1
|
Zheng Y, Xiang G, Zeng L, Yang C, Ke J, Yu H, Zhang J. MiR-24-3p modulates cardiac function in doxorubicin -induced heart failure via the Sp1/PI3K signaling pathway. Cell Signal 2024; 124:111407. [PMID: 39278455 DOI: 10.1016/j.cellsig.2024.111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
PURPOSE The goal of this research was to explore the role of miR-24-3p in heart failure (HF), with a focus on its impact on the specificity protein 1 (Sp1)/phosphoinositide 3-kinase (PI3K) pathway. METHODS HF rat and HF cell models were established using doxorubicin(Dox). Cardiac function was assessed through echocardiography, while histological changes were observed via hematoxylin-eosin (HE) staining. To further investigate the underlying mechanisms, HF cell models were treated with either an Sp1 inhibitor or a PI3K inhibitor. Additionally, models with miR-24-3p overexpression or silencing were constructed. N-terminal pro-brain natriuretic peptide (NT-proBNP) levels were determined by ELISA. Cell apoptosis was evaluated using TUNEL staining, and lactate dehydrogenase (LDH) levels were measured by colorimetry. Reactive oxygen species (ROS) production was analyzed using flow cytometry. Related gene and protein expressions were assessed via qRT-PCR and Western blotting. Finally, the relationship between miR-24-3p and Sp1 was confirmed through dual-luciferase assays. RESULTS Dox treatment increased the left ventricular internal diameter (LVIDd) while decreasing ejection fraction (EF) and fractional shortening (FS), leading to disorganized cardiomyocyte arrangement, cellular edema, and necrosis in rats. In HF rats, NT-proBNP, Caspase-3, and miR-24-3p expression levels were elevated, whereas Sp1 and PI3K mRNA and protein expression levels were decreased. Similarly, Dox-induced damage in H9c2 cardiomyocytes resulted in increased NT-proBNP, apoptosis, Caspase-3, LDH, ROS, and miR-24-3p expression, along with decreased Sp1 and PI3K expression. Treatment with either Sp1 or PI3K inhibitors exacerbated the Dox-induced cardiomyocyte damage, further elevating NT-proBNP, apoptosis, Caspase-3, LDH, ROS, and miR-24-3p expression levels. Notably, Sp1 inhibition reduced PI3K expression, and PI3K inhibition, in turn, suppressed Sp1 expression. Overexpression of miR-24-3p worsened Dox-induced cardiomyocyte damage, characterized by increased NT-proBNP, apoptosis, Caspase-3, LDH, and ROS expression, alongside reduced Sp1 and PI3K expression. In contrast, silencing miR-24-3p mitigated these detrimental effects and increased Sp1 and PI3K expression. Dual-luciferase assays confirmed that miR-24-3p directly targets Sp1. CONCLUSION Dox induces cardiomyocyte damage, impairs cardiac function, and promotes cardiomyocyte apoptosis and oxidative stress. Silencing miR-24-3p offers a protective effect by activating the Sp1/PI3K signaling pathway in heart failure.
Collapse
Affiliation(s)
- Yonghong Zheng
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Cardiology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Guojian Xiang
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Cardiology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Linwen Zeng
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Chao Yang
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Intensive Care Medicine, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Jun Ke
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China
| | - Huizhen Yu
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Cardiology in South Branch, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China.
| | - Jiancheng Zhang
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, Fujian, China; Department of Cardiology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China.
| |
Collapse
|
2
|
Srivastava A, Pandey V, Singh N, Marwal A, Shahid MS, Gaur RK. In silico identification of papaya genome-encoded microRNAs to target begomovirus genes in papaya leaf curl disease. Front Microbiol 2024; 15:1340275. [PMID: 38605706 PMCID: PMC11008722 DOI: 10.3389/fmicb.2024.1340275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024] Open
Abstract
Papaya leaf curl disease (PaLCuD) is widespread and classified in the genus begomovirus (Geminiviridae), disseminated by the vector whitefly Bemisia tabaci. RNA interference (RNAi)-based antiviral innate immunity stands as a pivotal defense mechanism and biological process in limiting viral genomes to manage plant diseases. The current study aims to identify and analyze Carica Papaya locus-derived capa-microRNAs with predicted potential for targeting divergent begomovirus species-encoded mRNAs using a 'four integrative in silico algorithms' approach. This research aims to experimentally activate the RNAi catalytic pathway using in silico-predicted endogenous capa-miRNAs and create papaya varieties capable of assessing potential resistance against begomovirus species and monitoring antiviral capabilities. This study identified 48 predicted papaya locus-derived candidates from 23 miRNA families, which were further investigated for targeting begomovirus genes. Premised all the four algorithms combined, capa-miR5021 was the most anticipated miRNA followed by capa-miR482, capa-miR5658, capa-miR530b, capa-miR3441.2, and capa-miR414 'effective' papaya locus-derived candidate capa-miRNA and respected putative binding sites for targets at the consensus nucleotide position. It was predicted to bind and target mostly to AC1 gene of the complementary strand and the AV1 gene of the virion strand of different begomovirus isolates, which were associated with replication-associated protein and encapsidation, respectively, during PaLCuD. These miRNAs were also found targeting betaC1 gene of betasatellite which were associated with retardation in leaf growth and developmental abnormalities with severe symptoms during begomovirus infection. To validate target prediction accuracy, we created an integrated Circos plot for comprehensive visualization of host-virus interaction. In silico-predicted papaya genome-wide miRNA-mediated begomovirus target gene regulatory network corroborated interactions that permit in vivo analysis, which could provide biological material and valuable evidence, leading to the development of begomovirus-resistant papaya plants. The integrative nature of our research positions it at the forefront of efforts to ensure the sustainable cultivation of papaya, particularly in the face of evolving pathogenic threats. As we move forward, the knowledge gained from this study provides a solid foundation for continued exploration and innovation in the field of papaya virology, and to the best of our knowledge, this study represents a groundbreaking endeavor, undertaken for the first time in the context of PaLCuD research.
Collapse
Affiliation(s)
- Aarshi Srivastava
- Department of Biotechnology, Deen Dayal Updhyaya Gorakhpur University, Gorakhpur, India
| | - Vineeta Pandey
- Department of Biotechnology, Deen Dayal Updhyaya Gorakhpur University, Gorakhpur, India
| | - Nupur Singh
- Institute of Agriculture and Natural Sciences, Department of Biotechnology, Deen Dayal Updhyaya Gorakhpur University, Gorakhpur, India
| | - Avinash Marwal
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, India
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - R. K. Gaur
- Department of Biotechnology, Deen Dayal Updhyaya Gorakhpur University, Gorakhpur, India
| |
Collapse
|
3
|
In Silico Identification of Cassava Genome-Encoded MicroRNAs with Predicted Potential for Targeting the ICMV-Kerala Begomoviral Pathogen of Cassava. Viruses 2023; 15:v15020486. [PMID: 36851701 PMCID: PMC9963618 DOI: 10.3390/v15020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Cassava mosaic disease (CMD) is caused by several divergent species belonging to the genus Begomovirus (Geminiviridae) transmitted by the whitefly Bemisia tabaci cryptic species group. In India and other parts of Asia, the Indian cassava mosaic virus-Kerala (ICMV-Ker) is an emergent begomovirus of cassava causing damage that results in reduced yield loss and tuber quality. Double-stranded RNA-mediated interference (RNAi) is an evolutionary conserved mechanism in eukaryotes and highly effective, innate defense system to inhibit plant viral replication and/or translation. The objective of this study was to identify and characterize cassava genome-encoded microRNAs (mes-miRNA) that are predicted to target ICMV-Ker ssDNA-encoded mRNAs, based on four in silico algorithms: miRanda, RNA22, Tapirhybrid, and psRNA. The goal is to deploy the predicted miRNAs to trigger RNAi and develop cassava plants with resistance to ICMV-Ker. Experimentally validated mature cassava miRNA sequences (n = 175) were downloaded from the miRBase biological database and aligned with the ICMV-Ker genome. The miRNAs were evaluated for base-pairing with the cassava miRNA seed regions and to complementary binding sites within target viral mRNAs. Among the 175 locus-derived mes-miRNAs evaluated, one cassava miRNA homolog, mes-miR1446a, was identified to have a predicted miRNA target binding site, at position 2053 of the ICMV-Ker genome. To predict whether the cassava miRNA might bind predicted ICMV-Ker mRNA target(s) that could disrupt viral infection of cassava plants, a cassava locus-derived miRNA-mRNA regulatory network was constructed using Circos software. The in silico-predicted cassava locus-derived mes-miRNA-mRNA network corroborated interactions between cassava mature miRNAs and the ICMV-Ker genome that warrant in vivo analysis, which could lead to the development of ICMV-Ker resistant cassava plants.
Collapse
|
4
|
Zhang D, Pan A, Gu J, Liao R, Chen X, Xu Z. Upregulation of miR-144-3p alleviates Doxorubicin-induced heart failure and cardiomyocytes apoptosis via SOCS2/PI3K/AKT axis. Chem Biol Drug Des 2023; 101:24-39. [PMID: 35730258 DOI: 10.1111/cbdd.14104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/06/2022] [Accepted: 06/19/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRs) are implicated in heart failure (HF). Thereby, we aim to uncover the role of miR-144-3p in HF. Doxorubicin (Dox)-induced HF model was constructed in rats and cardiomyocytes H9C2, and the cardiac function was determined using ultrasound cardiogram. Morphology of cardiac tissue was observed using hematoxylin-eosin (H&E) staining. The viability and apoptosis of Dox-treated and transfected cardiomyocytes were determined using Cell Counting Kit-8 (CCK-8) assay and flow cytometry. Relative expressions of the HF-associated miRs (including miR-144-3p), suppressor of cytokine signaling 2 (SOCS2), apoptosis- and phosphoinositide 3-kinase (PI3K)/AKT pathway-related factors (B-cell lymphoma 2, Bcl-2; Bcl-2 associated X protein, Bax; cleaved [C] capsase-3; phosphoinositide 3-kinase, PI3K; phosphorylated-PI3K, p-PI3K; p-AKT; AKT) were measured with quantitative real-time polymerase chain reaction or Western blot. Target gene of miR-144-3p was predicted by Starbase and TargetScan and confirmed with dual-luciferase reporter assay. Dox caused rat cardiac dysfunction, aggravated cardiac injury, decreased cardiomyocytes viability, and the expression of miR-144-3p, Bcl-2, and phosphorylation of both PI3K and AKT yet the upregulated those of Bax and C caspase-3, which was reversed by upregulating miR-144-3p, whereas downregulating miR-144-3p did oppositely. SOCS2 was the target gene of miR-144-3p, Dox promoted SOCS2 expression, which was reversed by upregulating miR-144-3p, while downregulating miR-144-3p did conversely. In addition, silencing SOCS2 reversed the effects of miR-144-3p downregulation in Dox-treated cardiomyocytes. Upregulating miR-144-3p alleviated Dox-induced cardiac dysfunction and cell apoptosis via targeting SOCS2, providing a novel evidence of miR-144-3p in HF.
Collapse
Affiliation(s)
- Donglin Zhang
- Emergency Medicine Department, Meizhou People's Hospital, Guangdong Medical University, Zhanjiang, China
| | - Aiqin Pan
- Rehabilitation Medicine Department, Meizhou People's Hospital, Guangzhou Medical University, Zhanjiang, China
| | - Jianke Gu
- Rehabilitation Medicine Department, Meizhou People's Hospital, Guiyang Medical College, Guiyang, China
| | - Renfeng Liao
- Emergency Medicine Department, Meizhou People's Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xueyu Chen
- The First Department of Internal Medicine, Fengshun County Hospital of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhaozhu Xu
- Emergency Department, Meizhou People's Hospital, Guangdong Pharmaceutical University, Meizhou, China
| |
Collapse
|
5
|
Dutta H, Mishra GP, Aski MS, Bosamia TC, Mishra DC, Bhati J, Sinha SK, Vijay D, C. T. MP, Das S, Pawar PAM, Kumar A, Tripathi K, Kumar RR, Yadava DK, Kumar S, Dikshit HK. Comparative transcriptome analysis, unfolding the pathways regulating the seed-size trait in cultivated lentil (Lens culinaris Medik.). Front Genet 2022; 13:942079. [PMID: 36035144 PMCID: PMC9399355 DOI: 10.3389/fgene.2022.942079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Market class, cooking time, quality, and milled grain yield are largely influenced by the seed size and shape of the lentil (Lens culinaris Medik.); thus, they are considered to be important quality traits. To unfold the pathways regulating seed size in lentils, a transcriptomic approach was performed using large-seeded (L4602) and small-seeded (L830) genotypes. The study has generated nearly 375 million high-quality reads, of which 98.70% were properly aligned to the reference genome. Among biological replicates, very high similarity in fragments per kilobase of exon per million mapped fragments values (R > 0.9) showed the consistency of RNA-seq results. Various differentially expressed genes associated mainly with the hormone signaling and cell division pathways, transcription factors, kinases, etc. were identified as having a role in cell expansion and seed growth. A total of 106,996 unigenes were used for differential expression (DE) analysis. String analysis identified various modules having certain key proteins like Ser/Thr protein kinase, seed storage protein, DNA-binding protein, microtubule-associated protein, etc. In addition, some growth and cell division–related micro-RNAs like miR3457 (cell wall formation), miR1440 (cell proliferation and cell cycles), and miR1533 (biosynthesis of plant hormones) were identified as having a role in seed size determination. Using RNA-seq data, 5254 EST-SSR primers were generated as a source for future studies aiming for the identification of linked markers. In silico validation using Genevestigator® was done for the Ser/Thr protein kinase, ethylene response factor, and Myb transcription factor genes. It is of interest that the xyloglucan endotransglucosylase gene was found differentially regulated, suggesting their role during seed development; however, at maturity, no significant differences were recorded for various cell wall parameters including cellulose, lignin, and xylose content. This is the first report on lentils that has unfolded the key seed size regulating pathways and unveiled a theoretical way for the development of lentil genotypes having customized seed sizes.
Collapse
Affiliation(s)
- Haragopal Dutta
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Gyan P. Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Gyan P. Mishra, ; Shiv Kumar, ; Harsh Kumar Dikshit,
| | - Muraleedhar S. Aski
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
| | - Tejas C. Bosamia
- Plant Omics Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Dwijesh C. Mishra
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Jyotika Bhati
- Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dunna Vijay
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Manjunath Prasad C. T.
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Shouvik Das
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, Faridabad, India
| | | | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Kuldeep Tripathi
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, India
| | | | - Shiv Kumar
- South Asia and China Program, International Center for Agricultural Research in the Dry Areas, NASC Complex, New Delhi, India
- *Correspondence: Gyan P. Mishra, ; Shiv Kumar, ; Harsh Kumar Dikshit,
| | - Harsh Kumar Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Gyan P. Mishra, ; Shiv Kumar, ; Harsh Kumar Dikshit,
| |
Collapse
|
6
|
Wong GY, Millar AA. TRUEE; a bioinformatic pipeline to define the functional microRNA targetome of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1476-1492. [PMID: 35352405 PMCID: PMC9324967 DOI: 10.1111/tpj.15751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Central to plant microRNA (miRNA) biology is the identification of functional miRNA-target interactions (MTIs). However, the complementarity basis of bioinformatic target prediction results in mostly false positives, and the degree of complementarity does not equate with regulation. Here, we develop a bioinformatic workflow named TRUEE (Targets Ranked Using Experimental Evidence) that ranks MTIs on the extent to which they are subjected to miRNA-mediated cleavage. It sorts predicted targets into high (HE) and low evidence (LE) groupings based on the frequency and strength of miRNA-guided cleavage degradome signals across multiple degradome experiments. From this, each target is assigned a numerical value, termed a Category Score, ranking the extent to which it is subjected to miRNA-mediated cleavage. As a proof-of-concept, the 428 Arabidopsis miRNAs annotated in miRBase were processed through the TRUEE pipeline to determine the miRNA 'targetome'. The majority of high-ranking Category Score targets corresponded to highly conserved MTIs, validating the workflow. Very few Arabidopsis-specific, Brassicaceae-specific, or Conserved-passenger miRNAs had HE targets with high Category Scores. In total, only several hundred MTIs were found to have Category Scores characteristic of currently known physiologically significance MTIs. Although non-exhaustive, clearly the number of functional MTIs is much narrower than many studies claim. Therefore, using TRUEE to numerically rank targets directly on experimental evidence has given insights into the scope of the functional miRNA targetome of Arabidopsis.
Collapse
Affiliation(s)
- Gigi Y. Wong
- Division of Plant Science, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Anthony A. Millar
- Division of Plant Science, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| |
Collapse
|
7
|
Wei Y, Jing J, Peng Z, Liu X, Wang X. Acacetin ameliorates insulin resistance in obesity mice through regulating Treg/Th17 balance via MiR-23b-3p/NEU1 Axis. BMC Endocr Disord 2021; 21:57. [PMID: 33781239 PMCID: PMC8008644 DOI: 10.1186/s12902-021-00688-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The role of miR-23b-3p in insulin resistance (IR) remained poorly understood. METHODS After acacetin injection, obesity-induced IR model was constructed with or without miR-23b-3p upregulation and Neuraminidase 1 (NEU1) overexpression in mice. Body weight, serum metabolite and fat percent of the mice were measured. Tests on oral glucose and insulin tolerance were performed, and inflammatory cytokines C-reactive protein (CRP), Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein 1 (MCP1) levels were quantified with enzyme-linked immunosorbent assay (ELISA). The binding sites between miR-23b-3p and NEU1 were predicted by TargetScan, and verified using dual-luciferase reporter assay. Relative expressions were detected with quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Proportion of Treg and Th17 cells in total CD4+ T cells was detected with flow cytometry. RESULTS MiR-23b-3p offset the effects of acacetin on body weight, fat percent, inflammatory cytokines levels and expressions of markers of regulatory T cells (Treg cells) and T helper 17 cells (Th17 cells), NEU1 and miR-23b-3p. NEU1 was a target of miR-23b-3p, and overexpressed NEU1 reversed the effects of upregulated miR-23b-3p on reducing Treg cells but increased body weight, fat percent and inflammatory cytokines levels, percentage of Th17 cells, and upregulated NEU1 expression. CONCLUSION Upregulation of miR-23b-3p offset the effects of acacetin on obesity-induced IR through regulating Treg/Th17 cell balance via targeting NEU1.The present findings provide a possible prevention strategy for obesity-induced IR.
Collapse
Affiliation(s)
- Yan Wei
- Department of Endocrinology and Metabolism, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No.453 Stadium Road, Xihu District, Zhejiang, 310007, Hangzhou, China.
| | - Jianhong Jing
- Department of Endocrinology and Metabolism, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No.453 Stadium Road, Xihu District, Zhejiang, 310007, Hangzhou, China
| | - Zhiping Peng
- Department of Geriatrics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No.453 Stadium Road, Xihu District, Zhejiang, 310007, Hangzhou, China
| | - Xiaoqian Liu
- Department of Endocrinology and Metabolism, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No.453 Stadium Road, Xihu District, Zhejiang, 310007, Hangzhou, China
| | - Xueyang Wang
- Department of Endocrinology and Metabolism, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No.453 Stadium Road, Xihu District, Zhejiang, 310007, Hangzhou, China
| |
Collapse
|
8
|
Ayachit G, Shaikh I, Pandya H, Das J. Salient Features, Data and Algorithms for MicroRNA Screening from Plants: A Review on the Gains and Pitfalls of Machine Learning Techniques. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200601121756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The era of big data and high-throughput genomic technology has enabled scientists to
have a clear view of plant genomic profiles. However, it has also led to a massive need for
computational tools and strategies to interpret this data. In this scenario of huge data inflow,
machine learning (ML) approaches are emerging to be the most promising for analysing
heterogeneous and unstructured biological datasets. Extending its application to healthcare and
agriculture, ML approaches are being useful for microRNA (miRNA) screening as well.
Identification of miRNAs is a crucial step towards understanding post-transcriptional gene
regulation and miRNA-related pathology. The use of ML tools is becoming indispensable in
analysing such data and identifying species-specific, non-conserved miRNA. However, these
techniques have their own benefits and lacunas. In this review, we will discuss the current scenario
and pitfalls of ML-based tools for plant miRNA identification and provide some insights into the
important features, the need for deep learning models and direction in which studies are needed.
Collapse
Affiliation(s)
- Garima Ayachit
- Department of Botany, Bioinformatics and Climate Change, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad – 380009, India
| | - Inayatullah Shaikh
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Himanshu Pandya
- Department of Botany, Bioinformatics and Climate Change, University School of Sciences, Gujarat University, Navrangpura, Ahmedabad – 380009, India
| | - Jayashankar Das
- Gujarat State Biotechnology Mission, Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| |
Collapse
|
9
|
Al-Heety RA, Al-Hadithi HS. Circulating miRNA-21-5p role in the development of orbitopathy in Graves disease. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Suksamran R, Saithong T, Thammarongtham C, Kalapanulak S. Genomic and Transcriptomic Analysis Identified Novel Putative Cassava lncRNAs Involved in Cold and Drought Stress. Genes (Basel) 2020; 11:E366. [PMID: 32231066 PMCID: PMC7230406 DOI: 10.3390/genes11040366] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in the regulation of complex cellular processes, including transcriptional and post-transcriptional regulation of gene expression relevant for development and stress response, among others. Compared to other important crops, there is limited knowledge of cassava lncRNAs and their roles in abiotic stress adaptation. In this study, we performed a genome-wide study of ncRNAs in cassava, integrating genomics- and transcriptomics-based approaches. In total, 56,840 putative ncRNAs were identified, and approximately half the number were verified using expression data or previously known ncRNAs. Among these were 2229 potential novel lncRNA transcripts with unmatched sequences, 250 of which were differentially expressed in cold or drought conditions, relative to controls. We showed that lncRNAs might be involved in post-transcriptional regulation of stress-induced transcription factors (TFs) such as zinc-finger, WRKY, and nuclear factor Y gene families. These findings deepened our knowledge of cassava lncRNAs and shed light on their stress-responsive roles.
Collapse
Affiliation(s)
- Rungaroon Suksamran
- Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| | - Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| | - Chinae Thammarongtham
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology at King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang KhunThian), Bangkok 10150, Thailand
| |
Collapse
|