1
|
Wu Z, Shangguan D, Huang Q, Wang YK. Drug metabolism and transport mediated the hepatotoxicity of Pleuropterus multiflorus root: a review. Drug Metab Rev 2024; 56:349-358. [PMID: 39350738 DOI: 10.1080/03602532.2024.2405163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/11/2024] [Indexed: 12/15/2024]
Abstract
Pleuropterus multiflorus root (PMR, Polygoni Multiflori Radix) is an herbal medicine widely used in East Asia, particularly China. However, the potential hepatotoxicity has hindered its rational and safe application of PMR in clinical practice. Recently, the hepatotoxic study of PMR have made great progress, especially drug metabolism and transport-mediated liver injury. In this review, we summarized the advancement of drug metabolism and transport regluated hepatic injury of PMR, pointed out the key role of drug metabolizing enzymes and transporters in regulating hepatic injury of PMR, and emphasized the main hepatotoxic substances, toxicity promoter, and hepatic toxic substance-toxicity promoter interactions in PMR. On this basis, the clinical prospect of preventing and treating hepatic injury of PMR from the perspective of metabolism and transporter was discussed, to provide a useful reference and theoretical basis for the prevention and treatment of hepatic injury of PMR.
Collapse
Affiliation(s)
- Zhaoquan Wu
- School of Pharmaceutical Sciences, Changsha Medical University, Changsha, Hunan, China
| | - Dangang Shangguan
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Kun Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Gong L, Shen X, Huang N, Wu K, Li R, Liu Y, Zhang H, Chen S, Sun R. Research progress on hepatotoxicity mechanism of polygonum multiflorum and its main components. Toxicon 2024; 248:108040. [PMID: 39038664 DOI: 10.1016/j.toxicon.2024.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
As a traditional tonic Chinese medicine, Polygonum multiflorum is widely used in clinical practice. However, with the deepening of modern pharmacological research, its drug toxicity, especially hepatotoxicity, has become increasingly prominent. Based on a large number of clinical and experimental evidence, it has been confirmed that Polygonum multiflorum and its main active ingredients such as anthraquinones and diphenylethylene glucoside can cause different degrees of hepatotoxicity. Further studies have shown that the toxicological mechanisms involved in the hepatotoxicity of different extracts and components of Polygonum multiflorum may include oxidative phosphorylation, bile acid excretion, different metabolic pathways, genetic and metabolic factors, immune homeostasis, etc. By sorting out and summarizing the literature related to hepatotoxicity of Polygonum multiflorum in recent years, this paper discussed the hepatotoxicity mechanism of Polygonum multiflorum and its main components and some contradictions in related reports.
Collapse
Affiliation(s)
- Liping Gong
- The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xianhui Shen
- The Second Hospital of Shandong University, Jinan, 250033, China
| | - Nana Huang
- The Second Hospital of Shandong University, Jinan, 250033, China; Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Kaiyi Wu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Rongrong Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ying Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Huijie Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Siyi Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Rong Sun
- The Second Hospital of Shandong University, Jinan, 250033, China; Advanced Medical Research Institute, Shandong University, Jinan, 250012, China.
| |
Collapse
|
3
|
Zhang T, Xie Y, Li T, Deng Y, Wan Q, Bai T, Zhang Q, Cai Z, Chen M, Zhang J. Phytochemical analysis and hepatotoxicity assessment of braised Polygoni Multiflori Radix (Wen-He-Shou-Wu). Biomed Chromatogr 2024; 38:e5768. [PMID: 38087457 DOI: 10.1002/bmc.5768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 01/26/2024]
Abstract
Polygoni Multiflori Radix (PMR) is a medicinal herb commonly used in China and Eastern Asia. Recently, the discovery of hepatotoxicity in PMR has received considerable attention from scientists. Processing is a traditional Chinese medicine technique used for the effective reduction of toxicity. One uncommon technique is the braising method-also known as 'Wen-Fa' in Chinese-which is used to prepare tonics or poisonous medications. Braised PMR (BPMR)-also known as 'Wen-He-Shou-Wu'-is one of the processed products of the braising method. However, the non-volatile components of BPMR have not been identified and examined in detail, and therefore, the hepatotoxic advantage of BPMR remains unknown. In this study, we compared the microscopic characteristics of different samples in powder form using scanning electron microscopy (SEM), investigated the non-volatile components, assessed the effects of different processed PMR products on the liver, and compared the differences between BPMR and PMR Praeparata recorded in the Chinese Pharmacopoeia (2020 edition). We found that the hepatotoxicity of BPMR was dramatically decreased, which may be related to an increase in polysaccharide content and a decrease in toxic substances. The present study provides an important foundation for future investigations of the processing mechanisms of BPMR.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yating Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Tao Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yaling Deng
- Department of Pharmacy, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Quan Wan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Tingting Bai
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qing Zhang
- Jianchangbang Pharmaceutical Co., Ltd., Nanchang, China
- Key Laboratory of Traditional Chinese Medicine Processing (Braising Method), Nanchang, China
| | - Zhongxi Cai
- Jianchangbang Pharmaceutical Co., Ltd., Nanchang, China
- Key Laboratory of Traditional Chinese Medicine Processing (Braising Method), Nanchang, China
| | - Mingxia Chen
- Jianchangbang Pharmaceutical Co., Ltd., Nanchang, China
- Key Laboratory of Traditional Chinese Medicine Processing (Braising Method), Nanchang, China
- Beijing Scrianen Pharmaceutical Co., Ltd., Beijing, China
| | - Jinlian Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
4
|
Björnsson ES, Navarro VJ, Chalasani N. Liver Injury Following Tinospora Cordifolia Consumption: Drug-Induced AIH, or de novo AIH? J Clin Exp Hepatol 2022; 12:6-9. [PMID: 35068778 PMCID: PMC8766689 DOI: 10.1016/j.jceh.2021.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Einar S Björnsson
- Department of Gastroenterology, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Victor J Navarro
- Department of Medicine, Einstein Health Care Network, Jefferson Health, Philadelphia, PA, USA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indianapolis, IN, USA
| |
Collapse
|
5
|
Choi RY, Lee MK. Polygonum multiflorum Thunb. Hot Water Extract Reverses High-Fat Diet-Induced Lipid Metabolism of White and Brown Adipose Tissues in Obese Mice. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081509. [PMID: 34451554 PMCID: PMC8398201 DOI: 10.3390/plants10081509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 05/06/2023]
Abstract
The purpose of the present study was to determine whether an anti-obesity effect of a Polygonum multiflorum Thunb. hot water extract (PW) was involved in the lipid metabolism of white adipose tissue (WAT) and brown adipose tissue (BAT) in high-fat diet (HFD)-induced C57BL/6N obese mice. Mice freely received a normal diet (NCD) or an HFD for 12 weeks; HFD-fed mice were orally given PW (100 or 300 mg/kg) or garcinia cambogia (GC, 200 mg/kg) once a day. After 12 weeks, PW (300 mg/kg) or GC significantly alleviated adiposity by reducing body weight, WAT weights, and food efficiency ratio. PW (300 mg/kg) improved hyperinsulinemia and enhanced insulin sensitivity. In addition, PW (300 mg/kg) significantly down-regulated expression of carbohydrate-responsive element-binding protein (ChREBP) and diacylglycerol O-acyltransferase 2 (DGAT2) genes in WAT compared with the untreated HFD group. HFD increased BAT gene levels such as adrenoceptor beta 3 (ADRB3), peroxisome proliferator-activated receptor γ (PPARγ), hormone-sensitive lipase (HSL), cluster of differentiation 36 (CD36), fatty acid-binding protein 4 (FABP4), PPARγ coactivator 1-α (PGC-1α), PPARα, and carnitine palmitoyltransferase 1B (CPT1B) compared with the NCD group; however, PW or GC effectively reversed those levels. These findings suggest that the anti-obesity activity of PW was mediated via suppression of lipogenesis in WAT, leading to the normalization of lipid metabolism in BAT.
Collapse
Affiliation(s)
- Ra-Yeong Choi
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea;
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea
- Correspondence: ; Tel.: +82-61-750-3656; Fax: +82-61-750-3650
| |
Collapse
|
6
|
Protective Effect of Processed Polygoni multiflori Radix and Its Major Substance during Scopolamine-Induced Cognitive Dysfunction. Processes (Basel) 2021. [DOI: 10.3390/pr9020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cognitive disorder in the elderly population. However, effective pharmacological agents targeting AD have not been developed. The processed Polygoni multiflori Radix (PPM) and its main active substance, 2,3,5,4′-tetrahydroxystilbene-2-O-β-glucoside (TSG), has received considerable attention, majorly due to its neuroprotective activities against multiple biological activities within the human body. In this study, we provide new evidence on the therapeutic effect of PPM and TSG during cognitive impairment by evaluating the ameliorative potential of PPM and TSG in scopolamine-induced amnesia in ICR mice. PPM (100 or 200 mg/kg) was orally administered during the experimental period (days 1–15), and scopolamine was intraperitoneally injected to induce cognitive deficits during the behavioural test periods (days 8–15). The administration of PPM and TSG significantly improved memory loss and cognitive dysfunction in behavioural tests and regulated the cholinergic function, brain-derived neurotrophic factor, and neural apoptosis. The present study suggests that PPM and TSG improved scopolamine-induced cognitive dysfunction, but further study has to be supported for the clinical application of PPM and TSG for AD prevention and treatment.
Collapse
|
7
|
Rao T, Liu YT, Zeng XC, Li CP, Ou-Yang DS. The hepatotoxicity of Polygonum multiflorum: The emerging role of the immune-mediated liver injury. Acta Pharmacol Sin 2021; 42:27-35. [PMID: 32123300 PMCID: PMC7921551 DOI: 10.1038/s41401-020-0360-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Herbal and dietary supplements (HDS)-induced liver injury has been a great concern all over the world. Polygonum multiflorum Thunb., a well-known Chinese herbal medicine, is recently drawn increasing attention because of its hepatotoxicity. According to the clinical and experimental studies, P. multiflorum-induced liver injury (PM-DILI) is considered to be immune-mediated idiosyncratic liver injury, but the role of immune response and the underlying mechanisms are not completely elucidated. Previous studies focused on the direct toxicity of PM-DILI by using animal models with intrinsic drug-induced liver injury (DILI). However, most epidemiological and clinical evidence demonstrate that PM-DILI is immune-mediated idiosyncratic liver injury. The aim of this review is to assess current epidemiological, clinical and experimental evidence about the possible role of innate and adaptive immunity in the idiosyncratic hepatotoxicity of P. multiflorum. The potential effects of factors associated with immune tolerance, including immune checkpoint molecules and regulatory immune cells on the individual's susceptibility to PM-DILI are also discussed. We conclude by giving our hypothesis of possible immune mechanisms of PM-DILI and providing suggestions for future studies on valuable biomarkers identification and proper immune models establishment.
Collapse
Affiliation(s)
- Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.
| | - Ya-Ting Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Xiang-Chang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Chao-Peng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, 410205, China
| | - Dong-Sheng Ou-Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, 410205, China.
| |
Collapse
|
8
|
Siddiqui AJ, Danciu C, Ashraf SA, Moin A, Singh R, Alreshidi M, Patel M, Jahan S, Kumar S, Alkhinjar MIM, Badraoui R, Snoussi M, Adnan M. Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses. PLANTS 2020; 9:plants9091244. [PMID: 32967179 PMCID: PMC7570315 DOI: 10.3390/plants9091244] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 infection (COVID-19) is in focus over all known human diseases, because it is destroying the world economy and social life, with increased mortality rate each day. To date, there is no specific medicine or vaccine available against this pandemic disease. However, the presence of medicinal plants and their bioactive molecules with antiviral properties might also be a successful strategy in order to develop therapeutic agents against SARS-CoV-2 infection. Thus, this review will summarize the available literature and other information/data sources related to antiviral medicinal plants, with possible ethnobotanical evidence in correlation with coronaviruses. The identification of novel antiviral compounds is of critical significance, and medicinal plant based natural compounds are a good source for such discoveries. In depth search and analysis revealed several medicinal plants with excellent efficacy against SARS-CoV-1 and MERS-CoV, which are well-known to act on ACE-2 receptor, 3CLpro and other viral protein targets. In this review, we have consolidated the data of several medicinal plants and their natural bioactive metabolites, which have promising antiviral activities against coronaviruses with detailed modes of action/mechanism. It is concluded that this review will be useful for researchers worldwide and highly recommended for the development of naturally safe and effective therapeutic drugs/agents against SARS-CoV-2 infection, which might be used in therapeutic protocols alone or in combination with chemically synthetized drugs.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
- Correspondence: (A.J.S.); (C.D.); Tel.: +40-744-648-855 (C.D.)
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Correspondence: (A.J.S.); (C.D.); Tel.: +40-744-648-855 (C.D.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail PO Box 2440, Saudi Arabia;
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail PO Box 2440, Saudi Arabia;
| | - Ritu Singh
- Department of Environmental Sciences, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India;
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat 395007, India;
| | - Sadaf Jahan
- Department of Medical Laboratory, College of Applied Medical Sciences, Majmaah University, Al Majma’ah 15341, Saudi Arabia;
| | - Sanjeev Kumar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi 835205, India;
| | - Mulfi I. M. Alkhinjar
- Saudi Center for Disease Prevention and Control, Al Aarid, King Abdulaziz Rd, Riyadh 13354, Saudi Arabia;
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
- Section of Histology-Cytology, Medicine College of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
- Laboratory of Histo-Embryology and Cytogenetic, Medicine College of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail PO Box 2440, Saudi Arabia; (M.A.); (R.B.); (M.S.); (M.A.)
| |
Collapse
|
9
|
Feng H, Wu YQ, Xu YS, Wang KX, Qin XM, Lu YF. LC-MS-Based Metabolomic Study of Oleanolic Acid-Induced Hepatotoxicity in Mice. Front Pharmacol 2020; 11:747. [PMID: 32670053 PMCID: PMC7326119 DOI: 10.3389/fphar.2020.00747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Oleanolic acid (OA), a natural triterpenoid, which has the development prospects in anti-tumor therapy is a widely used hepatoprotective drug in China. It has been reported that OA can cause liver toxicity after higher doses or longer-term use. Therefore, the study aims to explore the possible hepatotoxicity mechanism based on liver metabolic profiles. Liver metabolic profiles were obtained from untargeted ultrahigh performance liquid chromatography (UHPLC)-Q Exactive Orbitrap mass spectrometry (MS) technique. It was found that altered bile acid, amino acid, and energy metabolism might be at least partly responsible for OA-induced hepatotoxicity. Bile acid metabolism, as the most important pathway, was verified by using UHPLC-TSQ-MS, indicating that conjugated bile acids were the main contributors to OA-induced liver toxicity. Our findings confirmed that increased bile acids were the key element of OA hepatotoxicity, which may open new insights for OA hepatotoxicity in-depth investigations, as well as provide a reference basis for more hepatotoxic drug mechanism research.
Collapse
Affiliation(s)
- Hong Feng
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Ying-Qiu Wu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Ya-Sha Xu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Ke-Xin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yuan-Fu Lu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|