1
|
Lesmana R, Tandean S, Christoper A, Suwantika AA, Wathoni N, Abdulah R, Fearnley J, Bankova V, Zulhendri F. Propolis as an autophagy modulator in relation to its roles in redox balance and inflammation regulation. Biomed Pharmacother 2024; 175:116745. [PMID: 38761422 DOI: 10.1016/j.biopha.2024.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024] Open
Abstract
Autophagy is a degradation process that is evolutionarily conserved and is essential in maintaining cellular and physiological homeostasis through lysosomal removal and elimination of damaged peptides, proteins and cellular organelles. The dysregulation of autophagy is implicated in various diseases and disorders, including cancers, infection-related, and metabolic syndrome-related diseases. Propolis has been demonstrated in various studies including many human clinical trials to have antimicrobial, antioxidant, anti-inflammatory, immune-modulator, neuro-protective, and anti-cancer. Nevertheless, the autophagy modulation properties of propolis have not been extensively studied and explored. The role of propolis and its bioactive compounds in modulating cellular autophagy is possibly due to their dual role in redox balance and inflammation. The present review attempts to discuss the activities of propolis as an autophagy modulator in biological models in relation to various diseases/disorders which has implications in the development of propolis-based nutraceuticals, functional foods, and complementary therapies.
Collapse
Affiliation(s)
- R Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Indonesia; Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Indonesia.
| | - S Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara 20222, Indonesia.
| | - A Christoper
- Postgraduate Program of Medical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - A A Suwantika
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - N Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; Research Center of Biopolymers for Drug and Cosmetic Delivery, Bandung 45363, Indonesia.
| | - R Abdulah
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia; Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia.
| | - J Fearnley
- Apiceutical Research Centre, Unit 3b Enterprise Way, Whitby, North Yorkshire YO18 7NA, UK.
| | - V Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia 1113, Bulgaria.
| | - F Zulhendri
- Kebun Efi, Kabanjahe, North Sumatra 22171, Indonesia; Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Indonesia.
| |
Collapse
|
2
|
Ribeiro IS, Muniz IPR, Galantini MPL, Gonçalves CV, Lima PHB, Silva NR, de Oliveira SL, Nunes MS, Novaes AKS, de Oliveira MES, Costa DJ, Amaral JG, da Silva RAA. Antimicrobial photodynamic therapy with Brazilian green propolis controls intradermal infection induced by methicillin-resistant Staphylococcus aureus and modulates the inflammatory response in a murine model. Photochem Photobiol Sci 2024; 23:561-573. [PMID: 38372844 DOI: 10.1007/s43630-024-00539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/13/2024] [Indexed: 02/20/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of skin and soft tissue infections worldwide. This microorganism has a wide range of antibiotics resistance, a fact that has made the treatment of infections caused by MRSA difficult. In this sense, antimicrobial photodynamic therapy (aPDT) with natural products has emerged as a good alternative in combating infections caused by antibiotic-resistant microorganisms. The objective of the present study was to evaluate the effects of aPDT with Brazilian green propolis against intradermal MRSA infection in a murine model. Initially, 24 Balb/c mice were infected intradermally in the ears with 1.5 × 108 colony-forming units of MRSA 43300. After infection, they were separated into 4 groups (6 animals per group) and treated with the vehicle, only Brazilian green propolis, only blue LED light or with the aPDT protocol (Brazilian green propolis + blue LED light). It was observed in this study that aPDT with Brazilian green propolis reduced the bacterial load at the site of infection. Furthermore, it was able to inhibit weight loss resulting from the infection, as well as modulate the inflammatory response through greater recruitment of polymorphonuclear cells/neutrophils to the infected tissue. Finally, aPDT induced an increase in the cytokines IL-17A and IL-12p70 in the draining retromaxillary lymph node. Thus, aPDT with Brazilian green propolis proved to be effective against intradermal MRSA infection in mice, reducing bacterial load and modulating the immune response in the animals. However, more studies are needed to assess whether such effects are repeated in humans.
Collapse
Affiliation(s)
- Israel Souza Ribeiro
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
- Universidade Federal Do Sul da Bahia, Campus Paulo Freire, 250 Praça Joana Angélica, Bairro São José, Teixeira de Freitas, Bahia, 45.988-058, Brazil
| | - Igor Pereira Ribeiro Muniz
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Maria Poliana Leite Galantini
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Caroline Vieira Gonçalves
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Paulo Henrique Bispo Lima
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Nathalia Rosa Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Samara Lopes de Oliveira
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Marlon Silva Nunes
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Amanda Kelle Santos Novaes
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Maria Eduarda Santos de Oliveira
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Dirceu Joaquim Costa
- Universidade Estadual Do Sudoeste da Bahia, Campus Vitória da Conquista, Av. Edmundo Silveira Flores, 27-43 - Lot, Alto da Boa Vista, Vitória da Conquista, Bahia, CEP: 45029-066, Brazil
| | - Juliano Geraldo Amaral
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil
| | - Robson Amaro Augusto da Silva
- Universidade Federal da Bahia, Campus Anísio Teixeira, Instituto Multidisciplinar Em Saúde, Rua Hormindo Barros, 58, Bairro Candeias, Vitória da Conquista, Bahia, CEP: 45.029-094, Brazil.
| |
Collapse
|
3
|
Scorza C, Goncalves V, Finsterer J, Scorza F, Fonseca F. Exploring the Prospective Role of Propolis in Modifying Aging Hallmarks. Cells 2024; 13:390. [PMID: 38474354 PMCID: PMC10930781 DOI: 10.3390/cells13050390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Aging populations worldwide are placing age-related diseases at the forefront of the research agenda. The therapeutic potential of natural substances, especially propolis and its components, has led to these products being promising agents for alleviating several cellular and molecular-level changes associated with age-related diseases. With this in mind, scientists have introduced a contextual framework to guide future aging research, called the hallmarks of aging. This framework encompasses various mechanisms including genomic instability, epigenetic changes, mitochondrial dysfunction, inflammation, impaired nutrient sensing, and altered intercellular communication. Propolis, with its rich array of bioactive compounds, functions as a potent functional food, modulating metabolism, gut microbiota, inflammation, and immune response, offering significant health benefits. Studies emphasize propolis' properties, such as antitumor, cardioprotective, and neuroprotective effects, as well as its ability to mitigate inflammation, oxidative stress, DNA damage, and pathogenic gut bacteria growth. This article underscores current scientific evidence supporting propolis' role in controlling molecular and cellular characteristics linked to aging and its hallmarks, hypothesizing its potential in geroscience research. The aim is to discover novel therapeutic strategies to improve health and quality of life in older individuals, addressing existing deficits and perspectives in this research area.
Collapse
Affiliation(s)
- Carla Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.G.); (F.S.)
| | - Valeria Goncalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.G.); (F.S.)
| | | | - Fúlvio Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.G.); (F.S.)
| | - Fernando Fonseca
- Laboratório de Análises Clínicas da Faculdade de Medicina do ABC, Santo André 09060-650, Brazil;
- Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo (UNIFESP), Diadema 09972-270, Brazil
| |
Collapse
|
4
|
Wu W, Hendrix A, Nair S, Cui T. Nrf2-Mediated Dichotomy in the Vascular System: Mechanistic and Therapeutic Perspective. Cells 2022; 11:cells11193042. [PMID: 36231004 PMCID: PMC9563590 DOI: 10.3390/cells11193042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2), a transcription factor, controls the expression of more than 1000 genes that can be clustered into different categories with distinct functions ranging from redox balance and metabolism to protein quality control in the cell. The biological consequence of Nrf2 activation can be either protective or detrimental in a context-dependent manner. In the cardiovascular system, most studies have focused on the protective properties of Nrf2, mainly as a key transcription factor of antioxidant defense. However, emerging evidence revealed an unexpected role of Nrf2 in mediating cardiovascular maladaptive remodeling and dysfunction in certain disease settings. Herein we review the role of Nrf2 in cardiovascular diseases with a focus on vascular disease. We discuss the negative effect of Nrf2 on the vasculature as well as the potential underlying mechanisms. We also discuss the clinical relevance of targeting Nrf2 pathways for the treatment of cardiovascular and other diseases.
Collapse
Affiliation(s)
- Weiwei Wu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Andrew Hendrix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Sharad Nair
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Columbia VA Health System, Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Columbia VA Health System, Wm. Jennings Bryan Dorn VA Medical Center, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-216-3804
| |
Collapse
|
5
|
Protective Effect of Uric Acid on ox-LDL-Induced HUVECs Injury via Keap1-Nrf2-ARE Pathway. J Immunol Res 2021; 2021:5151168. [PMID: 34761008 PMCID: PMC8575640 DOI: 10.1155/2021/5151168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Uric acid is an effective antioxidant. Oxidized low-density lipoprotein (ox-LDL) is derived from circulating LDL and promotes atherosclerosis. The Keap1-Nrf2-ARE pathway is a key body pathway involved in protection against internal and external oxidative damages. The role of uric acid on vascular endothelial function damaged by ox-LDL, and its effect on the Keap1-Nrf2-ARE pathway has not been fully explored. HUVECs were treated with different concentrations of uric acid and ox-LDL to explore the effect of uric acid in vitro. Cell phenotype was determined by cytometry and Western blot. Nuclear translocation of Nrf2 was determined by immunofluorescence. Coimmunoprecipitation was used to determine the level of Nrf2 ubiquitination. A microfluidic device was used to mimic the vascular environment in the body, and the level of mRNA levels of inflammatory factors was determined by RT-PCR. The findings of this study show that suitable uric acid can significantly reduce endothelial damage caused by ox-LDL, such as oxidative stress, inflammation, and increased adhesion. In addition, uric acid reduced Nrf2 ubiquitination and increased nuclear translocation of Nrf2 protein, thus activating the Keap1-Nrf2-ARE pathway and playing a protective role. Interestingly, the effects of UA were significantly inhibited by administration of Brusatol, an inhibitor of Nrf2. In summary, suitable concentrations of uric acid can alleviate the oxidative stress level of endothelial cells through Nrf2 nuclear translocation and further protect cells from damage.
Collapse
|
6
|
Liu H, Li J, Yuan W, Hao S, Wang M, Wang F, Xuan H. Bioactive components and mechanisms of poplar propolis in inhibiting proliferation of human hepatocellular carcinoma HepG2 cells. Biomed Pharmacother 2021; 144:112364. [PMID: 34700230 DOI: 10.1016/j.biopha.2021.112364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The aim of this study was to elucidate the bioactive components and anti-tumor mechanism of poplar propolis extract obtained from North China (CP) in human hepatocellular carcinoma HepG2 cells in vitro. METHODS Cell viability and proliferation were measured by SRB assay and EdU proliferation test kit, respectively. Cell migration was evaluated by scratching test. Reactive oxygen species (ROS) production and mitochondrial membrane potential were investigated with the fluorescent probes, DCHF and JC-1, respectively. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were inspected by measurement kits. Apoptosis was assessed by acridine orange (AO) and Hoechst 33258 staining. Levels of Bax, Bcl-2, caspase 9, caspase 3, PARP, MMP-2, MMP-9, PI3K/p-PI3K, AKT/p-AKT, p38MAPK/p-p38 MAPK, ERK/p-ERK, LATS2, YAP, TAZ and TEAD1 were assessed by western blotting, respectively. RESULTS The bioactive components of CP inhibiting HepG2 cells were mainly flavonoids, and esters. CP induced HepG2 apoptosis through a mitochondrial-dependent intrinsic pathway with elevated the levels of cleaved PARP, cleaved caspase 3, and Bax and decreased the expressions of Bcl-2 and procaspase 9. It seemed that CP triggered apoptosis by activation of the p38 MAPK and inactivation of p-ERK. More importantly, we found that CP suppressed the Hippo pathway, leading to inactivation of YAP/TAZ and TEAD1 and inhibition of PI3K/AKT signaling molecules. CONCLUSION CP exerted excellent anti-proliferation and pro-apoptosis actions in HepG2 cells by inactivation of the loop between the Hippo/YAP and PI3K/AKT pathways, and may be a promising therapy for HCC.
Collapse
Affiliation(s)
- Hui Liu
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Junya Li
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Wenwen Yuan
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Shengyu Hao
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Meng Wang
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Fei Wang
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
7
|
Li T, Liu Y, Zhang Q, Sun W, Dong Y. A steroid-induced osteonecrosis model established using an organ-on-a-chip platform. Exp Ther Med 2021; 22:1070. [PMID: 34447463 PMCID: PMC8355687 DOI: 10.3892/etm.2021.10504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Bone microvascular endothelial cells (BMECs) constitute the central part of the femoral head's intramural microenvironment network and have an essential role in the development of steroid-induced osteonecrosis of the femoral head. Recently, the rapid development of microfluidic technology has led to innovations in the fields of chemistry, medicine and life sciences. It is now possible to use microfluidics organ-on-a-chip techniques to assess osteonecrosis. In the present study, BMECs were cultured on a microfluidic organ-on-a-chip platform to explore the pathogenesis of femoral-head necrosis. The aim of the present study was to explore the effects of different interventions on BMECs and study the pathogenesis of steroid-induced osteonecrosis through a microfluidic organ-on-a-chip platform. Methods including SU-8 lithography were used to produce a microfluidic organ-on-a-chip and human umbilical vein endothelial cells (HUVECs) were used to test whether it was possible to culture cells on the chip. Subsequently, a set of methods were applied for the isolation, purification, culture and identification of BMECs. Hydroxyapatite (HA) was used for co-culture, dexamethasone was used at different concentrations as an intervention in the cells and icariin was used for protection. BMECs were isolated and cultured from the femoral head obtained following total hip arthroplasty and were then inoculated into the microfluidic organ-on-a-chip for further treatment. In part I of the experiment, HUVECs and BMECs both successfully survived on the chip and a comparison of the growth and morphology was performed. HA and BMECs were then co-cultured for comparison with the control group. The cell growth was observed by confocal microscopy after 24 h. In part II, the effects of different concentrations of glucocorticoid (0.4 or 0.6 mg/ml dexamethasone) and the protection of icariin were evaluated. The morphology of BMECs and the cleaved caspase-3/7 content were observed by immunofluorescence staining and confocal microscopy after 24 h. In the microfluidic organ-on-a-chip, the response of the cells was able to be accurately observed. In part I, at the same concentration of injected cells, BMECs exhibited improved viability compared with HUVECs (P<0.05). In addition, it was indicated that HA was not only able to promote the germination and growth of BMECs but also improve the survival of the cells (P<0.05). In part II, it was identified that dexamethasone was able to induce BMECs to produce cleaved caspase 3/7; the caspase 3/7 content was significantly higher than that in the blank control group (P<0.05) and a dose correlation was observed. Icariin was able to inhibit this process and protect the microvascular structure of BMECs. The content of cleaved caspase 3/7 in the icariin-protected group was significantly lower than that in the group without icariin (P<0.05). It was concluded that BMECs are more likely to survive than HUVECs and HA promoted the growth of BMECs on the microfluidic organ-on-a-chip platform. Glucocorticoid caused damage to BMECs through the production of cleaved caspase 3/7, which was observed through the microfluidic organ-on-a-chip platform, and icariin protected BMECs from damage.
Collapse
Affiliation(s)
- Tengqi Li
- Department of Orthopedic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, P.R. China
| | - Yadi Liu
- Department of Bioanalysis, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qingyu Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Wei Sun
- Department of Orthopedic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, P.R. China.,Department of Orthopedic Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Yiyang Dong
- Department of Bioanalysis, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
8
|
Wang F, Liu H, Li J, Zhang W, Jiang B, Xuan H. Australian propolis ethanol extract exerts antibacterial activity against methicillin-resistant Staphylococcus aureus by mechanisms of disrupting cell structure, reversing resistance, and resisting biofilm. Braz J Microbiol 2021; 52:1651-1664. [PMID: 34231118 DOI: 10.1007/s42770-021-00547-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/21/2021] [Indexed: 01/02/2023] Open
Abstract
The antibacterial activity and mechanisms of Australian propolis ethanol extract (APEE) against methicillin-resistant Staphylococcus aureus (MRSA) were investigated herein. The diameter of inhibition zones (DIZ) of APEE was 19.7 mm, while the minimum inhibition concentration (MIC) and minimum bactericide concentration (MBC) of APEE were both 0.9 mg/mL against the tested strain of MRSA. Nucleic acid leakage and propidium iodide (PI) staining assays showed that APEE can stimulate the release of intracellular nucleic acids by disrupting the integrity of the cell wall and cytoplasmic membrane. Scanning electron microscopy (SEM) further confirmed that APEE could depress cellular activities via damaging the cell structure, including the cell wall and membrane. Western blot analysis and β-lactamase activity assay showed that APEE could inhibit the expression of PBP2a and reduce the activity of β-lactamase, suggesting that APEE is able to reverse the drug resistance of MRSA. XTT and crystal violet (CV) assays indicated that APEE had the capacity to prevent the formation of biofilms through decreasing cellular activities and biomass. Bacterial adhesion assay revealed that APEE could reduce the adhesive capacity of the strain, belonging to its antibiofilm mechanisms. Furthermore, nine main compounds of APEE were identified and quantified by HPLC-DAD/Q-TOF-MS. The results above all verified that the antibacterial activity of APEE against MRSA was mainly due to disrupting cell structure, reversing resistance, and resisting biofilm formation, which indicates that APEE is expected to be an efficient functional ingredient with great potential application in the field of medicine and food.
Collapse
Affiliation(s)
- Fei Wang
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Hui Liu
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Junya Li
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Wenwen Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Bin Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China.
| | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
9
|
Abd El-Ghafar OAM, Hassanein EHM, Sayed AM, Rashwan EK, Shalkami AGS, Mahmoud AM. Acetovanillone prevents cyclophosphamide-induced acute lung injury by modulating PI3K/Akt/mTOR and Nrf2 signaling in rats. Phytother Res 2021; 35:4499-4510. [PMID: 33969557 DOI: 10.1002/ptr.7153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/30/2022]
Abstract
Cyclophosphamide (CP) is a medication used as an anticancer drug and to suppress the immune system. However, its clinical applications are restricted because of the toxic and adverse side effects. The present study investigated the protective effect of acetovanillone (AV), a natural NADPH oxidase inhibitor, against acute lung injury (ALI) induced by CP. Rats were administered AV (100 mg/kg) for 10 days and a single injection of CP (200 mg/kg) at day 7. At the end of the experiment, the animals were sacrificed, and lung samples were collected for analyses. CP caused ALI manifested by the histopathological alterations. Lipid peroxidation and NADPH oxidase activity were increased, whereas GSH and antioxidant enzymes were decreased in the lung of CP-intoxicated rats. Oral administration of AV prevented CP-induced lung injury and oxidative stress and enhanced antioxidant defenses. AV downregulated Keap1 and upregulated Nrf2, GCLC, HO-1, and SOD3 mRNA. In addition, AV boosted the expression of PI3K, Akt, mTOR, and cytoglobin. In vitro, AV showed a synergistic anticancer effect when combined with CP. In conclusion, AV protected against CP-induced ALI by attenuating oxidative stress and boosting Nrf2/HO-1 and PI3K/Akt/mTOR signaling. Therefore, AV might represent a promising adjuvant to prevent lung injury in patients receiving CP.
Collapse
Affiliation(s)
- Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Asyut, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, Sakakah, Saudi Arabia.,Department of Physiology, College of Medicine, Al-Azhar University, Cairo, Egypt
| | - Abdel-Gawad S Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt.,Biotechnology Department, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
10
|
Syed AM, Ram C, Murty US, Sahu BD. A review on herbal Nrf2 activators with preclinical evidence in cardiovascular diseases. Phytother Res 2021; 35:5068-5102. [PMID: 33894007 DOI: 10.1002/ptr.7137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 12/31/2022]
Abstract
Cardiovascular diseases (CVDs) are an ever-growing problem and are the most common cause of death worldwide. The uncontrolled production of reactive oxygen species (ROS) and the activation of ROS associated with various cell signaling pathways with oxidative cellular damage are the most common pathological conditions connected with CVDs including endothelial dysfunction, hypercontractility of vascular smooth muscle, cardiac hypertrophy and heart failure. The nuclear factor E2-related factor 2 (Nrf2) is a basic leucine zipper redox transcription factor, together with its negative regulator, kelch-like ECH-associated protein 1 (Keap1), which serves as a key regulator of cellular defense mechanisms to combat oxidative stress and associated diseases. Multiple lines of evidence described here support the cardiac protective property of Nrf2 in various experimental models of cardiac related disease conditions. In this review, we emphasized the molecular mechanisms of Nrf2 and described the detailed outline of current findings on the therapeutic possibilities of the Nrf2 activators specifically from herbal origin in various CVDs. Based on evidence from various preclinical experimental models, we have highlighted the activation of Nrf2 pathway as a budding therapeutic option for the prevention and treatment of CVDs, which needs further investigation and validation in the clinical settings.
Collapse
Affiliation(s)
- Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| |
Collapse
|
11
|
Propolis in Metabolic Syndrome and Its Associated Chronic Diseases: A Narrative Review. Antioxidants (Basel) 2021; 10:antiox10030348. [PMID: 33652692 PMCID: PMC7996839 DOI: 10.3390/antiox10030348] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Propolis is a resinous product collected by bees from plants to protect and maintain the homeostasis of their hives. Propolis has been used therapeutically by humans for centuries. This review article attempts to analyze the potential use of propolis in metabolic syndrome (MetS) and its associated chronic diseases. MetS and its chronic diseases were shown to be involved in at least seven out of the top 10 causes of death in 2019. Patients with MetS are also at a heightened risk of severe morbidity and mortality in the present COVID-19 pandemic. Propolis with its antioxidant and anti-inflammatory properties is potentially useful in ameliorating the symptoms of MetS and its associated chronic diseases. The aim of this article is to provide a comprehensive review on propolis and its therapeutic benefit in MetS and its chronic diseases, with an emphasis on in vitro and in vivo studies, as well as human clinical trials. Moreover, the molecular and biochemical mechanisms of action of propolis are also discussed. Propolis inhibits the development and manifestation of MetS and its chronic diseases by inhibiting of the expression and interaction of advanced glycation end products (AGEs) and their receptors (RAGEs), inhibiting pro-inflammatory signaling cascades, and promoting the cellular antioxidant systems.
Collapse
|
12
|
Zeng G, An H, Fang D, Wang W, Han Y, Lian C. Plantamajoside protects H9c2 cells against hypoxia/reoxygenation-induced injury through regulating the akt/Nrf2/HO-1 and NF-κB signaling pathways. J Recept Signal Transduct Res 2020; 42:125-132. [PMID: 33349091 DOI: 10.1080/10799893.2020.1859534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury has been found to be associated with oxidative stress. Plantamajoside (PMS) is a major compound of Plantago asiatica that was reported to possess cardioprotective and antioxidant effects. The current study was designed to investigate the effect of PMS on myocardial I/R injury. Rat cardiomyocytes H9c2 cells were exposed to hypoxia/reoxygenation (H/R) to establish in vitro model of myocardial I/R injury. MTT assay proved that H9c2 cells viability was significant reduced under H/R treatment, while the reduction was ameliorated by PMS. H/R-induced ROS production in H9c2 cells was suppressed by PMS. The decreased activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the H/R group were effectively elevated by PMS. In addition, treatment with PMS attenuated H/R-stimulated production of TNF-α, IL-6 and IL-1β in H9c2 cells. Besides, PMS significantly suppressed bax expression and caspase 3 activity, as well as increased bcl-2 expression in H/R-stimulated H9c2 cells. Furthermore, we also found that PMS significantly enhanced the activation of Akt/Nrf2/HO-1 signaling pathway and suppressed the activation of NF-κB signaling pathway in H/R-stimulated H9c2 cells. These results provided substantial evidence that PMS protected against myocardial I/R injury via attenuating oxidative stress, inflammatory response and apoptosis. The protective effects of PMS were attributed to the Akt/Nrf2/HO-1 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Guangwei Zeng
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Huixian An
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Dong Fang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Wei Wang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Yang Han
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Cheng Lian
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| |
Collapse
|
13
|
Hassanein EHM, Abd El-Ghafar OAM, Ahmed MA, Sayed AM, Gad-Elrab WM, Ajarem JS, Allam AA, Mahmoud AM. Edaravone and Acetovanillone Upregulate Nrf2 and PI3K/Akt/mTOR Signaling and Prevent Cyclophosphamide Cardiotoxicity in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5275-5288. [PMID: 33299300 PMCID: PMC7721127 DOI: 10.2147/dddt.s281854] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 01/17/2023]
Abstract
Introduction Cyclophosphamide (CP) causes redox imbalance and its use is associated with marked cardiotoxicity that limits its clinical applications. The present study investigated the protective effects of acetovanillone (AV) and edaravone (ED) against CP-induced oxidative stress and cardiac damage, emphasizing the role of PI3K/Akt/mTOR and Nrf2 signaling. Materials and Methods Rats received either AV (100 mg/kg) or ED (20 mg/kg) orally for 10 days and CP (200 mg/kg) on day 7. At day 11, the rats were sacrificed, and samples were collected for analysis. Results AV and ED ameliorated serum troponin I, CK-MB, LDH, AST and ALP, and prevented cardiac histological alterations in CP-intoxicated rats. Both treatments decreased cardiac lipid peroxidation and enhanced GSH, SOD and cytoglobin in CP-induced rats. AV and ED downregulated Keap1, whereas increased the expression of PI3K, Akt, mTOR and Nrf2 in the heart of rats received CP. Additionally, the binding modes of AV and ED to Keap1 were pinpointed in silico using molecular docking simulations. Conclusion AV and ED prevent CP cardiotoxicity by attenuating oxidative stress and tissue injury, and modulating cytoglobin, and PI3K/Akt/mTOR and Keap1/Nrf2 signaling. Therefore, AV and ED may represent promising agents that can prevent cardiac injury in patients receiving CP.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Wail M Gad-Elrab
- Human Anatomy & Embryology Department Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Jamaan S Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ayman M Mahmoud
- Zoology Department Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.,Biotechnology Department, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
14
|
Alvarenga L, Cardozo LFMF, Borges NA, Chermut TR, Ribeiro M, Leite M, Shiels PG, Stenvinkel P, Mafra D. To bee or not to bee? The bee extract propolis as a bioactive compound in the burden of lifestyle diseases. Nutrition 2020; 83:111094. [PMID: 33418489 DOI: 10.1016/j.nut.2020.111094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Propolis is a polyphenolic plant resin collected by bees to protect hives against pathogens and temperature drop. It exhibits antibacterial, antioxidant, and antiinflammatory properties. Propolis has been reported to possess antidiabetic properties and display beneficial effects against cardiovascular disease, gut dysbiosis, and chronic kidney disease. It has an excellent clinical safety profile, with no known toxic effects described so far. In this review, we discuss the salutogenic effects of propolis, with particular reference to modulating notable features of chronic kidney disease, notably those involving cardiovascular risks.
Collapse
Affiliation(s)
- Livia Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Brazil.
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil
| | - Natália A Borges
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil; Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Tuany R Chermut
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil
| | - Maurilo Leite
- Division of Nephrology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, ICS, University of Glasgow, Glasgow, Scotland
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institute, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Brazil; Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
15
|
Berretta AA, Silveira MAD, Cóndor Capcha JM, De Jong D. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease: Running title: Propolis against SARS-CoV-2 infection and COVID-19. Biomed Pharmacother 2020; 131:110622. [PMID: 32890967 PMCID: PMC7430291 DOI: 10.1016/j.biopha.2020.110622] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Propolis, a resinous material produced by honey bees from plant exudates, has long been used in traditional herbal medicine and is widely consumed as a health aid and immune system booster. The COVID-19 pandemic has renewed interest in propolis products worldwide; fortunately, various aspects of the SARS-CoV-2 infection mechanism are potential targets for propolis compounds. SARS-CoV-2 entry into host cells is characterized by viral spike protein interaction with cellular angiotensin-converting enzyme 2 (ACE2) and serine protease TMPRSS2. This mechanism involves PAK1 overexpression, which is a kinase that mediates coronavirus-induced lung inflammation, fibrosis, and immune system suppression. Propolis components have inhibitory effects on the ACE2, TMPRSS2 and PAK1 signaling pathways; in addition, antiviral activity has been proven in vitro and in vivo. In pre-clinical studies, propolis promoted immunoregulation of pro-inflammatory cytokines, including reduction in IL-6, IL-1 beta and TNF-α. This immunoregulation involves monocytes and macrophages, as well as Jak2/STAT3, NF-kB, and inflammasome pathways, reducing the risk of cytokine storm syndrome, a major mortality factor in advanced COVID-19 disease. Propolis has also shown promise as an aid in the treatment of various of the comorbidities that are particularly dangerous in COVID-19 patients, including respiratory diseases, hypertension, diabetes, and cancer. Standardized propolis products with consistent bioactive properties are now available. Given the current emergency caused by the COVID-19 pandemic and limited therapeutic options, propolis is presented as a promising and relevant therapeutic option that is safe, easy to administrate orally and is readily available as a natural supplement and functional food.
Collapse
Affiliation(s)
- Andresa Aparecida Berretta
- Research, Development and Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, São Paulo, Brazil.
| | | | - José Manuel Cóndor Capcha
- Interdisciplinary Stem Cell Institute at Miller School of Medicine, University of Miami, Miami, Florida, United States.
| | - David De Jong
- Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
16
|
Zheng S, Liu J, Zhao Z, Song R. Role of STAT3/mTOR pathway in chronic kidney injury. Am J Transl Res 2020; 12:3302-3310. [PMID: 32774701 PMCID: PMC7407727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
STAT3/mTOR pathway plays an important role in inflammation, cell growth, and proliferation. However, the role of STAT3/mTOR pathway in chronic kidney injury remains unclear. Folic acid was used to induce kidney injury C57BL/6 mouse model followed by analysis of serum creatinine, renal weight ratio changes, renal pathological changes and STAT3/mTOR pathway changes. Glomerular mesangial cells were divided into control group, model group, STAT3 inhibitor (S3I-201) group followed by analysis of cell proliferation by MTT assay, cell apoptosis by flow cytometry, formation of autophagosomes by electron microscopy, expression of STAT3/mTOR signaling proteins and autophagy proteins LC3II and p62 by Western blot, expression of E-cadherin and Vimentin by immunofluorescence. The serum creatinine and renal weight ratio was increased with obvious lesions and upregulated STAT3 and p-mTOR level. Compared with control group, the difference was statistically significant (P < 0.05). Folic acid-induced injury of mesangial cells showed inhibited cell proliferation, promoted apoptosis, increased LC3II expression, decreased p62 expression, increased autophagic vacuoles and expression of STAT3 and p-mTOR as well as decreased E-cadherin expression and increased Vimentin expression. The difference was statistically significant compared with control group (P < 0.05). All above changes were significantly reversed after treatment with STAT3 inhibitor S3I-201 (P < 0.05). Activated STAT3/mTOR pathway, enhanced autophagy, promoted apoptosis of mesangial cells and inhibited cell proliferation were found in mice with renal injury. Inhibition of STAT3/mTOR activation inhibits autophagy and cell apoptosis and promotes cell proliferation.
Collapse
Affiliation(s)
- Shefeng Zheng
- Department of Nephrology, The Third Affiliated Hospital of Wenzhou Medical University Ruian, Zhejiang Province, China
| | - Jinnv Liu
- Department of Nephrology, The Third Affiliated Hospital of Wenzhou Medical University Ruian, Zhejiang Province, China
| | - Zhangjian Zhao
- Department of Nephrology, The Third Affiliated Hospital of Wenzhou Medical University Ruian, Zhejiang Province, China
| | - Ruifang Song
- Department of Nephrology, The Third Affiliated Hospital of Wenzhou Medical University Ruian, Zhejiang Province, China
| |
Collapse
|
17
|
Coskun ZM, Ersoz M, Gecili M, Ozden A, Acar A. Cytotoxic and apoptotic effects of ethanolic propolis extract on C6 glioma cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:768-773. [PMID: 32061154 DOI: 10.1002/tox.22911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Propolis is a natural resinous substance obtained from beehives, and emerging evidence supports that it has antitumor, antiinflammatory, antioxidant, and antimicrobial activities. The aim of the study is to examine the cytotoxic, antioxidant, and apoptotic features of ethanolic propolis extract (PE) on C6 glioma cells. The cells were treated with ethanolic PE at various concentrations for 24 hours, after which the total antioxidant status (TAS) and total oxidant status; malondialdehyde, protein carbonyl, 8-hydroxy-2'-deoxyguanosine, and glutathione (GSH) levels; Cu/Zn-superoxide dismutase (Cu/Zn-SOD) activity; and apoptotic markers were measured. Ethanolic PE at 100, 250, and 500 μg/mL concentrations showed optimal activity on C6 glioma cells. TAS and GSH levels were significantly increased in C6 glioma cells treated with 100 and 500 μg/mL PE compared to control cells (P < .05). Similarly, the activity of Cu/Zn-SOD was higher in C6 glioma cells treated with 250 or 500 μg/mL ethanolic PE compared to control cells (P < .05), as was the caspase-3 mRNA expression level. The highest levels of caspase-8 and -9 expression were in C6 glioma cells treated with 500 μg/mL PE. Collectively, our results indicate that ethanolic PE has cytotoxic and apoptotic effects on C6 glioma cells. Furthermore, it may provide a protective role in the antioxidant defense system. PE shows potential for development as a natural antioxidant and apoptotic agent for the treatment of brain tumors.
Collapse
Affiliation(s)
- Zeynep M Coskun
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Melike Ersoz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Melike Gecili
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Aytek Ozden
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Aynur Acar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| |
Collapse
|
18
|
Ashrafizadeh M, Ahmadi Z, Samarghandian S, Mohammadinejad R, Yaribeygi H, Sathyapalan T, Sahebkar A. MicroRNA-mediated regulation of Nrf2 signaling pathway: Implications in disease therapy and protection against oxidative stress. Life Sci 2020; 244:117329. [PMID: 31954747 DOI: 10.1016/j.lfs.2020.117329] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRs) are small non-coding pieces of RNA that are involved in a variety of physiologic processes such as apoptosis, cell proliferation, cell differentiation, cell cycle and cell survival. These multifunctional nucleotides are also capable of preventing oxidative damages by modulating antioxidant defense systems in a variety of milieu, such as in diabetes. Although the exact molecular mechanisms by which miRs modulate the antioxidant defense elements are unclear, some evidence suggests that they may exert these effects via nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This intracellular mechanism is crucial in the maintenance of the physiologic redox balance by regulating the expression and activity of various cellular antioxidative defense elements and thereby plays a pivotal role in the development of oxidative stress. Any impairment in the Nrf2 signaling pathway may result in oxidative damage-dependent complications such as various diabetic complications, neurological disorders and cancer. In the current review, we discuss the modulatory effects of miRs on the Nrf2 signaling pathway, which can potentially be novel therapeutic targets.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|