s)
- Weijia Fu
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Aijie Huang
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Hui Cheng
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Yanrong Luo
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Lei Gao
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Gusheng Tang
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Jianmin Yang
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Jianmin Wang
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Xiong Ni
- Department of Hematology, Institute of Hematology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
42
|
Barresi V, Di Bella V, Andriano N, Privitera AP, Bonaccorso P, La Rosa M, Iachelli V, Spampinato G, Pulvirenti G, Scuderi C, Condorelli DF, Lo Nigro L. NUP-98 Rearrangements Led to the Identification of Candidate Biomarkers for Primary Induction Failure in Pediatric Acute Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22094575. [PMID: 33925480 PMCID: PMC8123909 DOI: 10.3390/ijms22094575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/17/2022] Open
Abstract
Conventional chemotherapy for acute myeloid leukemia regimens generally encompass an intensive induction phase, in order to achieve a morphological remission in terms of bone marrow blasts (<5%). The majority of cases are classified as Primary Induction Response (PIR); unfortunately, 15% of children do not achieve remission and are defined Primary Induction Failure (PIF). This study aims to characterize the gene expression profile of PIF in children with Acute Myeloid Leukemia (AML), in order to detect molecular pathways dysfunctions and identify potential biomarkers. Given that NUP98-rearrangements are enriched in PIF-AML patients, we investigated the association of NUP98-driven genes in primary chemoresistance. Therefore, 85 expression arrays, deposited on GEO database, and 358 RNAseq AML samples, from TARGET program, were analyzed for “Differentially Expressed Genes” (DEGs) between NUP98+ and NUP98-, identifying 110 highly confident NUP98/PIF-associated DEGs. We confirmed, by qRT-PCR, the overexpression of nine DEGs, selected on the bases of the diagnostic accuracy, in a local cohort of PIF patients: SPINK2, TMA7, SPCS2, CDCP1, CAPZA1, FGFR1OP2, MAN1A2, NT5C3A and SRP54. In conclusion, the integrated analysis of NUP98 mutational analysis and transcriptome profiles allowed the identification of novel putative biomarkers for the prediction of PIF in AML.
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy; (V.B.); (V.D.B.); (A.P.P.); (G.S.); (C.S.)
| | - Virginia Di Bella
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy; (V.B.); (V.D.B.); (A.P.P.); (G.S.); (C.S.)
| | - Nellina Andriano
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, 95123 Catania, Italy; (N.A.); (P.B.); (M.L.R.); (V.I.); (G.P.); (L.L.N.)
- Center of Pediatric Hematology-Oncology, Azienda Policlinico–San Marco, 95123 Catania, Italy
| | - Anna Provvidenza Privitera
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy; (V.B.); (V.D.B.); (A.P.P.); (G.S.); (C.S.)
| | - Paola Bonaccorso
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, 95123 Catania, Italy; (N.A.); (P.B.); (M.L.R.); (V.I.); (G.P.); (L.L.N.)
- Center of Pediatric Hematology-Oncology, Azienda Policlinico–San Marco, 95123 Catania, Italy
| | - Manuela La Rosa
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, 95123 Catania, Italy; (N.A.); (P.B.); (M.L.R.); (V.I.); (G.P.); (L.L.N.)
- Center of Pediatric Hematology-Oncology, Azienda Policlinico–San Marco, 95123 Catania, Italy
| | - Valeria Iachelli
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, 95123 Catania, Italy; (N.A.); (P.B.); (M.L.R.); (V.I.); (G.P.); (L.L.N.)
- Center of Pediatric Hematology-Oncology, Azienda Policlinico–San Marco, 95123 Catania, Italy
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy; (V.B.); (V.D.B.); (A.P.P.); (G.S.); (C.S.)
| | - Giulio Pulvirenti
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, 95123 Catania, Italy; (N.A.); (P.B.); (M.L.R.); (V.I.); (G.P.); (L.L.N.)
- Center of Pediatric Hematology-Oncology, Azienda Policlinico–San Marco, 95123 Catania, Italy
| | - Chiara Scuderi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy; (V.B.); (V.D.B.); (A.P.P.); (G.S.); (C.S.)
| | - Daniele F. Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy; (V.B.); (V.D.B.); (A.P.P.); (G.S.); (C.S.)
- Correspondence:
| | - Luca Lo Nigro
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, 95123 Catania, Italy; (N.A.); (P.B.); (M.L.R.); (V.I.); (G.P.); (L.L.N.)
- Center of Pediatric Hematology-Oncology, Azienda Policlinico–San Marco, 95123 Catania, Italy
| |
Collapse
|
43
|
Wang Y, Weng WJ, Zhou DH, Fang JP, Mishra S, Chai L, Xu LH. Wilms Tumor 1 Mutations Are Independent Poor Prognostic Factors in Pediatric Acute Myeloid Leukemia. Front Oncol 2021; 11:632094. [PMID: 33968731 PMCID: PMC8096913 DOI: 10.3389/fonc.2021.632094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The prognostic impact of Wilms tumor 1 (WT1) mutations remains controversial for patients with acute myeloid leukemia (AML). Here, we aimed to determine the clinical implication of WT1 mutations in a large cohort of pediatric AML. The clinical data of 870 pediatric patients with AML were downloaded from the therapeutically applicable research to generate effective treatment (TARGET) dataset. We analyzed the prevalence, clinical profile, and prognosis of AML patients with WT1 mutations in this cohort. Our results showed that 6.7% of total patients harbored WT1 mutations. These WT1 mutations were closely associated with normal cytogenetics (P<0.001), FMS-like tyrosine kinase 3/internal tandem duplication (FLT3/ITD) mutations (P<0.001), and low complete remission induction rates (P<0.01). Compared to the patients without WT1 mutations, patients with WT1 mutations had a worse 5-year event-free survival (21.7 ± 5.5% vs 48.9 ± 1.8%, P<0.001) and a worse overall survival (41.4 ± 6.6% vs 64.3 ± 1.7%, P<0.001). Moreover, patients with both WT1 and FLT3/ITD mutations had a dismal prognosis. Compared to chemotherapy alone, hematopoietic stem cell transplantation tended to improve the prognoses of WT1-mutated patients. Multivariate analysis demonstrated that WT1 mutations conferred an independent adverse impact on event-free survival (hazard ratio 1.910, P = 0.001) and overall survival (hazard ratio 1.709, P = 0.020). In conclusion, our findings have demonstrated that WT1 mutations are independent poor prognostic factors in pediatric AML.
Collapse
Affiliation(s)
- Yin Wang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jun Weng
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dun-Hua Zhou
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-Pei Fang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Srishti Mishra
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Chai
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Lu-Hong Xu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Noort S, Wander P, Alonzo TA, Smith J, Ries RE, Gerbing RB, Dolman MEM, Locatelli F, Reinhardt D, Baruchel A, Stary J, Molenaar JJ, Stam RW, van den Heuvel-Eibrink MM, Zwaan MC, Meshinchi S. The clinical and biological characteristics of NUP98-KDM5A in pediatric acute myeloid leukemia. Haematologica 2021; 106:630-634. [PMID: 32381579 PMCID: PMC7849578 DOI: 10.3324/haematol.2019.236745] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/29/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sanne Noort
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children Hospital Rotterdam, The Netherlands
| | - Priscilla Wander
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Todd A Alonzo
- Children's Oncology Group, Monrovia, California, USA
| | - Jenny Smith
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Rhonda E Ries
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - M Emmy M Dolman
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Franco Locatelli
- IRCCS Ospedale Bambino Gesú, Sapienza, University of Rome, Rome, Italy
| | - Dirk Reinhardt
- AML-BFM Study Group, Pediatric Hematology and Oncology, Essen, Germany
| | - Andre Baruchel
- University Hospital Robert Debré and Paris Diderot University, Paris, France
| | - Jan Stary
- CPH, University Hospital Motol and Charles University, Prague, Czech Republic
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ronald W Stam
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Michel C Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Soheil Meshinchi
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, USA
| |
Collapse
|
45
|
Conneely SE, Stevens AM. Acute Myeloid Leukemia in Children: Emerging Paradigms in Genetics and New Approaches to Therapy. Curr Oncol Rep 2021; 23:16. [PMID: 33439382 PMCID: PMC7806552 DOI: 10.1007/s11912-020-01009-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Acute myeloid leukemia (AML) in children remains a challenging disease to cure with suboptimal outcomes particularly when compared to the more common lymphoid leukemias. Recent advances in the genetic characterization of AML have enhanced understanding of individualized patient risk, which has also led to the development of new therapeutic strategies. Here, we review key cytogenetic and molecular features of pediatric AML and how new therapies are being used to improve outcomes. RECENT FINDINGS Recent studies have revealed an increasing number of mutations, including WT1, CBFA2T3-GLIS2, and KAT6A fusions, DEK-NUP214 and NUP98 fusions, and specific KMT2A rearrangements, which are associated with poor outcomes. However, outcomes are starting to improve with the addition of therapies such as gemtuzumab ozogamicin and FLT3 inhibitors, initially developed in adult AML. The combination of advanced risk stratification and ongoing improvements and innovations in treatment strategy will undoubtedly lead to better outcomes for children with AML.
Collapse
Affiliation(s)
- Shannon E Conneely
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine/Texas Children's Hospital, 6701 Fannin, Suite 1510, Houston, TX, 77030, USA.
| | - Alexandra M Stevens
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine/Texas Children's Hospital, 6701 Fannin, Suite 1510, Houston, TX, 77030, USA
| |
Collapse
|
46
|
Michmerhuizen NL, Klco JM, Mullighan CG. Mechanistic insights and potential therapeutic approaches for NUP98-rearranged hematologic malignancies. Blood 2020; 136:2275-2289. [PMID: 32766874 PMCID: PMC7702474 DOI: 10.1182/blood.2020007093] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleoporin 98 (NUP98) fusion oncoproteins are observed in a spectrum of hematologic malignancies, particularly pediatric leukemias with poor patient outcomes. Although wild-type full-length NUP98 is a member of the nuclear pore complex, the chromosomal translocations leading to NUP98 gene fusions involve the intrinsically disordered and N-terminal region of NUP98 with over 30 partner genes. Fusion partners include several genes bearing homeodomains or having known roles in transcriptional or epigenetic regulation. Based on data in both experimental models and patient samples, NUP98 fusion oncoprotein-driven leukemogenesis is mediated by changes in chromatin structure and gene expression. Multiple cofactors associate with NUP98 fusion oncoproteins to mediate transcriptional changes possibly via phase separation, in a manner likely dependent on the fusion partner. NUP98 gene fusions co-occur with a set of additional mutations, including FLT3-internal tandem duplication and other events contributing to increased proliferation. To improve the currently dire outcomes for patients with NUP98-rearranged malignancies, therapeutic strategies have been considered that target transcriptional and epigenetic machinery, cooperating alterations, and signaling or cell-cycle pathways. With the development of more faithful experimental systems and continued study, we anticipate great strides in our understanding of the molecular mechanisms and therapeutic vulnerabilities at play in NUP98-rearranged models. Taken together, these studies should lead to improved clinical outcomes for NUP98-rearranged leukemia.
Collapse
Affiliation(s)
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
47
|
Winters AC, Maloney KW, Treece AL, Gore L, Franklin AK. Single-center pediatric experience with venetoclax and azacitidine as treatment for myelodysplastic syndrome and acute myeloid leukemia. Pediatr Blood Cancer 2020; 67:e28398. [PMID: 32735397 DOI: 10.1002/pbc.28398] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The BCL-2 inhibitor venetoclax (ven) has revolutionized the treatment of acute myeloid leukemia (AML) in elderly adults, leading to its recent FDA approval for this population in combination regimens. Although extensive data exist for adult myeloid malignancies, there are limited preclinical data on the efficacy and/or dosing of venetoclax for pediatric myelodysplastic syndrome (MDS) or AML and thus little information to guide use of this regimen in pediatric patients. Our objective was to describe our single-center experience with venetoclax in combination with the hypomethylating agent 5-azacitidine (aza) in pediatric patients with MDS or AML. PROCEDURE We conducted a retrospective chart review of patients treated at Children's Hospital Colorado prior to March 2020 with at least one cycle of ven/aza. Patients were included if between the ages of 1 and 25 years with a diagnosis of high-grade MDS or AML. AML patients had relapsed or primary refractory disease or were deemed poor candidates for standard chemotherapy. RESULTS Eight patients received ven/aza, two for high-grade MDS and six for AML. Ven/aza was well tolerated by all patients. The most common adverse events seen with this regimen were gastrointestinal and hematologic. Morphologic responses were seen in six patients including both patients with MDS. All four AML responders became minimal residual disease negative. Three responders have thus far proceeded to allogeneic hematopoietic stem cell transplant following ven/aza. CONCLUSIONS Our clinical experience suggests that ven/aza is a safe and promising regimen that should be further explored with late-phase clinical trials.
Collapse
Affiliation(s)
- Amanda C Winters
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado
| | - Kelly W Maloney
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado
| | - Amy L Treece
- Department of Pathology, Children's Hospital Colorado, Aurora, Colorado
| | - Lia Gore
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado
| | - Anna K Franklin
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
48
|
Targeted Inhibition of the NUP98-NSD1 Fusion Oncogene in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12102766. [PMID: 32993115 PMCID: PMC7600396 DOI: 10.3390/cancers12102766] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary NUP98-NSD1-positive acute myeloid leukemia (AML) frequently shows an additional mutation in Neuroblastoma rat sarcoma (NRAS). However, the synergistic effect of NUP98-NSD1 and NRASG12D in leukemic transformation remained unclear. In addition, NUP98-NSD1 positive AML patients respond poorly to chemotherapy and lack a targeted therapeutic option. Our study aimed to identify the cooperation of NUP98-NSD1 fusion and NRASG12D mutation and to develop a novel therapeutic approach for this AML. We found that NUP98-NSD1 alone can cause leukemia with long latency, and NRASG12D contributes to the aggressiveness of this AML. Additionally, we validated a novel NUP98-NSD1-targeting siRNA/lipid nanoparticle formulation that significantly prolonged the survival of patient-derived xenograft (PDX) mice with NUP98-NSD1-positive AML. Abstract NUP98-NSD1-positive acute myeloid leukemia (AML) is a poor prognostic subgroup that is frequently diagnosed in pediatric cytogenetically normal AML. NUP98-NSD1-positive AML often carries additional mutations in genes including FLT3, NRAS, WT1, and MYC. The purpose of our study was to characterize the cooperative potential of the fusion and its associated Neuroblastoma rat sarcoma (NRAS) mutation. By constitutively expressing NUP98-NSD1 and NRASG12D in a syngeneic mouse model and using a patient-derived xenograft (PDX) model from a NUP98-NSD1-positive AML patient, we evaluated the functional role of these genes and tested a novel siRNA formulation that inhibits the oncogenic driver NUP98-NSD1. NUP98-NSD1 transformed murine bone marrow (BM) cells in vitro and induced AML in vivo. While NRASG12D expression was insufficient to transform cells alone, co-expression of NUP98-NSD1 and NRASG12D enhanced the leukemogenicity of NUP98-NSD1. We developed a NUP98-NSD1-targeting siRNA/lipid nanoparticle formulation that significantly prolonged the survival of the PDX mice. Our study demonstrates that mutated NRAS cooperates with NUP98-NSD1 and shows that direct targeting of the fusion can be exploited as a novel treatment strategy in NUP98-NSD1-positive AML patients.
Collapse
|
49
|
Chen L, Yan HX, Liu XW, Chen WX. Clinical efficacy and safety of 6-thioguanine in the treatment of childhood acute lymphoblastic leukemia: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e20082. [PMID: 32358392 PMCID: PMC7440359 DOI: 10.1097/md.0000000000020082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To systematic review the efficacy and safety of 6-thioguanine (6-TG) in the substitute of 6-mercaptopurine (6-MP) in the treatment for patients with childhood acute lymphoblastic leukemia (ALL) in the maintenance phase, and to explore its clinical application value. It provides theoretical guidance for the maintenance treatment of ALL in children from the perspective of evidence-based medicine. METHODS By means of computer retrieval, Chinese databases were searched: Chinese Biomedical Database (CBM), China national knowledge internet (CNKI), Chongqing Weipu Database (VIP), and Wanfang Database; Foreign databases: PubMed, The Cochrane Library, Embase, and Web of Science were applied to find out randomized controlled trial (RCT) for 6-TG in childhood acute lymphoblastic leukemia. By manual retrieval, documents without electronic edition and related conference papers were retrieved. The retrieval time ranges from the beginning of the establishment of the databases to September 1st, 2019. According to the inclusion, and exclusion criteria by 3 researchers, the literature screening, data extraction, and research methodological quality evaluation were completed. RevMan 5.3 software was applied to evaluate the quality of the included literature, and Stata 12.0 software was used to conduct meta-analysis of the outcome indicators of the included literature. RESULTS This study systematically evaluated the efficacy and safety of 6-TG in the substitute of 6-MP as a maintenance drug for childhood acute lymphoblastic leukemia. Through the key outcome indicators, this study is expected to draw a scientific, practical conclusion for 6-TG in the treatment of childhood acute lymphoblastic leukemia. This conclusion will provide evidence-based medical direction for clinical treatment. CONCLUSION The efficacy and safety of 6-TG in the substitute of 6-MP in the maintenance treatment of childhood acute lymphoblastic leukemia will be confirmed through this study. The conclusions will be published in relevant academic journals. REGISTRATION PROSPERO (registration number is CRD42020150466).
Collapse
|
50
|
Biernacki MA, Bleakley M. Neoantigens in Hematologic Malignancies. Front Immunol 2020; 11:121. [PMID: 32117272 PMCID: PMC7033457 DOI: 10.3389/fimmu.2020.00121] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
T cell cancer neoantigens are created from peptides derived from cancer-specific aberrant proteins, such as mutated and fusion proteins, presented in complex with human leukocyte antigens on the cancer cell surface. Because expression of the aberrant target protein is exclusive to malignant cells, immunotherapy directed against neoantigens should avoid “on-target, off-tumor” toxicity. The efficacy of neoantigen vaccines in melanoma and glioblastoma and of adoptive transfer of neoantigen-specific T cells in epithelial tumors indicates that neoantigens are valid therapeutic targets. Improvements in sequencing technology and innovations in antigen discovery approaches have facilitated the identification of neoantigens. In comparison to many solid tumors, hematologic malignancies have few mutations and thus fewer potential neoantigens. Despite this, neoantigens have been identified in a wide variety of hematologic malignancies. These include mutated nucleophosmin1 and PML-RARA in acute myeloid leukemia, ETV6-RUNX1 fusions and other mutated proteins in acute lymphoblastic leukemia, BCR-ABL1 fusions in chronic myeloid leukemia, driver mutations in myeloproliferative neoplasms, immunoglobulins in lymphomas, and proteins derived from patient-specific mutations in chronic lymphoid leukemias. We will review advances in the field of neoantigen discovery, describe the spectrum of identified neoantigens in hematologic malignancies, and discuss the potential of these neoantigens for clinical translation.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|