1
|
Shrivastava A, Kumar A, Aggarwal LM, Pradhan S, Choudhary S, Ashish A, Kashyap K, Mishra S. Evolution of Bioelectric Membrane Potentials: Implications in Cancer Pathogenesis and Therapeutic Strategies. J Membr Biol 2024:10.1007/s00232-024-00323-2. [PMID: 39183198 DOI: 10.1007/s00232-024-00323-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Electrophysiology typically deals with the electrical properties of excitable cells like neurons and muscles. However, all other cells (non-excitable) also possess bioelectric membrane potentials for intracellular and extracellular communications. These membrane potentials are generated by different ions present in fluids available in and outside the cell, playing a vital role in communication and coordination between the cell and its organelles. Bioelectric membrane potential variations disturb cellular ionic homeostasis and are characteristic of many diseases, including cancers. A rapidly increasing interest has emerged in sorting out the electrophysiology of cancer cells. Compared to healthy cells, the distinct electrical properties exhibited by cancer cells offer a unique way of understanding cancer development, migration, and progression. Decoding the altered bioelectric signals influenced by fluctuating electric fields benefits understanding cancer more closely. While cancer research has predominantly focussed on genetic and molecular traits, the delicate area of electrophysiological characteristics has increasingly gained prominence. This review explores the historical exploration of electrophysiology in the context of cancer cells, shedding light on how alterations in bioelectric membrane potentials, mediated by ion channels and gap junctions, contribute to the pathophysiology of cancer.
Collapse
Affiliation(s)
- Anju Shrivastava
- Department of Physiology, Chhattisgarh Institute of Medical Sciences, Bilaspur, India.
| | - Amit Kumar
- Department of Anatomy, Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Lalit Mohan Aggarwal
- Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Satyajit Pradhan
- Radiation Oncology, Mahamana Pandit Madhan Mohan Malaviya Cancer Centre, Varanasi, India
| | - Sunil Choudhary
- Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Ashish
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Keshav Kashyap
- Department of Physiology, Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Shivani Mishra
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Pierucci N, Mariani MV, Laviola D, Silvetti G, Cipollone P, Vernile A, Trivigno S, La Fazia VM, Piro A, Miraldi F, Vizza CD, Lavalle C. Pulsed Field Energy in Atrial Fibrillation Ablation: From Physical Principles to Clinical Applications. J Clin Med 2024; 13:2980. [PMID: 38792520 PMCID: PMC11121906 DOI: 10.3390/jcm13102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Atrial fibrillation, representing the most prevalent sustained cardiac arrhythmia, significantly impacts stroke risk and cardiovascular mortality. Historically managed with antiarrhythmic drugs with limited efficacy, and more recently, catheter ablation, the interventional approach field is still evolving with technological advances. This review highlights pulsed field ablation (PFA), a revolutionary technique gaining prominence in interventional electrophysiology because of its efficacy and safety. PFA employs non-thermal electric fields to create irreversible electroporation, disrupting cell membranes selectively within myocardial tissue, thus preventing the non-selective damage associated with traditional thermal ablation methods like radiofrequency or cryoablation. Clinical studies have consistently shown PFA's ability to achieve pulmonary vein isolation-a cornerstone of AF treatment-rapidly and with minimal complications. Notably, PFA reduces procedure times and has shown a lower incidence of esophageal and phrenic nerve damage, two common concerns with thermal techniques. Emerging from oncological applications, the principles of electroporation provide a unique tissue-selective ablation method that minimizes collateral damage. This review synthesizes findings from foundational animal studies through to recent clinical trials, such as the MANIFEST-PF and ADVENT trials, demonstrating PFA's effectiveness and safety. Future perspectives point towards expanding indications and refinement of techniques that promise to improve AF management outcomes further. PFA represents a paradigm shift in AF ablation, offering a safer, faster, and equally effective alternative to conventional methods. This synthesis of its development and clinical application outlines its potential to become the new standard in AF treatment protocols.
Collapse
Affiliation(s)
- Nicola Pierucci
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Marco Valerio Mariani
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Domenico Laviola
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Giacomo Silvetti
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Pietro Cipollone
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Antonio Vernile
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Sara Trivigno
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | | | - Agostino Piro
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Fabio Miraldi
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Carmine Dario Vizza
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Carlo Lavalle
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| |
Collapse
|
3
|
Cariti F, Caivano F, de Robertis V, Dadduzio S, Guarino P, Barbara F, Pontillo V, Russo C, Plantone F, Barbara M. Electrochemotherapy as palliative care in patients with local or metastatic recurrence of head and neck cancer: review of state of the art. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2024; 44:S37-S41. [PMID: 38745515 PMCID: PMC11098543 DOI: 10.14639/0392-100x-suppl.1-44-2024-n2920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 05/16/2024]
Abstract
Head and neck cancers are mostly represented by squamous cell carcinoma. Despite effective treatment of primary tumours, local recurrences and metastases are frequent, with up to a 60% risk of local and 30% of distant failure. Moreover, second primary tumours sometimes occur in these patients (2-3% per year). Treatment of recurrences, metastases, and second primary tumours can be extremely challenging for Otorhinolaryngologists, especially in patients who have already been treated with radiotherapy, previous surgery, or both. Electrochemotherapy represents an effective and valid option in these cases.
Collapse
Affiliation(s)
- Francesco Cariti
- Otolaryngology and Head and Neck Unit, Ospedale “Mons. Dimiccoli”, Barletta, Italy
| | - Francesca Caivano
- Otolaryngology and Head and Neck Unit, Policlinico di Bari, Bari, Italy
| | | | - Salvatore Dadduzio
- Otolaryngology and Head and Neck Unit, Ospedale “Mons. Dimiccoli”, Barletta, Italy
| | - Pierre Guarino
- Otolaryngology and Head and Neck Unit, Ospedale Civile Santo Spirito, Pescara, Italy
| | - Francesco Barbara
- Otolaryngology and Head and Neck Unit, Policlinico di Bari, Bari, Italy
| | - Vito Pontillo
- Otolaryngology and Head and Neck Unit, Policlinico di Bari, Bari, Italy
| | - Cosimo Russo
- Otolaryngology and Head and Neck Unit, Ospedale Di Venere, Bari, Italy
| | | | - Michele Barbara
- Otolaryngology and Head and Neck Unit, Ospedale Di Venere, Bari, Italy
| |
Collapse
|
4
|
de Caro A, Talmont F, Rols MP, Golzio M, Kolosnjaj-Tabi J. Therapeutic perspectives of high pulse repetition rate electroporation. Bioelectrochemistry 2024; 156:108629. [PMID: 38159429 DOI: 10.1016/j.bioelechem.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Electroporation, a technique that uses electrical pulses to temporarily or permanently destabilize cell membranes, is increasingly used in cancer treatment, gene therapy, and cardiac tissue ablation. Although the technique is efficient, patients report discomfort and pain. Current strategies that aim to minimize pain and muscle contraction rely on the use of pharmacological agents. Nevertheless, technical improvements might be a valuable tool to minimize adverse events, which occur during the application of standard electroporation protocols. One recent technological strategy involves the use of high pulse repetition rate. The emerging technique, also referred as "high frequency" electroporation, employs short (micro to nanosecond) mono or bipolar pulses at repetition rate ranging from a few kHz to a few MHz. This review provides an overview of the historical background of electric field use and its development in therapies over time. With the aim to understand the rationale for novel electroporation protocols development, we briefly describe the physiological background of neuromuscular stimulation and pain caused by exposure to pulsed electric fields. Then, we summarize the current knowledge on electroporation protocols based on high pulse repetition rates. The advantages and limitations of these protocols are described from the perspective of their therapeutic application.
Collapse
Affiliation(s)
- Alexia de Caro
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
5
|
Andrade DLLS, Pintarelli GB, Rosa JV, Paro IB, Pagano PJT, Silva JCN, Suzuki DOH. Musa acuminata as electroporation model. Bioelectrochemistry 2023; 154:108549. [PMID: 37639773 DOI: 10.1016/j.bioelechem.2023.108549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
Electrochemotherapy (ECT) and Irreversible electroporation (IRE) are cancer treatments based on electric field distribution in tissues. Solanum tuberosum (potato tissue) phantom is known to mimic changes in the electrical conductivity that occur in animal tissues during electroporation (EP). Electric field distribution is assessed through enzymatic staining. However, the 24-h wait for this assessment could slow agile response scenarios. We developed and validated the Musa acuminata (cavendish banana) conductivity model, which quickly evaluates EP by tissue staining. We investigated the frequency response of the tissue using impedance spectroscopy analysis, conductivity changes, and enzymatic staining. We optimized three usual EP models: adapted Gompertz, smoothed Heaviside, and the sigmoid or logistic function. We found dielectric parameters in banana tissue similar to those in potato (electrical conductivity of 0.035 S/m and relative permittivity of 4.1×104). The coefficients of determination R2 were 99.94% (Gompertz), 99.85% (Heaviside), and 99.58% (sigmoid). The sigmoid and Heaviside functions described the calibration and validation electric currents with 95% confidence. We observed the electroporated areas in bananas 3h30m after EP. Staining was significant after 450 V/cm. The conductivity model of Musa acuminata suits treatment planning, hardware development, and training scenarios. Banana phantom supports the 3Rs practice and is a reliable alternative for potato in EP studies.
Collapse
Affiliation(s)
- Daniella L L S Andrade
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme B Pintarelli
- Department of Control and Automation Engineering, Federal University of Santa Catarina, Blumenau, SC, Brazil
| | - Juliana V Rosa
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Isabela B Paro
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Pedro J T Pagano
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Julia C N Silva
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Daniela O H Suzuki
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
6
|
Sauer N, Szlasa W, Szewczyk A, Novickij V, Saczko J, Baczyńska D, Daczewska M, Kulbacka J. Effects of Nanosecond Pulsed Electric Field on Immune Checkpoint Receptors in Melanoma Cells. Pharmaceuticals (Basel) 2023; 16:1362. [PMID: 37895833 PMCID: PMC10610193 DOI: 10.3390/ph16101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Checkpoint molecules such as PD-1, LAG-3, and TIM-3 are currently under extensive investigation for their roles in the attenuation of the immune response in cancer. Various methods have been applied to overcome the challenges in this field. This study investigated the effects of nanosecond pulsed electric field (nsPEF) treatment on the expression of immune checkpoint molecules in A375 and C32 melanoma cells. The researchers found that the nsPEF treatment was able to enhance membrane permeabilization and morphological changes in the cell membrane without being cytotoxic. We found that the effects of nsPEFs on melanoma included (1) the transport of vesicles from the inside to the outside of the cells, (2) cell contraction, and (3) the migration of lipids from inside the cells to their peripheries. The treatment increased the expression of PD-1 checkpoint receptors. Furthermore, we also observed potential co-localization or clustering of MHC class II and PD-1 molecules on the cell surface and the secretion of cytokines such as TNF-α and IL-6. These findings suggest that nsPEF treatment could be a viable approach to enhance the delivery of therapeutic agents to cancer cells and to modulate the tumor microenvironment to promote an antitumor immune response. Further studies are needed to explore the mechanisms underlying these effects and their impacts on the antitumor immune response, and to investigate the potential of nsPEF treatment in combination with immune checkpoint inhibitors to improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 51-618 Wroclaw, Poland; (A.S.); (D.B.)
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland;
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, 08217 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 51-618 Wroclaw, Poland; (A.S.); (D.B.)
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 51-618 Wroclaw, Poland; (A.S.); (D.B.)
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 51-618 Wroclaw, Poland; (A.S.); (D.B.)
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| |
Collapse
|
7
|
Iezzi R, Posa A, Caputo CT, De Leoni D, Sbaraglia F, Rossi M, Tortora G, Tagliaferri L, Valentini V, Colosimo C. Safety and Feasibility of Analgosedation for Electrochemotherapy of Liver Lesions. Life (Basel) 2023; 13:life13030631. [PMID: 36983788 PMCID: PMC10051269 DOI: 10.3390/life13030631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 03/21/2023] Open
Abstract
Interventional Oncology treatments grant low-risk mini-invasive alternatives to surgery for cancer patients. Percutaneous ablative therapies represent a cornerstone for treatment of liver cancer patients. Among these, a newly emerging one is represented by electrochemotherapy. Improvements in analgesia and sedation can nowadays offer optimal support for ablative procedures, serving as a valid alternative to general anesthesia. The intention of this retrospective monocentric study is to report our preliminary experience on feasibility and safety of electrochemotherapy for treatment of complex liver tumors unfit for thermal ablation, using analgosedation instead of general anesthesia. Five patients were enrolled in the study, undergoing electrochemotherapy under analgosedation. Mean procedural time and hospitalization time were recorded. Immediate post-procedural cone-beam CT showed complete coverage of the lesion without complications. One-month CT examination showed an overall response rate of 100% (four complete responses, one partial response). Electrochemotherapy under analgosedation seems to be a safe, feasible, and effective option for liver cancer patients not amenable to other ablative techniques.
Collapse
Affiliation(s)
- Roberto Iezzi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Correspondence: (R.I.); (A.P.)
| | - Alessandro Posa
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Correspondence: (R.I.); (A.P.)
| | - Cosimo Tommaso Caputo
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Davide De Leoni
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Fabio Sbaraglia
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Marco Rossi
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giampaolo Tortora
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Luca Tagliaferri
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Vincenzo Valentini
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Cesare Colosimo
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
8
|
Perrone AM, Corrado G, Coada CA, Garganese G, Fragomeni SM, Tagliaferri L, Di Costanzo S, De Crescenzo E, Morganti AG, Ferioli M, De Terlizzi F, Scambia G, De Iaco P. Electrochemotherapy with intravenous bleomycin for heavily pre-treated vulvar cancer patients. Int J Gynecol Cancer 2023; 33:473-481. [PMID: 36787933 DOI: 10.1136/ijgc-2022-004127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE The management of vulvar cancer recurrences is complicated by patients' advanced age and comorbidities. Bleomycin-based electrochemotherapy is a potential treatment option in this setting. However, no data on long-term outcomes are available. Therefore, a multicenter observational study was designed to evaluate the 5-year results in these patients. METHODS Data about patients and tumor characteristics, electrochemotherapy cycles, clinical response, and follow-up were recorded. Treatment procedures were performed according to the European Standard Operating Procedures of Electrochemotherapy (ESOPE) guidelines. Response was evaluated according to the Response Evaluation Criteria in Solid Tumors (RECIST) criteria. RESULTS Fifty-one patients (mean age 82.31±7.28 years) with squamous cell vulvar cancer underwent electrochemotherapy (median number of sessions 1; range 1-4). 20 patients had complete response and 32% of these were disease-free after 2 years (median progression-free survival 16.8 months). In 13 patients with partial response the median progression-free survival was 15.36 months, while patients with stable or progressive disease showed tumor relapse after 6.95 and 3.26 months, respectively (p<0.001). Median overall survival was 18.77, 13.07, 6.73, and 11.13 months in patients with complete response, partial response, stable disease, and progressive disease, respectively (p=0.001). CONCLUSION Long-term follow-up of vulvar cancer patients showed reasonable tumor control after electrochemotherapy and improved progression-free survival and overall survival in responder subjects compared with non-responders. Further studies aimed at improving local response after electrochemotherapy are warranted. Thus, this approach represents a potential alternative for these patients.
Collapse
Affiliation(s)
- Anna Myriam Perrone
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna Policlinico S Orsola, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Corrado
- UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Giorgia Garganese
- Gynecology and Breast Care Center, Mater Olbia Hospital, Olbia, Italy.,Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Ginecologia ed Ostetricia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Maria Fragomeni
- UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Luca Tagliaferri
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Stella Di Costanzo
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna Policlinico S Orsola, Bologna, Italy
| | - Eugenia De Crescenzo
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna Policlinico S Orsola, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alessio Giuseppe Morganti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.,Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Martina Ferioli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.,Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Giovanni Scambia
- UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Pierandrea De Iaco
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna Policlinico S Orsola, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Lin X, Wang C, Fang F, Zhou S. A simple integrated microfluidic platform for the research of hydrogels containing gradients in cell density induced breast cancer electrochemotherapy. Talanta 2023; 253:123920. [PMID: 36122433 DOI: 10.1016/j.talanta.2022.123920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
Cell density is important for tumour metastasis, treatment and prognosis. Characterizing changes in cell density for electrochemotherapy (ECT) can reveal sub-populations in pathological states, and adjust treatment program. In this work, a simple and convenient microfluidic platform was developed to study the effect cell density on ECT by integrating the improved cell gradient generator, cell culture chamber and indium tin oxide interdigital electrodes. Agarose, as extracellular matrix (ECM), was used to 3D cell culture to imitate in vivo microenvironment. The precision and reproducibility of cell density gradient with agarose solution were achieved because the hydrophobic modification of microchannels surface resulted in reducing cell adhesion and residue. ECT cytotoxicity assay with difference in cell densities was studied. The results showed that tumour cell density is one of the most factors for ECT treatment and ECT cytotoxicity has a certain of cell density-depended. But only electroporation on low cell density level, ECM would be one of the most key factors for ECT cytotoxicity, which would provide a new idea for chip-based cell assay in clinical diagnosis and drug screening in ordinary laboratories.
Collapse
Affiliation(s)
- Xuexia Lin
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, PR China.
| | - Chenjing Wang
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Feixiang Fang
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Shufeng Zhou
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, PR China
| |
Collapse
|
10
|
Heinzelmann J, Hecht S, Vogt AR, Siebolts U, Kaatzsch P, Viestenz A. Repetitive Bleomycin-Based Electrochemotherapy Improves Antitumor Effectiveness in 3D Tumor Models of Conjunctival Melanoma. J Clin Med 2023; 12:jcm12031087. [PMID: 36769736 PMCID: PMC9917688 DOI: 10.3390/jcm12031087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Conjunctival melanoma (CM) is associated with a high rate of local recurrence and poor survival rate. Novel therapeutic options are needed to reduce recurrence rate. The objective of the study was to demonstrate the improved effectiveness of electrochemotherapy (ECT) on CM using repetitive application. METHODS Tumor spheroids of three CM cell lines (CRMM1, CRMM2, CM2005.1) were treated repetitively with ECT using the chemotherapeutic agent bleomycin on days 3, 5, and 7 of culture. Application of bleomycin alone and electroporation alone served as controls. The cytotoxic effect was analyzed on day 10 compared to untreated control using an independent t-test. The spheroid outgrowth rate was measured. RESULT CM tumor spheroid size (median value: 78%, SD: 32%) and viability (median value: 11%, SD: 11%) were dramatically reduced after repetitive ECT treatment (p-value < 0.001). Decreased proliferation capacity (down to 8%) and an increase of apoptotic cells were observed. In most repetitive ECT-treated spheroids, no viable or proliferating cells were detected. Only 33-40% of repetitive ECT-treated spheroids exhibited single outgrowing cells with a delay of time up to 38 days. CONCLUSION Repetitive ECT application effectively induces cytotoxic effects in CM spheroids by inducing apoptosis, inhibiting proliferation and decreasing the percentage of surviving tumor cells. Thus, repetitive ECT results in improved antitumor effectiveness in CM and could be an alternative therapy option.
Collapse
Affiliation(s)
- Joana Heinzelmann
- Department of Ophthalmology, University Hospital Halle-Wittenberg, 06120 Halle, Germany
- Correspondence:
| | - Sabine Hecht
- Department of Ophthalmology, University Hospital Halle-Wittenberg, 06120 Halle, Germany
| | - Alexander Ruben Vogt
- Department of Ophthalmology, University Hospital Halle-Wittenberg, 06120 Halle, Germany
| | - Udo Siebolts
- Institute of Pathology, University Hospital Halle-Wittenberg, 06112 Halle, Germany
- Institute of Pathology, University Hospital Köln, 50996 Köln, Germany
| | - Peter Kaatzsch
- Institute of Pathology, University Hospital Halle-Wittenberg, 06112 Halle, Germany
| | - Arne Viestenz
- Department of Ophthalmology, University Hospital Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
11
|
Lindelauf KHK, Baragona M, Baumann M, Maessen RTH, Ritter A. Pulse Parameters and Thresholds for (ir)Reversible Electroporation on Hepatocellular Carcinoma Cells in Vitro. Technol Cancer Res Treat 2023; 22:15330338221136694. [PMID: 36600679 PMCID: PMC9829997 DOI: 10.1177/15330338221136694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma is a leading cause of cancer-related death in many parts of the world. Traditional treatment options are not always effective. During the promising minimally invasive electroporation-based therapies, biological cell membranes are exposed to an external, sufficiently high, pulsed electric field which creates so-called nanopores into the lipid bilayer of the cell membrane. These pores can either be permanent (irreversible electroporation (IRE)), leading to apoptosis, or repairable (reversible electroporation (RE)), with continued cell function. In tumor therapy, RE is used to increase the diffusion of a chemotherapeutic drug during electrochemotherapy. For both IRE and RE, the success of the treatment is dependent on application of the appropriate electric field. Therefore, this study aims to define the pulse parameters and thresholds for IRE and RE on hepatocellular carcinoma (HepG2) cells in-vitro.In a custom-made in-vitro setup, HepG2 cell viability (0, 5, 10, and 15 min), and the peak temperature were measured after electroporation with the different IRE and RE pulsing protocols, to determine the most successful settings for IRE and RE. A CAM/PI flow cytometric assay was performed to confirm cell permeabilization for the RE pulsing protocols with the highest cell viability.The results indicated that an IRE pulsing protocol (70 pulses, 100 µs pulse length, and 100 ms interval) with an electric field strength of 4000 V/cm was needed as threshold for almost complete cell death of HepG2 cells. A RE pulsing protocol (8 pulses, 100 µs pulse length, and 1000 ms interval) with an electric field strength of 1000 V/cm was needed as threshold for viable and permeabilized HepG2 cells. The low peak temperatures (max 30.1°C for IRE, max 23.1°C for RE) within this study indicated that the reduction in HepG2 cell viability was caused by the applied electric field and was not a result of Joule heating.
Collapse
Affiliation(s)
- K. H. K. Lindelauf
- Department of Diagnostic and Interventional Radiology,
University
Hospital RWTH Aachen, Aachen, Germany,Philips
Research, Eindhoven, the Netherlands,K. H. K. Lindelauf, Department of
Diagnostic and Interventional Radiology, University Hospital RWTH Aachen,
Aachen, Germany.
| | - M. Baragona
- Philips
Research, Eindhoven, the Netherlands
| | - M. Baumann
- Institute of Applied Medical Engineering,
RWTH Aachen
University, Aachen, Germany
| | | | - A. Ritter
- Department of Diagnostic and Interventional Radiology,
University
Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
12
|
Bute B, Alkis ME. Anticancer activity of methotrexate in electrochemotherapy and electrochemotherapy plus ionizing radiation treatments in human breast cancer cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:28. [PMID: 36459220 DOI: 10.1007/s12032-022-01891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
Traditional cancer treatments, such as chemotherapy and radiotherapy have several limitations. Therefore, their performance must be enhanced with combined methods. The purpose of this study is to investigate both the efficacy of electroporation (EP) on the activity of methotrexate (MTX) and the combined treatment of electrochemotherapy (ECT) + ionizing radiation (IR) in MCF-7 cancer cells. Different treatment techniques, such as EP, MTX, MTX + EP (ECT), 140 kV X-ray alone (IR_140kV), 500 kV X-ray alone (IR_500kV), ECT + IR_140kV and ECT + IR_500kV, were applied to cancer cells. Eight electric pulse trains with square wave (800 V/cm, 100 µs and 1 Hz) were used in EP and ECT applications. The MTT assay was used to assess the efficacy of the therapies used. When the EP, MTX, ECT, IR_140kV, and IR_500kV treatment groups were compared to the control group, there was a significant reduction in MCF-7 cancer cells viability (p < 0.05). ECT was the most effective of these treatments, decreasing viability of cancer cells to 58.78%. The ECT + IR_140kV and ECT + IR_500kV groups were compared to the ECT group to examine the impact of X-ray radiation on ECT treatment. When compared to the ECT alone group, both groups that exposed to X-rays after ECT had a significant decrease in cell viability (p < 0.05). Furthermore, viability of MCF-7 cells reduced to 46.38% in the ECT + IR_140kV group and 35.89% in the ECT + IR_500kV group. In conclusion, the study shows that the cytotoxicity of MTX is significantly increased in ECT treatment compared to standard chemotherapy (p < 0.05). In addition, ECT + IR combined therapy application is much more effective than MTX or ECT treatments alone.
Collapse
Affiliation(s)
- Burcu Bute
- Department of Nuclear Energy and Energy Systems, Faculty of Engineering and Architecture, Muş Alparslan University, Muş, Turkey
| | - Mehmet Esref Alkis
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, Guzeltepe, 49250, Muş, Turkey.
| |
Collapse
|
13
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
14
|
Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels. Polymers (Basel) 2022; 14:polym14224953. [PMID: 36433079 PMCID: PMC9692448 DOI: 10.3390/polym14224953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Electroactive hydrogels based on derivatives of polyethyleneglycol (PEG), chitosan and polypyrrole were prepared via a combination of photopolymerization and oxidative chemical polymerization, and optionally doped with anions (e.g., lignin, drugs, etc.). The products were analyzed with a variety of techniques, including: FT-IR, UV-Vis, 1H NMR (solution state), 13C NMR (solid state), XRD, TGA, SEM, swelling ratios and rheology. The conductive gels swell ca. 8 times less than the non-conductive gels due to the presence of the interpenetrating network (IPN) of polypyrrole and lignin. A rheological study showed that the non-conductive gels are soft (G' 0.35 kPa, G″ 0.02 kPa) with properties analogous to brain tissue, whereas the conductive gels are significantly stronger (G' 30 kPa, G″ 19 kPa) analogous to breast tissue due to the presence of the IPN of polypyrrole and lignin. The potential of these biomaterials to be used for biomedical applications was validated in vitro by cell culture studies (assessing adhesion and proliferation of fibroblasts) and drug delivery studies (electrochemically loading the FDA-approved chemotherapeutic pemetrexed and measuring passive and stimulated release); indeed, the application of electrical stimulus enhanced the release of PEM from gels by ca. 10-15% relative to the passive release control experiment for each application of electrical stimulation over a short period analogous to the duration of stimulation applied for electrochemotherapy. It is foreseeable that such materials could be integrated in electrochemotherapeutic medical devices, e.g., electrode arrays or plates currently used in the clinic.
Collapse
|
15
|
Bioelectronic medicines: Therapeutic potential and advancements in next-generation cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188808. [DOI: 10.1016/j.bbcan.2022.188808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
16
|
Electrochemotherapy: An Alternative Strategy for Improving Therapy in Drug-Resistant SOLID Tumors. Cancers (Basel) 2022; 14:cancers14174341. [PMID: 36077875 PMCID: PMC9454613 DOI: 10.3390/cancers14174341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Chemotherapy is becoming an increasingly difficult antitumor therapy to practice due to the multiple mechanisms of drug resistance. To overcome the problem, it is possible to use alternative techniques, such as electrochemotherapy, which involves the simultaneous administration of the electrical pulse (electroporation) and the treatment with the drug in order to improve the effectiveness of the drug against the tumor. Electroporation has improved the efficacy of some chemotherapeutic agents, such bleomycin, cisplatin, mitomycin C, and 5-fluorouracil. The results of in vitro, veterinary, and clinical oncology studies are promising on various cancers, such as metastatic melanoma. The purpose of this review is to give an update on the state of the art of electrochemotherapy against the main solid tumors in the preclinical, clinical, and veterinary field. Abstract Electrochemotherapy (ECT) is one of the innovative strategies to overcome the multi drug resistance (MDR) that often occurs in cancer. Resistance to anticancer drugs results from a variety of factors, such as genetic or epigenetic changes, an up-regulated outflow of drugs, and various cellular and molecular mechanisms. This technology combines the administration of chemotherapy with the application of electrical pulses, with waveforms capable of increasing drug uptake in a non-toxic and well tolerated mechanical system. ECT is used as a first-line adjuvant therapy in veterinary oncology, where it improves the efficacy of many chemotherapeutic agents by increasing their uptake into cancer cells. The chemotherapeutic agents that have been enhanced by this technique are bleomycin, cisplatin, mitomycin C, and 5-fluorouracil. After their use, a better localized control of the neoplasm has been observed. In humans, the use of ECT was initially limited to local palliative therapy for cutaneous metastases of melanoma, but phase I/II studies are currently ongoing for several histotypes of cancer, with promising results. In this review, we described the preclinical and clinical use of ECT on drug-resistant solid tumors, such as head and neck squamous cell carcinoma, breast cancer, gynecological cancer and, finally, colorectal cancer.
Collapse
|
17
|
Schiff base containing fluorouracil and its M(II) complexes: Synthesis, characterization, cytotoxic and antioxidant activities. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Savcı A, Buldurun K, Alkış ME, Alan Y, Turan N. Synthesis, characterization, antioxidant and anticancer activities of a new Schiff base and its M(II) complexes derived from 5-fluorouracil. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:172. [PMID: 35972705 DOI: 10.1007/s12032-022-01774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 10/15/2022]
Abstract
In this study, Schiff base ligand was obtained from the condensation reaction of benzene-1,2-diamine and 5-fluoropyrimidine-2,4(1H,3H)-dione (5-FU). Metal(II) complexes were synthesized with Fe(II), Co(II) and Ni(II) chloride salts. The synthesized ligand and metal complexes were characterized by FT-IR, UV-vis, 1H-13C NMR, elemental analyses, mass spectroscopy, magnetic moments, molar conductivity and thermogravimetric analysis studies. With the help of different techniques reveal Fe(II), Co(II) and Ni(II) complexes have exhibited tetrahedral and octahedral geometry. Ligand acted as bidentate and it binds metal(II) ions through deprotonated-NH, imine-N atom and carbonyl-O atom, respectively. DPPH, ABTS, FRAP, CUPRAC and total antioxidant activity methods were used to determine the antioxidant properties of ligand and metal complexes. According to the results, the synthesized compounds showed very high antioxidant activity compared to 5-FU. The cytotoxicities of the synthesized compounds were performed on MCF-7 (human breast cancer) and L-929 (fibroblast) cell lines using the MTT assay. In addition, the effect of electroporation (EP) on the cytotoxicity of the compounds was investigated. Our results demonstrated that novel Co(II) and Ni(II) complexes show potential as new anticancer agents and ECT may be a viable treatment option for breast cancer.
Collapse
Affiliation(s)
- Ahmet Savcı
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Mus Alparslan University, 49250, Mus, Turkey.
| | - Kenan Buldurun
- Department of Medical Services and Techniques, Health Services Vocational School, Mus Alparslan University, 49250, Mus, Turkey
| | - Mehmet Eşref Alkış
- Department of Occupational Health and Safety, Faculty of Health Sciences, Mus Alparslan University, 49250, Mus, Turkey
| | - Yusuf Alan
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Mus Alparslan University, 49250, Mus, Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Mus Alparslan University, 49250, Mus, Turkey
| |
Collapse
|
19
|
Pazzi P, Steenkamp G, Rixon AJ. Treatment of Canine Oral Melanomas: A Critical Review of the Literature. Vet Sci 2022; 9:vetsci9050196. [PMID: 35622724 PMCID: PMC9147014 DOI: 10.3390/vetsci9050196] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
Critical appraisal of the available literature for the treatment of canine oral malignant melanoma (OMM) is lacking. This critical review aimed to evaluate the current literature and provide treatment recommendations and possible suggestions for future canine OMM research. PubMed, Web of Science and Google Scholar were searched in June 2021, for terms relevant to treatment of OMM. Inclusion and exclusion criteria were applied and information on clinical response and outcome extracted. Eighty-one studies were included. The overall level of evidence supporting the various canine OMM treatment options was low. The majority of studies included confounding treatment modalities and lacked randomization, control groups and consistency in reporting clinical response and outcomes. Within these limitations, surgery remains the mainstay of therapy. Adjunctive radiotherapy provided good local control and improved median survival times (MST), chemotherapy did not offer survival benefit beyond that of surgery, while electrochemotherapy may offer a potential alternative to radiotherapy. Immunotherapy holds the most promise in extending MST in the surgical adjunctive setting, in particular the combination of gene therapy and autologous vaccination. Prospective, randomized, double-blinded clinical trials, with a lack of confounding factors and reporting based on established guidelines would allow comparison and recommendations for the treatment of canine OMM.
Collapse
|
20
|
Electroporation, electrochemotherapy and electro-assisted drug delivery in cancer. A state-of-the-art review. Biophys Chem 2022; 286:106819. [DOI: 10.1016/j.bpc.2022.106819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 01/08/2023]
|
21
|
Alkis ME, Akdag MZ, Kandemir I. Influence of extremely low-frequency magnetic field on chemotherapy and electrochemotherapy efficacy in human Caco-2 colon cancer cells. Electromagn Biol Med 2022; 41:177-183. [PMID: 35261297 DOI: 10.1080/15368378.2022.2046047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although chemotherapy (CT) has some adverse effects on healthy tissues and cells, it is widely preferred for treating patients with cancer. Drug resistance is one of the major impediments to successful cancer treatment. Electrochemotherapy (ECT) is a technique where cancer cells are rendered permeable to medications. Thanks to this permeability, the dose of the medication required for cancer treatment decreases. Our aim in this study is to examine the effects of short-term extremely low-frequency magnetic fields (ELF-MFs) on CT and ECT treatments in Caco-2 colon cancer cells. The Caco-2 cancer cells were treated with 5-fluorouracil (5-FU, 50 µM) and ECT (strength:1125 V/cm, duration:100 µs, frequency:1 Hz), alone as well as in combinations with ELF-MF (4 mT, 10 min). MTT assay was used to determine the efficacy of the treatments. Our findings in the study showed that ECT was much more successful than 5-FU treatment alone in Caco-2 colon cancer cells. Application of 4 mT ELF-MF after CT significantly increased the viability of the Caco-2 cancer cells compared to the CT group alone (p < .05). An increase in the viability of cells treated with 4 mT after ECT was observed compared to ECT alone. Similarly, there was an increase in the viability of cells treated with MF prior to ECT treatment (p < .05). The results show that exposure to ELF-MF at 4 mT flux density significantly reduces CT and ECT treatment efficacy in Caco-2 colon cancer cells.
Collapse
Affiliation(s)
- Mehmet Esref Alkis
- Department of Occupational Health and Safety, Faculty of Health Sciences, Muş Alparslan University, Muş, Turkey
| | - Mehmet Zulkuf Akdag
- Department of Biophysics, Medical School of Dicle University, Diyarbakir, Turkey
| | - Irtegun Kandemir
- Department of Medical Biology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
22
|
Andrade DLLS, Guedert R, Pintarelli GB, Rangel MMM, Oliveira KD, Quadros PG, Suzuki DOH. Electrochemotherapy treatment safety under parallel needle deflection. Sci Rep 2022; 12:2766. [PMID: 35177779 PMCID: PMC8854592 DOI: 10.1038/s41598-022-06747-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
Electrochemotherapy is a selective electrical-based cancer treatment. A thriving treatment depends on the local electric field generated by pairs of electrodes. Electrode damage as deflection can directly affect this treatment pillar, the distribution of the electric field. Mechanical deformations such as tip misshaping and needle deflection are reported with needle electrode reusing in veterinary electrochemotherapy. We performed in vitro and in silico experiments to evaluate potential problems with ESOPE type II electrode deflection and potential treatment pitfalls. We also investigated the extent to which the electric currents of the electroporation model can describe deflection failure by comparing in vitro with the in silico model of potato tuber (Solanum tuberosum). The in silico model was also performed with the tumor electroporation model, which is more conductive than the vegetal model. We do not recommend using deflected electrodes. We have found that a deflection of ± 2 mm is unsafe for treatment. Inward deflection can cause dangerous electrical current levels when treating a tumor and cannot be described with the in silico vegetal model. Outward deflection can cause blind spots in the electric field.
Collapse
Affiliation(s)
- Daniella L L S Andrade
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Raul Guedert
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Guilherme B Pintarelli
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | | | | | | | - Daniela O H Suzuki
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil.
| |
Collapse
|
23
|
Das R, Langou S, Le TT, Prasad P, Lin F, Nguyen TD. Electrical Stimulation for Immune Modulation in Cancer Treatments. Front Bioeng Biotechnol 2022; 9:795300. [PMID: 35087799 PMCID: PMC8788921 DOI: 10.3389/fbioe.2021.795300] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy is becoming a very common treatment for cancer, using approaches like checkpoint inhibition, T cell transfer therapy, monoclonal antibodies and cancer vaccination. However, these approaches involve high doses of immune therapeutics with problematic side effects. A promising approach to reducing the dose of immunotherapeutic agents given to a cancer patient is to combine it with electrical stimulation, which can act in two ways; it can either modulate the immune system to produce the immune cytokines and agents in the patient's body or it can increase the cellular uptake of these immune agents via electroporation. Electrical stimulation in form of direct current has been shown to reduce tumor sizes in immune-competent mice while having no effect on tumor sizes in immune-deficient mice. Several studies have used nano-pulsed electrical stimulations to activate the immune system and drive it against tumor cells. This approach has been utilized for different types of cancers, like fibrosarcoma, hepatocellular carcinoma, human papillomavirus etc. Another common approach is to combine electrochemotherapy with immune modulation, either by inducing immunogenic cell death or injecting immunostimulants that increase the effectiveness of the treatments. Several therapies utilize electroporation to deliver immunostimulants (like genes encoded with cytokine producing sequences, cancer specific antigens or fragments of anti-tumor toxins) more effectively. Lastly, electrical stimulation of the vagus nerve can trigger production and activation of anti-tumor immune cells and immune reactions. Hence, the use of electrical stimulation to modulate the immune system in different ways can be a promising approach to treat cancer.
Collapse
Affiliation(s)
- Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Sofia Langou
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States
| | - Thinh T. Le
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Pooja Prasad
- Department of Cell and Molecular Biology, University of Connecticut, Mansfield, CT, United States
| | - Feng Lin
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Thanh D. Nguyen
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
- Institute of Materials Science, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
24
|
Computer optimization of conductive gels for electrochemotherapy. Med Eng Phys 2021; 98:133-139. [PMID: 34848032 DOI: 10.1016/j.medengphy.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/21/2022]
Abstract
Electrochemotherapy (ECT) requires covering the entire tumor and safe margins with a suitable pulsed electric field (PEF). The PEF distribution depends on the biological and electrical parameters. The biological tissue may have diffractive geometry with non-linear conductivity behavior due to electroporation. That characteristic may provoke ECT-insufficient electric field regions, also known as blind spots. The conductive gels can fill holes and bumps, being a tool to homogenize the electric field. We executed an in vitro vegetal tissue experiment to validate a numerical model under different gels conditions. We used a study case in silico experiment to investigate gel influence on PEF distribution and electrical current. We propose a case-oriented methodology to optimize the gel during the ECT pre-treatment. Results show that the optimized gel completely treats a region of interest while avoiding unnecessary current increase and damage to healthy tissue by over treatment. The optimized gel conductivity may be lower than the previously reported (0.5 to 1 S/m) and may be in the range of the commercially available gels. For a veterinary mastocytoma exophytic nodule ECT case study, using needles electrode, the 0.2 S/m gel is the optimum gel.
Collapse
|
25
|
Mansourian M, Firoozabadi SMP, Hassan ZM. The investigation of Pulse-Modulated GSM-900 MHz electromagnetic field effects on the electrochemotherapy mechanisms in vivo. Electromagn Biol Med 2021; 41:71-79. [PMID: 34839760 DOI: 10.1080/15368378.2021.2006689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Electrochemotherapy (ECT) as a tumor treatment modality is approved for cutaneous and subcutaneous tumors. The purpose of the present study was to examine the effect of 900 MHz radiofrequency (RF) pulse-modulated by 217 Hz EMFs similar to those emitted by mobile phones on the mechanisms of ECT in vivo including: tumor hypoxia and immune system response, and on tumor volume.4 T1 cells were injected subcutaneously into the right flank of Balb/c mice. The mice were exposed to RF fields at specific absorption rate (SAR) 2 W/kg for 10 min/day and then treated with ECT. Two protocols of ECT were used: ((70 V/cm-5 kHz) and 70 V/cm-4 kHz)). Tumor hypoxia was analyzed through HIF-1α immuonohistochemistry assay. Interleukin 4 (IL-4) and IFN-γ levels were estimated by enzyme-linked immunosorbent assay (ELISA) technique to evaluate immune system response. Also, tumors volume changes were measured for 24 days following the treatment. The results showed that pulse-modulated RF fields could increase hypoxia induced by ECT, significantly (about 13% in ECT (70 V/cm-5 kHz) and 11% in ECT (70 V/cm-4 kHz)). However, these fields did not have significant effect on immune system response (the levels of IL-4 and IFN-γ) and tumor volume changes induced by ECT. Our results indicated that pulse-modulated RF fields could not affect tumor volume changes in ECT with the frequency of 5 kHz and voltage of 70 V/cm efficacy in vivo. However, investigating the role of other environmental intervening factors on this protocol of ECT is recommended in further studies.
Collapse
Affiliation(s)
- Mahsa Mansourian
- Department of Medical Physics, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - S M P Firoozabadi
- Biomedical Engineering, Department of Medical Physics, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Zuhair Mohammad Hassan
- Immunonology, Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
26
|
Weinert RL, Knabben MA, Pereira EM, Garcia CE, Ramos A. Dynamic Electroporation Model Evaluation on Rabbit Tissues. Ann Biomed Eng 2021; 49:2503-2512. [PMID: 34169397 PMCID: PMC8224995 DOI: 10.1007/s10439-021-02816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/16/2021] [Indexed: 11/27/2022]
Abstract
Biological electroporation is a process of opening pores in the cell membrane when exposed to intense electric fields. This work provides results for validation of a dynamic model of electroporation on biological tissues. Computational simulations were carried out and results for the electrical current through the tissue and increase of the tissue temperature were compared to experimental results. Two calculation methods were used: Equivalent Circuit Method and Finite Element Method. With Equivalent Circuit Method the dielectric dispersion present in biological tissues was included. Liver, kidney and heart of rabbit were used in the experiments. Voltage pulse protocols and voltage ramps were applied using stainless steel needles electrodes. There is good agreement between the simulated and experimental results with mean errors below 15%, with the simulated results within the experimental standard deviation. Only for the protocol with fundamental frequency of 50 kHz, the simulation performed by the Finite Element Method using a commercial software did not correctly represent the current, with errors reaching 50%. The justification for the error found is due to the dielectric dispersion that was not included in this simulator.
Collapse
Affiliation(s)
- Rodolfo Lauro Weinert
- Applied Electromagnetic Research Group, Department of Electrical Engineering, State University of Santa Catarina - UDESC, Paulo Malschitzki, 200 - Campus Universitário Prof. Avelino Marcante, Zona Industrial Norte, Joinville, SC, CEP - 89219-710, Brazil.
| | - Marcel Augusto Knabben
- Applied Electromagnetic Research Group, Department of Electrical Engineering, State University of Santa Catarina - UDESC, Paulo Malschitzki, 200 - Campus Universitário Prof. Avelino Marcante, Zona Industrial Norte, Joinville, SC, CEP - 89219-710, Brazil
| | - Eduardo Manoel Pereira
- Department of Pharmacy, University of Joinville Region - UNIVILLE, Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89201-972, Brazil
| | - Christian Evangelista Garcia
- Department of Medicine, University of Joinville Region - UNIVILLE, Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89201-972, Brazil
| | - Airton Ramos
- Applied Electromagnetic Research Group, Department of Electrical Engineering, State University of Santa Catarina - UDESC, Paulo Malschitzki, 200 - Campus Universitário Prof. Avelino Marcante, Zona Industrial Norte, Joinville, SC, CEP - 89219-710, Brazil
| |
Collapse
|
27
|
Ca 2+ roles in electroporation-induced changes of cancer cell physiology: From membrane repair to cell death. Bioelectrochemistry 2021; 142:107927. [PMID: 34425390 DOI: 10.1016/j.bioelechem.2021.107927] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
The combination of Ca2+ ions and electroporation has gained attention as potential alternative to electrochemotherapy. Ca2+ is an important component of the cell membrane repair system and its presence directly influences the dynamics of the pore cycle after electroporation which can be exploited for cancer therapies. Here, the influence of Ca2+ concentration is investigated on small molecule electrotransfer and release of Calcein from 4T1, MX-1, B16F10, U87 cancer cells after cell exposure to microsecond electric pulses. Moreover, we investigated simultaneous molecule electrotransfer and intracellular calcium ion influx when media was supplemented with different Ca2+ concentrations. Results show that increased concentrations of calcium ions reduce the electrotransfer of small molecules to different lines of cancer cells as well as the release of Calcein. These effects are related with an enhanced membrane repair mechanism. Overall, we show that the efficiency of molecular electrotransfer can be controlled by regulating Ca2+ concentration in the electroporation medium. For the first time, the cause of cancer cell death in vitro from 1 mM CaCl2 concentrations is related to the irreversible loss of Ca2+ homeostasis after cell electroporation. Our findings provide fundamental insight on the mechanisms of Ca2+ electroporation that might lead to improved therapeutic outcomes.
Collapse
|
28
|
Sprugnoli G, Rossi S, Rotenberg A, Pascual-Leone A, El-Fakhri G, Golby AJ, Santarnecchi E. Personalised, image-guided, noninvasive brain stimulation in gliomas: Rationale, challenges and opportunities. EBioMedicine 2021; 70:103514. [PMID: 34391090 PMCID: PMC8365310 DOI: 10.1016/j.ebiom.2021.103514] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
Malignant brain tumours are among the most aggressive human cancers, and despite intensive efforts made over the last decades, patients' survival has scarcely improved. Recently, high-grade gliomas (HGG) have been found to be electrically integrated with healthy brain tissue, a communication that facilitates tumour mitosis and invasion. This link to neuronal activity has provided new insights into HGG pathophysiology and opened prospects for therapeutic interventions based on electrical modulation of neural and synaptic activity in the proximity of tumour cells, which could potentially slow tumour growth. Noninvasive brain stimulation (NiBS), a group of techniques used in research and clinical settings to safely modulate brain activity and plasticity via electromagnetic or electrical stimulation, represents an appealing class of interventions to characterise and target the electrical properties of tumour-neuron interactions. Beyond neuronal activity, NiBS may also modulate function of a range of substrates and dynamics that locally interacts with HGG (e.g., vascular architecture, perfusion and blood-brain barrier permeability). Here we discuss emerging applications of NiBS in patients with brain tumours, covering potential mechanisms of action at both cellular, regional, network and whole-brain levels, also offering a conceptual roadmap for future research to prolong survival or promote wellbeing via personalised NiBS interventions.
Collapse
Affiliation(s)
- Giulia Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy; Image Guided Neurosurgery laboratory, Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Brain investigation and Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Simone Rossi
- Brain investigation and Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Alexander Rotenberg
- Department of Neurology and Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew Senior Life, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann, Universitat Autonoma, Barcelona, Spain
| | - Georges El-Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Image Guided Neurosurgery laboratory, Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Condello M, D’Avack G, Vona R, Spugnini EP, Scacco L, Meschini S. Electrochemotherapy with Mitomycin C Potentiates Apoptosis Death by Inhibiting Autophagy in Squamous Carcinoma Cells. Cancers (Basel) 2021; 13:3867. [PMID: 34359775 PMCID: PMC8345561 DOI: 10.3390/cancers13153867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the chemosensitizing effect of electroporation (EP), which, using electrical pulses, permeabilizes cancer cells to drugs. The study involved two human hypopharyngeal and tongue carcinoma cell lines. The surface and intracytoplasmic expression of P-gp were evaluated by flow cytometry, demonstrating that both lines were intrinsically resistant. After establishing the optimal dose of mitomycin C (MMC) to be used, in combination with EP, we showed, by both MTT assay and optical and electron scanning microscopy, the potentiating cytotoxic effect of EP with MMC compared to single treatments. Flow cytometry showed that the cytotoxicity of EP + MMC was due to the induction of apoptosis. In addition to verifying the release of cytochrome C in EP + MMC samples, we performed an expression analysis of caspase-3, caspase-9, Akt, pAkt, HMGB1, LC3I, LC3II, p62, Beclin1, and associated proteins with both apoptotic and autophagic phenomena. Our results were confirmed by two veterinary patients in whom the EP + MMC combination was used to control margins after the resection of corneal squamous carcinoma. In conclusion, we affirmed that the effect for which EP enhances MMC treatment is due to the inhibition of the autophagic process induced by the drug in favor of apoptosis.
Collapse
Affiliation(s)
- Maria Condello
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy; (M.C.); (G.D.)
| | - Gloria D’Avack
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy; (M.C.); (G.D.)
| | - Rosa Vona
- Center for Gender-Specific Medicine, National Institute of Health, 00161 Rome, Italy;
| | | | | | - Stefania Meschini
- National Center for Drug Research and Evaluation, National Institute of Health, 00161 Rome, Italy; (M.C.); (G.D.)
| |
Collapse
|
30
|
Cucu CI, Giurcăneanu C, Popa LG, Orzan OA, Beiu C, Holban AM, Grumezescu AM, Matei BM, Popescu MN, Căruntu C, Mihai MM. Electrochemotherapy and Other Clinical Applications of Electroporation for the Targeted Therapy of Metastatic Melanoma. MATERIALS 2021; 14:ma14143985. [PMID: 34300902 PMCID: PMC8305146 DOI: 10.3390/ma14143985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
Electrochemotherapy (ECT) is an effective bioelectrochemical procedure that uses controlled electrical pulses to facilitate the increase of intracellular concentration of certain substances (electropermeabilization/ reversible electroporation). ECT using antitumor drugs such as bleomycin and cisplatin is a minimally invasive targeted therapy that can be used as an alternative for oncologic patients not eligible for surgery or other standard therapies. Even though ECT is mainly applied as palliative care for metastases, it may also be used for primary tumors that are unresectable due to size and location. Skin neoplasms are the main clinical indication of ECT, the procedure reporting good curative results and high efficiency across all tumor types, including melanoma. In daily practice, there are many cases in which the patient’s quality of life can be significantly improved by a safe procedure such as ECT. Its popularity must be increased because it has a safe profile and minor local adverse reactions. The method can be used by dermatologists, oncologists, and surgeons. The aim of this paper is to review recent literature concerning electrochemotherapy and other clinical applications of electroporation for the targeted therapy of metastatic melanoma.
Collapse
Affiliation(s)
- Corina Ioana Cucu
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.); (C.G.); (O.A.O.); (C.B.); (M.M.M.)
| | - Călin Giurcăneanu
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.); (C.G.); (O.A.O.); (C.B.); (M.M.M.)
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.); (C.G.); (O.A.O.); (C.B.); (M.M.M.)
- Correspondence: ; Tel.: +40-727-173-767
| | - Olguța Anca Orzan
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.); (C.G.); (O.A.O.); (C.B.); (M.M.M.)
| | - Cristina Beiu
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.); (C.G.); (O.A.O.); (C.B.); (M.M.M.)
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania;
- Research Institute of the University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Bogdan Mircea Matei
- Department of Biophysics and Cellular Biotechnology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Marius Nicolae Popescu
- Department of Physical and Rehabilitation Medicine, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Constantin Căruntu
- Faculty of Medicine, “Titu Maiorescu” University, 22 Dambrovnicului, 031593 Bucharest, Romania;
| | - Mara Mădălina Mihai
- Department of Oncologic Dermatology-“Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.C.); (C.G.); (O.A.O.); (C.B.); (M.M.M.)
- Research Institute of the University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
31
|
da Luz JCDS, Antunes F, Clavijo-Salomon MA, Signori E, Tessarollo NG, Strauss BE. Clinical Applications and Immunological Aspects of Electroporation-Based Therapies. Vaccines (Basel) 2021; 9:727. [PMID: 34358144 PMCID: PMC8310106 DOI: 10.3390/vaccines9070727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Reversible electropermeabilization (RE) is an ultrastructural phenomenon that transiently increases the permeability of the cell membrane upon application of electrical pulses. The technique was described in 1972 by Neumann and Rosenheck and is currently used in a variety of applications, from medicine to food processing. In oncology, RE is applied for the intracellular transport of chemotherapeutic drugs as well as the delivery of genetic material in gene therapies and vaccinations. This review summarizes the physical changes of the membrane, the particularities of bleomycin, and the immunological aspects involved in electrochemotherapy and gene electrotransfer, two important EP-based cancer therapies in human and veterinary oncology.
Collapse
Affiliation(s)
- Jean Carlos dos Santos da Luz
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| | - Fernanda Antunes
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| | | | - Emanuela Signori
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy;
| | - Nayara Gusmão Tessarollo
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| | - Bryan E. Strauss
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| |
Collapse
|
32
|
Electrochemotherapy with Bleomycin Enhances Radiosensitivity of Uveal Melanomas: First In Vitro Results in 3D Cultures of Primary Uveal Melanoma Cell Lines. Cancers (Basel) 2021; 13:cancers13123086. [PMID: 34205625 PMCID: PMC8234387 DOI: 10.3390/cancers13123086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Uveal melanoma (UM) is the most common primary intraocular tumor in adults. Treatment options for UM include radiotherapy, thermotherapy and tumor resection. Electrochemotherapy (ECT) is a new therapeutic modality for local tumor control in various cancer entities. The current study assesses the radiosensitizing effect of concomitant ECT with bleomycin and irradiation on 3D tumor spheroids with primary and radioresistant uveal melanoma cell lines. The evaluation of the radiosensitizing effect of ECT as a drug delivery system was based on the changes in the spheroid growth, the cell viability as well as the cytotoxic long-term effect of the combined treatment. The primary cell lines showed a higher radiosensitivity and required lower irradiation and bleomycin doses in comparison to cell lines originating from previously irratiated tumors. ECT should be further assessed for its applicability in clinical settings as a therapeutic radiosensitizing option for radioresistant tumors. Abstract Electrochemotherapy (ECT) is emerging as a complementary treatment modality for local tumor control in various cancer entities. Irradiation is an established therapeutic option for oncologic patients, which is commonly combined with chemotherapy due to its insufficient targeting ability. The efficiency of radiotherapy for tumors can be enhanced with different radiosensitizers. ECT can potentiate the radiosensitizing effect of chemotherapeutic agents such as bleomycin. The present study aims to evaluate the radiosensitizing effect of concomitant ECT with bleomycin on 3D tumor spheroids with primary and radioresistant uveal melanoma cell lines (UPMD2, UPMM3, UM92.1, Mel270) and irradiation. The changes in the spheroid growth and the cell viability as well the cytotoxic long-term effect of the combination treatment were evaluated with various combinations of electroporation settings and bleomycin concentrations as well as radiotherapy doses. A broad range of radiosensitivity was documented among the spheroids from different uveal melanoma cell lines. The primary cell lines showed a higher radiosensitivity and required lower irradiation and bleomycin doses. The maximal tumor control with a reduction of cell survival <10% was achieved with a 5 Gy irradiation only in the primary uveal melanoma cell lines and in combination with all tested ECT settings, whereas the same result could be obtained in UM92.1 spheroids only after ECT with 20 Gy irradiation. Based on the spheroid growth and the measurement of the cross-sectional area, the Mel270 spheroids, originating from a previously irradiated recurrent uveal melanoma, required higher doses of bleomycin and ECT settings after irradiation with 5 Gy in order to achieve a significant growth reduction. No significant difference could be demonstrated for the reduction of cell viability in the combination therapy with 20 Gy and 1000 V/cm between 1 and 2.5 µg/mL bleomycin even in Mel270 spheroids, underlying the importance of a drug delivery system to potentiate the radiosensitizing effect of agents in lower doses. ECT should be further assessed for its applicability in clinical settings as a therapeutic radiosensitizing option for radioresistant tumors and a sufficient local tumor control with lower chemotherapy and irradiation doses.
Collapse
|
33
|
Granata V, Fusco R, Salati S, Petrillo A, Di Bernardo E, Grassi R, Palaia R, Danti G, La Porta M, Cadossi M, Gašljević G, Sersa G, Izzo F. A Systematic Review about Imaging and Histopathological Findings for Detecting and Evaluating Electroporation Based Treatments Response. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115592. [PMID: 34073865 PMCID: PMC8197272 DOI: 10.3390/ijerph18115592] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Imaging methods and the most appropriate criteria to be used for detecting and evaluating response to oncological treatments depend on the pathology and anatomical site to be treated and on the treatment to be performed. This document provides a general overview of the main imaging and histopathological findings of electroporation-based treatments (Electrochemotherapy-ECT and Irreversible electroporation-IRE) compared to thermal approach, such as radiofrequency ablation (RFA), in deep-seated cancers with a particular attention to pancreatic and liver cancer. METHODS Numerous electronic datasets were examined: PubMed, Scopus, Web of Science and Google Scholar. The research covered the years from January 1990 to April 2021. All titles and abstracts were analyzed. The inclusion criteria were the following: studies that report imaging or histopathological findings after ablative thermal and not thermal loco-regional treatments (ECT, IRE, RFA) in deep-seated cancers including pancreatic and liver cancer and articles published in the English language. Exclusion criteria were unavailability of full text and congress abstracts or posters and different topic respect to inclusion criteria. RESULTS 558 potentially relevant references through electronic searches were identified. A total of 38 articles met the inclusion criteria: 20 studies report imaging findings after RFA or ECT or IRE in pancreatic and liver cancer; 17 studies report histopathological findings after RFA or ECT or IRE; 1 study reports both imaging and histopathological findings after RFA or ECT or IRE. CONCLUSIONS Imaging features are related to the type of therapy administrated, to the timing of re-assessment post therapy and to the imaging technique being used to observe the effects. Histological findings after both ECT and IRE show that the treated area becomes necrotic and encapsulated in fibrous tissue, suggesting that the size of the treated lesion cannot be measured as an endpoint to detect response. Moreover, histology frequently reported signs of apoptosis and reduced vital tissue, implying that imaging criteria, which take into account the viability and not the size of the lesion, are more appropriate to evaluate response to treatment.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (V.G.); (A.P.)
| | - Roberta Fusco
- Oncology Medical and Research & Development Division, IGEA SpA, I-41012 Carpi, Italy; (S.S.); (E.D.B.); (M.C.)
- Correspondence:
| | - Simona Salati
- Oncology Medical and Research & Development Division, IGEA SpA, I-41012 Carpi, Italy; (S.S.); (E.D.B.); (M.C.)
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (V.G.); (A.P.)
| | - Elio Di Bernardo
- Oncology Medical and Research & Development Division, IGEA SpA, I-41012 Carpi, Italy; (S.S.); (E.D.B.); (M.C.)
| | - Roberta Grassi
- Radiology Division, Università Degli Studi Della Campania Luigi Vanvitelli, I-80143 Naples, Italy;
- Italian Society of Medical and Interventional Radiology SIRM, SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Raffaele Palaia
- Hepatobiliary Surgical Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (R.P.); (F.I.)
| | - Ginevra Danti
- Radiology Division, Azienda Ospedaliero-Universitaria Careggi, I-50139 Florence, Italy;
| | | | - Matteo Cadossi
- Oncology Medical and Research & Development Division, IGEA SpA, I-41012 Carpi, Italy; (S.S.); (E.D.B.); (M.C.)
| | - Gorana Gašljević
- Department of Pathology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia;
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia;
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (R.P.); (F.I.)
| |
Collapse
|
34
|
Perrone AM, Ravegnini G, Miglietta S, Argnani L, Ferioli M, De Crescenzo E, Tesei M, Di Stanislao M, Girolimetti G, Gasparre G, Porcelli AM, De Terlizzi F, Zamagni C, Morganti AG, De Iaco P. Electrochemotherapy in Vulvar Cancer and Cisplatin Combined with Electroporation. Systematic Review and In Vitro Studies. Cancers (Basel) 2021; 13:cancers13091993. [PMID: 33919139 PMCID: PMC8122585 DOI: 10.3390/cancers13091993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Electrochemotherapy (ECT) is an emerging treatment for solid tumors and an attracting research field due to its clinical results. ECT in association with bleomycin is an effective and safe treatment option in the vulvar cancer palliative setting. With regard to cisplatin (CSP)-based ECT, considering the clear evidence on its efficacy in gynecological tumors, the possibility to improve local control with CSP-based ECT is intriguing and a well-designed randomized clinical trial should be addressed to this issue. Abstract Electrochemotherapy (ECT) is an emerging treatment for solid tumors and an attractive research field due to its clinical results. This therapy represents an alternative local treatment to the standard ones and is based on the tumor-directed delivery of non-ablative electrical pulses to maximize the action of specific cytotoxic drugs such as cisplatin (CSP) and bleomycin (BLM) and to promote cancer cell death. Nowadays, ECT is mainly recommended as palliative treatment. However, it can be applied to a wide range of superficial cancers, having an impact in preventing or delaying tumor progression and therefore in improving quality of life. In addition, during the natural history of the tumor, early ECT may improve patient outcomes. Our group has extensive clinical and research experience on ECT in vulvar tumors in the palliative setting, with 70% overall response rate. So far, in most studies, ECT was based on BLM. However, the potential of CSP in this setting seems interesting due to some theoretical advantages. The purpose of this report is to: (i) compare the efficacy of CSP and BLM-based ECT through a systematic literature review; (ii) report the results of our studies on CSP-resistant squamous cell tumors cell lines and the possibility to overcome chemoresistance using ECT; (iii) discuss the future ECT role in gynecological tumors and in particular in vulvar carcinoma.
Collapse
Affiliation(s)
- Anna Myriam Perrone
- Division of Oncologic Gynecology, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.P.); (E.D.C.); (M.T.); (M.D.S.); (P.D.I.)
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy; (S.M.); (G.G.); (G.G.); (A.M.P.); (C.Z.); (A.G.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Correspondence:
| | - Stefano Miglietta
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy; (S.M.); (G.G.); (G.G.); (A.M.P.); (C.Z.); (A.G.M.)
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
| | - Lisa Argnani
- Institute of Hematology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Martina Ferioli
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Eugenia De Crescenzo
- Division of Oncologic Gynecology, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.P.); (E.D.C.); (M.T.); (M.D.S.); (P.D.I.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Marco Tesei
- Division of Oncologic Gynecology, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.P.); (E.D.C.); (M.T.); (M.D.S.); (P.D.I.)
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy; (S.M.); (G.G.); (G.G.); (A.M.P.); (C.Z.); (A.G.M.)
| | - Marco Di Stanislao
- Division of Oncologic Gynecology, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.P.); (E.D.C.); (M.T.); (M.D.S.); (P.D.I.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Giulia Girolimetti
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy; (S.M.); (G.G.); (G.G.); (A.M.P.); (C.Z.); (A.G.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
| | - Giuseppe Gasparre
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy; (S.M.); (G.G.); (G.G.); (A.M.P.); (C.Z.); (A.G.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
| | - Anna Maria Porcelli
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy; (S.M.); (G.G.); (G.G.); (A.M.P.); (C.Z.); (A.G.M.)
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Center for Applied Biomedical Research, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Interdepartmental Center for Industrial Research Life Sciences and Technologies for Health, Alma Mater Studiorum-University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | | | - Claudio Zamagni
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy; (S.M.); (G.G.); (G.G.); (A.M.P.); (C.Z.); (A.G.M.)
- Oncologia Medica Addarii, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| | - Alessio Giuseppe Morganti
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy; (S.M.); (G.G.); (G.G.); (A.M.P.); (C.Z.); (A.G.M.)
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Pierandrea De Iaco
- Division of Oncologic Gynecology, IRCCS—Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.P.); (E.D.C.); (M.T.); (M.D.S.); (P.D.I.)
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy; (S.M.); (G.G.); (G.G.); (A.M.P.); (C.Z.); (A.G.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
35
|
Longo R, Gorrasi G, Guadagno L. Electromagnetically Stimuli-Responsive Nanoparticles-Based Systems for Biomedical Applications: Recent Advances and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:848. [PMID: 33810343 PMCID: PMC8065448 DOI: 10.3390/nano11040848] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Nanoparticles (NPs) in the biomedical field are known for many decades as carriers for drugs that are used to overcome biological barriers and reduce drug doses to be administrated. Some types of NPs can interact with external stimuli, such as electromagnetic radiations, promoting interesting effects (e.g., hyperthermia) or even modifying the interactions between electromagnetic field and the biological system (e.g., electroporation). For these reasons, at present these nanomaterial applications are intensively studied, especially for drugs that manifest relevant side effects, for which it is necessary to find alternatives in order to reduce the effective dose. In this review, the main electromagnetic-induced effects are deeply analyzed, with a particular focus on the activation of hyperthermia and electroporation phenomena, showing the enhanced biological performance resulting from an engineered/tailored design of the nanoparticle characteristics. Moreover, the possibility of integrating these nanofillers in polymeric matrices (e.g., electrospun membranes) is described and discussed in light of promising applications resulting from new transdermal drug delivery systems with controllable morphology and release kinetics controlled by a suitable stimulation of the interacting systems (nanofiller and interacting cells).
Collapse
Affiliation(s)
- Raffaele Longo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy;
| | | | - Liberata Guadagno
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Salerno, Italy;
| |
Collapse
|
36
|
Ferioli M, Galuppi A, Buwenge M, Cammelli S, Perrone AM, Macchia G, Deodato F, Cilla S, Zamagni A, De Terlizzi F, Tagliaferri L, De Iaco P, Morganti AG. Electrochemotherapy in Kaposi sarcoma: A systematic review. Mol Clin Oncol 2021; 14:64. [PMID: 33680455 DOI: 10.3892/mco.2021.2226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/09/2020] [Indexed: 11/05/2022] Open
Abstract
Kaposi sarcoma (KS) is a rare angioproliferative disorder, which is usually associated with human herpesvirus-8 infection. Electrochemotherapy (ECT) may be an option in the treatment of KS skin lesions due to the high response rate noted in neoplastic lesions of different histological types. The aim of the present systematic review was to analyse the available evidence on using ECT in the treatment of KS skin lesions. Tumor response, local control and toxicity were analyzed. In the three included studies, the complete response rate was 65-100% and the overall response rate in all studies was 100%. The treatment was well tolerated with mild and transient toxicity. However, further studies are required to fully analyze long-term disease control and to compare ECT with other local therapies used for KS.
Collapse
Affiliation(s)
- Martina Ferioli
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, I-40138 Bologna, Italy
| | - Andrea Galuppi
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, I-40138 Bologna, Italy
| | - Milly Buwenge
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, I-40138 Bologna, Italy
| | - Silvia Cammelli
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, I-40138 Bologna, Italy
| | - Anna Myriam Perrone
- Oncologic Gynaecology Unit, Department Medical and Surgical Sciences (DIMEC), University of Bologna, S. Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Gabriella Macchia
- Radiotherapy Unit, Gemelli Molise Hospital, Fondazione Policlinico Universitario A. Gemelli, IRCCS, I-86100 Campobasso, Italy
| | - Francesco Deodato
- Radiotherapy Unit, Gemelli Molise Hospital, Fondazione Policlinico Universitario A. Gemelli, IRCCS, I-86100 Campobasso, Italy
| | - Savino Cilla
- MedicalPhysic Unit, Gemelli Molise Hospital, Fondazione Policlinico Universitario A. Gemelli, IRCCS, I-86100 Campobasso, Italy
| | - Alice Zamagni
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, I-40138 Bologna, Italy
| | | | - Luca Tagliaferri
- Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, UOC di Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, I-00168 Roma, Italy
| | - Pierandrea De Iaco
- Oncologic Gynaecology Unit, Department Medical and Surgical Sciences (DIMEC), University of Bologna, S. Orsola-Malpighi Hospital, I-40138 Bologna, Italy
| | - Alessio Giuseppe Morganti
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, I-40138 Bologna, Italy
| |
Collapse
|
37
|
Pichi B, Petruzzi G, Zocchi J, Pepe G, Moretto S, Manciocco V, Pellini R. Response to Electrochemotherapy in a Patient With Advanced Oropharyngeal Squamous Cell Carcinoma. JAMA Otolaryngol Head Neck Surg 2021; 146:1178-1179. [PMID: 32815994 DOI: 10.1001/jamaoto.2020.2093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Barbara Pichi
- Department of Otolaryngology-Head and Neck Surgery, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Gerardo Petruzzi
- Department of Otolaryngology-Head and Neck Surgery, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Jacopo Zocchi
- Department of Otolaryngology-Head and Neck Surgery, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Giovanni Pepe
- Department of Otolaryngology and Otoneurosurgery, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Silvia Moretto
- Department of Otolaryngology-Head and Neck Surgery, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Valentina Manciocco
- Department of Otolaryngology-Head and Neck Surgery, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Raul Pellini
- Department of Otolaryngology-Head and Neck Surgery, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| |
Collapse
|
38
|
Abstract
Delivery of genetic material to tissues in vivo is an important technique used in research settings and is the foundation upon which clinical gene therapy is built. The lung is a prime target for gene delivery due to a host of genetic, acquired, and infectious diseases that manifest themselves there, resulting in many pathologies. However, the in vivo delivery of genetic material to the lung remains a practical problem clinically and is considered the major obstacle needed to be overcome for gene therapy. Currently there are four main strategies for in vivo gene delivery to the lung: viral vectors, liposomes, nanoparticles, and electroporation. Viral delivery uses several different genetically modified viruses that enter the cell and express desired genes that have been inserted to the viral genome. Liposomes use combinations of charged and neutral lipids that can encapsulate genetic cargo and enter cells through endogenous mechanisms, thereby delivering their cargoes. Nanoparticles are defined by their size (typically less than 100 nm) and are made up of many different classes of building blocks, including biological and synthetic polymers, cell penetrant and other peptides, and dendrimers, that also enter cells through endogenous mechanisms. Electroporation uses mild to moderate electrical pulses to create pores in the cell membrane through which delivered genetic material can enter a cell. An emerging fifth category, exosomes and extracellular vesicles, may have advantages of both viral and non-viral approaches. These extracellular vesicles bud from cellular membranes containing receptors and ligands that may aid cell targeting and which can be loaded with genetic material for efficient transfer. Each of these vectors can be used for different gene delivery applications based on mechanisms of action, side-effects, and other factors, and their use in the lung and possible clinical considerations is the primary focus of this review.
Collapse
Affiliation(s)
- Uday K Baliga
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - David A Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
39
|
Esposito E, Siani C, Pace U, Costanzo R, di Giacomo R. Debulking mastectomy with electrochemotherapy: a case report of no surgery approach to recurrent breast cancer. Transl Cancer Res 2021; 10:1144-1149. [PMID: 35116441 PMCID: PMC8798959 DOI: 10.21037/tcr-20-2803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/27/2020] [Indexed: 11/15/2022]
Abstract
Electrochemotherapy has been shown to be safe, effective and non-invasive loco-regional treatment for chest wall breast cancer recurrence. Electrochemotherapy is a palliative treatment offered to patients with cutaneous metastases from breast cancer, which are not eligible for resection and/or systemic therapy is ineffective or contraindicated. Electrochemotherapy combines the administration of bleomycin with electroporation of tumor cell, intraoperatively. Here we present the case of a women affected by multi-drug resistant metastatic synchronous solid cancers who refused radical mastectomy after being diagnosed with recurrent ulcerated right breast cancer. We first describe an extended indication to electrochemotherapy to treat breast cancer recurrence after previous breast conserving surgery. Electroporation-induced necrosis through electrochemotherapy replaced surgery and was delivered in 30 minutes at 5,000 Hz frequencies at 730 V by hexagonal needle under general anesthesia. The necrosis of the remaining breast resulted in a voluminous eschar that was easily removed few months after leaving the chest wall free from macroscopic disease turning in a “bladeless mastectomy”. This kind of breakthrough application of electrochemotherapy might be considered to avoid palliative mastectomy in very selected patients. New technologies may help clinicians to find agreement between patient’ will and the burden of treatment and might contribute in selected cases to give options to patients not keen on having surgery.
Collapse
Affiliation(s)
- Emanuela Esposito
- Breast Cancer Department, Istituto Nazionale Tumori di Napoli, IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Claudio Siani
- Breast Cancer Department, Istituto Nazionale Tumori di Napoli, IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Ugo Pace
- Colorectal Cancer Surgery Unit, Istituto Nazionale Tumori di Napoli, IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Raffaele Costanzo
- Thoracic Medical Oncology Unit, Istituto Nazionale Tumori di Napoli, IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Raimondo di Giacomo
- Breast Cancer Department, Istituto Nazionale Tumori di Napoli, IRCCS, Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
40
|
Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐Alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000248] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andie J. Robinson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Akhil Jain
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Harry G. Sherman
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Richard J. M. Hague
- Centre for Additive Manufacturing, Faculty of Engineering University of Nottingham Nottingham NG8 1BB UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine University of Nottingham Nottingham NG7 2RD UK
| | - Paola Sanjuan‐Alberte
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences, Instituto Superior Técnico Universidade de Lisboa Lisbon 1049‐001 Portugal
| | - Frankie J. Rawson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
41
|
Łapińska Z, Dębiński M, Szewczyk A, Choromańska A, Kulbacka J, Saczko J. Electrochemotherapy with Calcium Chloride and 17β-Estradiol Modulated Viability and Apoptosis Pathway in Human Ovarian Cancer. Pharmaceutics 2020; 13:E19. [PMID: 33374223 PMCID: PMC7823502 DOI: 10.3390/pharmaceutics13010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
Estrogens (Es) play a significant role in the carcinogenesis and progression of ovarian malignancies. Depending on the concentration, Es may have a protective or toxic effect on cells. Moreover, they can directly or indirectly affect the activity of membrane ion channels. In the presented study, we investigated in vitro the effectiveness of the ovarian cancer cells (MDAH-2774) pre-incubation with 17β-estradiol (E2; 10 µM) in the conventional chemotherapy (CT) and electrochemotherapy (ECT) with cisplatin or calcium chloride. We used three different protocols of electroporation including microseconds (µsEP) and nanoseconds (nsEP) range. The cytotoxic effect of the applied treatment was examined by the MTT assay. We used fluorescent staining and holotomographic imaging to observe morphological changes. The immunocytochemical staining evaluated the expression of the caspase-12. The electroporation process's effectiveness was analyzed by a flow cytometer using the Yo-Pro™-1 dye absorption assay. We found that pre-incubation of ovarian cancer cells with 17β-estradiol may effectively enhance the chemo- and electrochemotherapy with cisplatin and calcium chloride. At the same time, estradiol reduced the effectiveness of electroporation, which may indicate that the mechanism of increasing the effectiveness of ECT by E2 is not related to the change of cell membrane permeability.
Collapse
Affiliation(s)
- Zofia Łapińska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| | - Michał Dębiński
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| |
Collapse
|
42
|
Simonis P, Garjonyte R, Stirke A. Mediated amperometry as a prospective method for the investigation of electroporation. Sci Rep 2020; 10:19094. [PMID: 33154473 PMCID: PMC7644768 DOI: 10.1038/s41598-020-76086-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 10/22/2020] [Indexed: 12/23/2022] Open
Abstract
Pulsed electric field effects induced in a membrane, as well as intracellular structures, depend on cell type, field and media parameters. To achieve desired outcomes, membranes should be permeabilized in a controlled manner, and thus efficiency of electroporation should be investigated in advance. Here, we present a framework for using mediated amperometry as a prospective method for the investigation of electroporation and its effects on cellular machinery. Whole-cell sensors with single mediator systems comprised of hydrophilic or lipophilic mediators were successfully employed to investigate membrane permeability as well as cellular responses. Exposure of yeast cells to single electric field pulse (τ = 300 µs, E = 16 kV/cm) resulted in up to tenfold increase of current strength mediated with hydrophilic mediators. Exposure to PEF resulted in decrease of menadione mediated current strength (from 138 ± 15 to 32 ± 15 nA), which could be completely compensated by supplementing electrolyte with NADH.
Collapse
Affiliation(s)
- Povilas Simonis
- State Research Institute, Center for Physical Sciences and Technology, Saulėtekio al. 3, Vilnius, Lithuania.
| | - Rasa Garjonyte
- State Research Institute, Center for Physical Sciences and Technology, Saulėtekio al. 3, Vilnius, Lithuania
| | - Arunas Stirke
- State Research Institute, Center for Physical Sciences and Technology, Saulėtekio al. 3, Vilnius, Lithuania
| |
Collapse
|
43
|
Electrochemotherapy and Simultaneous Photodynamic Bone Stabilization of Upper Limbs in Metastatic Renal Cancer Disease: Case Report and Literature Review. Case Rep Med 2020; 2020:8408943. [PMID: 33110432 PMCID: PMC7582063 DOI: 10.1155/2020/8408943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Metastatic bone disease represents a systemic pathology that heavily affects the quality of life of oncologic patients causing pain and functional disability. Methodology. We present the case of a patient with a history of renal cell cancer presenting pathologic fractures of both humeri and proximal right radius. Results After a careful multidisciplinary approach, an adjuvant anticancer therapy and a photodynamic bone stabilization procedure were performed with a minimally invasive technique aiming to minimize pain and local disease progression, while restoring functional autonomy and improving the patient's quality of life. Electrochemotherapy was delivered on the lytic bone lesions with extraskeletal involvement of the proximal left humerus and the proximal right radius, and then polymeric bone stabilization was performed on both humeri. At two months of follow-up, the patient presented satisfactory functional scores (MSTS score: 12/30 bilaterally; DASH scores: 46.7/100 for the right side and 48.3/100 for the left one), and pain was well controlled with opioid analgesics. Radiographs showed good results in terms of ossification of lytic bone lesions and durability of polymeric stabilization. At four months of follow-up, the patient reported a stable clinical scenario. Six months after surgery, due to extremely poor prognosis after the progression of primary disease, the patient was referred to palliative care and died shortly thereafter. Conclusion Over the last decade, the management of metastatic bone disease has changed. Low-toxicity and minimally invasive procedures such as electrochemotherapy and polymeric bone stabilization might be performed concomitantly in selected patients, as an alternative to radiation therapy and to more demanding surgical procedures such as plating and adjuvant cementing.
Collapse
|
44
|
Brock RM, Beitel-White N, Davalos RV, Allen IC. Starting a Fire Without Flame: The Induction of Cell Death and Inflammation in Electroporation-Based Tumor Ablation Strategies. Front Oncol 2020; 10:1235. [PMID: 32850371 PMCID: PMC7399335 DOI: 10.3389/fonc.2020.01235] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
New therapeutic strategies and paradigms are direly needed for the treatment of cancer. While the surgical removal of tumors is favored in most cancer treatment plans, resection options are often limited based on tumor localization. Over the last two decades, multiple tumor ablation strategies have emerged as promising stand-alone or combination therapeutic options for patients. These strategies are often employed to treat tumors in areas where surgical resection is not possible or where chemotherapeutics have proven ineffective. The type of cell death induced by the ablation modality is a critical aspect of therapeutic success that can impact the efficacy of the treatment and systemic anti-tumor immune system responses. Electroporation-based ablation technologies include electrochemotherapy, irreversible electroporation, and other modalities that rely on pulsed electric fields to create pores in cell membranes. These pores can either be reversible or irreversible depending on the electric field parameters and can induce cell death either alone or in combination with a therapeutic agent. However, there have been many controversial findings among these technologies as to the cell death type initiated, from apoptosis to pyroptosis. As cell death mechanisms can impact treatment side effects and efficacy, we review the main types of cell death induced by electroporation-based treatments and summarize the impact of these mechanisms on treatment response. We also discuss potential reasons behind the variability of findings such as the similarities between cell death pathways, differences between cell-types, and the variation in electric field strength across the treatment area.
Collapse
Affiliation(s)
- Rebecca M. Brock
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Natalie Beitel-White
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Irving C. Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Science, Blacksburg, VA, United States
| |
Collapse
|
45
|
Cavaco D, Carvalhal S, Leite V. Palliative Electrochemotherapy Treatment of Cutaneous Metastases in a Patient with Advanced Thyroid Papillary Carcinoma. Eur Thyroid J 2020; 9:221-224. [PMID: 32903929 PMCID: PMC7445661 DOI: 10.1159/000507888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 11/19/2022] Open
Abstract
Advanced papillary thyroid carcinoma (PTC) with cutaneous metastases may cause pain, ulceration, and bleeding. Electrochemotherapy (ECT) is a minimally invasive treatment of tumors located in the skin and subcutaneous tissue. The electric pulses potentiate the toxicity of cytostatic agents entering the tumor cell. It is highly effective especially to relieve pain and improve the quality of life. The adverse events are local and transient. A case of progressive metastatic PTC who developed bleeding cutaneous metastases treated with ECT is described.
Collapse
Affiliation(s)
- Daniela Cavaco
- Department of Endocrinology, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- *Daniela Cavaco, Department of Endocrinology Instituto Português de Oncologia de, Lisboa Francisco Gentil, Rua Prof. Lima Basto, PT–1099-023 Lisbon (Portugal),
| | - Sara Carvalhal
- Department of General Surgery, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Valeriano Leite
- Department of Endocrinology, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
- NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
46
|
Poompavai S, Gowri Sree V, Kaviya Priyaa A. Electrothermal Analysis of the Breast-Tumor Model During Electroporation. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2020.2967558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Fiorentzis M, Katopodis P, Kalirai H, Seitz B, Viestenz A, Coupland SE. Image Analysis of 3D Conjunctival Melanoma Cell Cultures Following Electrochemotherapy. Biomedicines 2020; 8:biomedicines8060158. [PMID: 32545782 PMCID: PMC7344416 DOI: 10.3390/biomedicines8060158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) cell cultures represent small avascular tumors in vitro and simulate some of the biological characteristics of solid tumors, enhancing the evaluation of anticancer drug efficacy. Automated image analysis can be used for the assessment of tumor growth and documentation of changes in the size parameters of 3D tumor spheroids following anticancer treatments such as electrochemotherapy. The objective of this article is to assess the effect of various electroporation (EP) conditions (500-750 Volts/cm, 8-20 pulses, 100 µs pulse duration, 5 Hz repetition rate) combined with different bleomycin concentrations (1-2.5 ug/mL) on normal epithelial (HCjE-Gi) and conjunctival melanoma (CRMM1, CRMM2) 3D-cell cultures, through an automated image analysis and a comparison with standard histological assays. A reduction in tumor mass with loss of cell definition was observed after ECT (750 Volts/cm with eight pulses and 500 Volts/cm with 20 pulses) with bleomycin (1 μg/mL and 2.5 μg/mL) in the histological and immunohistochemical analyses of 3D CRMM1 and CRMM2 spheroids, whereas an increase in volume and a decrease in sphericity was documented in the automated image analysis and 3D visualization of both melanoma cell lines. For all other treatment conditions and for the HCjE-Gi cell line, no significant changes to their morphological features were observed. Image analysis with integrated software tools provides an accessible and comprehensive platform for the preliminary selection of homogenous spheroids and for the monitoring of drug efficacy, implementing the traditional screening methods.
Collapse
Affiliation(s)
- Miltiadis Fiorentzis
- Department of Ophthalmology, University Hospital Essen, 45147 Essen, Germany
- Correspondence: ; Tel.: +49-201-723-2900
| | - Periklis Katopodis
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University, London UB8 3PH, UK;
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (H.K.); (S.E.C.)
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool L69 3GA, UK
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, 66424 Homburg, Germany;
| | - Arne Viestenz
- Department of Ophthalmology, University Hospital Halle, 06112 Halle, Germany;
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (H.K.); (S.E.C.)
- Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool L69 3GA, UK
| |
Collapse
|
48
|
Santos Dos Anjos D, Rossi YA, Sierra OR, Bueno CM, De Nardi AB, Fonseca-Alves CE. Outcome Following Curative-Intent Electrochemotherapy for Extramedullary Plasmocytoma in Dogs - Case Reports. Top Companion Anim Med 2020; 40:100441. [PMID: 32690286 DOI: 10.1016/j.tcam.2020.100441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
Plasma cell tumors can occur as solitary collections referred as extramedullary plasmocytoma (EMP). The present report describes four cases of EMP treated with a local nonthermal ablative approach. Four dogs were diagnosed with extramedullary plasmocytomas (EMP) in different body regions (oral cavity, digits, and lip). Since surgical excision was declined by the owners (maxillectomy; amputation or lip reconstruction), a curative-intent approach was indicated as solely treatment- electrochemotherapy (ECT). All the patients received ECT under general anesthesia using bleomycin intravenously (15,000 UI/m²) or cisplatin intratumorally (1mg/cm³). All dogs developed transitory ulceration and swelling one-week after procedure that completely healed within 30 days post-ECT. Complete remission was achieved in all cases and lasted for 515 (oral case), 695 (one digit), 90 (another digit case) and 240 (lip) days. These results suggested that ECT promoted remission in EMP cases being a possibility for local control in dogs affected by this disease.
Collapse
Affiliation(s)
- Denner Santos Dos Anjos
- Departament of Veterinary Clinic and Surgery, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil.
| | - Ygor Amaral Rossi
- Veterinary Student, University Franca (UNIFRAN), Franca, São Paulo, Brazil.
| | - Oscar Rodrigo Sierra
- Departament of Veterinary Clinic and Surgery, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil.
| | - Cynthia Marchiori Bueno
- Departament of Veterinary Clinic and Surgery, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil.
| | - Andrigo Barboza De Nardi
- Departament of Veterinary Clinic and Surgery, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil.
| | - Carlos Eduardo Fonseca-Alves
- Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil; Institute of Health Sciences, Universidade Paulista - UNIP, Bauru, São Paulo, Brazil.
| |
Collapse
|
49
|
Mansourian M, Firoozabadi M, Hassan ZM. The role of 217-Hz ELF magnetic fields emitted from GSM mobile phones on electrochemotherapy mechanisms. Electromagn Biol Med 2020; 39:239-249. [PMID: 32410511 DOI: 10.1080/15368378.2020.1762635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Electrochemotherapy (ECT), the combination of electric pulses (EPs) and an anticancer drug, is a type of cancer treatment method. We investigated the effect of 217-Hz magnetic fields (MFs) similar to that generated by GSM900 mobile phones, as intervening factors, on proposed mechanisms of ECT including permeability, tumor hypoxia and immune system response. The 4T1 cells were exposed to extremely low-frequency (ELF)-MFs at 93, 120 or 159 µT intensities, generated by Helmholtz coils 10 min, and then put in individual groups, comprising no treatment, chemotherapy, EPs or ECT. The cell viability was evaluated. Then, two treatment protocols were selected for in vivo experiments. The mice with 4T1 tumor cells were exposed to ELF-MFs 10 min/day until the day their tumors reached 8 mm in diameter. Then, the tumors were treated to ECT. Tumor hypoxia and immune system response were analyzed through immunohistochemistry assay and enzyme-linked immunosorbent assay technique, respectively. The results in vitro indicated a significant decreased ECT efficacy of 60 V/cm, 5 kHz at the flux density of 93 µT. The results in vivo showed that pre-exposure to ELF-MFs could increase tumor hypoxia induced by ECT. In addition, exposure to ELF-MFs before ECT caused a significant increase in interferon-γ/interleukin-4 in comparison with ECT alone. More studies, including studies on the effect of ELF-MFs emitted from mobile phones on tumor volume changes induced by ECT, are needed to elucidate how the process of ECT is influenced by the MFs.
Collapse
Affiliation(s)
- Mahsa Mansourian
- Department of Medical Physics, Faculty of Medical Science, Tarbiat Modares University , Tehran, Iran
| | - Mohammad Firoozabadi
- Department of Medical Physics, Faculty of Medical Science, Tarbiat Modares University , Tehran, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University , Tehran, Iran
| |
Collapse
|
50
|
A Novel Method for Controlled Gene Expression via Combined Bleomycin and Plasmid DNA Electrotransfer. Int J Mol Sci 2019; 20:ijms20164047. [PMID: 31430949 PMCID: PMC6720528 DOI: 10.3390/ijms20164047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022] Open
Abstract
Electrochemotherapy is an efficient method for the local treatment of cutaneous and subcutaneous metastases, but its efficacy as a systemic treatment remains low. The application of gene electrotransfer (GET) to transfer DNA coding for immune system modulating molecules could allow for a systemic effect, but its applications are limited because of possible side effects, e.g., immune system overactivation and autoimmune response. In this paper, we present the simultaneous electrotransfer of bleomycin and plasmid DNA as a method to increase the systemic effect of bleomycin-based electrochemotherapy. With appropriately selected concentrations of bleomycin and plasmid DNA, it is possible to achieve efficient cell transfection while killing cells via the cytotoxic effect of bleomycin at later time points. We also show the dynamics of both cell electrotransfection and cell death after the simultaneous electrotransfer of bleomycin and plasmid DNA. Therefore, this method could have applications in achieving the transient, cell death-controlled expression of immune system activating genes while retaining efficient bleomycin mediated cell killing.
Collapse
|