1
|
Dritsoula A, Camilli C, Moss SE, Greenwood J. The disruptive role of LRG1 on the vasculature and perivascular microenvironment. Front Cardiovasc Med 2024; 11:1386177. [PMID: 38745756 PMCID: PMC11091338 DOI: 10.3389/fcvm.2024.1386177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The establishment of new blood vessels, and their subsequent stabilization, is a critical process that facilitates tissue growth and organ development. Once established, vessels need to diversify to meet the specific needs of the local tissue and to maintain homeostasis. These processes are tightly regulated and fundamental to normal vessel and tissue function. The mechanisms that orchestrate angiogenesis and vessel maturation have been widely studied, with signaling crosstalk between endothelium and perivascular cells being identified as an essential component. In disease, however, new vessels develop abnormally, and existing vessels lose their specialization and function, which invariably contributes to disease progression. Despite considerable research into the vasculopathic mechanisms in disease, our knowledge remains incomplete. Accordingly, the identification of angiocrine and angiopathic molecules secreted by cells within the vascular microenvironment, and their effect on vessel behaviour, remains a major research objective. Over the last decade the secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1), has emerged as a significant vasculopathic molecule, stimulating defective angiogenesis, and destabilizing the existing vasculature mainly, but not uniquely, by altering both canonical and non-canonical TGF-β signaling in a highly cell and context dependent manner. Whilst LRG1 does not possess any overt homeostatic role in vessel development and maintenance, growing evidence provides a compelling case for LRG1 playing a pleiotropic role in disrupting the vasculature in many disease settings. Thus, LRG1 has now been reported to damage vessels in various disorders including cancer, diabetes, chronic kidney disease, ocular disease, and lung disease and the signaling processes that drive this dysfunction are being defined. Moreover, therapeutic targeting of LRG1 has been widely proposed to re-establish a quiescent endothelium and normalized vasculature. In this review, we consider the current status of our understanding of the role of LRG1 in vascular pathology, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Athina Dritsoula
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
2
|
YOSHIMURA SHOHEI, OKATA YUICHI, OOI MAKOTO, HORINOUCHI TOMOKO, IWABUCHI SERENA, KAMEOKA YASUYUKI, WATANABE AYA, KONDO ATSUSHI, UEMURA KOTARO, TOMIOKA YUICHIRO, SAMEJIMA YOSHITOMO, NAKAI YUMIKO, NOZU KANDAI, KODAMA YUZO, BITOH YUKO. Significance of Serum Leucine-rich Alpha-2 Glycoprotein as a Diagnostic Marker in Pediatric Inflammatory Bowel Disease. THE KOBE JOURNAL OF MEDICAL SCIENCES 2024; 69:E122-E128. [PMID: 38379274 PMCID: PMC11006238 DOI: 10.24546/0100486228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 02/22/2024]
Abstract
Serum leucine-rich alpha-2 glycoprotein (LRG) has been utilized for adult inflammatory bowel disease (IBD); however, its efficacy in pediatric IBD remains unknown. The aim of this study was to compare the diagnostic accuracy of serum LRG for pediatric IBD with that of current inflammatory markers, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP). This retrospective case-control study included pediatric patients, aged <16 years, who underwent colonoscopy and/or esophagogastroduodenoscopy between April 2017 and March 2022. All eligible patients were divided into two groups: patients with IBD, diagnosed with ulcerative colitis and Crohn's disease, and non-IBD controls. The optimal cut-off value of serum LRG for IBD diagnosis was determined from receiver operating characteristic analysis, and diagnostic accuracy of serum LRG was compared to serum ESR and CRP. A total of 53 patients (24 with IBD and 29 non-IBD controls) met the inclusion criteria. The cut-off value of serum LRG for IBD diagnosis was determined to be 19.5 μg/ml. At this cut-off value, serum LRG had a positive predictive value (PPV) of 0.80 and negative predictive value (NPV) of 0.88. In contrast, PPV and NPV were 0.78 and 0.70 for serum ESR and 0.82 and 0.72 for serum CRP, respectively. Serum LRG can be a potential diagnostic marker for pediatric IBD, with higher diagnostic accuracy than that of the conventional serum markers ESR and CRP.
Collapse
Affiliation(s)
- SHOHEI YOSHIMURA
- Division of Pediatric Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YUICHI OKATA
- Division of Pediatric Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - MAKOTO OOI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - TOMOKO HORINOUCHI
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - SERENA IWABUCHI
- Division of Pediatric Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YASUYUKI KAMEOKA
- Division of Pediatric Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - AYA WATANABE
- Division of Pediatric Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - ATSUSHI KONDO
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - KOTARO UEMURA
- Division of Pediatric Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YUICHIRO TOMIOKA
- Division of Pediatric Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YOSHITOMO SAMEJIMA
- Division of Pediatric Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YUMIKO NAKAI
- Division of Pediatric Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - KANDAI NOZU
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YUZO KODAMA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YUKO BITOH
- Division of Pediatric Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
3
|
Yekani M, Memar MY. Immunologic biomarkers for bacterial meningitis. Clin Chim Acta 2023; 548:117470. [PMID: 37419301 DOI: 10.1016/j.cca.2023.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Meningitis is defined as the inflammation of the meninges that is most often caused by various bacterial and viral pathogens, and is associated with high rates of mortality and morbidity. Early detection of bacterial meningitis is essential to appropriate antibiotic therapy. Alterations in immunologic biomarkers levels have been considered the diagnostic approach in medical laboratories for the identifying of infections. The early increasing immunologic mediators such as cytokines and acute phase proteins (APPs) during bacterial meningitis have made they significant indicators for laboratory diagnosis. Immunology biomarkers showed wide variable sensitivity and specificity values that influenced by different reference values, selected a certain cutoff point, methods of detection, patient characterization and inclusion criteria, as well as etiology of meningitis and time of CSF or blood specimens' collection. This study provides an overview of different immunologic biomarkers as diagnostic markers for the identification of bacterial meningitis and their efficiencies in the differentiating of bacterial from viral meningitis.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Sarkar A, Chakraborty D, Kumar V, Malhotra R, Biswas S. Upregulation of leucine-rich alpha-2 glycoprotein: A key regulator of inflammation and joint fibrosis in patients with severe knee osteoarthritis. Front Immunol 2022; 13:1028994. [PMID: 36569927 PMCID: PMC9768428 DOI: 10.3389/fimmu.2022.1028994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Osteoarthritis (OA) is a degenerative disease of the joints mainly affecting older individuals. Since the etiology behind the progression of OA is not well understood, several associated consequences, such as synovial joint stiffness and its progression due to joint fibrosis, are still poorly understood. Although a lot of developments have been achieved in the diagnosis and management of OA, synovial fibrosis remains one of the major challenging consequences. The present study was therefore focused on understanding the mechanism of synovial fibrosis, which may further contribute to improving symptomatic treatments, leading to overall improvements in the treatment outcomes of patients with OA. Methods We used advanced proteomic techniques including isobaric tag for relative and absolute quantitation and sequential window acquisition of all theoretical mass spectra for the identification of differentially expressed proteins in the plasma samples of patients with OA. An in silico study was carried out to evaluate the association of the identified proteins with their biological processes related to fibrosis and remodeling of the extracellular matrix (ECM). The most significantly upregulated protein was then validated by Western blot and enzyme-linked immunosorbent assay. The target protein was then further investigated for its role in inflammation and joint fibrosis using an in vitro study model. Results Leucine-rich alpha-2 glycoprotein (LRG1) was found to be the most highly differentially expressed upregulated (9.4-fold) protein in the plasma samples of patients with OA compared to healthy controls. The knockdown of LRG1 followed by in vitro studies revealed that this protein promotes the secretion of the ECM in synovial cells and actively plays a role in wound healing and cell migration. The knockdown of LRG1 further confirmed the reduction of the inflammatory- and fibrosis-related markers in primary cells. Conclusion LRG1 was identified as a highly significant upregulated protein in the plasma samples of patients with OA. It was found to be associated with increased fibrosis and cell migration, leading to enhanced inflammation and joint stiffness in OA pathogenesis.
Collapse
Affiliation(s)
- Ashish Sarkar
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University, Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Debolina Chakraborty
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University, Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vijay Kumar
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Sagarika Biswas
- Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi University, Delhi, India,*Correspondence: Sagarika Biswas,
| |
Collapse
|
5
|
Ailioaie LM, Ailioaie C, Litscher G. Biomarkers in Systemic Juvenile Idiopathic Arthritis, Macrophage Activation Syndrome and Their Importance in COVID Era. Int J Mol Sci 2022; 23:12757. [PMID: 36361547 PMCID: PMC9655921 DOI: 10.3390/ijms232112757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 08/30/2023] Open
Abstract
Systemic juvenile idiopathic arthritis (sJIA) and its complication, macrophage activation syndrome (sJIA-MAS), are rare but sometimes very serious or even critical diseases of childhood that can occasionally be characterized by nonspecific clinical signs and symptoms at onset-such as non-remitting high fever, headache, rash, or arthralgia-and are biologically accompanied by an increase in acute-phase reactants. For a correct positive diagnosis, it is necessary to rule out bacterial or viral infections, neoplasia, and other immune-mediated inflammatory diseases. Delays in diagnosis will result in late initiation of targeted therapy. A set of biomarkers is useful to distinguish sJIA or sJIA-MAS from similar clinical entities, especially when arthritis is absent. Biomarkers should be accessible to many patients, with convenient production and acquisition prices for pediatric medical laboratories, as well as being easy to determine, having high sensitivity and specificity, and correlating with pathophysiological disease pathways. The aim of this review was to identify the newest and most powerful biomarkers and their synergistic interaction for easy and accurate recognition of sJIA and sJIA-MAS, so as to immediately guide clinicians in correct diagnosis and in predicting disease outcomes, the response to treatment, and the risk of relapses. Biomarkers constitute an exciting field of research, especially due to the heterogeneous nature of cytokine storm syndromes (CSSs) in the COVID era. They must be selected with utmost care-a fact supported by the increasingly improved genetic and pathophysiological comprehension of sJIA, but also of CSS-so that new classification systems may soon be developed to define homogeneous groups of patients, although each with a distinct disease.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
6
|
An Immunological Axis Involving Interleukin 1β and Leucine-Rich-α2-Glycoprotein Reflects Therapeutic Response of Children with Kawasaki Disease: Implications from the KAWAKINRA Trial. J Clin Immunol 2022; 42:1330-1341. [PMID: 35699824 PMCID: PMC9537216 DOI: 10.1007/s10875-022-01301-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/30/2022] [Indexed: 11/20/2022]
Abstract
Purpose A recent phase II open-label study of the interleukin 1 (IL-1) receptor antagonist (IL-1Ra) anakinra in treating IVIG-resistant Kawasaki disease (KD) patients reported promising results. Here, we aimed to characterize the immunological impact of IL-1 blockade in this unique study population. Methods Patients’ and control sera and supernatants of cells (whole blood, neutrophils, coronary artery endothelial cells) stimulated with recombinant IL-1β were analyzed for single or multiple marker (n = 22) expression by ELISA or multiplexed bead array assay. Data were analyzed using unsupervised hierarchical clustering, multiple correlation, and multi-comparison statistics and were compared to retrospective analyses of KD transcriptomics. Results Inflammation in IVIG-resistant KD (n = 16) is hallmarked by over-expression of innate immune mediators (particularly IL-6 > CXCL10 > S100A12 > IL-1Ra). Those as well as levels of immune or endothelial cell activation markers (sICAM-1, sVCAM-1) declined most significantly in course of anakinra treatment. Prior as well as following IL-1R blockade, over-expression of leucine-rich-α2-glycoprotein 1 (LRG1) associated best with remnant inflammatory activity and the necessity to escalate anakinra dosage and separated inflammatory KD patients from sJIA-MAS (n = 13) and MIS-C (n = 4). Protein as well as retrospective gene expression analyses indicated tight association of LRG1 with IL-1β signaling and neutrophilia, while particularly neutrophil stimulation with recombinant IL-1β resulted in concentration-dependent LRG1 release. Conclusion Our study identifies LRG1 as known trigger of endothelial activation and cardiac re-modeling to associate with IL-1β signaling in KD. Besides a potential patho-mechanistic implication of these findings, our data suggest blood leukocyte and neutrophil counts to best predict response to IL-1Ra treatment in IVIG-resistant KD. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-022-01301-w.
Collapse
|
7
|
Dritsoula A, Dowsett L, Pilotti C, O'Connor MN, Moss SE, Greenwood J. Angiopathic activity of LRG1 is induced by the IL-6/STAT3 pathway. Sci Rep 2022; 12:4867. [PMID: 35318338 PMCID: PMC8938720 DOI: 10.1038/s41598-022-08516-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Leucine-rich α-2-glycoprotein 1 (LRG1) is a secreted glycoprotein that under physiological conditions is produced predominantly by the liver. In disease, its local induction promotes pathogenic neovascularisation while its inhibition leads to reduced dysfunctional angiogenesis. Here we examine the role of interleukin-6 (IL-6) in defective angiogenesis mediated by LRG1. IL-6 treatment induced LRG1 expression in endothelial cells and ex vivo angiogenesis cultures and promoted vascular growth with reduced mural cell coverage. In Lrg1-/- explants, however, IL-6 failed to stimulate angiogenesis and vessels exhibited improved mural cell coverage. IL-6 activated LRG1 transcription through the phosphorylation and binding of STAT3 to a conserved consensus site in the LRG1 promoter, the deletion of which abolished activation. Blocking IL-6 signalling in human lung endothelial cells, using the anti-IL6 receptor antibody Tocilizumab, significantly reduced LRG1 expression. Our data demonstrate that IL-6, through STAT3 phosphorylation, activates LRG1 transcription resulting in vascular destabilisation. This observation is especially timely in light of the potential role of IL-6 in COVID-19 patients with severe pulmonary microvascular complications, where targeting IL-6 has been beneficial. However, our data suggest that a therapy directed towards blocking the downstream angiopathic effector molecule LRG1 may be of greater utility.
Collapse
Affiliation(s)
- Athina Dritsoula
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Laura Dowsett
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Camilla Pilotti
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Marie N O'Connor
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - John Greenwood
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| |
Collapse
|
8
|
Zou Y, Xu Y, Chen X, Wu Y, Fu L, Lv Y. Research Progress on Leucine-Rich Alpha-2 Glycoprotein 1: A Review. Front Pharmacol 2022; 12:809225. [PMID: 35095520 PMCID: PMC8797156 DOI: 10.3389/fphar.2021.809225] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Leucine-rich alpha⁃2 glycoprotein 1 (LRG1) is an important member of the leucine-rich repetitive sequence protein family. LRG1 was mainly involved in normal physiological activities of the nervous system, such as synapse formation, synapse growth, the development of nerve processes, neurotransmitter transfer and release, and cell adhesion molecules or ligand-binding proteins. Also, LRG1 affected the development of respiratory diseases, hematological diseases, endocrine diseases, tumor diseases, eye diseases, cardiovascular diseases, rheumatic immune diseases, infectious diseases, etc. LRG1 was a newly discovered important upstream signaling molecule of transforming growth factor⁃β (TGF⁃β) that affected various pathological processes through the TGF⁃β signaling pathway. However, research on LRG1 and its involvement in the occurrence and development of diseases was still in its infancy and the current studies were mainly focused on proteomic detection and basic animal experimental reports. We could reasonably predict that LRG1 might act as a new direction and strategy for the treatment of many diseases.
Collapse
Affiliation(s)
- Yonghui Zou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yi Xu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xiaofeng Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yaoqi Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,College of Pharmacy, Nanchang University, Nanchang, China
| | - Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Lin M, Liu J, Zhang F, Qi G, Tao S, Fan W, Chen M, Ding K, Zhou F. The role of leucine-rich alpha-2-glycoprotein-1 in proliferation, migration, and invasion of tumors. J Cancer Res Clin Oncol 2022; 148:283-291. [PMID: 35037101 DOI: 10.1007/s00432-021-03876-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Leucine-rich alpha-2-glycoprotein-1 (LRG1) is widely involved in proliferation, migration, and invasion of various tumor cells. Recent studies have evaluated the potential of LRG1 as both an early tumor and a prognostic biomarker. METHOD The relevant literature from PubMed is reviewed in this article. RESULTS It has been found that LRG1 mainly acts on the regulatory mechanisms of angiogenesis, epithelial-mesenchymal transition (EMT), and apoptosis by transforming growth factor (TGF-β) signaling pathway as well as affecting the occurrence and development of the tumors. Moreover, with advancement of research, LRG1 regulation pathways which are independent of TGF-β signaling pathway have been gradually revealed in different tumor cells; There are several studies on the biological effects of LRG1 as an inflammatory factor, vascular growth regulator, cell adhesion, and a cell viability influencing factor. In addition, various tumor suppression methods which are based on regulation of LRG1 levels have also shown high potential clinical value. CONCLUSIONS LRG1 are critical for the processes of tumorigenesis, development, and metastasis in various tumors. The present study reviewed the latest research on the achievements of LRG1 in tumor genesis and development. Further, this study also discussed the related molecular mechanisms of various biological functions of LRG1.
Collapse
Affiliation(s)
- Meng Lin
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Jinmeng Liu
- Laboratory of Biochemistry and Molecular Biology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Fengping Zhang
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Gaoxiu Qi
- Department of Pathology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Shuqi Tao
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Wenyuan Fan
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Min Chen
- Department of Pathology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Kang Ding
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Fenghua Zhou
- Department of Pathology, Weifang Medical University, Weifang, Shandong, People's Republic of China.
| |
Collapse
|
10
|
Zaripova LN, Midgley A, Christmas SE, Beresford MW, Baildam EM, Oldershaw RA. Juvenile idiopathic arthritis: from aetiopathogenesis to therapeutic approaches. Pediatr Rheumatol Online J 2021; 19:135. [PMID: 34425842 PMCID: PMC8383464 DOI: 10.1186/s12969-021-00629-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/25/2021] [Indexed: 12/11/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common paediatric rheumatological disorder and is classified by subtype according to International League of Associations for Rheumatology criteria. Depending on the number of joints affected, presence of extra-articular manifestations, systemic symptoms, serology and genetic factors, JIA is divided into oligoarticular, polyarticular, systemic, psoriatic, enthesitis-related and undifferentiated arthritis. This review provides an overview of advances in understanding of JIA pathogenesis focusing on aetiology, histopathology, immunological changes associated with disease activity, and best treatment options. Greater understanding of JIA as a collective of complex inflammatory diseases is discussed within the context of therapeutic interventions, including traditional non-biologic and up-to-date biologic disease-modifying anti-rheumatic drugs. Whilst the advent of advanced therapeutics has improved clinical outcomes, a considerable number of patients remain unresponsive to treatment, emphasising the need for further understanding of disease progression and remission to support stratification of patients to treatment pathways.
Collapse
Affiliation(s)
- Lina N Zaripova
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Angela Midgley
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, University Department, Liverpool Women's Hospital, First Floor, Crown Street, Liverpool, L8 7SS, UK
| | - Stephen E Christmas
- Department of Clinical Infection, Microbiology and Immunology, Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, The Ronald Ross Building, 8 West Derby Street, Liverpool, L69 7BE, UK
| | - Michael W Beresford
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, University Department, Liverpool Women's Hospital, First Floor, Crown Street, Liverpool, L8 7SS, UK
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, East Prescott Road, Liverpool, L14 5AB, UK
| | - Eileen M Baildam
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, East Prescott Road, Liverpool, L14 5AB, UK
| | - Rachel A Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
11
|
Rosina S, Natoli V, Santaniello S, Trincianti C, Consolaro A, Ravelli A. Novel biomarkers for prediction of outcome and therapeutic response in juvenile idiopathic arthritis. Expert Rev Clin Immunol 2021; 17:853-870. [PMID: 34139935 DOI: 10.1080/1744666x.2021.1945441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The search for biomarkers in juvenile idiopathic arthritis (JIA) is a promising and rapidly expanding field of investigation. The biomarkers identified so far may help to dissect the clinical heterogeneity of the illness, measure the level of disease activity, predict clinical remission, relapse, response to medications, course over time, complications, and forestall disease flares. AREAS COVERED We provide a summary of the most recent advances in the development and application of biomarkers in JIA. We performed a PubMed search for significant articles combining predetermined keywords related to biomarkers in non-systemic and systemic JIA, chronic uveitis, and macrophage activation syndrome (MAS). The biomarkers available or under study are presented and discussed separately for non-systemic and systemic subtypes and for the two main disease complications, uveitis and MAS. EXPERT OPINION The incorporation of valid and reliable biomarkers in standard clinical care may help to design better patient-tailored treatment regimens and to improve the therapeutic strategies based on the treat-to-target approach. The establishment of biomarkers that predict the risk of disease flare may lead to define the optimal modalities for treatment discontinuation after the achievement of clinical remission.
Collapse
Affiliation(s)
- Silvia Rosina
- UOC Clinica Pediatrica E Reumatologia, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Valentina Natoli
- Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno-Infantili (Dinogmi), Università Degli Studi Di Genova, Genoa, Italy
| | - Stefania Santaniello
- Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno-Infantili (Dinogmi), Università Degli Studi Di Genova, Genoa, Italy
| | - Chiara Trincianti
- Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno-Infantili (Dinogmi), Università Degli Studi Di Genova, Genoa, Italy
| | - Alessandro Consolaro
- UOC Clinica Pediatrica E Reumatologia, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno-Infantili (Dinogmi), Università Degli Studi Di Genova, Genoa, Italy
| | - Angelo Ravelli
- UOC Clinica Pediatrica E Reumatologia, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Dipartimento Di Neuroscienze, Riabilitazione, Oftalmologia, Genetica E Scienze Materno-Infantili (Dinogmi), Università Degli Studi Di Genova, Genoa, Italy.,Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
12
|
Keles Yucel ZP, Balli U. Leucine-rich alpha-2 glycoprotein (LRG): A novel acute phase protein expressed in Stage 3 Grade C periodontitis before and after periodontal therapy. J Periodontol 2020; 92:104-112. [PMID: 33128400 DOI: 10.1002/jper.20-0358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Leucine-rich alpha-2 glycoprotein (LRG) is a novel acute phase protein involved in inflammation-associated diseases and that considered to be induced by multiple proinflammatory cytokines. This study aimed to investigate gingival crevicular fluid (GCF) and serum levels of LRG, interleukin (IL)-6 and tumor necrosis factor (TNF)-α in patients with Stage 3 periodontitis before and after non-surgical periodontal treatment. METHODS Twenty-five Stage 3 periodontitis and twenty-five periodontally healthy individuals were enrolled in the study. Clinical periodontal measurements were recorded; periodontitis patients received non-surgical periodontal treatment, and GCF and serum samples were obtained at baseline and at 6 weeks after treatment. LRG, IL-6 and TNF-α were determined by ELISA. RESULTS GCF and serum LRG, IL-6 and TNF-α were significantly higher in periodontitis group than healthy controls (P < .001). A significant decrease in GCF and serum LRG, IL-6 and TNF-α was detected after periodontal treatment compared with baseline values of periodontitis patients (P < .001). CONCLUSION Our findings revealed that LRG expression was increased in Stage 3 periodontitis both locally and systemically, and non-surgical periodontal therapy was effective in reducing LRG levels in GCF and serum of these patients.
Collapse
Affiliation(s)
| | - Umut Balli
- Department of Periodontology, Faculty of Dentistry, Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
13
|
Liu C, Teo MHY, Pek SLT, Wu X, Leong ML, Tay HM, Hou HW, Ruedl C, Moss SE, Greenwood J, Tavintharan S, Hong W, Wang X. A Multifunctional Role of Leucine-Rich α-2-Glycoprotein 1 in Cutaneous Wound Healing Under Normal and Diabetic Conditions. Diabetes 2020; 69:2467-2480. [PMID: 32887674 PMCID: PMC7576570 DOI: 10.2337/db20-0585] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
Delayed wound healing is commonly associated with diabetes. It may lead to amputation and death if not treated in a timely fashion. Limited treatments are available partially due to the poor understanding of the complex disease pathophysiology. Here, we investigated the role of leucine-rich α-2-glycoprotein 1 (LRG1) in normal and diabetic wound healing. First, our data showed that LRG1 was significantly increased at the inflammation stage of murine wound healing, and bone marrow-derived cells served as a major source of LRG1. LRG1 deletion causes impaired immune cell infiltration, reepithelialization, and angiogenesis. As a consequence, there is a significant delay in wound closure. On the other hand, LRG1 was markedly induced in diabetic wounds in both humans and mice. LRG1-deficient mice were resistant to diabetes-induced delay in wound repair. We further demonstrated that this could be explained by the mitigation of increased neutrophil extracellular traps (NETs) in diabetic wounds. Mechanistically, LRG1 mediates NETosis in an Akt-dependent manner through TGFβ type I receptor kinase ALK5. Taken together, our studies demonstrated that LRG1 derived from bone marrow cells is required for normal wound healing, revealing a physiological role for this glycoprotein, but that excess LRG1 expression in diabetes is pathogenic and contributes to chronic wound formation.
Collapse
Affiliation(s)
- Chenghao Liu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Melissa Hui Yen Teo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | | | - Xiaoting Wu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Mei Ling Leong
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Hui Min Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Han Wei Hou
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London, U.K
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, U.K
| | - Subramaniam Tavintharan
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Diabetes Centre, Admiralty Medical Centre, Singapore
- Division of Endocrinology, Department of Medicine, Khoo Teck Puat Hospital, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Xiaomeng Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Singapore Eye Research Institute, The Academia, Singapore
| |
Collapse
|
14
|
Ohta H, Tamura Y, Yokoyama N, Nagata N, Osuga T, Sasaki N, Kagawa Y, Morishita K, Takiguchi M. Gene expression of leucine-rich alpha-2 glycoprotein in the polypoid lesion of inflammatory colorectal polyps in miniature dachshunds. J Vet Med Sci 2020; 82:1445-1449. [PMID: 32759576 PMCID: PMC7653302 DOI: 10.1292/jvms.20-0242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inflammatory colorectal polyps (ICRPs) in miniature dachshunds (MDs) are speculated to be a breed-specific inflammatory bowel disease (IBD). Leucine-rich alpha-2 glycoprotein (LRG) has been identified as a novel biomarker of human IBD. The aim of this study was to examine LRG gene expression in the polypoid lesions of ICRPs. Polypoid lesion specimens were collected from 24 MDs with ICRPs. Nonpolypoid colonic mucosa was collected from 18 MDs with ICRPs and 10 controls. The gene expression of LRG, interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and IL-22 was examined. The expression of LRG gene was significantly increased in the polypoid lesions of ICRPs and correlated with that of the four cytokines. In conclusion, the LRG gene was expressed within the polypoid lesions of ICRPs and might be associated with local cytokine expression.
Collapse
Affiliation(s)
- Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yu Tamura
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Present address: Veterinary Teaching Hospital, Azabu University, Kanagawa 252-5201, Japan
| | - Nozomu Yokoyama
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Noriyuki Nagata
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Tatsuyuki Osuga
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yumiko Kagawa
- NORTH LAB, Hondori 2-chome, kita8-35, Shiroishi-ku, Sapporo, Hokkaido 003-0027, Japan
| | - Keitaro Morishita
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|