1
|
Wang Y, Liu C, Fang C, Peng Q, Qin W, Yan X, Zhang K. Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy. NANO-MICRO LETTERS 2024; 17:30. [PMID: 39347944 PMCID: PMC11442722 DOI: 10.1007/s40820-024-01533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024]
Abstract
Vaccinations are essential for preventing and treating disease, especially cancer nanovaccines, which have gained considerable interest recently for their strong anti-tumor immune capabilities. Vaccines can prompt the immune system to generate antibodies and activate various immune cells, leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery. To enhance the flexibility and targeting of vaccines, nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level, enabling more controlled and precise drug delivery to enhance immune responses. Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials. The small size of these nanomaterials allows for precise targeting of T cells, dendritic cells, or cancer cells, thereby eliciting a more potent anti-tumor response. In this paper, we focus on the classification of carriers for cancer nanovaccines, the roles of different target cells, and clinically tested cancer nanovaccines, discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation, while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.
Collapse
Affiliation(s)
- Yijie Wang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Congrui Liu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Chao Fang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Qiuxia Peng
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
- Department of Stomatology and Central Laboratory, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, NO. 301 Yan-Chang-Zhong Road, Shanghai, 200072, People's Republic of China
| | - Wen Qin
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Xuebing Yan
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, No.2, Bayi West Road, Suining, Xu Zhou, 221000, Jiangsu Province, People's Republic of China.
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
2
|
Kapic A, Sabnis N, Dossou AS, Chavez J, Ceresa L, Gryczynski Z, Fudala R, Dickerman R, Bunnell BA, Lacko AG. Photophysical Characterization and In Vitro Evaluation of α-Mangostin-Loaded HDL Mimetic Nano-Complex in LN-229 Glioblastoma Spheroid Model. Int J Mol Sci 2024; 25:7378. [PMID: 39000485 PMCID: PMC11242846 DOI: 10.3390/ijms25137378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Cytotoxic activity has been reported for the xanthone α-mangostin (AMN) against Glioblastoma multiforme (GBM), an aggressive malignant brain cancer with a poor prognosis. Recognizing that AMN's high degree of hydrophobicity is likely to limit its systemic administration, we formulated AMN using reconstituted high-density lipoprotein (rHDL) nanoparticles. The photophysical characteristics of the formulation, including fluorescence lifetime and steady-state anisotropy, indicated that AMN was successfully incorporated into the rHDL nanoparticles. To our knowledge, this is the first report on the fluorescent characteristics of AMN with an HDL-based drug carrier. Cytotoxicity studies in a 2D culture and 3D spheroid model of LN-229 GBM cells and normal human astrocytes showed an enhanced therapeutic index with the rHDL-AMN formulation compared to the unincorporated AMN and Temozolomide, a standard GBM chemotherapy agent. Furthermore, treatment with the rHDL-AMN facilitated a dose-dependent upregulation of autophagy and reactive oxygen species generation to a greater extent in LN-229 cells compared to astrocytes, indicating the reduced off-target toxicity of this novel formulation. These studies indicate the potential therapeutic benefits to GBM patients via selective targeting using the rHDL-AMN formulation.
Collapse
Affiliation(s)
- Ammar Kapic
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nirupama Sabnis
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Akpedje S Dossou
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jose Chavez
- College of Science and Engineering, Texas Christian University, Fort Worth, TX 76109, USA
| | - Luca Ceresa
- College of Science and Engineering, Texas Christian University, Fort Worth, TX 76109, USA
| | - Zygmunt Gryczynski
- College of Science and Engineering, Texas Christian University, Fort Worth, TX 76109, USA
| | - Rafal Fudala
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rob Dickerman
- Department of Spine Surgery, Neurological and Spine Surgeon, 5575 Frisco Square Blvd, Frisco, TX 75093, USA
| | - Bruce A Bunnell
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Andras G Lacko
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Sabnis N, Raut S, Nagarajan B, Kapic A, Dossou AS, Lothstein L, Fudala R, Bunnell BA, Lacko AG. A Spontaneous Assembling Lipopeptide Nanoconjugate Transporting the Anthracycline Drug N-Benzyladriamycin-14-valerate for Personalized Therapy of Ewing Sarcoma. Bioconjug Chem 2024; 35:187-202. [PMID: 38318778 DOI: 10.1021/acs.bioconjchem.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
To meet the current need for a tumor-selective, targeted therapy regimen associated with reduced toxicity, our laboratory has developed a spontaneously assembled nanostructure that resembles high-density lipoproteins (HDLs). These myristoyl-5A (MYR-5A) nanotransporters are designed to safely transport lipophilic pharmaceuticals, including a novel anthracycline drug (N-benzyladriamycin-14-valerate (AD198)). This formulation has been found to enhance the therapeutic efficacy and reduced toxicity of drugs in preclinical studies of 2D and 3D models of Ewing sarcoma (EWS) and cardiomyocytes. Our findings indicate that the MYR-5A/AD198 nanocomplex delivers its payload selectively to cancer cells via the scavenger receptor type B1 (SR-B1), thus providing a solid proof of concept for the development of an improved and highly effective, potentially personalized therapy for EWS while protecting against treatment-associated cardiotoxicity.
Collapse
Affiliation(s)
- Nirupama Sabnis
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Sangram Raut
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Bhavani Nagarajan
- North Texas Research Eye Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Ammar Kapic
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Akpedje Serena Dossou
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Leonard Lothstein
- Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee 38103, United States
| | - Rafal Fudala
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Bruce A Bunnell
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Andras G Lacko
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
4
|
Lim XY, Capinpin SM, Bolem N, Foo ASC, Yip WG, Kumar AP, Teh DBL. Biomimetic nanotherapeutics for targeted drug delivery to glioblastoma multiforme. Bioeng Transl Med 2023; 8:e10483. [PMID: 37206213 PMCID: PMC10189489 DOI: 10.1002/btm2.10483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 02/17/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with poor prognosis and high mortality, with no curative treatment to date as limited trafficking across the blood-brain barrier (BBB) combined with tumor heterogeneity often leads to therapeutic failure. Although modern medicine poses a wide range of drugs that are otherwise efficacious in treating other tumors, they often do not achieve therapeutic concentrations in the brain, hence driving the need for more effective drug delivery strategies. Nanotechnology, an interdisciplinary field, has been gaining immense popularity in recent years for remarkable advancements such as nanoparticle (NP) drug carriers, which possess extraordinary versatility in modifying surface coatings to home in on target cells, including those beyond the BBB. In this review, we will be highlighting recent developments in biomimetic NPs in GBM therapy and how these allowed us to overcome the physiological and anatomical challenges that have long plagued GBM treatment.
Collapse
Affiliation(s)
- Xin Yuan Lim
- MBBS ProgrammeYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Sharah Mae Capinpin
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer ResearchYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Nagarjun Bolem
- Department of Surgery, Division of NeurosurgeryNational University HospitalSingaporeSingapore
| | - Aaron Song Chuan Foo
- MBBS ProgrammeYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of Surgery, Division of NeurosurgeryNational University HospitalSingaporeSingapore
| | - Wai‐Cheong George Yip
- Department of AnatomyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Alan Prem Kumar
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer ResearchYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Daniel Boon Loong Teh
- Department of AnatomyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of OphthalmologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- NeurobiologyLife Science Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
5
|
Wei B, Li Y, Ao M, Shao W, Wang K, Rong T, Zhou Y, Chen Y. Ganglioside GM3-Functionalized Reconstituted High-Density Lipoprotein (GM3-rHDL) as a Novel Nanocarrier Enhances Antiatherosclerotic Efficacy of Statins in apoE -/- C57BL/6 Mice. Pharmaceutics 2022; 14:pharmaceutics14112534. [PMID: 36432725 PMCID: PMC9698139 DOI: 10.3390/pharmaceutics14112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Previously, we found that exogenous ganglioside GM3 had an antiatherosclerotic efficacy and that its antiatherosclerotic efficacy could be enhanced by reconstituted high-density lipoprotein (rHDL). In this study, we hypothesized that GM3-functionalized rHDL (i.e., GM3-rHDL) as a nanocarrier can promote the efficacy of traditional antiatherosclerotic drugs (e.g., statins). To test this hypothesis, lovastatin (LT) was used as a representative of statins, and LT-loaded GM3-rHDL nanoparticle (LT-GM3-rHDL or LT@GM3-rHDL; a mean size of ~142 nm) and multiple controls (e.g., GM3-rHDL without LT, LT-loaded rHDL or LT-rHDL, and other nanoparticles) were prepared. By using two different microsphere-based methods, the presences of apolipoprotein A-I (apoA-I) and/or GM3 in nanoparticles and the apoA-I-mediated macrophage-targeting ability of apoA-I/rHDL-containing nanoparticles were verified in vitro. Moreover, LT-GM3-rHDL nanoparticle had a slowly sustained LT release in vitro and the strongest inhibitory effect on the foam cell formation of macrophages (a key event of atherogenesis). After single administration of rHDL-based nanoparticles, a higher LT concentration was detected shortly in the atherosclerotic plaques of apoE-/- mice than non-rHDL-based nanoparticles, suggesting the in vivo plaque-targeting ability of apoA-I/rHDL-containing nanoparticles. Finally, among all nanoparticles LT-GM3-rHDL induced the largest decreases in the contents of blood lipids and in the areas of atherosclerotic plaques at various aortic locations in apoE-/- mice fed a high-fat diet for 12 weeks, supporting that LT-GM3-rHDL has the best in vivo antiatherosclerotic efficacy among the tested nanoparticles. Our data imply that GM3-functionalized rHDL (i.e., GM3-rHDL) can be utilized as a novel nanocarrier to enhance the efficacy of traditional antiatherosclerotic drugs (e.g., statins).
Collapse
Affiliation(s)
- Bo Wei
- College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Yuanfang Li
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Meiying Ao
- School of Chinese Medicine & Life Science, Jiangxi University of Chinese Medicine, Nanchang 330025, China
| | - Wenxiang Shao
- School of Chinese Medicine & Life Science, Jiangxi University of Chinese Medicine, Nanchang 330025, China
| | - Kun Wang
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Tong Rong
- College of Life Sciences, Nanchang University, Nanchang 330031, China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Yun Zhou
- College of Life Sciences, Nanchang University, Nanchang 330031, China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Yong Chen
- College of Life Sciences, Nanchang University, Nanchang 330031, China
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China
- Correspondence: or ; Tel./Fax: +86-(791)-83969963
| |
Collapse
|
6
|
Deuringer B, Härdtner C, Krebs K, Thomann R, Holzer M, Hilgendorf I, Süss R. Everolimus-Loaded Reconstituted High-Density Lipoprotein Prepared by a Novel Dual Centrifugation Approach for Anti-Atherosclerotic Therapy. Int J Nanomedicine 2022; 17:5081-5097. [PMID: 36340183 PMCID: PMC9635393 DOI: 10.2147/ijn.s381483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 01/24/2023] Open
Abstract
PURPOSE The conventional techniques for the preparation of reconstituted high-density lipoprotein (rHDL) are hampered by long process times, the need for large amounts of starting material, and harsh preparation conditions. Here, we present a novel rHDL preparation method to overcome these challenges. Furthermore, we propose a dual mode of action for rHDL loaded with the immunosuppressant drug everolimus (Eve-rHDL) in the context of atherosclerosis and cardiovascular disease. METHODS We use dual centrifugation for rHDL nanoparticle preparation and characterize the physicochemical properties by NS-TEM, N-PAGE, DLS, AF4, and HPLC. In addition, we determine the biological efficacy in human and murine cell culture with regard to cellular uptake, cholesterol efflux, and proliferation. RESULTS We confirm the characteristic particle size of 10 nm, discoidal morphology, and chemical composition of the rHDL preparations and identify dual centrifugation as an ideal method for cost-effective aseptic rHDL manufacturing. rHDL can be prepared in approx. 1.5 h with batch sizes as little as 89 µL. Moreover, we demonstrate the cholesterol efflux capacity and anti-proliferative activity of Eve-rHDL in vitro. The anti-proliferative effects were comparable to free Eve, thus confirming the suitability of rHDL as a capable drug delivery vehicle. CONCLUSION Eve-rHDL shows great efficacy in vitro and may further be employed to target atherosclerotic plaques in vivo. Highly effective anti-atherosclerotic therapy might be feasible by reducing both inflammatory- and lipid burden of the plaques. Dual centrifugation is an ideal technique for the efficient application of the rHDL platform in cardiovascular disease and beyond.
Collapse
Affiliation(s)
- Benedikt Deuringer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, 79104, Germany,Correspondence: Benedikt Deuringer, Pharmaceutical Technology and Biopharmacy, Sonnenstraße 5, Freiburg, 79104, Germany, Tel +49 761 203 6329, Fax +49 761 203 6326, Email
| | - Carmen Härdtner
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Katja Krebs
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Ralf Thomann
- FMF Materials Research Center, University of Freiburg, Freiburg, 79104, Germany
| | - Martin Holzer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, 79104, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany,Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, 79110, Germany
| | - Regine Süss
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
7
|
Rong T, Wei B, Ao M, Zhao H, Li Y, Zhang Y, Qin Y, Zhou J, Zhou F, Chen Y. Enhanced Anti-Atherosclerotic Efficacy of pH-Responsively Releasable Ganglioside GM3 Delivered by Reconstituted High-Density Lipoprotein. Int J Mol Sci 2021; 22:ijms222413624. [PMID: 34948420 PMCID: PMC8704253 DOI: 10.3390/ijms222413624] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, the atheroprotective role of endogenous GM3 and an atherogenesis-inhibiting effect of exogenous GM3 suggested a possibility of exogenous GM3 being recruited as an anti-atherosclerotic drug. This study seeks to endow exogenous GM3 with atherosclerotic targetability via reconstituted high-density lipoprotein (rHDL), an atherosclerotic targeting drug nanocarrier. Unloaded rHDL, rHDL loaded with exogenous GM3 at a low concentration (GM3L-rHDL), and rHDL carrying GM3 at a relatively high concentration (GM3H-rHDL) were prepared and characterized. The inhibitory effect of GM3-rHDL on lipid deposition in macrophages was confirmed, and GM3-rHDL did not affect the survival of red blood cells. In vivo experiments using ApoE-/- mice fed a high fat diet further confirmed the anti-atherosclerotic efficacy of exogenous GM3 and demonstrated that GM3 packed in HDL nanoparticles (GM3-rHDL) has an enhanced anti-atherosclerotic efficacy and a reduced effective dose of GM3. Then, the macrophage- and atherosclerotic plaque-targeting abilities of GM3-rHD, most likely via the interaction of ApoA-I on GM3-rHDL with its receptors (e.g., SR-B1) on cells, were certified via a microsphere-based method and an aortic fragment-based method, respectively. Moreover, we found that solution acidification enhanced GM3 release from GM3-rHDL nanoparticles, implying the pH-responsive GM3 release when GM3-rHDL enters the acidic atherosclerotic plaques from the neutral blood. The rHDL-mediated atherosclerotic targetability and pH-responsive GM3 release of GM3-rHDL enhanced the anti-atherosclerotic efficacy of exogenous GM3. The development of the GM3-rHDL nanoparticle may help with the application of exogenous GM3 as a clinical drug. Moreover, the data imply that the GM3-rHDL nanoparticle has the potential of being recruited as a drug nanocarrier with atherosclerotic targetability and enhanced anti-atherosclerotic efficacy.
Collapse
Affiliation(s)
- Tong Rong
- College of Life Sciences, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330031, China; (T.R.); (B.W.); (Y.Q.); (F.Z.)
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
| | - Bo Wei
- College of Life Sciences, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330031, China; (T.R.); (B.W.); (Y.Q.); (F.Z.)
| | - Meiying Ao
- School of Basic Medical Sciences, Jiangxi University of Chinese Medicine, Nanchang 330025, China;
| | - Haonan Zhao
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
| | - Yuanfang Li
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
| | - Yang Zhang
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
| | - Ying Qin
- College of Life Sciences, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330031, China; (T.R.); (B.W.); (Y.Q.); (F.Z.)
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
| | - Jinhua Zhou
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
| | - Fenfen Zhou
- College of Life Sciences, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330031, China; (T.R.); (B.W.); (Y.Q.); (F.Z.)
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
| | - Yong Chen
- College of Life Sciences, Nanchang University, 999 Xuefu Ave, Honggutan District, Nanchang 330031, China; (T.R.); (B.W.); (Y.Q.); (F.Z.)
- Jiangxi Key Laboratory for Microscale Interdisciplinary Study, Institute for Advanced Study, Nanchang University, Nanchang 330031, China; (H.Z.); (Y.L.); (Y.Z.); (J.Z.)
- Correspondence: ; Tel./Fax: +86-791-8396-9963
| |
Collapse
|
8
|
Ossoli A, Wolska A, Remaley AT, Gomaraschi M. High-density lipoproteins: A promising tool against cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159068. [PMID: 34653581 DOI: 10.1016/j.bbalip.2021.159068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
High-density lipoproteins (HDL) are well known for their protective role against the development and progression of atherosclerosis. Atheroprotection is mainly due to the key role of HDL within the reverse cholesterol transport, and to their ability to exert a series of antioxidant and anti-inflammatory activities. Through the same mechanisms HDL could also affect cancer cell proliferation and tumor progression. Many types of cancers share common alterations of cellular metabolism, including lipid metabolism. In this context, not only fatty acids but also cholesterol and its metabolites play a key role. HDL were shown to reduce cancer cell content of cholesterol, overall rewiring cholesterol homeostasis. In addition, HDL reduce oxidative stress and the levels of pro-inflammatory molecules in cancer cells and in the tumor microenvironment (TME). Here, HDL can also help in reverting tumor immune escape and in inhibiting angiogenesis. Interestingly, HDL are good candidates for drug delivery, targeting antineoplastic agents to the tumor mass mainly through their binding to the scavenger receptor BI. Since they could affect cancer development and progression per se, HDL-based drug delivery systems may render cancer cells more sensitive to antitumor agents and reduce the development of drug resistance.
Collapse
Affiliation(s)
- Alice Ossoli
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monica Gomaraschi
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
9
|
Pandey M, Cuddihy G, Gordon JA, Cox ME, Wasan KM. Inhibition of Scavenger Receptor Class B Type 1 (SR-B1) Expression and Activity as a Potential Novel Target to Disrupt Cholesterol Availability in Castration-Resistant Prostate Cancer. Pharmaceutics 2021; 13:1509. [PMID: 34575583 PMCID: PMC8467449 DOI: 10.3390/pharmaceutics13091509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
There have been several studies that have linked elevated scavenger receptor class b type 1 (SR-B1) expression and activity to the development and progression of castration-resistant prostate cancer (CRPC). SR-B1 facilitates the influx of cholesterol to the cell from lipoproteins in systemic circulation. This influx of cholesterol may be important for many cellular functions, including the synthesis of androgens. Castration-resistant prostate cancer tumors can synthesize androgens de novo to supplement the loss of exogenous sources often induced by androgen deprivation therapy. Silencing of SR-B1 may impact the ability of prostate cancer cells, particularly those of the castration-resistant state, to maintain the intracellular supply of androgens by removing a supply of cholesterol. SR-B1 expression is elevated in CRPC models and has been linked to poor survival of patients. The overarching belief has been that cholesterol modulation, through either synthesis or uptake inhibition, will impact essential signaling processes, impeding the proliferation of prostate cancer. The reduction in cellular cholesterol availability can impede prostate cancer proliferation through both decreased steroid synthesis and steroid-independent mechanisms, providing a potential therapeutic target for the treatment of prostate cancer. In this article, we discuss and highlight the work on SR-B1 as a potential novel drug target for CRPC management.
Collapse
Affiliation(s)
- Mitali Pandey
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Grace Cuddihy
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Jacob A. Gordon
- Oncology Bioscience, Oncology R&D, AstraZeneca, Boston, MA 02451, USA;
| | - Michael E. Cox
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Kishor M. Wasan
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| |
Collapse
|
10
|
Mei Y, Tang L, Xiao Q, Zhang Z, Zhang Z, Zang J, Zhou J, Wang Y, Wang W, Ren M. Reconstituted high density lipoprotein (rHDL), a versatile drug delivery nanoplatform for tumor targeted therapy. J Mater Chem B 2021; 9:612-633. [PMID: 33306079 DOI: 10.1039/d0tb02139c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
rHDL is a synthesized drug delivery nanoplatform exhibiting excellent biocompatibility, which possesses most of the advantages of HDL. rHDL shows almost no toxicity and can be degraded to non-toxic substances in vivo. The severe limitation of the application of various antitumor agents is mainly due to their low bioavailability, high toxicity, poor stability, etc. Favorably, antitumor drug-loaded rHDL nanoparticles (NPs), which are known as an important drug delivery system (DDS), help to change the situation a lot. This DDS shows an outstanding active-targeting ability towards tumor cells and improves the therapeutic effect during antitumor treatment while overcoming the shortcomings mentioned above. In the following text, we will mainly focus on the various applications of rHDL in tumor targeted therapy by describing the properties, preparation, receptor active-targeting ability and antitumor effects of antineoplastic drug-loaded rHDL NPs.
Collapse
Affiliation(s)
- Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Perini G, Giulimondi F, Palmieri V, Augello A, Digiacomo L, Quagliarini E, Pozzi D, Papi M, Caracciolo G. Inhibiting the Growth of 3D Brain Cancer Models with Bio-Coronated Liposomal Temozolomide. Pharmaceutics 2021; 13:pharmaceutics13030378. [PMID: 33809262 PMCID: PMC7999290 DOI: 10.3390/pharmaceutics13030378] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/16/2023] Open
Abstract
Nanoparticles (NPs) have emerged as an effective means to deliver anticancer drugs into the brain. Among various forms of NPs, liposomal temozolomide (TMZ) is the drug-of-choice for the treatment and management of brain tumours, but its therapeutic benefit is suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumour penetration of liposomal TMZ can be a vital obstacle. Recently, the protein corona, i.e., the layer of plasma proteins that surround NPs after exposure to human plasma, has emerged as an endogenous trigger that mostly controls their anticancer efficacy. Exposition of particular biomolecules from the corona referred to as protein corona fingerprints (PCFs) may facilitate interactions with specific receptors of target cells, thus, promoting efficient internalization. In this work, we have synthesized a set of four TMZ-encapsulating nanomedicines made of four cationic liposome (CL) formulations with systematic changes in lipid composition and physical−chemical properties. We have demonstrated that precoating liposomal TMZ with a protein corona made of human plasma proteins can increase drug penetration in a 3D brain cancer model derived from U87 human glioblastoma multiforme cell line leading to marked inhibition of tumour growth. On the other side, by fine-tuning corona composition we have also provided experimental evidence of a non-unique effect of the corona on the tumour growth for all the complexes investigated, thus, clarifying that certain PCFs (i.e., APO-B and APO-E) enable favoured interactions with specific receptors of brain cancer cells. Reported results open new perspectives into the development of corona-coated liposomal drugs with enhanced tumour penetration and antitumour efficacy.
Collapse
Affiliation(s)
- Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (V.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
| | - Francesca Giulimondi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (F.G.); (L.D.); (D.P.)
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (V.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Alberto Augello
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (F.G.); (L.D.); (D.P.)
| | - Erica Quagliarini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy;
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (F.G.); (L.D.); (D.P.)
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (V.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy;
- Correspondence: (M.P.); (G.C.)
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (F.G.); (L.D.); (D.P.)
- Correspondence: (M.P.); (G.C.)
| |
Collapse
|
12
|
Anthony DP, Hegde M, Shetty SS, Rafic T, Mutalik S, Rao BSS. Targeting receptor-ligand chemistry for drug delivery across blood-brain barrier in brain diseases. Life Sci 2021; 274:119326. [PMID: 33711385 DOI: 10.1016/j.lfs.2021.119326] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
The blood-brain barrier (BBB) is composed of a layer of endothelial cells that is interspersed with a series of tight junctions and characterized by the absence of fenestrations. The permeability of this barrier is controlled by junctions such as tight junctions and adherent junctions as well as several cells such as astrocytes, pericytes, vascular endothelial cells, neurons, microglia, and efflux transporters with relatively enhanced expression. It plays a major role in maintaining homeostasis in the brain and exerts a protective regulatory control on the influx and efflux of molecules. However, it proves to be a challenge for drug delivery strategies that target brain diseases like Dementia, Parkinson's Disease, Alzheimer's Disease, Brain Cancer or Stroke, Huntington's Disease, Lou Gehrig's Disease, etc. Conventional modes of drug delivery are invasive and have been known to contribute to a "leaky BBB", recent studies have highlighted the efficiency and relative safety of receptor-mediated drug delivery. Several receptors are exhibited on the BBB, and actively participate in nutrient uptake, and recognize specific ligands that modulate the process of endocytosis. The strategy employed in receptor-mediated drug delivery exploits this process of "tricking" the receptors into internalizing ligands that are conjugated to carrier systems like liposomes, nanoparticles, monoclonal antibodies, enzymes etc. These in turn are modified with drug molecules, therefore leading to delivery to desired target cells in brain tissue. This review comprehensively explores each of those receptors that can be modified to serve such purposes as well as the currently employed strategies that have led to increased cellular uptake and transport efficiency.
Collapse
Affiliation(s)
- Danielle Paige Anthony
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Manasa Hegde
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shreya S Shetty
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Thasneema Rafic
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - B S Satish Rao
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
13
|
Sola-Barrado B, M Leite D, Scarpa E, Duro-Castano A, Battaglia G. Combinatorial Intracellular Delivery Screening of Anticancer Drugs. Mol Pharm 2020; 17:4709-4714. [PMID: 33175550 DOI: 10.1021/acs.molpharmaceut.0c00791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conventional drug solubilization strategies limit the understanding of the full potential of poorly water-soluble drugs during drug screening. Here, we propose a screening approach in which poorly water-soluble drugs are entrapped in poly(2-(methacryloyloxyethyl phosphorylcholine)-poly(2-(diisopropylaminoethyl methacryate) (PMPC-PDPA) polymersomes (POs) to enhance drug solubility and facilitate intracellular delivery. By using a human pediatric glioma cell model, we demonstrated that PMPC-PDPA POs mediated intracellular delivery of cytotoxic and epigenetic drugs by receptor-mediated endocytosis. Additionally, when delivered in combination, drug-loaded PMPC-PDPA POs triggered both an enhanced drug efficacy and synergy compared to that of a conventional combinatorial screening. Hence, our comprehensive synergy analysis illustrates that our screening methodology, in which PMPC-PDPA POs are used for intracellular codelivery of drugs, allows us to identify potent synergistic profiles of anticancer drugs.
Collapse
Affiliation(s)
- Belen Sola-Barrado
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom.,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| | - Diana M Leite
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom.,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| | - Edoardo Scarpa
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom.,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| | - Aroa Duro-Castano
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom.,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom.,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08036, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
14
|
Dossou AS, Sabnis N, Nagarajan B, Mathew E, Fudala R, Lacko AG. Lipoproteins and the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:93-116. [PMID: 32845504 DOI: 10.1007/978-3-030-48457-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The tumor microenvironment (TME) plays a key role in enhancing the growth of malignant tumors and thus contributing to "aggressive phenotypes," supporting sustained tumor growth and metastasis. The precise interplay between the numerous components of the TME that contribute to the emergence of these aggressive phenotypes is yet to be elucidated and currently under intense investigation. The purpose of this article is to identify specific role(s) for lipoproteins as part of these processes that facilitate (or oppose) malignant growth as they interact with specific components of the TME during tumor development and treatment. Because of the scarcity of literature reports regarding the interaction of lipoproteins with the components of the tumor microenvironment, we were compelled to explore topics that were only tangentially related to this topic, to ensure that we have not missed any important concepts.
Collapse
Affiliation(s)
- Akpedje Serena Dossou
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nirupama Sabnis
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Bhavani Nagarajan
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ezek Mathew
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rafal Fudala
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Andras G Lacko
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA. .,Departments of Physiology/Anatomy and Pediatrics, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
15
|
Niora M, Pedersbæk D, Münter R, Weywadt MFDV, Farhangibarooji Y, Andresen TL, Simonsen JB, Jauffred L. Head-to-Head Comparison of the Penetration Efficiency of Lipid-Based Nanoparticles into Tumor Spheroids. ACS OMEGA 2020; 5:21162-21171. [PMID: 32875252 PMCID: PMC7450641 DOI: 10.1021/acsomega.0c02879] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/30/2020] [Indexed: 05/06/2023]
Abstract
Most tumor-targeted drug delivery systems must overcome a large variety of physiological barriers before reaching the tumor site and diffuse through the tight network of tumor cells. Many studies focus on optimizing the first part, the accumulation of drug carriers at the tumor site, ignoring the penetration efficiency, i.e., a measure of the ability of a drug delivery system to overcome tumor surface adherence and uptake. We used three-dimensional (3D) tumor spheroids in combination with light-sheet fluorescence microscopy in a head-to-head comparison of a variety of commonly used lipid-based nanoparticles, including liposomes, PEGylated liposomes, lipoplexes, and reconstituted high-density lipoproteins (rHDL). Whilst PEGylation of liposomes only had minor effects on the penetration efficiency, we show that lipoplexes are mainly associated with the periphery of tumor spheroids, possibly due to their positive surface charge, leading to fusion with the cells at the spheroid surface or aggregation. Surprisingly, the rHDL showed significantly higher penetration efficiency and high accumulation inside the spheroid. While these findings indeed could be relevant when designing novel drug delivery systems based on lipid-based nanoparticles, we stress that the used platform and the detailed image analysis are a versatile tool for in vitro studies of the penetration efficiency of nanoparticles in tumors.
Collapse
Affiliation(s)
- Maria Niora
- The
Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark
| | - Dennis Pedersbæk
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rasmus Münter
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | - Thomas L. Andresen
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jens B. Simonsen
- DTU
Health Tech, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Liselotte Jauffred
- The
Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark
| |
Collapse
|
16
|
Escamilla-Ramírez A, Castillo-Rodríguez RA, Zavala-Vega S, Jimenez-Farfan D, Anaya-Rubio I, Briseño E, Palencia G, Guevara P, Cruz-Salgado A, Sotelo J, Trejo-Solís C. Autophagy as a Potential Therapy for Malignant Glioma. Pharmaceuticals (Basel) 2020; 13:ph13070156. [PMID: 32707662 PMCID: PMC7407942 DOI: 10.3390/ph13070156] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most frequent and aggressive type of brain neoplasm, being anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM), its most malignant forms. The survival rate in patients with these neoplasms is 15 months after diagnosis, despite a diversity of treatments, including surgery, radiation, chemotherapy, and immunotherapy. The resistance of GBM to various therapies is due to a highly mutated genome; these genetic changes induce a de-regulation of several signaling pathways and result in higher cell proliferation rates, angiogenesis, invasion, and a marked resistance to apoptosis; this latter trait is a hallmark of highly invasive tumor cells, such as glioma cells. Due to a defective apoptosis in gliomas, induced autophagic death can be an alternative to remove tumor cells. Paradoxically, however, autophagy in cancer can promote either a cell death or survival. Modulating the autophagic pathway as a death mechanism for cancer cells has prompted the use of both inhibitors and autophagy inducers. The autophagic process, either as a cancer suppressing or inducing mechanism in high-grade gliomas is discussed in this review, along with therapeutic approaches to inhibit or induce autophagy in pre-clinical and clinical studies, aiming to increase the efficiency of conventional treatments to remove glioma neoplastic cells.
Collapse
Affiliation(s)
- Angel Escamilla-Ramírez
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Rosa A. Castillo-Rodríguez
- Laboratorio de Oncología Experimental, CONACYT-Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Isabel Anaya-Rubio
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Eduardo Briseño
- Clínica de Neurooncología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico;
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Patricia Guevara
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Julio Sotelo
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
| | - Cristina Trejo-Solís
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico; (A.E.-R.); (I.A.-R.); (G.P.); (P.G.); (A.C.-S.); (J.S.)
- Correspondence: ; Tel.: +52-555-060-4040
| |
Collapse
|
17
|
Asha Spandana K, Bhaskaran M, Karri V, Natarajan J. A comprehensive review of nano drug delivery system in the treatment of CNS disorders. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Chuang ST, Cruz S, Narayanaswami V. Reconfiguring Nature's Cholesterol Accepting Lipoproteins as Nanoparticle Platforms for Transport and Delivery of Therapeutic and Imaging Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E906. [PMID: 32397159 PMCID: PMC7279153 DOI: 10.3390/nano10050906] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Apolipoproteins are critical structural and functional components of lipoproteins, which are large supramolecular assemblies composed predominantly of lipids and proteins, and other biomolecules such as nucleic acids. A signature feature of apolipoproteins is the preponderance of amphipathic α-helical motifs that dictate their ability to make extensive non-covalent inter- or intra-molecular helix-helix interactions in lipid-free states or helix-lipid interactions with hydrophobic biomolecules in lipid-associated states. This review focuses on the latter ability of apolipoproteins, which has been capitalized on to reconstitute synthetic nanoscale binary/ternary lipoprotein complexes composed of apolipoproteins/peptides and lipids that mimic native high-density lipoproteins (HDLs) with the goal to transport drugs. It traces the historical development of our understanding of these nanostructures and how the cholesterol accepting property of HDL has been reconfigured to develop them as drug-loading platforms. The review provides the structural perspective of these platforms with different types of apolipoproteins and an overview of their synthesis. It also examines the cargo that have been loaded into the core for therapeutic and imaging purposes. Finally, it lays out the merits and challenges associated with apolipoprotein-based nanostructures with a future perspective calling for a need to develop "zip-code"-based delivery for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
| | | | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA; (S.T.C.); (S.C.)
| |
Collapse
|
19
|
Lenahan C, Huang L, Travis ZD, Zhang JH. Scavenger Receptor Class B type 1 (SR-B1) and the modifiable risk factors of stroke. Chin Neurosurg J 2019; 5:30. [PMID: 32922929 PMCID: PMC7398188 DOI: 10.1186/s41016-019-0178-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/30/2019] [Indexed: 01/11/2023] Open
Abstract
Stroke is a devastating disease that occurs when a blood vessel in the brain is either blocked or ruptured, consequently leading to deficits in neurological function. Stroke consistently ranked as one of the top causes of mortality, and with the mean age of incidence decreasing, there is renewed interest to seek novel therapeutic treatments. The Scavenger Receptor Class B type 1 (SR-B1) is a multifunctional protein found on the surface of a variety of cells. Research has found that that SR-B1 primarily functions in an anti-inflammatory and anti-atherosclerotic capacity. In this review, we discuss the characteristics of SR-B1 and focus on its potential correlation with the modifiable risk factors of stroke. SR-B1 likely has an impact on stroke through its interaction with smoking, diabetes mellitus, diet, physical inactivity, obesity, hypercholesterolemia, atherosclerosis, coronary heart disease, hypertension, and sickle cell disease, all of which are critical risk factors in the pathogenesis of stroke.
Collapse
Affiliation(s)
- Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM 88003 USA
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324 USA
| | - Lei Huang
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324 USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
- Department of Physiology & Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
| | - Zachary D. Travis
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324 USA
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
| | - John H. Zhang
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324 USA
- Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
- Department of Physiology & Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350 USA
- Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA 92324 USA
| |
Collapse
|
20
|
Lipoprotein Drug Delivery Vehicles for Cancer: Rationale and Reason. Int J Mol Sci 2019; 20:ijms20246327. [PMID: 31847457 PMCID: PMC6940806 DOI: 10.3390/ijms20246327] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Lipoproteins are a family of naturally occurring macromolecular complexes consisting amphiphilic apoproteins, phospholipids, and neutral lipids. The physiological role of mammalian plasma lipoproteins is to transport their apolar cargo (primarily cholesterol and triglyceride) to their respective destinations through a highly organized ligand-receptor recognition system. Current day synthetic nanoparticle delivery systems attempt to accomplish this task; however, many only manage to achieve limited results. In recent years, many research labs have employed the use of lipoprotein or lipoprotein-like carriers to transport imaging agents or drugs to tumors. The purpose of this review is to highlight the pharmacologic, clinical, and molecular evidence for utilizing lipoprotein-based formulations and discuss their scientific rationale. To accomplish this task, evidence of dynamic drug interactions with circulating plasma lipoproteins are presented. This is followed by epidemiologic and molecular data describing the association between cholesterol and cancer.
Collapse
|