1
|
Liu W, Yang S, Li Y, Tenzing D, Shi R, Jiang Y, Deng H, Mao E, Chen Y, Wang Y. Exploring lipidome mediated inflammatory pathways in acute pancreatitis using mendelian randomization. Sci Rep 2025; 15:1248. [PMID: 39774240 PMCID: PMC11707253 DOI: 10.1038/s41598-025-85354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Acute pancreatitis (AP) is a severe gastrointestinal condition with an increasing incidence of hyperlipidemic etiology. The investigation employed a two-sample, bidirectional Mendelian randomization method to investigate potential causal relationship between lipidome profiles, inflammatory mediators, and AP. Exploration of genetic variants across the genome in a study population of 10,630 AP cases and 844,679 non-AP individuals revealed multiple lipidome entities significantly associated with AP risk. The study identified 23 lipid species with unidirectional causal effects on AP after accounting for heterogeneity, pleiotropy, and potential reverse causation. Additionally, five inflammatory factors (CD5, IL-13, MMP-1, STAMBP, TNFRSF9) showed significant potential causal relationship with AP. Further analysis elucidated the intricate interplay between specific lipid species and inflammatory mediators in influencing AP incidence. Notably, Sterol ester (27:1/20:4) and several phosphatidylcholine species, including PC (17:0_20:4), PC (18:0_20:4), PC (18:0_20:5), and PC (O-18:2_20:4), were negatively associated with AP risk. This protective effect was partially mediated through decreased levels of inflammatory markers, particularly STAMBP and MMP-1. The study found that these phosphatidylcholines and sterol esters significantly reduced the levels of these pro-inflammatory factors, thereby potentially mitigating AP risk. Conversely, Phosphatidylinositol (16:0_18:1) demonstrated a positive association with AP risk. This detrimental effect was partially mediated by increased levels of MMP-1 and STAMBP, suggesting a pro-inflammatory mechanism. The study provides evidence that this specific phosphatidylinositol species may exacerbate AP risk by promoting inflammatory pathways. These findings elucidate the complex interplay between lipid metabolites, inflammation, and AP pathogenesis, potentially informing novel therapeutic strategies. The study highlights the utility of Mendelian randomization in uncovering potential causal relationship in AP. It underscores the requirement for further study into the molecular mechanisms underlying lipid-mediated inflammation in AP, particularly the roles of phosphatidylcholines and sterol esters in modulating inflammatory responses. Further studies are warranted to confirm our observations in laboratory models and assess their translational value in developing AP preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Dava Tenzing
- Department of Emergency, People's Hospital of Shigatse City, Shigatse, China
| | - Ruizi Shi
- Shanghai Institute of Aviation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Jiang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Deng
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yihui Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Emergency, People's Hospital of Shigatse City, Shigatse, China.
| |
Collapse
|
2
|
Ye X, Li B, Xu F, Pan D, Wu J. Receptor-Interacting Protein Kinase 3 as a Serological Biomarker in Relation to Disease Severity and Delirium After Acute Pancreatitis: A Prospective Cohort Study. Int J Gen Med 2024; 17:5309-5323. [PMID: 39569322 PMCID: PMC11577434 DOI: 10.2147/ijgm.s488540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Objective Delirium is a common complication of acute pancreatitis. Receptor-interacting protein kinase 3 (RIP3) is an activator of programmed cell necrosis. This study aimed to determine its ability to predict delirium after acute pancreatitis. Methods In total, 297 patients with acute pancreatitis were prospectively enrolled in this study. Patients were divided into two subgroups (study and validation groups: 197 and 100 cases, respectively). Serum RIP3 levels were measured in all patients and in 100 healthy controls. Acute Physiology and Chronic Health Evaluation (APACHE) II, Ranson, and sequential organ failure assessment (SOFA) scores were used for the severity assessment. In-hospital delirium was observed as an outcome variable. Multifactorial analyses were performed to discern severity correlations and outcome associations. Results Serum RIP3 levels were significantly higher in the patients than in the controls. Serum RIP3 levels had linear relationships under the restricted cubic spline and were independently correlated with APACHE II, Ranson, and SOFA scores. Serum RIP3 levels were linearly correlated with the likelihood of developing in-hospital delirium and exhibited a strong discrimination efficiency under the receiver operating characteristic curve. Serum RIP3 levels, coupled with APACHE II scores, Ranson scores, and SOFA scores, were the four independent predictors of in-hospital delirium. No interactions were revealed regarding its relevance to sex, age, or body mass index in subgroup analysis. These were integrated to form a model graphically represented by a nomogram that showed effective stability, clinical fit, and predictive ability for in-hospital delirium. The model was verified in the validation group. Conclusion An incremental trend in serum RIP3 levels was notable after acute pancreatitis. Serum RIP3 levels are independently related to illness severity and occurrence of in-hospital delirium, indicating that serum RIP3 may be a potential biomarker of acute pancreatitis.
Collapse
Affiliation(s)
- Xiaorong Ye
- Department of Anorectal Surgery, Lishui Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang Province, People's Republic of China
| | - Bingzhen Li
- Department of Gastrointestinal Surgery, Lishui Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang Province, People's Republic of China
| | - Fang Xu
- Department of Gastroenterology, Lishui Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang Province, People's Republic of China
| | - Debiao Pan
- Department of Hepatobiliary Surgery, Lishui Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang Province, People's Republic of China
| | - Jing Wu
- Department of Anorectal Surgery, Lishui Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang Province, People's Republic of China
| |
Collapse
|
3
|
Peng X, Fan H, Liu J, Jiang X, Liu C, Yang Y, Zhai S. Embryo injected with Ochratoxin A induced jejunum injury in ducklings by activating the TLR4 signaling pathway: Involvement of intestinal microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116666. [PMID: 38945100 DOI: 10.1016/j.ecoenv.2024.116666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Ochratoxin A (OTA) is a common mycotoxin that causes intestinal injury in humans and various animal species. OTA may lead to intestinal injury in offspring due to the maternal effect. The aim of this study was to investigate the mechanism of embryo injected with OTA induced jejunum injury in ducklings. The results showed that OTA disrupted the jejunum tight junctions in hatching ducklings, and promoted the secretion of inflammatory cytokines. And this inflammatory response was caused by the activation of the TLR4 signaling pathway. Moreover, embryo injected with OTA could cause damage to the intestinal barrier in 21-day-old ducks, characterized by shortened villi, crypt hyperplasia, disrupted intestinal tight junctions, increased level of LPS in the jejunum, activation of the TLR4 signaling pathway, and increased levels of pro-inflammatory cytokines. Meanwhile, OTA induced oxidative stress in the jejunum. And dysbiosis of gut microbiota was mainly characterized by an increased the relative abundance of Bacteroides, Megamonas, Fournierella, and decreased the relative abundance of Alistipes and Weissella. Interestingly, embryo injected with OTA did not induce these changes in the jejunum of antibiotics-treated 21-day-old ducks. In conclusion, embryo injected with OTA induced jejunum injury in ducklings by activating the TLR4 signaling pathway, which involvement of intestinal microbiota.
Collapse
Affiliation(s)
- Xin Peng
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Hailu Fan
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Jinhui Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Xiayu Jiang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Cheng Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Ye Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Shuangshuang Zhai
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China.
| |
Collapse
|
4
|
Li J, Chen YF, Gao L, Li YJ, Feng DX. Honokiol Prevents Intestinal Barrier Dysfunction in Mice with Severe Acute Pancreatitis and Inhibits JAK/STAT1 Pathway and Acetylation of HMGB1. Chin J Integr Med 2024; 30:534-542. [PMID: 37943488 DOI: 10.1007/s11655-023-3562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE To investigate the effect of honokiol (HON) and the role of high-mobility group protein B1 (HMGB1) on the pathogenesis of severe acute pancreatitis (SAP). METHODS Thirty mice were numbered according to weight, and randomly divided into 5 groups using a random number table, including control, SAP, SAP and normal saline (SAP+NS), SAP and ethyl pyruvate (SAP+EP), or SAP+HON groups, 6 mice in each group. Samples of pancreas, intestine, and blood were collected 12 h after SAP model induction for examination of pathologic changes, immune function alterations by enzyme linked immunosorbent assay (ELISA), and Western blot. In vitro experiments, macrophages were divided into 5 groups, the control, lipopolysaccharide (LPS), LPS+DMSO (DMSO), LPS+anti-HMGB1 monoclonal antibody (mAb), and LPS+ HON groups. The tight connection level was determined by transmission electron microscopy and fluorescein isothiocyanate-labeled. The location and acetylation of HMGB1 were measured by Western blot. Finally, pyridone 6 and silencing signal transducer and activator of the transcription 1 (siSTAT1) combined with honokiol were added to determine whether the Janus kinase (JAK)/ STAT1 participated in the regulation of honokiol on HMGB1. The protein expression levels of HMGB1, JAK, and STAT1 were detected using Western blot. RESULTS Mice with SAP had inflammatory injury in the pancreas, bleeding of intestinal tissues, and cells with disrupted histology. Mice in the SAP+HON group had significantly fewer pathological changes. Mice with SAP also had significant increases in the serum levels of amylase, lipase, HMGB1, tumor necrosis factor- α, interleukin-6, diamine oxidase, endotoxin-1, and procalcitonin. Mice in the SAP+HON group did not show these abnormalities (P<0.01). Studies of Caco-2 cells indicated that LPS increased the levels of occludin and claudin-1 as well as tight junction permeability, decreased the levels of junctional adhesion molecule C, and elevated intercellular permeability (P<0.01). HON treatment blocked these effects. Studies of macrophages indicated that LPS led to low nuclear levels of HMGB1, however, HON treatment increased the nuclear level of HMGB1 (P<0.01). HON treatment also inhibited the expressions of JAK1, JAK2, and STAT1 (P<0.01) and increased the acetylation of HMGB1 (P<0.05). CONCLUSION HON prevented intestinal barrier dysfunction in SAP by inhibiting HMGB1 acetylation and JAK/STAT1 pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Ya-Feng Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Lei Gao
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yi-Jie Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Dian-Xu Feng
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
5
|
Cheng R, Wang J, Wu Q, Peng P, Liao G, Luo X, Liang Z, Huang J, Qin M. The Predictive Value of Serum DAO, HDC, and MMP8 for the Gastrointestinal Injury in the Early Stage of Acute Pancreatitis in an Animal Model and a Clinical Study. Int J Gen Med 2024; 17:1937-1948. [PMID: 38736673 PMCID: PMC11088402 DOI: 10.2147/ijgm.s461352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose This study was aimed at exploring the use of the acute gastrointestinal injury (AGI) grade and sensitive biomarkers to investigate gastrointestinal (GI) injury in early stage of acute pancreatitis (AP). Patients and Methods The AGI grade was used to evaluate intestinal function. Any GI injury above grade I (grades II-IV) was considered as severe. An AP rat model was created by retrograde injection of 4% sodium taurocholate. The pancreatic and intestinal histopathology scores were calculated by hematoxylin-eosin staining. Human and rat sera were assessed using ELISA. Tight junction (TJ) proteins were detected by Western blotting. Results In clinical study, the GI injury rate in mild acute pancreatitis (MAP), moderate severe acute pancreatitis (MSAP), and severe acute pancreatitis (SAP) groups was 26.8%, 78.4%, and 94.8%, respectively (P < 0.05). Diamine oxidase (DAO), histidine decarboxylase (HDC), and matrix metalloproteinase 8 (MMP8) serum levels were higher in AP patients than in healthy people (P < 0.05). Patients with GI injury had higher serum levels of DAO, HDC, and MMP8 than those without GI injury (P < 0.05). In animal experiments, the serum levels of DAO, HDC, and MMP8 were higher in the AP group than in normal and sham-operated (SO) groups (P < 0.05). The expressions of tricellulin, claudin-1, ZO-1, and occludin were significantly lower in the AP group than in normal and SO groups (P < 0.05). Conclusion The serum levels of DAO, HDC, and MMP8 are novel biomarkers of GI injury in the early stage of AP; their elevation indicates the development of GI injury in AP. The intestinal TJ disruption may be a primary mechanism of GI injury and requires more in-depth research.
Collapse
Affiliation(s)
- Ruoxi Cheng
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Jie Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Qing Wu
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Peng Peng
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Guolin Liao
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Xiuping Luo
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Zhihai Liang
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Jiean Huang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| | - Mengbin Qin
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| |
Collapse
|
6
|
Mattke J, Darden CM, Lawrence MC, Kuncha J, Shah YA, Kane RR, Naziruddin B. Toll-like receptor 4 in pancreatic damage and immune infiltration in acute pancreatitis. Front Immunol 2024; 15:1362727. [PMID: 38585277 PMCID: PMC10995222 DOI: 10.3389/fimmu.2024.1362727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Acute pancreatitis is a complex inflammatory disease resulting in extreme pain and can result in significant morbidity and mortality. It can be caused by several factors ranging from genetics, alcohol use, gall stones, and ductal obstruction caused by calcification or neutrophil extracellular traps. Acute pancreatitis is also characterized by immune cell infiltration of neutrophils and M1 macrophages. Toll-like receptor 4 (TLR4) is a pattern recognition receptor that has been noted to respond to endogenous ligands such as high mobility group box 1 (HMGB1) protein and or exogenous ligands such as lipopolysaccharide both of which can be present during the progression of acute pancreatitis. This receptor can be found on a variety of cell types from endothelial cells to resident and infiltrating immune cells leading to production of pro-inflammatory cytokines as well as immune cell activation and maturation resulting in the furthering of pancreatic damage during acute pancreatitis. In this review we will address the various mechanisms mediated by TLR4 in the advancement of acute pancreatitis and how targeting this receptor could lead to improved outcomes for patients suffering from this condition.
Collapse
Affiliation(s)
- Jordan Mattke
- Baylor University, Institute of Biomedical Studies, Waco, TX, United States
| | - Carly M. Darden
- Baylor University Medical Center, Annette C. and Harold C. Simmons Transplant Institute, Dallas, TX, United States
| | - Michael C. Lawrence
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Jayachandra Kuncha
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Yumna Ali Shah
- Islet Cell Laboratory, Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Robert R. Kane
- Baylor University, Institute of Biomedical Studies, Waco, TX, United States
| | - Bashoo Naziruddin
- Baylor University Medical Center, Annette C. and Harold C. Simmons Transplant Institute, Dallas, TX, United States
| |
Collapse
|
7
|
Shao Y, Jiang Y, Wang J, Li H, Li C, Zhang D. Inhibition of circulating exosomes release with GW4869 mitigates severe acute pancreatitis-stimulated intestinal barrier damage through suppressing NLRP3 inflammasome-mediated pyroptosis. Int Immunopharmacol 2024; 126:111301. [PMID: 38016345 DOI: 10.1016/j.intimp.2023.111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Intestinal barrier dysfunction frequently occurs as a complication in cases of severe acute pancreatitis (SAP); however, no effective therapeutic methods are available because the precise mechanism remains obscure. Recent research has elucidated the role of circulating exosomes in the progression of SAP. Therefore, the present study explored whether inhibiting circulating exosomes release would improve intestinal barrier injury triggered via SAP and investigated the possible underlying mechanism. In vivo, we found that circulating exosomes release exhibited a considerable increase in SAP rats than in SO rats, and GW4869, a suppressor of exosomes release, significantly decreased exosomes release in SAP rats. We also observed that GW4869 suppressed NLRP3 inflammasome-mediated pyroptosis within the intestine and alleviated intestinal barrier injury within SAP. Moreover, the inflammatory response and remote organ (kidney and lung) injury associated with SAP improved after GW4869 treatment. In vitro, we confirmed that depletion of exosomes with GW4869 could partially abolish the destructive effects of SAP rat plasma on the viability and barrier function of IEC-6 cells. In summary, our findings show that the suppression of the release of circulating exosomes effectively inhibits the process of pyroptosis mediated by the NOD-like receptor protein 3 (NLRP3) inflammasome and, therefore, mitigates intestinal barrier dysfunction in SAP, suggesting that circulating exosomes may be a potential target for treating SAP.
Collapse
Affiliation(s)
- Yang Shao
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China; Department of The First General Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Yingjian Jiang
- Department of The First General Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Jiang Wang
- Department of The First General Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Hongbo Li
- Department of The First General Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Chang Li
- Department of The First General Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Dianliang Zhang
- Department of The First General Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
8
|
Dang Y, Ma C, Chen K, Chen Y, Jiang M, Hu K, Li L, Zeng Z, Zhang H. The Effects of a High-Fat Diet on Inflammatory Bowel Disease. Biomolecules 2023; 13:905. [PMID: 37371485 DOI: 10.3390/biom13060905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The interactions among diet, intestinal immunity, and microbiota are complex and play contradictory roles in inflammatory bowel disease (IBD). An increasing number of studies has shed light on this field. The intestinal immune balance is disrupted by a high-fat diet (HFD) in several ways, such as impairing the intestinal barrier, influencing immune cells, and altering the gut microbiota. In contrast, a rational diet is thought to maintain intestinal immunity by regulating gut microbiota. In this review, we emphasize the crucial contributions made by an HFD to the gut immune system and microbiota.
Collapse
Affiliation(s)
- Yuan Dang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunxiang Ma
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kexin Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiding Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingshan Jiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kehan Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Zhang CY, Liu S, Yang M. Crosstalk between gut microbiota and COVID-19 impacts pancreatic cancer progression. World J Gastrointest Oncol 2022; 14:1456-1468. [PMID: 36160747 PMCID: PMC9412935 DOI: 10.4251/wjgo.v14.i8.1456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common causes of cancer-associated death worldwide, with a low rate of 5-year survival. Currently, the pathogenesis of PC is complicated, with no efficient therapy. Coronavirus disease 2019 (COVID-19) disease caused by severe acute respiratory syndrome coronavirus 2 further exacerbates the challenge of patients with PC. The alteration of gut microbiota caused by COVID-19 infection may impact PC progression in patients via immune regulation. The expression of inflammatory immune mediators such as interleukin (IL)-6, IL-8, and IL-10 has been found to increase in both PC and COVID-19 patients, which is associated with the disease severity and prognostic outcome. Gut microbiome serves as a critical connector between viral infection and PC. It can regulate host systemic immune response and impact the efficacy of immunotherapy. Here, we first demonstrated the features of inflammatory cytokines in both diseases and their impact on disease outcomes. Then, we demonstrated the importance of immunotherapeutic strategies. This includes the immune modulation that targets a single or dual receptors using a single agent or their combinations for the treatment of PC in patients who get infected with COVID-19. Additionally, we explored the possibility of managing the disease by regulating gut microbiome. Overall, modulation of the lung-gut-pancreases axis can boost anti-cancer immunotherapy and reduce adverse prognostic outcomes.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
10
|
Effect of TRAF6 in acute pancreatitis-induced intestinal barrier injury via TLR4/NF-κB signal pathway. Tissue Cell 2022; 76:101792. [DOI: 10.1016/j.tice.2022.101792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/28/2022]
|
11
|
Mo Y, Zhang X, Lao Y, Wang B, Li X, Zheng Y, Ding W. Fentanyl alleviates intestinal mucosal barrier damage in rats with severe acute pancreatitis by inhibiting the MMP-9/FasL/Fas pathway. Immunopharmacol Immunotoxicol 2022; 44:757-765. [PMID: 35616237 DOI: 10.1080/08923973.2022.2082304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Fentanyl is an analgesic used against pancreatitis-related pain, while whether it ameliorates severe acute pancreatitis (SAP) has yet to be checked. The present study aims to determine fentanyl-delivered effect on SAP and the mechanism underlying this effect. METHODS Rat SAP models were established, following fentanyl treatment. The serum activity of amylase (AMY), lipase (LIP) and diamine oxidase (DAO) was detected by enzyme-linked immunosorbent assay. Histological examination was performed in the pancreatic and intestinal tissues with hematoxylin-eosin staining. After transfection with matrix metalloproteinase (MMP)9 overexpression plasmids, Caco-2 monolayers were treated with fentanyl and subsequently exposed to lipopolysaccharide (LPS). The transepithelial electrical resistance (TEER) value was determined in rat intestinal mucosa through an Ussing chamber assisted by Analyze & Acquire, and in Caco-2 cell monolayers through a voltohmmeter. Intestinal mucosa and paracellular permeabilities were determined by fluorescein isothiocyanate (FITC)-labeled dextran assay. The expressions of ZO-1, Occludin, MMP9, Fas and Fas ligand (FasL) in rat intestinal mucosa and/or Caco-2 monolayers were analyzed by qRT-PCR or/and western blot. RESULTS Fentanyl alleviated SAP-related histological alterations in the pancreas and intestines, reduced the elevated levels of SAP-related AMY, LIP and DAO, but promoted the levels of ZO-1 and Occludin. In SAP rats and Caco-2 monolayers, SAP-related or LPS-induced TEER value decreases, permeability increases, and increases in the expressions of MMP9, Fas and FasL were reversed partly by fentanyl. Notably, MMP9 overexpression could reverse the above fentanyl-delivered in vitro effects. CONCLUSION Fentanyl alleviates intestinal mucosal barrier damage in rats with SAP by inhibiting the MMP9/FasL/Fas pathway.
Collapse
Affiliation(s)
- Yunchao Mo
- Clinical Pharmacy, Central People's Hospital of Zhanjiang
| | - Xiangdong Zhang
- Surgical Intensive Care Unit, Central People's Hospital of Zhanjiang
| | - Yongguang Lao
- Surgical Intensive Care Unit, Central People's Hospital of Zhanjiang
| | - Bizhu Wang
- Pharmacy Department, Central People's Hospital of Zhanjiang
| | - Xinmei Li
- Surgical Intensive Care Unit, Central People's Hospital of Zhanjiang
| | - Yuhong Zheng
- Surgical Intensive Care Unit, Central People's Hospital of Zhanjiang
| | - Weihua Ding
- Surgical Intensive Care Unit, Central People's Hospital of Zhanjiang
| |
Collapse
|
12
|
Wang J, Qin M, Wu Q, Yang H, Wei B, Xie J, Qin Y, Liang Z, Huang J. Effects of Lipolysis-Stimulated Lipoprotein Receptor on Tight Junctions of Pancreatic Ductal Epithelial Cells in Hypertriglyceridemic Acute Pancreatitis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4234186. [PMID: 35463981 PMCID: PMC9023160 DOI: 10.1155/2022/4234186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022]
Abstract
Objective We investigated the effects of lipolysis-stimulated lipoprotein receptor (LSR) on the tight junctions (TJs) of pancreatic ductal epithelial cells (PDECs) in hypertriglyceridemic acute pancreatitis (HTGAP). Methods Sprague-Dawley rats were fed standard rat chow or a high-fat diet and injected with sodium taurocholate to obtain normal and HTGAP rats, respectively. Serum triglyceride (TG) levels, pathological changes, TJ proteins in the pancreas, and TJ ultrastructure of PDECs were assessed. LSR overexpression (OE) and knockdown (KD) HPDE6-C7 models were designed and cultured in a high-fat environment. Protein levels were quantified by Western blotting. Cell monolayer permeability was detected using FITC-Dextran. Results Serum TG concentration and pancreatic scores were higher in the HTGAP group than in the normal group. Among the TJ proteins, LSR protein expression was significantly lower in the HTGAP group than in the acute pancreatitis (AP) group. Tricellulin (TRIC) expression in the pancreatic ductal epithelia was higher in the HTGAP group than in the AP group. The HTGAP group had lower TJ protein levels, wider intercellular space, and widespread cellular necrosis with disappearance of cell junction structures. In the cell study, TJ proteins were downregulated and the cellular barrier was impaired by palmitic acid (PA), which was reversed by LSR-OE, whereas LSR-KD downregulated the TJ proteins and aggravated PA-induced cellular barrier impairment. Conclusions Hypertriglyceridemia downregulates the TJ proteins in PDECs, which may impair the pancreatic ductal mucosal barrier function. LSR regulation can change the effects of HTG on cellular barrier function by upregulating the TJ proteins.
Collapse
Affiliation(s)
- Jie Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mengbin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qing Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiying Yang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Biwei Wei
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinlian Xie
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingying Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhihai Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
Yang HY, Liang ZH, Xie JL, Wu Q, Qin YY, Zhang SY, Tang GD. Gelsolin impairs barrier function in pancreatic ductal epithelial cells by actin filament depolymerization in hypertriglyceridemia‑induced pancreatitis in vitro. Exp Ther Med 2022; 23:290. [PMID: 35317441 PMCID: PMC8908475 DOI: 10.3892/etm.2022.11219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Gelsolin (GSN) is a calcium-regulated actin-binding protein that can sever actin filaments. Notably, actin dynamics affect the structure and function of epithelial barriers. The present study investigated the role of GSN in the barrier function of pancreatic ductal epithelial cells (PDECs) in hypertriglyceridemia-induced pancreatitis (HTGP). The human PDEC cell line HPDE6-C7 underwent GSN knockdown and was treated with caerulein (CAE) + triglycerides (TG). Intracellular calcium levels and the actin filament network were analyzed under a fluorescence microscope. The expression levels of GSN, E-cadherin, nectin-2, ZO-1 and occludin were evaluated by reverse transcription-quantitative polymerase chain reaction and western blotting. Ultrastructural changes in tight junctions were observed by transmission electron microscopy. Furthermore, the permeability of PDECs was analyzed by fluorescein isothiocyanate-dextran fluorescence. The results revealed that CAE + TG increased intracellular calcium levels, actin filament depolymerization and GSN expression, and increased PDEC permeability by decreasing the expression levels of E-cadherin, nectin-2, ZO-1 and occludin compared with the control. Moreover, changes in these markers, with the exception of intracellular calcium levels, were reversed by silencing GSN. In conclusion, GSN may disrupt barrier function in PDECs by causing actin filament depolymerization in HTGP in vitro.
Collapse
Affiliation(s)
- Hui-Ying Yang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhi-Hai Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jin-Lian Xie
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qing Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Ying-Ying Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shi-Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guo-Du Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
14
|
Activation of TLR4 induces severe acute pancreatitis-associated spleen injury via ROS-disrupted mitophagy pathway. Mol Immunol 2021; 142:63-75. [PMID: 34965485 DOI: 10.1016/j.molimm.2021.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Severe acute pancreatitis (SAP) is complicated by systemic inflammatory response syndrome and multiple organ dysfunction, the disease will eventually result in death in almost half of the case. The spleen, as the largest immune organ adjacent to the pancreas, is prone to damage in SAP, thereby aggravating the damage of other organs and increasing mortality. However, to date, the research on the mechanism and treatment of spleen injury caused by SAP is still in its infancy. Herein, we investigated the mechanism of spleen injury, and explored the application potential of tuftsin for relieving spleen damage in SAP mice. Firstly, SAP mice model was constructed via the retrograde infusion of 3.5 % sodium taurocholate into the biliopancreatic duct. Then, we proved that the up-regulation of Toll-like receptor 4 (TLR4) in spleen would lead to the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction under SAP conditions. The splenic ROS and mitochondrial dysfunction could be improved by N-acetylcysteine (NAC) treatment or knocking out TLR4 in SAP mice. Meanwhile, we found that NAC treatment could also improve the autophagy of spleen tissue, suggesting that splenic ROS may affect impaired autophagy, causing the accumulation of damaged mitochondria, aggravating spleen damage. Furthermore, we verified the mechanism of spleen injury is caused by splenic ROS affecting PI3K/p-AKT/mTOR pathway-mediated autophagy. In addition, we detected the spleen injury caused by SAP could decrease the concentration of tuftsin in the serum of mice. Whereas, exogenous supplementation of tuftsin ameliorated the pathological damage, ROS accumulation, impaired autophagy, inflammation expression and apoptosis in damaged spleen. In summary, we verified the new mechanism of SAP-caused spleen damage that TLR4-induced ROS provoked mitophagy impairment and mitochondrial dysfunction in spleen via PI3K/p-AKT mTOR signaling, and the application potential of tuftsin in treating spleen injury, which might expand novel ideas and methods for the treatment of pancreatitis.
Collapse
|
15
|
Ondee T, Pongpirul K, Janchot K, Kanacharoen S, Lertmongkolaksorn T, Wongsaroj L, Somboonna N, Ngamwongsatit N, Leelahavanichkul A. Lactiplantibacillus plantarum dfa1 Outperforms Enterococcus faecium dfa1 on Anti-Obesity in High Fat-Induced Obesity Mice Possibly through the Differences in Gut Dysbiosis Attenuation, despite the Similar Anti-Inflammatory Properties. Nutrients 2021; 14:nu14010080. [PMID: 35010955 PMCID: PMC8746774 DOI: 10.3390/nu14010080] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
Fat reduction and anti-inflammation are commonly claimed properties of probiotics. Lactiplantibacillus plantarum and Enterococcus faecium were tested in high fat-induced obesity mice and in vitro experiments. After 16 weeks of probiotics, L. plantarum dfa1 outperforms E. faecium dfa1 on the anti-obesity property as indicated by body weight, regional fat accumulation, serum cholesterol, inflammatory cytokines (in blood and colon tissue), and gut barrier defect (FITC-dextran assay). With fecal microbiome analysis, L. plantarum dfa1 but not E. faecium dfa1 reduced fecal abundance of pathogenic Proteobacteria without an alteration in total Gram-negative bacteria when compared with non-probiotics obese mice. With palmitic acid induction, the condition media from both probiotics similarly attenuated supernatant IL-8, improved enterocyte integrity and down-regulated cholesterol absorption-associated genes in Caco-2 cell (an enterocyte cell line) and reduced supernatant cytokines (TNF-α and IL-6) with normalization of cell energy status (extracellular flux analysis) in bone-marrow-derived macrophages. Due to the anti-inflammatory effect of the condition media of both probiotics on palmitic acid-activated enterocytes was neutralized by amylase, the active anti-inflammatory molecules might, partly, be exopolysaccharides. As L. plantarum dfa1 out-performed E. faecium dfa1 in anti-obesity property, possibly through the reduced fecal Proteobacteria, with a similar anti-inflammatory exopolysaccharide; L. plantarum is a potentially better option for anti-obesity than E. faecium.
Collapse
Affiliation(s)
- Thunnicha Ondee
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (T.O.); (K.J.)
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (T.O.); (K.J.)
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Bumrungrad International Hospital, Bangkok 10110, Thailand
- Correspondence: (K.P.); (A.L.)
| | - Kantima Janchot
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (T.O.); (K.J.)
| | - Suthicha Kanacharoen
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Thanapat Lertmongkolaksorn
- Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Lampet Wongsaroj
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (L.W.); (N.S.)
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (L.W.); (N.S.)
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (K.P.); (A.L.)
| |
Collapse
|
16
|
CaMK II Inhibition Attenuates ROS Dependent Necroptosis in Acinar Cells and Protects against Acute Pancreatitis in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4187398. [PMID: 34840668 PMCID: PMC8612788 DOI: 10.1155/2021/4187398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/08/2021] [Indexed: 12/27/2022]
Abstract
As a calcium-regulated protein, CaMK II is closely related to cell death, and it participates in the development of pathological processes such as reperfusion injury, myocardial infarction, and oligodendrocyte death. The function of CaMK II activation in acute pancreatitis (AP) remains unclear. In our study, we confirmed that the expression of p-CaMK II was increased significantly and consistently in injured pancreatic tissues after caerulein-induced AP. Then, we found that KN93, an inhibitor of CaMK II, could mitigate the histopathological manifestations in pancreatic tissues, reduce serum levels of enzymology, and decrease oxidative stress products. Accordingly, we elucidated the effect of KN93 in vitro and found that KN93 had a protective effect on the pancreatic acinar cell necroptosis pathway by inhibiting the production of ROS and decreasing the expression of RIP3 and p-MLKL. In addition, we identified the protective effect of KN93 on AP through another mouse model induced by pancreatic duct ligation (PDL). Together, these data demonstrated that CaMK II participates in the development of AP and that inhibiting CaMK II activation could protect against AP by reducing acinar cell necroptosis, which may provide a new idea target for the prevention and treatment of AP in the clinic.
Collapse
|
17
|
Gorecki AM, Anyaegbu CC, Anderton RS. TLR2 and TLR4 in Parkinson's disease pathogenesis: the environment takes a toll on the gut. Transl Neurodegener 2021; 10:47. [PMID: 34814947 PMCID: PMC8609261 DOI: 10.1186/s40035-021-00271-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is an incurable, devastating disorder that is characterized by pathological protein aggregation and neurodegeneration in the substantia nigra. In recent years, growing evidence has implicated the gut environment and the gut-brain axis in the pathogenesis and progression of PD, especially in a subset of people who exhibit prodromal gastrointestinal dysfunction. Specifically, perturbations of gut homeostasis are hypothesized to contribute to α-synuclein aggregation in enteric neurons, which may spread to the brain over decades and eventually result in the characteristic central nervous system manifestations of PD, including neurodegeneration and motor impairments. However, the mechanisms linking gut disturbances and α-synuclein aggregation are still unclear. A plethora of research indicates that toll-like receptors (TLRs), especially TLR2 and TLR4, are critical mediators of gut homeostasis. Alongside their established role in innate immunity throughout the body, studies are increasingly demonstrating that TLR2 and TLR4 signalling shapes the development and function of the gut and the enteric nervous system. Notably, TLR2 and TLR4 are dysregulated in patients with PD, and may thus be central to early gut dysfunction in PD. To better understand the putative contribution of intestinal TLR2 and TLR4 dysfunction to early α-synuclein aggregation and PD, we critically discuss the role of TLR2 and TLR4 in normal gut function as well as evidence for altered TLR2 and TLR4 signalling in PD, by reviewing clinical, animal model and in vitro research. Growing evidence on the immunological aetiology of α-synuclein aggregation is also discussed, with a focus on the interactions of α-synuclein with TLR2 and TLR4. We propose a conceptual model of PD pathogenesis in which microbial dysbiosis alters the permeability of the intestinal barrier as well as TLR2 and TLR4 signalling, ultimately leading to a positive feedback loop of chronic gut dysfunction promoting α-synuclein aggregation in enteric and vagal neurons. In turn, α-synuclein aggregates may then migrate to the brain via peripheral nerves, such as the vagal nerve, to contribute to neuroinflammation and neurodegeneration typically associated with PD.
Collapse
Affiliation(s)
- Anastazja M Gorecki
- School of Biological Science, University of Western Australia, Crawley, WA, Australia.
- Neurodegenerative Disorders Research Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
| | - Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Ralph and Patricia Sarich Neuroscience Research Institute, Curtin University, Nedlands, WA, Australia
| | - Ryan S Anderton
- Faculty of Medicine, Nursing and Midwifery and Faculty of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
- School of Nursing, Midwifery, Health Sciences and Physiotherapy, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
18
|
Pan L, Niu Z, Gao Y, Wang L, Liu Z, Liu J, Sun J, Pei H. Silencing of CREB Inhibits HDAC2/TLR4/NF-κB Cascade to Relieve Severe Acute Pancreatitis-Induced Myocardial Injury. Inflammation 2021; 44:1565-1580. [PMID: 33725236 DOI: 10.1007/s10753-021-01441-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/06/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023]
Abstract
The purpose of the present study is to investigate the role of CREB in cardiomyocytes proliferation in regulation of HDAC2-dependent TLR4/NF-κB pathway in severe acute pancreatitis (SAP)-induced myocardial injury. The SAP rat model was developed by injecting sodium touracholate into SD rats and then infected with lentivirus vectors expressing sh-CREB in the presence/absence of LPS. The pathological alterations of rat pancreatic and cardiac tissues were observed by HE staining. TUNEL assay was used to study apoptosis of cardiomyocytes. Next, the loss- and gain-function assay was conducted in LPS-induced myocardial injury cardiomyocytes to define the roles of CREB, HDAC2, and TLR4 in cardiomyocyte proliferation, apoptosis, inflammation, and myocardial injury in vitro. ChIP assay was used to study the enrichment of CREB bound to HDAC2 promoter. RT-qPCR and Western blot analysis were used to detect the expressions of related mRNA and proteins in the NF-κB pathway, respectively. CREB was found to be overexpressed in both SAP tissues and cells. CREB directly bound to the promoter of HDAC2 and activated its expression. Overexpressed CREB or HDAC2 inhibited proliferation and promoted apoptosis of cardiomyocytes. Suppression of CREB inhibited the HDAC2/TLR4/NF-κB cascade to promote proliferation and inhibit apoptosis of cardiomyocytes. The in vitro results were validated in vivo experiments. Coherently, suppression of CREB can inhibit HDAC2/TLR4/NF-κB cascade to promote cardiomyocyte proliferation, thus ameliorating SAP-induced myocardial injury.
Collapse
Affiliation(s)
- Longfei Pan
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China.
| | - Zequn Niu
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Yanxia Gao
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Liming Wang
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Zhong Liu
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Jie Liu
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Jiangli Sun
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Honghong Pei
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
19
|
Emodin protects against intestinal and lung injury induced by acute intestinal injury by modulating SP-A and TLR4/NF-κB pathway. Biosci Rep 2021; 40:226403. [PMID: 32915230 PMCID: PMC7517261 DOI: 10.1042/bsr20201605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: Our aim was to investigate the effect of emodin on intestinal and lung injury induced by acute intestinal injury in rats and explore potential molecular mechanisms. Methods: Healthy male Sprague–Dawley (SD) rats were randomly divided into five groups (n=10, each group): normal group; saline group; acute intestinal injury model group; model + emodin group; model+NF-κB inhibitor pynolidine dithiocarbamate (PDTC) group. Histopathological changes in intestine/lung tissues were observed by Hematoxylin and Eosin (H&E) and terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL) staining. Serum IKBα, p-IKBα, surfactant protein-A (SP-A) and toll-like receptor 4 (TLR4) levels were examined using enzyme-linked immunosorbent assay (ELISA). RT-qPCR was performed to detect the mRNA expression levels of IKBα, SP-A and TLR4 in intestine/lung tissues. Furthermore, the protein expression levels of IKBα, p-IKBα, SP-A and TLR4 were detected by Western blot. Results: The pathological injury of intestinal/lung tissues was remarkedly ameliorated in models treated with emodin and PDTC. Furthermore, the intestinal/lung injury scores were significantly decreased after emodin or PDTC treatment. TUNEL results showed that both emodin and PDTC treatment distinctly attenuated the apoptosis of intestine/lung tissues induced by acute intestinal injury. At the mRNA level, emodin significantly increased the expression levels of SP-A and decreased the expression levels of IKBα and TLR4 in intestine/lung tissues. According to ELISA and Western blot, emodin remarkedly inhibited the expression of p-IKBα protein and elevated the expression of SP-A and TLR4 in serum and intestine/lung tissues induced by acute intestinal injury. Conclusion: Our findings suggested that emodin could protect against intestinal and lung injury induced by acute intestinal injury by modulating SP-A and TLR4/NF-κB pathway.
Collapse
|
20
|
Lin T, Song J, Pan X, Wan Y, Wu Z, Lv S, Mi L, Wang Y, Tian F. Downregulating Gasdermin D Reduces Severe Acute Pancreatitis Associated with Pyroptosis. Med Sci Monit 2021; 27:e927968. [PMID: 33582700 PMCID: PMC7891845 DOI: 10.12659/msm.927968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Intestinal injury plays a key role in the pathogenesis of severe acute pancreatitis (SAP). In this study, we investigated the protective function of downregulated Gasdermin D (GSDMD) in intestinal damage in a mouse model of severe acute pancreatitis (SAP). Material/Methods Twenty-four healthy male C57BL/6 mice were randomly divided into 4 groups – the NS group, the siRNA-NS group, the SAP group, and the siRNA-SAP group – with 6 mice in each group. SAP was induced in mice by intraperitoneal injection of caerulein and lipopolysaccharide. The pathological changes of pancreatic and the intestinal mucosa and the relative gene and protein expressions in each group were compared, and the levels of GSDMD and serum IL-1β and IL-18 were evaluated after induction of the SAP model. Results The mice in the SAP group were in more serious condition than those in the siRNA-SAP group, with various degrees of edema and hemorrhage in the intestinal tract. Under an optical microscope, the pathological changes of pancreatic tissue such as edema, inflammatory cell infiltration, and the damage of lobular structural were gradually increased in the SAP group and the siRNA-NS group. In addition, intestinal mucosal damage and intestinal villus breakage were found in the SAP group and the siRNA-NS group, and the latter was lighter than the former. Compared with the SAP group, the level of GSDMD protein expression in the siRNA-SAP group was lower, and the serum levels of IL-1β and IL-18 were higher in the SAP group and siRNA-SAP group (P<0.05). Immunohistochemical analysis showed the occludin and ZO-1 proteins in the NS group had a strong brown linear signal, while the brown-positive signals were weaker in the siRNA-SAP group and the SAP group. Conclusions Downregulating GSDMD protein can reduce pancreatitis associated with pyroptosis.
Collapse
Affiliation(s)
- Tianjiao Lin
- Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Jingyu Song
- Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Xinting Pan
- Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Youdong Wan
- Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Ziqian Wu
- Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Shaoyan Lv
- Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Liangyu Mi
- Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yunyun Wang
- Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Fei Tian
- Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
21
|
Hsieh CE, You FN, Dai FJ, Tung YC, Chen WJ, Chu HF, Wu SH, Chau CF. Bacillus coagulans BC198 and Lactobacillus paracasei S38 in combination reduce body fat accumulation and modulate gut microbiota. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1843542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cheng-En Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Fu-Nian You
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Fan-Jhen Dai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Chia Tung
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Jen Chen
- Research and Development Department, Syngen Biotech Co., Ltd., Tainan, Taiwan
| | - Hui-Fang Chu
- Research and Development Department, Syngen Biotech Co., Ltd., Tainan, Taiwan
| | - Shiuan-Huei Wu
- Research and Development Department, Syngen Biotech Co., Ltd., Tainan, Taiwan
| | - Chi-Fai Chau
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|