1
|
Schloetelburg W, Hartrampf PE, Kosmala A, Serfling SE, Dreher N, Schirbel A, Fassnacht M, Buck AK, Werner RA, Hahner S. Predictive value of C-X-C motif chemokine receptor 4-directed molecular imaging in patients with advanced adrenocortical carcinoma. Eur J Nucl Med Mol Imaging 2024; 51:3643-3650. [PMID: 38896128 PMCID: PMC11445370 DOI: 10.1007/s00259-024-06800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND In patients affected with adrenocortical carcinoma (ACC), C-X-C motif chemokine receptor 4 (CXCR4) is highly expressed in sites of disease in an ex-vivo setting. We aimed to determine the predictive value of CXCR4-targeting [68Ga]Ga-PentixaFor PET/CT for outcome when compared to clinical parameters. METHODS We identified 41 metastasized ACC patients imaged with [68Ga]Ga-PentixaFor PET/CT. Scans were assessed visually and on a quantitative level by manually segmenting the tumor burden (providing tumor volume [TV], peak/mean/maximum standardized uptake values [SUV] and tumor chemokine receptor binding on the cell surface [TRB], defined as SUVmean multiplied by tumor volume). Clinical parameters included sex, previous therapies, age, Weiss-Score, and Ki67 index. Following imaging, overall survival (OS) was recorded. RESULTS After [68Ga]Ga-PentixaFor PET/CT, median OS was 9 months (range, 1-96 months). On univariable analysis, only higher TRB (per 10 ml, HR 1.004, 95%CI: 1.0001-1.007, P = 0.005) and presence of CXCR4-positive peritoneal metastases (PM) were associated with shorter OS (HR 2.03, 95%CI: 1.03-4.02, P = 0.04). Presence of CXCR4-positive liver metastases (LM) trended towards significance (HR 1.85, 0.9-4.1, P = 0.11), while all other parameters failed to predict survival. On multivariable analysis, only TRB was an independent predictor for OS (HR 1.0, 95%CI: 1.00-1.001, P = 0.02). On Kaplan-Meier analysis, TRB above median (13.3 months vs. below median, 6.4 months) and presence of CXCR4-positive PM (6.4 months, vs. no PM, 11.4 months) were associated with shorter survival (P < 0.05, respectively). Presence of LM, however, was also linked to less favorable outcome (8.5 months vs. no LM, 18.1 months), without reaching significance (P = 0.07). CONCLUSIONS In advanced ACC, elevated tumor chemokine receptor binding on the tumor cell surface detected through [68Ga]Ga-PentixaFor PET/CT is an independent predictor for OS, while other imaging and clinical parameters failed to provide relevant prognostic information.
Collapse
Affiliation(s)
- Wiebke Schloetelburg
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | - Philipp E Hartrampf
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Aleksander Kosmala
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Sebastian E Serfling
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Niklas Dreher
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital, University of Würzburg, Wurzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Stefanie Hahner
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital, University of Würzburg, Wurzburg, Germany
| |
Collapse
|
2
|
Ababneh O, Ghazou A, Alawajneh M, Alhaj Mohammad S, Bani-Hani A, Alrabadi N, Shreenivas A. The Efficacy and Safety of Immune Checkpoint Inhibitors in Adrenocortical Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:900. [PMID: 38473262 DOI: 10.3390/cancers16050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of different malignancies. However, their efficacy in advanced adrenocortical carcinoma (ACC) remains uncertain. Thus, we conducted a systematic review and meta-analysis to summarize the efficacy and tolerability of ICIs in patients with advanced ACC. We searched PubMed, Scopus, and CENTRAL for studies that used ICIs in ACC. Studies with more than five patients were included in the meta-analysis of the objective response rate (ORR), disease control rate (DCR), overall survival (OS), progression-free survival (PFS), and grade 3/4 adverse events. Twenty studies with 23 treatment arms and 250 patients were included. Single-agent anti-PD1 or anti-PD-L1 treatment was utilized in 13 treatment arms, whereas an anti-PD1 or anti-PD-L1 and anti-CTLA4 combination was used in 4 treatment arms. Other anti-PD1- or anti-PD-L1-based combinations were used in five treatment arms. The ORR was 14% (95% CI = 10-19%, I2 = 0%), and the DCR was 43% (95% CI = 37-50%, I2 = 13%). The combination anti-PD1- or anti-PD-L1-based treatment strategies did not correlate with higher responses compared with monotherapy. The median OS was 13.9 months (95% CI = 7.85-23.05), and the median PFS was 2.8 months (95% CI = 1.8-5.4). ICIs have a modest efficacy in advanced ACC but a good OS. Further studies are needed to investigate predictive biomarkers for ICI response and to compare ICI-based strategies with the current standard of care.
Collapse
Affiliation(s)
- Obada Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Alina Ghazou
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohmmad Alawajneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saleh Alhaj Mohammad
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Abdullah Bani-Hani
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Aditya Shreenivas
- Department of Hematology and Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Ahmed S, Wedekind MF, Del Rivero J, Raygada M, Lockridge R, Glod JW, Flowers C, Thomas BJ, Bernstein DB, Kapustina OB, Jain A, Miettinen M, Raffeld M, Xi L, Tyagi M, Kim J, Aldape K, Malayeri AA, Kaplan RN, Allen T, Vivelo CA, Sandler AB, Widemann BC, Reilly KM. Longitudinal Natural History Study of Children and Adults with Rare Solid Tumors: Initial Results for First 200 Participants. CANCER RESEARCH COMMUNICATIONS 2023; 3:2468-2482. [PMID: 37966258 PMCID: PMC10699159 DOI: 10.1158/2767-9764.crc-23-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Understanding of tumor biology and identification of effective therapies is lacking for many rare tumors. My Pediatric and Adult Rare Tumor (MyPART) network was established to engage patients, advocates, and researchers and conduct a comprehensive longitudinal Natural History Study of Rare Solid Tumors. Through remote or in-person enrollment at the NIH Clinical Center, participants with rare solid tumors ≥4 weeks old complete standardized medical and family history forms, patient reported outcomes, and provide tumor, blood and/or saliva samples. Medical records are extracted for clinical status and treatment history, and tumors undergo genomic analysis. A total of 200 participants (65% female, 35% male, median age at diagnosis 43 years, range = 2-77) enrolled from 46 U.S. states and nine other countries (46% remote, 55% in-person). Frequent diagnoses were neuroendocrine neoplasms (NEN), adrenocortical carcinomas (ACC), medullary thyroid carcinomas (MTC), succinate dehydrogenase (SDH)-deficient gastrointestinal stromal tumors (sdGIST), and chordomas. At enrollment, median years since diagnosis was 3.5 (range = 0-36.6), 63% participants had metastatic disease and 20% had no evidence of disease. Pathogenic germline and tumor mutations included SDHA/B/C (sdGIST), RET (MTC), TP53 and CTNNB1 (ACC), MEN1 (NEN), and SMARCB1 (poorly-differentiated chordoma). Clinically significant anxiety was observed in 20%-35% of adults. Enrollment of participants and comprehensive data collection were feasible. Remote enrollment was critical during the COVID-19 pandemic. Over 30 patients were enrolled with ACC, NEN, and sdGIST, allowing for clinical/genomic analyses across tumors. Longitudinal follow-up and expansion of cohorts are ongoing to advance understanding of disease course and establish external controls for interventional trials. SIGNIFICANCE This study demonstrates that comprehensive, tumor-agnostic data and biospecimen collection is feasible to characterize different rare tumors, and speed progress in research. The findings will be foundational to developing external controls groups for single-arm interventional trials, where randomized control trials cannot be conducted because of small patient populations.
Collapse
Affiliation(s)
- Shadin Ahmed
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | | | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Margarita Raygada
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Robin Lockridge
- Clinical Research Directorate (CRD), Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - John W. Glod
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Crystal Flowers
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - BJ Thomas
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Donna B. Bernstein
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Oxana B. Kapustina
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Ashish Jain
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Research Computing, Department of Information Technology, Boston Children's Hospital, Boston, Massachusetts
| | - Markku Miettinen
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Mark Raffeld
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Liqiang Xi
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Manoj Tyagi
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Jung Kim
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Ashkan A. Malayeri
- Department of Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, Maryland
| | - Rosandra N. Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Taryn Allen
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Clinical Research Directorate (CRD), Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Christina A. Vivelo
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Kelly Government Solutions, Bethesda, Maryland
| | - Abby B. Sandler
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | | | - Karlyne M. Reilly
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | | |
Collapse
|
4
|
Muzzi JCD, Magno JM, Souza JS, Alvarenga LM, de Moura JF, Figueiredo BC, Castro MAA. Comprehensive Characterization of the Regulatory Landscape of Adrenocortical Carcinoma: Novel Transcription Factors and Targets Associated with Prognosis. Cancers (Basel) 2022; 14:5279. [PMID: 36358698 PMCID: PMC9657296 DOI: 10.3390/cancers14215279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/31/2023] Open
Abstract
We reconstructed a transcriptional regulatory network for adrenocortical carcinoma (ACC) using transcriptomic and clinical data from The Cancer Genome Atlas (TCGA)-ACC cohort. We investigated the association of transcriptional regulatory units (regulons) with overall survival, molecular phenotypes, and immune signatures. We annotated the ACC regulons with cancer hallmarks and assessed single sample regulon activities in the European Network for the Study of Adrenal Tumors (ENSAT) cohort. We found 369 regulons associated with overall survival and subdivided them into four clusters: RC1 and RC2, associated with good prognosis, and RC3 and RC4, associated with worse outcomes. The RC1 and RC3 regulons were highly correlated with the 'Steroid Phenotype,' while the RC2 and RC4 regulons were highly correlated with a molecular proliferation signature. We selected two regulons, NR5A1 (steroidogenic factor 1, SF-1) and CENPA (Centromeric Protein A), that were consistently associated with overall survival for further downstream analyses. The CENPA regulon was the primary regulator of MKI-67 (a marker of proliferation KI-67), while the NR5A1 regulon is a well-described transcription factor (TF) in ACC tumorigenesis. We also found that the ZBTB4 (Zinc finger and BTB domain-containing protein 4) regulon, which is negatively associated with CENPA in our transcriptional regulatory network, is also a druggable anti-tumorigenic TF. We anticipate that the ACC regulons may be used as a reference for further investigations concerning the complex molecular interactions in ACC tumors.
Collapse
Affiliation(s)
- João C. D. Muzzi
- Laboratório de Imunoquímica (LIMQ), Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba 81530-990, Brazil
- Laboratório de Bioinformática e Biologia de Sistemas, Pós-Graduação em Bioinformática, Universidade Federal do Paraná (UFPR), Curitiba 81520-260, Brazil
- Oncology Division, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, Brazil
| | - Jéssica M. Magno
- Laboratório de Bioinformática e Biologia de Sistemas, Pós-Graduação em Bioinformática, Universidade Federal do Paraná (UFPR), Curitiba 81520-260, Brazil
- Oncology Division, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, Brazil
| | - Jean S. Souza
- Oncology Division, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, Brazil
| | - Larissa M. Alvarenga
- Laboratório de Imunoquímica (LIMQ), Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba 81530-990, Brazil
| | - Juliana F. de Moura
- Laboratório de Imunoquímica (LIMQ), Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba 81530-990, Brazil
| | - Bonald C. Figueiredo
- Oncology Division, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, Brazil
- Molecular Oncology Laboratory, Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), Curitiba 80030-110, Brazil
| | - Mauro A. A. Castro
- Laboratório de Bioinformática e Biologia de Sistemas, Pós-Graduação em Bioinformática, Universidade Federal do Paraná (UFPR), Curitiba 81520-260, Brazil
| |
Collapse
|
5
|
Bridging the Scientific Gaps to Identify Effective Treatments in Adrenocortical Cancer. Cancers (Basel) 2022; 14:cancers14215245. [DOI: 10.3390/cancers14215245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Adrenocortical cancer (ACC) typically presents in advanced stages of disease and has a dismal prognosis. One of the foremost reasons for this is the lack of available systemic therapies, with mitotane remaining the backbone of treatment since its discovery in the 1960s, despite underwhelming efficacy. Surgery remains the only potentially curative option, but about half of patients will recur post-operatively, often with metastatic disease. Other local treatment options have been attempted but are only used practically on a case-by-case basis. Over the past few decades there have been significant advances in understanding the molecular background of ACC, but this has not yet translated to better treatment options. Attempts at novel treatment strategies have not provided significant clinical benefit. This paper reviews our current treatment options and molecular understanding of ACC and the reasons why a successful treatment has remained elusive. Additionally, we discuss the knowledge gaps that need to be overcome to bring us closer to successful treatment and ways to bridge them.
Collapse
|
6
|
Turla A, Laganà M, Grisanti S, Abate A, Ferrari VD, Cremaschi V, Sigala S, Consoli F, Cosentini D, Berruti A. Supportive therapies in patients with advanced adrenocortical carcinoma submitted to standard EDP-M regimen. Endocrine 2022; 77:438-443. [PMID: 35567656 PMCID: PMC9385801 DOI: 10.1007/s12020-022-03075-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/08/2022] [Indexed: 12/21/2022]
Abstract
PURPOSE The management of patients with advanced/metastatic adrenocortical carcinoma (ACC) is challenging, EDP-M (etoposide, doxorubicin, cisplatin combined with mitotane) is the standard regimen. However, it is quite toxic, so an adequate supportive therapy is crucial to reduce as much as possible the side effects and maintain the dose intensity of cytotoxic agents. METHODS We describe the main side effects of the EDP-M scheme and the best way to manage them based on the experience of the Medical Oncology Unit of the Spedali Civili of Brescia. We also deal with the administration of EDP-M in specific frail patients, such as those with huge disease extent and poor performance status (PS) and those with mild renal insufficiency. RESULTS In patients with hormone secreting ACC the rapid control of Cushing syndrome using adrenal steroidogenesis inhibitors such as metyrapone or osilodrostat is mandatory before starting EDP-M. Primary prophylaxis of neutropenia with Granulocyte-Colony Stimulating Factors is crucial and should be introduced at the first chemotherapy cycle. Possible mitotane induced hypoadrenalism should be always considered in case of persistent nausea and vomiting and asthenia in the interval between one cycle to another. In case of poor PS. A 24 h continuous infusion schedule of cisplatin could be an initial option in patients with poor PS as well as to reduce the risk of nefrotoxocity in patients with mild renal impairment. CONCLUSION A careful and accurate supportive care is essential to mitigate EDP-M side effects as much as possible and avoid that, due to toxicity, patients have to reduce doses and or postpone cytotoxic treatment with a negative impact on efficacy of this chemotherapy regimen.
Collapse
Affiliation(s)
- Antonella Turla
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Marta Laganà
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vittorio Domenico Ferrari
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Valentina Cremaschi
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Consoli
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Brescia, Italy.
| |
Collapse
|
7
|
Xu C, Qin C, Jian J, Peng Y, Wang X, Chen X, Wu D, Song Y. Identification of an immune-related gene signature as a prognostic target and the immune microenvironment for adrenocortical carcinoma. Immun Inflamm Dis 2022; 10:e680. [PMID: 36039643 PMCID: PMC9382862 DOI: 10.1002/iid3.680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is a rare endocrine malignancy. Even with complete tumor resection and adjuvant therapies, the prognosis of patients with ACC remains unsatisfactory. In the microtumor environment, the impact of a disordered immune system and abnormal immune responses is enormous. To improve treatment, novel prognostic predictors and treatment targets for ACC need to be identified. Hence, credible prognostic biomarkers of immune-associated genes (IRGs) should be explored and developed. MATERIAL AND METHODS We downloaded RNA-sequencing data and clinical data from The Cancer Genome Atlas (TCGA) data set, Genotype-Tissue Expression data set, and Gene Expression Omnibus data set. Gene set enrichment analysis (GSEA) was applied to reveal the potential functions of differentially expressed genes. RESULTS GSEA indicated an association between ACC and immune-related functions. We obtained 332 IRGs and constructed a prognostic signature on the strength of 3 IRGs (INHBA, HELLS, and HDAC4) in the training cohort. The high-risk group had significantly poorer overall survival than the low-risk group (p < .001). Multivariate Cox regression was performed with the signature as an independent prognostic indicator for ACC. The testing cohort and the entire TCGA ACC cohort were utilized to validate these findings. Moreover, external validation was conducted in the GSE10927 and GSE19750 cohorts. The tumor-infiltrating immune cells analysis indicated that the quantity of T cells, natural killer cells, macrophage cells, myeloid dendritic cells, and mast cells in the immune microenvironment differed between the low-risk and high-risk groups. CONCLUSION Our three-IRG prognostic signature and the three IRGs can be used as prognostic indicators and potential immunotherapeutic targets for ACC. Inhibitors of the three novel IRGs might activate immune cells and play a synergistic role in combination therapy with immunotherapy for ACC in the future.
Collapse
Affiliation(s)
- Chengdang Xu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Caipeng Qin
- Department of UrologyPeking University People's HospitalBeijingChina
| | - Jingang Jian
- Department of Urology, The First Affiliated Hospital of Soochow University, Dushu Lake Hospital Affiliated to Soochow UniversitySuzhou Medical College of Soochow UniversitySuzhouChina
| | - Yun Peng
- Department of UrologyPeking University People's HospitalBeijingChina
| | - Xinan Wang
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xi Chen
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yuxuan Song
- Department of UrologyPeking University People's HospitalBeijingChina
- Department of UrologyTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
8
|
Cremaschi V, Abate A, Cosentini D, Grisanti S, Rossini E, Laganà M, Tamburello M, Turla A, Sigala S, Berruti A. Advances in adrenocortical carcinoma pharmacotherapy: what is the current state of the art? Expert Opin Pharmacother 2022; 23:1413-1424. [PMID: 35876101 DOI: 10.1080/14656566.2022.2106128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Surgery, followed or not by adjuvant mitotane, is the current mainstay of therapy for patients with early-stage adrenocortical carcinoma (ACC). Mitotane, either alone or in association with EDP (Etoposide-Doxorubicin-Cisplatin) combination chemotherapy, is the standard approach for patients with metastatic ACC. AREAS COVERED The activity of newer cytotoxic drugs, radioligands, targeted therapies and immunotherapy, both in preclinical and in clinical studies, will be reviewed in this paper. EXPERT OPINION ADIUVO trial revealed that the administration of adjuvant mitotane is not advantageous in patients with good prognosis. Future strategies are to intensify efforts in adjuvant setting in patients with high risk of relapse. In patients with advanced/metastatic disease, modern targeted therapies have shown significant cytotoxicity in preclinical studies, however, studies in ACC patients reported disappointing results so far. The absence of targeted agents specifically inhibiting the major molecular pathways of ACC growth is the main cause of the failure of these drugs. Since ACC is often antigenic but poorly immunogenic, the results of immunotherapy trials appeared inferior to those achieved in the management of patients with other malignancies. Radioligand therapy may also be a promising approach. Combination of chemotherapy plus immunotherapy could be interesting to be tested in the future.
Collapse
Affiliation(s)
- Valentina Cremaschi
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marta Laganà
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Antonella Turla
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| |
Collapse
|
9
|
Targeted Therapy for Adrenocortical Carcinoma: A Genomic-Based Search for Available and Emerging Options. Cancers (Basel) 2022; 14:cancers14112721. [PMID: 35681700 PMCID: PMC9179357 DOI: 10.3390/cancers14112721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 12/07/2022] Open
Abstract
In rare diseases such as adrenocortical carcinoma (ACC), in silico analysis can help select promising therapy options. We screened all drugs approved by the FDA and those in current clinical studies to identify drugs that target genomic alterations, also known to be present in patients with ACC. We identified FDA-approved drugs in the My Cancer Genome and National Cancer Institute databases and identified genetic alterations that could predict drug response. In total, 155 FDA-approved drugs and 905 drugs in clinical trials were identified and linked to 375 genes of 89 TCGA patients. The most frequent potentially targetable genetic alterations included TP53 (20%), BRD9 (13%), TERT (13%), CTNNB1 (13%), CDK4 (7%), FLT4 (7%), and MDM2 (7%). We identified TP53-modulating drugs to be possibly effective in 20-26% of patients, followed by the Wnt signaling pathway inhibitors (15%), Telomelysin and INO5401 (13%), FHD-609 (13%), etc. According to our data, 67% of ACC patients exhibited genomic alterations that might be targeted by FDA-approved drugs or drugs being tested in current clinical trials. Although there are not many current therapy options directly targeting reported ACC alterations, this study identifies emerging options that could be tested in clinical trials.
Collapse
|
10
|
Abate A, Rossini E, Tamburello M, Laganà M, Cosentini D, Grisanti S, Fiorentini C, Tiberio GAM, Scatolini M, Grosso E, Hantel C, Memo M, Berruti A, Sigala S. Ribociclib Cytotoxicity Alone or Combined With Progesterone and/or Mitotane in in Vitro Adrenocortical Carcinoma Cells. Endocrinology 2022; 163:6455501. [PMID: 34875044 DOI: 10.1210/endocr/bqab248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 11/19/2022]
Abstract
Mitotane is the only approved drug for treating adrenocortical carcinoma (ACC). The regimen added to mitotane is chemotherapy with etoposide, doxorubicin, and cisplatin. This pharmacological approach, however, has a limited efficacy and significant toxicity. Target-therapy agents represent a new promising approach to cancer therapy. Among these, a preeminent role is played by agents that interfere with cell-cycle progression, such as CDK4/6-inhibitors. Here, we investigate whether ribociclib could induce a cytotoxic effect both in ACC cell line and patient-derived primary cell cultures, alone or in combined settings. Cell viability was determined by 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide assay, whereas cell proliferation was evaluated by direct count. Binary combination experiments were performed using Chou and Talalay method. Gene expression was analyzed by quantitative RT-PCR, whereas protein expression was evaluated by immunofluorescence. A double staining assay revealed that ribociclib induced a prevalent apoptotic cell death. Cell-cycle analysis was performed to evaluate the effect of ribociclib treatment on cell-cycle progression in ACC cell models. Our results indicate that ribociclib was cytotoxic and reduced the cell proliferation rate. The effect on cell viability was enhanced when ribociclib was combined with progesterone and/or mitotane. The effect of ribociclib on cell-cycle progression revealed a drug-induced cell accumulation in G2 phase. The positive relationship underlined by our results between ribociclib, progesterone, and mitotane strengthen the clinical potential of this combination.
Collapse
Affiliation(s)
- Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Marta Laganà
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, 25123, Italy
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, 25123, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, 25123, Italy
| | - Chiara Fiorentini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Guido A M Tiberio
- Surgical Clinic, Department of Clinical and Experimental Sciences, University of Brescia at ASST Spedali Civili di Brescia, Brescia, 25123, Italy
| | - Maria Scatolini
- Molecular Oncology Laboratory, "Edo ed Elvo Tempia" Foundation, Ponderano, 13875, Biella, Italy
| | - Enrico Grosso
- Molecular Oncology Laboratory, "Edo ed Elvo Tempia" Foundation, Ponderano, 13875, Biella, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, 25123, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| |
Collapse
|
11
|
Jimenez C, Armaiz-Pena G, Dahia PLM, Lu Y, Toledo RA, Varghese J, Habra MA. Endocrine and Neuroendocrine Tumors Special Issue—Checkpoint Inhibitors for Adrenocortical Carcinoma and Metastatic Pheochromocytoma and Paraganglioma: Do They Work? Cancers (Basel) 2022; 14:cancers14030467. [PMID: 35158739 PMCID: PMC8833823 DOI: 10.3390/cancers14030467] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023] Open
Abstract
Adrenocortical cancers and metastatic pheochromocytomas are the most common malignancies originating in the adrenal glands. Metastatic paragangliomas are extra-adrenal tumors that share similar genetic and molecular profiles with metastatic pheochromocytomas and, subsequently, these tumors are studied together. Adrenocortical cancers and metastatic pheochromocytomas and paragangliomas are orphan diseases with limited therapeutic options worldwide. As in any other cancers, adrenocortical cancers and metastatic pheochromocytomas and paragangliomas avoid the immune system. Hypoxia-pseudohypoxia, activation of the PD-1/PD-L1 pathway, and/or microsatellite instability suggest that immunotherapy with checkpoint inhibitors could be a therapeutic option for patients with these tumors. The results of clinical trials with checkpoint inhibitors for adrenocortical carcinoma or metastatic pheochromocytoma or paraganglioma demonstrate limited benefits; nevertheless, these results also suggest interesting mechanisms that might enhance clinical responses to checkpoint inhibitors. These mechanisms include the normalization of tumor vasculature, modification of the hormonal environment, and vaccination with specific tumor antigens. Combinations of checkpoint inhibitors with classical therapies, such as chemotherapy, tyrosine kinase inhibitors, radiopharmaceuticals, and/or novel therapies, such as vaccines, should be evaluated in clinical trials.
Collapse
Affiliation(s)
- Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.V.); (M.A.H.)
- Correspondence:
| | - Gustavo Armaiz-Pena
- Division of Endocrinology, Department Medicine, The University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Patricia L. M. Dahia
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rodrigo A. Toledo
- CIBERONC, Gastrointestinal and Endocrine Tumors, Vall d’Hebron Institute of Oncology (VHIO), Centro Cellex, 08035 Barcelona, Spain;
| | - Jeena Varghese
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.V.); (M.A.H.)
| | - Mouhammed Amir Habra
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.V.); (M.A.H.)
| |
Collapse
|
12
|
Baechle JJ, Hanna DN, Sekhar KR, Rathmell JC, Rathmell WK, Baregamian N. Integrative computational immunogenomic profiling of cortisol-secreting adrenocortical carcinoma. J Cell Mol Med 2021; 25:10061-10072. [PMID: 34664400 PMCID: PMC8572764 DOI: 10.1111/jcmm.16936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 01/08/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare but highly aggressive malignancy. Nearly half of ACC tumours overproduce and secrete adrenal steroids. Excess cortisol secretion, in particular, has been associated with poor prognosis among ACC patients. Furthermore, recent immunotherapy clinical trials have demonstrated significant immunoresistance among cortisol‐secreting ACC (CS‐ACC) patients when compared to their non‐cortisol‐secreting (nonCS‐ACC) counterparts. The immunosuppressive role of excess glucocorticoid therapies and hypersecretion is known; however, the impact of the cortisol hypersecretion on ACC tumour microenvironment (TME), immune expression profiles and immune cell responses remain largely undefined. In this study, we characterized the TME of ACC patients and compared the immunogenomic profiles of nonCS‐ACC and CS‐ACC tumours to assess the impact of differentially expressed genes (DEGs) by utilizing The Cancer Genome Atlas (TCGA) database. Immunogenomic comparison (CS‐ vs. nonCS‐ACC tumour TMEs) demonstrated an immunosuppressive expression profile with a direct impact on patient survival. We identified several primary prognostic indicators and potential targets within ACC tumour immune landscape. Differentially expressed immune genes with prognostic significance provide additional insight into the understanding of potential contributory mechanisms underlying failure of initial immunotherapeutic trials and poor prognosis of patients with CS‐ACC.
Collapse
Affiliation(s)
| | - David N Hanna
- Division of Surgical Oncology & Endocrine Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Konjeti R Sekhar
- Division of Surgical Oncology & Endocrine Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naira Baregamian
- Division of Surgical Oncology & Endocrine Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
13
|
Petrelli F, Consoli F, Ghidini A, Perego G, Luciani A, Mercurio P, Berruti A, Grisanti S. Efficacy of Immune Checkpoint Inhibitors in Rare Tumours: A Systematic Review. Front Immunol 2021; 12:720748. [PMID: 34616395 PMCID: PMC8488393 DOI: 10.3389/fimmu.2021.720748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Rare cancers, as defined by the European Union, occur in fewer than 15 out of 100,000 people each year. The International Rare Cancer Consortium defines rare cancer incidence as less than six per 100,000 per year. There is a growing number of reports of the efficacy of immune checkpoint inhibitor (ICI) therapy in patients with rare tumours, and hence, we conducted a comprehensive review to summarise and analyse the available literature. Methods A literature search of PubMed was performed on January 31, 2021, using the following ICI names as keywords: ipilimumab, tremelimumab, cemiplimab, nivolumab, pembrolizumab, avelumab, atezolizumab, and durvalumab. Studies on patients with rare tumours who were being treated with ICIs were included. We plotted the overall response rate against the corresponding median survival across a variety of cancer types using linear regression. Results From 1,255 publications retrieved during the primary search, 62 publications were selected (with a total of 4,620 patients). Only four were randomised trials. A minority were first-line studies, while the remaining were studies in which ICIs were delivered as salvage therapy in pretreated patients. There was a good correlation between response rate and overall survival (Spearman R2 >0.9) in skin cancers, mesothelioma, and sarcomas. Conclusions Treatment of advanced-stage rare tumours with ICI therapy was found to be associated with significant activity in some orphan diseases (e.g., Merkel cell carcinoma) and hepatocellular carcinoma. Several ongoing prospective clinical trials will expand the knowledge on the safety and efficacy of ICI therapy in patients with these rare cancers.
Collapse
Affiliation(s)
- Fausto Petrelli
- Oncology Unit, Azienda Socio Sanitaria Territoriale (ASST) Bergamo Ovest, Treviglio, Italy
| | - Francesca Consoli
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili of Brescia, Brescia, Italy
| | | | | | - Andrea Luciani
- Oncology Unit, Azienda Socio Sanitaria Territoriale (ASST) Bergamo Ovest, Treviglio, Italy
| | - Paola Mercurio
- Pathology Unit, Azienda Socio Sanitaria Territoriale (ASST) Bergamo Ovest, Treviglio, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili of Brescia, Brescia, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
14
|
Abstract
Resident progenitor and/or stem cell populations in the adult adrenal cortex enable cortical cells to undergo homeostatic renewal and regeneration after injury. Renewal occurs predominantly in the outer layers of the adrenal gland but newly formed cells undergo centripetal migration, differentiation and lineage conversion in the process of forming the different functional steroidogenic zones. Over the past 10 years, advances in the genetic characterization of adrenal diseases and studies of mouse models with altered adrenal phenotypes have helped to elucidate the molecular pathways that regulate adrenal tissue renewal, several of which are fine-tuned via complex paracrine and endocrine influences. Moreover, the adrenal gland is a sexually dimorphic organ, and testicular androgens have inhibitory effects on cell proliferation and progenitor cell recruitment in the adrenal cortex. This Review integrates these advances, including the emerging role of sex hormones, into existing knowledge on adrenocortical cell renewal. An in-depth understanding of these mechanisms is expected to contribute to the development of novel therapies for severe endocrine diseases, for which current treatments are unsatisfactory.
Collapse
Affiliation(s)
- Rodanthi Lyraki
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose, Nice, France
| | - Andreas Schedl
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
15
|
Abstract
Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy. For stage I and II tumors, surgery is a curative option, but even in these cases recurrence is frequent. Practical guidelines advocate a combination of mitotane with etoposide, doxorubicin, and cisplatin as first-line therapy for metastatic adrenocortical carcinoma. However, this scheme presents limited efficacy and high toxicity. The use of Immune Checkpoint Inhibitors (ICI) and multi-Tyrosine Kinase Inhibitors (mTKI) has modified the approach of multiple malignancies. The expectation of their applicability on advanced adrenocortical carcinoma is high but the role of these new therapies persists unclear. This article provides a short summary of last years' findings targeting outcomes, limitations, and adverse effects of these new therapeutic approaches. The results of recent trials and case series pointed pembrolizumab as the most promising drug among these new therapies. It is the most often used ICI and the one presenting the best results with less related adverse effects when in comparison to the standard treatment with mitotane. Hereafter, the identification of specific molecular biomarkers or immune profiles associated with ICI or mTKI good response will facilitate the selection of candidates for these therapies. So far, microsatellite instability and Lynch Syndrome related germline mutations are suggested as predictive biomarkers of good response. Contrarywise, cortisol secretion has been associated with more aggressive ACC tumors and potentially poor responses to immunotherapy.
Collapse
Affiliation(s)
- Alexandra Novais Araújo
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Maria João Bugalho
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
- Faculty of Medicine, Lisbon University, Lisbon, Portugal
| |
Collapse
|
16
|
Georgantzoglou N, Kokkali S, Tsourouflis G, Theocharis S. Tumor Microenvironment in Adrenocortical Carcinoma: Barrier to Immunotherapy Success? Cancers (Basel) 2021; 13:1798. [PMID: 33918733 PMCID: PMC8069982 DOI: 10.3390/cancers13081798] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Adrenocortical carcinoma is a rare malignancy with aggressive behavior, with up to 40% of patients presenting with metastases at the time of diagnosis. Both conventional chemotherapeutic regimens and novel immunotherapeutic agents, many of which are currently being tested in ongoing clinical trials, have yielded modest results so far, bringing the need for a deeper understanding of adrenal cancer behavior to the forefront. In the recent years, the tumor microenvironment has emerged as a major determinant of cancer response to immunotherapy and an increasing number of studies on other solid tumors have focused on manipulating the microenvironment in the favor of the host and discovering new potential target molecules. In the present review we aim to explore the characteristics of adrenocortical cancer's microenvironment, highlighting the mechanisms of immune evasion responsible for the modest immunotherapeutic results, and identify novel potential strategies.
Collapse
Affiliation(s)
- Natalia Georgantzoglou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (N.G.); (S.K.)
| | - Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (N.G.); (S.K.)
- First Medical Oncology Clinic, Saint-Savvas Anti Cancer Hospital, 115 27 Athens, Greece
| | - Gerasimos Tsourouflis
- Second Department of Propedeutic Surgery, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (N.G.); (S.K.)
| |
Collapse
|
17
|
Araujo-Castro M, Pascual-Corrales E, Molina-Cerrillo J, Alonso-Gordoa T. Immunotherapy in Adrenocortical Carcinoma: Predictors of Response, Efficacy, Safety, and Mechanisms of Resistance. Biomedicines 2021; 9:biomedicines9030304. [PMID: 33809752 PMCID: PMC8002272 DOI: 10.3390/biomedicines9030304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with limited treatment options in the advanced stages. Immunotherapy offers hope for altering the orthodox management of cancer, and its role in advanced ACC has been investigated in different studies. With the aim clarifying the role of immunotherapy in ACC we performed a comprehensive review about this topic focusing on the predictors of response, efficacy, safety, and the mechanisms of resistance. Five clinical trials with four immune checkpoint inhibitors (pembrolizumab, avelumab, nivolumab, and ipilimumab) have investigated the role of immunotherapy in advanced ACC. Despite, the different primary endpoints used in these studies, the reported rates of overall response rate and progression free survival were generally poor. Three main potential markers of response to immunotherapy in ACC have been described: Expression of PD-1 and PD-L1, microsatellite instability and tumor mutational burden. However, none of them has been validated in prospective studies. Several mechanisms of ACC immunoevasion may be responsible of immunotherapy failure, and a greater knowledge of these mechanisms might lead to the development of new strategies to overcome the immunotherapy resistance. In conclusion, although currently the role of immunotherapy is limited, the identification of immunological markers of response and the implementation of strategies to avoid immunotherapy resistance could improve the efficacy of this therapy.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Neuroendocrinology Unit, Endocrinology and Nutrition Department, Ramón y Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
- Correspondence:
| | - Eider Pascual-Corrales
- Neuroendocrinology Unit, Endocrinology and Nutrition Department, Ramón y Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (J.M.-C.); (T.A.-G.)
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (J.M.-C.); (T.A.-G.)
| |
Collapse
|
18
|
Karwacka I, Obołończyk Ł, Kaniuka-Jakubowska S, Sworczak K. The Role of Immunotherapy in the Treatment of Adrenocortical Carcinoma. Biomedicines 2021; 9:biomedicines9020098. [PMID: 33498467 PMCID: PMC7909536 DOI: 10.3390/biomedicines9020098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/30/2020] [Accepted: 01/18/2021] [Indexed: 01/20/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare epithelial neoplasm, with a high tendency for local invasion and distant metastases, with limited treatment options. Surgical treatment is the method of choice. For decades, the mainstay of pharmacological treatment has been the adrenolytic drug mitotane, in combination with chemotherapy. Immunotherapy is the latest revolution in cancer therapy, however preliminary data with single immune checkpoint inhibitors showed a modest activity in ACC patients. The anti-neoplastic activity of immune checkpoint inhibitors such as anti-cytotoxic-T-lymphocyte-associated-antigen 4 (anti-CTLA-4), anti-programmed death-1 (anti-PD-1), and anti-PD-ligand-1 (PD-L1) antibodies in different solid tumors has aroused interest to explore the potential therapeutic effect in ACC as well. Multiple ongoing clinical trials are currently evaluating the role of immune checkpoint inhibitors in ACC (pembrolizumab, combination pembrolizumab and relacorilant, nivolumab, combination nivolumab and ipilimumab). The primary and acquired resistance to immunotherapy continue to counter treatment efficacy. Therefore, attempts are made to combine therapy: anti-PD-1 antibody and anti-CTLA-4 antibody, anti-PD-1 antibody and antagonist of the glucocorticoid receptor. The inhibitors of immune checkpoints would benefit patients with antitumor immunity activated by radiotherapy. Immunotherapy is well tolerated by patients; the most frequently observed side effects are mild. The most common adverse effects of immunotherapy are skin and gastrointestinal disorders. The most common endocrinopathy during anti-CTLA treatment is pituitary inflammation and thyroid disorders.
Collapse
|
19
|
Muzzi JCD, Magno JM, Cardoso MA, de Moura J, Castro MAA, Figueiredo BC. Adrenocortical Carcinoma Steroid Profiles: In Silico Pan-Cancer Analysis of TCGA Data Uncovers Immunotherapy Targets for Potential Improved Outcomes. Front Endocrinol (Lausanne) 2021; 12:672319. [PMID: 34194394 PMCID: PMC8237859 DOI: 10.3389/fendo.2021.672319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Despite progress in understanding the biology of adrenocortical carcinoma (ACC), treatment options have not dramatically changed in the last three decades, nor have we learned how to avoid some of its long-term side effects. Our goal was to improve the understanding of immune pathways that may include druggable targets to enhance immune responses of patients with ACC, focusing on immune evasion and the activation of immune cells against ACC. Our strategy was aimed at improving insight regarding gene expression without steroid interference. Using approaches based on high and low steroid phenotypes (HSP and LSP, respectively), we characterized immune pathways using The Cancer Genome Atlas (TCGA) ACC cohort data. Although previous studies have suggested that patients with ACC receive minimal benefit from immunotherapy, high expression of immune modulators was noted in patients with LSP, suggesting the activation of these biomarkers may be an important adjuvant therapy target after clearance of excess glucocorticoids. In addition, patients with LSP ACC had higher immune cell infiltration than patients with HSP ACC and other cancer subtypes. Our findings can be summarized as follows (1): we confirmed and improved the definition of two immune response pathways to ACC (HSP and LSP) based on in silico transcriptome analysis (2), we demonstrated the steroid profile should be considered, otherwise analyses of ACC immune characteristics can generate confounding results (3), among the overexpressed immunotherapy targets, we demonstrated that LSP was rich in PDCD1LG2 (PD-L2) and both HSP and LSP overexpressed CD276 (B7-H3), which was associated with resistance to anti-PD1 therapy and may have accounted for the modest results of previous clinical trials, and (4) identification of patients with LSP or HSP ACC can be used to help determine whether immunotherapy should be used. In conclusion, we highlighted the differences between LSP and HSP, drawing attention to potential therapeutic targets (CD276, PDCD1, and PDCD1LG2). Treatments to reduce immune evasion, as well as the use of other natural and pharmacological immune activators, should include prior pharmacological inhibition of steroidogenesis. Attempts to combine these with tumor cell proliferation inhibitors, if they do not affect cells of the immune system, may produce interesting results.
Collapse
Affiliation(s)
- João C. D. Muzzi
- Laboratório de Imunoquímica (LIMQ), Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
- Laboratório de Bioinformática e Biologia de Sistemas, Pós-Graduação em Bioinformática, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Oncology Division, Curitiba, Brazil
| | - Jessica M. Magno
- Laboratório de Bioinformática e Biologia de Sistemas, Pós-Graduação em Bioinformática, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Oncology Division, Curitiba, Brazil
| | - Milena A. Cardoso
- Laboratório de Bioinformática e Biologia de Sistemas, Pós-Graduação em Bioinformática, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Oncology Division, Curitiba, Brazil
| | - Juliana de Moura
- Laboratório de Imunoquímica (LIMQ), Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Mauro A. A. Castro
- Laboratório de Bioinformática e Biologia de Sistemas, Pós-Graduação em Bioinformática, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Bonald C. Figueiredo
- Instituto de Pesquisa Pelé Pequeno Príncipe, Oncology Division, Curitiba, Brazil
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), Molecular Oncology Laboratory, Curitiba, Brazil
- *Correspondence: Bonald C. Figueiredo,
| |
Collapse
|
20
|
Rossini E, Tamburello M, Abate A, Beretta S, Fragni M, Cominelli M, Cosentini D, Hantel C, Bono F, Grisanti S, Poliani PL, Tiberio GAM, Memo M, Sigala S, Berruti A. Cytotoxic Effect of Progesterone, Tamoxifen and Their Combination in Experimental Cell Models of Human Adrenocortical Cancer. Front Endocrinol (Lausanne) 2021; 12:669426. [PMID: 33981288 PMCID: PMC8108132 DOI: 10.3389/fendo.2021.669426] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Progesterone (Pg) and estrogen (E) receptors (PgRs and ERs) are expressed in normal and neoplastic adrenal cortex, but their role is not fully understood. In literature, Pg demonstrated cytotoxic activity on AdrenoCortical Carcinoma (ACC) cells, while tamoxifen is cytotoxic in NCI-H295R cells. Here, we demonstrated that in ACC cell models, ERs were expressed in NCI-H295R cells with a prevalence of ER-β over the ER-α.Metastasis-derived MUC-1 and ACC115m cells displayed a very weak ER-α/β signal, while PgR cells were expressed, although at low level. Accordingly, these latter were resistant to the SERM tamoxifen and scarcely sensitive to Pg, as we observed a lower potency compared to NCI-H295R cells in cytotoxicity (IC50: MUC-1 cells: 67.58 µM (95%CI: 63.22-73.04), ACC115m cells: 51.76 µM (95%CI: 46.45-57.67) and cell proliferation rate. Exposure of NCI-H295R cells to tamoxifen induced cytotoxicity (IC50: 5.43 µM (95%CI: 5.18-5.69 µM) mainly involving ER-β, as their nuclear localization increased after tamoxifen: Δ A.U. treated vs untreated: 12 h: +27.04% (p < 0.01); 24 h: +36.46% (p < 0.0001). This effect involved the SF-1 protein reduction: Pg: -36.34 ± 9.26%; tamoxifen: -46.25 ± 15.68% (p < 0.01). Finally, in a cohort of 36 ACC samples, immunohistochemistry showed undetectable/low level of ERs, while PgR demonstrated a higher expression. In conclusion, ACC experimental cell models expressed PgR and low levels of ER in line with data obtained in patient tissues, thus limiting the possibility of a clinical approach targeting ER. Interestingly, Pg exerted cytotoxicity also in metastatic ACC cells, although with low potency.
Collapse
Affiliation(s)
- Elisa Rossini
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Mariangela Tamburello
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Andrea Abate
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Silvia Beretta
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Martina Fragni
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Federica Bono
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Guido A. M. Tiberio
- Surgical Clinic, Department of Clinical and Experimental Sciences, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Sandra Sigala
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
- *Correspondence: Sandra Sigala,
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
21
|
miRNA-Based Feature Classifier Is Associated with Tumor Mutational Burden in Head and Neck Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1686480. [PMID: 33490233 PMCID: PMC7787755 DOI: 10.1155/2020/1686480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/07/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Tumor mutation burden (TMB) is considered to be an independent genetic biomarker that can predict the tumor patient's response to immune checkpoint inhibitors (ICIs). Meanwhile, microRNA (miRNA) plays a key role in regulating the anticancer immune response. However, the correlation between miRNA expression patterns and TMB is not elucidated in HNSCC. In the HNSCC cohort of the TCGA dataset, miRNAs that were differentially expressed in high TMB and low TMB samples were screened. The least absolute contraction and selection operator (LASSO) method is used to construct a miRNA-based feature classifier to predict the TMB level in the training set. The test set is used to verify the classifier. The correlation between the miRNA-based classifier index and the expression of three immune checkpoints (PD1, PDL1, and CTLA4) was explored. We further perform functional enrichment analysis on the miRNA contained in the miRNA-based feature classifier. Twenty-five differentially expressed miRNAs are used to build miRNA-based feature classifiers to predict TMB levels. The accuracy of the 25-miRNA-based signature classifier is 0.822 in the training set, 0.702 in the test set, and 0.774 in the total set. The miRNA-based feature classifier index showed a low correlation with PD1 and PDL1, but no correlation with CTLA4. The enrichment analysis of these 25 miRNAs shows that they are involved in many immune-related biological processes and cancer-related pathways. The miRNA expression patterns are related to tumor mutation burden, and miRNA-based feature classifiers can be used as biomarkers to predict TMB levels in HNSCC.
Collapse
|
22
|
Brabo EP, Moraes AB, Neto LV. The role of immune checkpoint inhibitor therapy in advanced adrenocortical carcinoma revisited: review of literature. J Endocrinol Invest 2020; 43:1531-1542. [PMID: 32468513 DOI: 10.1007/s40618-020-01306-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Adrenocortical carcinoma (ACC) is a rare disease with few therapeutic options. There is an urgency of new effective therapeutic options for these patients. The role of immune checkpoint inhibitors (ICI) in advanced ACC patients is still unclear. METHODS We conducted a MEDLINE search using the following string: adrenocortical carcinoma and immunotherapy or checkpoint inhibitors. RESULTS We found four case series comprising 10 patients, and four prospective studies totaling 115 patients. The response rate (RR) in the group of 10 patients was 1 complete response, 3 partial response (PR), 4 stable disease (SD), and 2 progressive disease (PD). The median progression-free survival (mPFS) ranged from 2 to 31 months and the median overall survival (mOS) ranged from 4.3 to 31 months. The results in the 115 patients from prospective trials was variable, the PR ranged from 6 to 23%, the SD ranged from 18 to 50% and overall disease control rate ranged from 30 to 64%. The mPFS reported varied from 1.8 to 2.6 months while the mOS varied from 10.6 to 24.9 months. There were five patients with sustained response for more than 24 months. The most common treatment-related adverse event (TRAE) was the increase in liver enzymes. No treatment-related deaths were reported. Better results in terms of RR and survival were observed in studies that used pembrolizumab. No predictive biomarker of response was found up to now. CONCLUSION ICI, mainly pembrolizumab, is a potential therapeutic option, which is safe and associated with prolonged OS benefit, in selected patients with advanced ACC.
Collapse
Affiliation(s)
- E P Brabo
- Oncology Unit and Neuroendocrine Section, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, 255 Professor Rodolpho Paulo Rocco Street, ground floor, University City, Rio de Janeiro, RJ, 21941-913, Brazil
| | - A B Moraes
- Department of Internal Medicine and Endocrine Unit, Medical School and Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, 255 Professor Rodolpho Paulo Rocco Street, 9th floor, University City, Rio de Janeiro, RJ, 21941-913, Brazil
| | - L V Neto
- Department of Internal Medicine and Endocrine Unit, Medical School and Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, 255 Professor Rodolpho Paulo Rocco Street, 9th floor, University City, Rio de Janeiro, RJ, 21941-913, Brazil.
| |
Collapse
|
23
|
Grisanti S, Cosentini D, Laganà M, Volta AD, Palumbo C, Massimo Tiberio GA, Sigala S, Berruti A. The long and winding road to effective immunotherapy in patients with adrenocortical carcinoma. Future Oncol 2020; 16:3017-3020. [PMID: 32857613 DOI: 10.2217/fon-2020-0686] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Salvatore Grisanti
- Medical Oncology Unit, Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, University of Brescia, ASST Spedali Civili of Brescia, Brescia, 25123, Italy
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, University of Brescia, ASST Spedali Civili of Brescia, Brescia, 25123, Italy
| | - Marta Laganà
- Medical Oncology Unit, Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, University of Brescia, ASST Spedali Civili of Brescia, Brescia, 25123, Italy
| | - Alberto Dalla Volta
- Medical Oncology Unit, Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, University of Brescia, ASST Spedali Civili of Brescia, Brescia, 25123, Italy
| | - Carlotta Palumbo
- Urology Unit, Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, University of Brescia, ASST Spedali Civili of Brescia, Brescia, 25123, Italy
| | - Guido Alberto Massimo Tiberio
- Surgical Unit, Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, University of Brescia, ASST Spedali Civili of Brescia, Brescia, 25123, Italy
| | - Sandra Sigala
- Department of Molecular & Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, 25123, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, University of Brescia, ASST Spedali Civili of Brescia, Brescia, 25123, Italy
| |
Collapse
|
24
|
Ardolino L, Hansen A, Ackland S, Joshua A. Advanced Adrenocortical Carcinoma (ACC): a Review with Focus on Second-Line Therapies. HORMONES & CANCER 2020; 11:155-169. [PMID: 32303972 PMCID: PMC10355245 DOI: 10.1007/s12672-020-00385-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Advanced adrenocortical cancer (ACC) is a rare, highly aggressive malignancy, which typically has a poor prognosis. In advanced ACC, the overall trend is toward a short PFS interval following first-line systemic therapy, highlighting a clear need for improved second-/third-line treatment strategies. We conducted a review of the literature and relevant scientific guidelines related to systemic therapy for advanced ACC. Public indexes including PubMed/MEDLINE were searched. Treatment selection in the second-line setting is based on small phase 2 trials, case reports, and pre-clinical evidence. The best data available for initial second-line therapy selection supports the use of gemcitabine and capecitabine (G + C) or streptozotocin (S), both with or without mitotane. G + C is becoming increasingly recommended based on phase 2 clinical trial data in patients of good PS, due to the inferred superior PFS and OS from non-comparative trials. Alternatively, streptozotocin was better tolerated than EDP + M in the FIRM-ACT study and remains an option when warranted. Beyond this, further treatment approaches should be tailored to individual patient characteristics, utilizing a mixture of systemic therapies, local therapies, and enrolment in clinical trials where available. Additionally, the role of molecular stratification, predictive biomarkers, and immune checkpoint inhibitors in specific individuals, such as Lynch syndrome, is evolving and may become increasingly utilized in clinical practice. Advanced ACC necessitates a multidisciplinary approach and is best managed in a specialist center. Although there is no one definitive second-line treatment strategy, there are some favorable approaches, which require further validation in larger clinical trials.
Collapse
Affiliation(s)
- Luke Ardolino
- The Kinghorn Cancer Centre, St. Vincent's Hospital, Sydney, NSW, Australia.
| | - Aaron Hansen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephen Ackland
- Calvary Mater Newcastle Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Anthony Joshua
- The Kinghorn Cancer Centre, St. Vincent's Hospital, Sydney, NSW, Australia
- St. Vincent's Clinical School, UNSW, Sydney, NSW, Australia
| |
Collapse
|
25
|
Efficacy of the EDP-M Scheme Plus Adjunctive Surgery in the Management of Patients with Advanced Adrenocortical Carcinoma: The Brescia Experience. Cancers (Basel) 2020; 12:cancers12040941. [PMID: 32290298 PMCID: PMC7226395 DOI: 10.3390/cancers12040941] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 01/06/2023] Open
Abstract
Etoposide, doxorubicin and cisplatin plus oral mitotane (EDP-M) comprise the reference regimen in the management of patients with adrenocortical carcinoma (ACC). In this paper, we described the outcome of 58 patients with advanced/metastatic ACC consecutively treated with EDP-M in a reference center for this rare disease in Italy. In this series, EDP-M obtained a partial response in 50% of patients; median progression free survival (PFS) and overall survival were 10.1 months (95% Confidence Interval [CI 95%] 8.1–12.8) and 18.7 months (95% CI: 14.6–22.8), respectively. EDP-M was not interrupted in five patients showing disease progression after two cycles without the appearance of new lesions and mitotane levels below the therapeutic range. In two of them, the disease remained stable at further imaging evaluations and the other three obtained a partial response. Twenty-six responding patients underwent surgery of residual disease and 13 of them became disease free. Surgery identified a pathological complete response (pCR) in four patients (7%) and Ki67 expression in post-chemotherapy tumor specimens, inferior to 15% (median value), was associated with better PFS and survival. In the present study, the EDP-M regimen is confirmed to have a limited efficacy. Early disease progression does not mean treatment inefficacy. Surgery of residual disease in partially responding patients allows for the detection of pCR in few of them and this condition is predictive of long-term survival. Ki67 expression of post-chemotherapy residual disease could be an additional prognostic factor that deserves to be studied further.
Collapse
|
26
|
Abate A, Rossini E, Bonini SA, Fragni M, Cosentini D, Tiberio GAM, Benetti D, Hantel C, Laganà M, Grisanti S, Terzolo M, Memo M, Berruti A, Sigala S. Cytotoxic Effect of Trabectedin In Human Adrenocortical Carcinoma Cell Lines and Primary Cells. Cancers (Basel) 2020; 12:cancers12040928. [PMID: 32283844 PMCID: PMC7226156 DOI: 10.3390/cancers12040928] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Mitotane is the only drug approved for the treatment of adrenocortical carcinoma (ACC). The regimen to be added to mitotane is a chemotherapy including etoposide, doxorubicin, and cisplatin. This pharmacological approach, however, has a limited efficacy and significant toxicity. Evidence indicates that ACC seems to be sensitive to alkylating agents. Trabectedin is an anti-tumor drug that acts as an alkylating agent with a complex mechanism of action. Here, we investigated whether trabectedin could exert a cytotoxic activity in in vitro cell models of ACC. Cell viability was evaluated by MTT assay on ACC cell lines and primary cell cultures. The gene expression was evaluated by q-RT-PCR, while protein expression and localization were studied by Western blot and immunocytochemistry. Combination experiments were performed to evaluate their interaction on ACC cell line viability. Trabectedin demonstrated high cytotoxicity at sub-nanomolar concentrations in ACC cell lines and patient-derived primary cell cultures. The drug was able to reduce /β catenin nuclear localization, although it is unclear whether this effect is involved in the observed cytotoxicity. Trabectedin/mitotane combination exerted a synergic cytotoxic effect in NCI-H295R cells. Trabectedin has antineoplastic activity in ACC cells. The synergistic cytotoxic activity of trabectedin with mitotane provides the rationale for testing this combination in a clinical study.
Collapse
Affiliation(s)
- Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.A.); (E.R.); (S.A.B.); (M.F.); (M.M.)
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.A.); (E.R.); (S.A.B.); (M.F.); (M.M.)
| | - Sara Anna Bonini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.A.); (E.R.); (S.A.B.); (M.F.); (M.M.)
| | - Martina Fragni
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.A.); (E.R.); (S.A.B.); (M.F.); (M.M.)
| | - Deborah Cosentini
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (M.L.); (S.G.); (A.B.)
| | - Guido Albero Massimo Tiberio
- Surgical Clinic, Department of Clinical and Experimental Sciences, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy;
| | - Diego Benetti
- Thoracic Surgery Unit, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Constanze Hantel
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, 8091 Zurich, Switzerland;
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 City, Germany
| | - Marta Laganà
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (M.L.); (S.G.); (A.B.)
| | - Salvatore Grisanti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (M.L.); (S.G.); (A.B.)
| | - Massimo Terzolo
- Department of Clinical and Biological Sciences, University of Turin, Internal Medicine 1, San Luigi Gonzaga Hospital, 10043 Orbassano, Italy;
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.A.); (E.R.); (S.A.B.); (M.F.); (M.M.)
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (M.L.); (S.G.); (A.B.)
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.A.); (E.R.); (S.A.B.); (M.F.); (M.M.)
- Correspondence: ; Tel.: +39-030-371-7663
| |
Collapse
|
27
|
Doghman-Bouguerra M, Finetti P, Durand N, Parise IZS, Sbiera S, Cantini G, Canu L, Hescot S, Figueiredo MMO, Komechen H, Sbiera I, Nesi G, Paci A, Al Ghuzlan A, Birnbaum D, Baudin E, Luconi M, Fassnacht M, Figueiredo BC, Bertucci F, Lalli E. Cancer-testis Antigen FATE1 Expression in Adrenocortical Tumors Is Associated with A Pervasive Autoimmune Response and Is A Marker of Malignancy in Adult, but Not Children, ACC. Cancers (Basel) 2020; 12:cancers12030689. [PMID: 32183347 PMCID: PMC7140037 DOI: 10.3390/cancers12030689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
The SF-1 transcription factor target gene FATE1 encodes a cancer-testis antigen that has an important role in regulating apoptosis and response to chemotherapy in adrenocortical carcinoma (ACC) cells. Autoantibodies directed against FATE1 were previously detected in patients with hepatocellular carcinoma. In this study, we investigated the prevalence of circulating anti-FATE1 antibodies in pediatric and adult patients with adrenocortical tumors using three different methods (immunofluorescence, ELISA and Western blot). Our results show that a pervasive anti-FATE1 immune response is present in those patients. Furthermore, FATE1 expression is a robust prognostic indicator in adult patients with ACC and is associated with increased steroidogenic and decreased immune response gene expression. These data can open perspectives for novel strategies in ACC immunotherapy.
Collapse
Affiliation(s)
- Mabrouka Doghman-Bouguerra
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS, 660 route des Lucioles-Sophia Antipolis, 06560 Valbonne, France; (M.D.-B.); (N.D.)
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France; 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil; (I.Z.S.P.); (M.M.O.F.); (H.K.); (B.C.F.)
| | - Pascal Finetti
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, 232 Bd. Ste-Marguerite, 13009 Marseille, France; (P.F.); (D.B.); (F.B.)
| | - Nelly Durand
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS, 660 route des Lucioles-Sophia Antipolis, 06560 Valbonne, France; (M.D.-B.); (N.D.)
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France; 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil; (I.Z.S.P.); (M.M.O.F.); (H.K.); (B.C.F.)
| | - Ivy Zortéa S. Parise
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France; 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil; (I.Z.S.P.); (M.M.O.F.); (H.K.); (B.C.F.)
- Department, Pelé Pequeno Principe Research Institute, 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 2 Josef-Schneider-Straße, 97080 Würzburg, Germany; (S.S.); (I.S.); (M.F.)
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 6 Josef-Schneider-Straße, 97080 Würzburg, Germany
| | - Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 6 viale Pieraccini, 50139 Florence, Italy; (G.C.); (L.C.); (M.L.)
| | - Letizia Canu
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 6 viale Pieraccini, 50139 Florence, Italy; (G.C.); (L.C.); (M.L.)
| | - Ségolène Hescot
- Service de Médecine Nucléaire, Institut Curie, 35 rue Dailly, 92210 Saint Cloud, France;
| | - Mirna M. O. Figueiredo
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France; 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil; (I.Z.S.P.); (M.M.O.F.); (H.K.); (B.C.F.)
- Department, Pelé Pequeno Principe Research Institute, 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil
| | - Heloisa Komechen
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France; 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil; (I.Z.S.P.); (M.M.O.F.); (H.K.); (B.C.F.)
- Department, Pelé Pequeno Principe Research Institute, 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil
| | - Iuliu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 2 Josef-Schneider-Straße, 97080 Würzburg, Germany; (S.S.); (I.S.); (M.F.)
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 6 Josef-Schneider-Straße, 97080 Würzburg, Germany
| | - Gabriella Nesi
- Division of Pathological Anatomy, Department of Health Sciences, University of Florence, 6 viale Pieraccini, 50139 Florence, Italy;
| | - Angelo Paci
- Department of Neuro-Endocrine Tumors, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800 Villejuif, France; (A.P.); (A.A.G.); (E.B.)
| | - Abir Al Ghuzlan
- Department of Neuro-Endocrine Tumors, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800 Villejuif, France; (A.P.); (A.A.G.); (E.B.)
| | - Daniel Birnbaum
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, 232 Bd. Ste-Marguerite, 13009 Marseille, France; (P.F.); (D.B.); (F.B.)
| | - Eric Baudin
- Department of Neuro-Endocrine Tumors, Institut Gustave Roussy, 114 rue Edouard Vaillant, 94800 Villejuif, France; (A.P.); (A.A.G.); (E.B.)
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 6 viale Pieraccini, 50139 Florence, Italy; (G.C.); (L.C.); (M.L.)
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 2 Josef-Schneider-Straße, 97080 Würzburg, Germany; (S.S.); (I.S.); (M.F.)
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 6 Josef-Schneider-Straße, 97080 Würzburg, Germany
| | - Bonald C. Figueiredo
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France; 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil; (I.Z.S.P.); (M.M.O.F.); (H.K.); (B.C.F.)
- Department, Pelé Pequeno Principe Research Institute, 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil
| | - François Bertucci
- Laboratoire d’Oncologie Prédictive, CRCM, Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR7258, Aix-Marseille Université, 232 Bd. Ste-Marguerite, 13009 Marseille, France; (P.F.); (D.B.); (F.B.)
| | - Enzo Lalli
- NEOGENEX-CANCER CNRS International Associated Laboratory, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France; 1532 Av. Silva Jardim, Curitiba PR 80250-200, Brazil; (I.Z.S.P.); (M.M.O.F.); (H.K.); (B.C.F.)
- Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles - Sophia Antipolis, 06560 Valbonne, France
- Correspondence: ; Tel.: +33-(0)4-9395-7755
| |
Collapse
|
28
|
Chifu I, Heinze B, Fuss CT, Lang K, Kroiss M, Kircher S, Ronchi CL, Altieri B, Schirbel A, Fassnacht M, Hahner S. Impact of the Chemokine Receptors CXCR4 and CXCR7 on Clinical Outcome in Adrenocortical Carcinoma. Front Endocrinol (Lausanne) 2020; 11:597878. [PMID: 33281749 PMCID: PMC7691376 DOI: 10.3389/fendo.2020.597878] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Chemokine receptors have a negative impact on tumor progression in several human cancers and have therefore been of interest for molecular imaging and targeted therapy. However, their clinical and prognostic significance in adrenocortical carcinoma (ACC) is unknown. The aim of this study was to evaluate the chemokine receptor profile in ACC and to analyse its association with clinicopathological characteristics and clinical outcome. A chemokine receptor profile was initially evaluated by quantitative PCR in 4 normal adrenals, 18 ACC samples and human ACC cell line NCI-H295. High expression of CXCR4 and CXCR7 in both healthy and malignant adrenal tissue and ACC cells was confirmed. In the next step, we analyzed the expression and cellular localization of CXCR4 and CXCR7 in ACC by immunohistochemistry in 187 and 84 samples, respectively. These results were correlated with clinicopathological parameters and survival outcome. We detected strong membrane expression of CXCR4 and CXCR7 in 50% of ACC samples. Strong cytoplasmic CXCR4 staining was more frequent among samples derived from metastases compared to primaries (p=0.01) and local recurrences (p=0.04). CXCR4 membrane staining positively correlated with proliferation index Ki67 (r=0.17, p=0.028). CXCR7 membrane staining negatively correlated with Ki67 (r=-0.254, p=0.03) but positively with tumor size (r=0.3, p=0.02). No differences in progression-free or overall survival were observed between patients with strong and weak staining intensities for CXCR4 or CXCR7. Taken together, high expression of CXCR4 and CXCR7 in both local tumors and metastases suggests that some ACC patients might benefit from CXCR4/CXCR7-targeted therapy.
Collapse
Affiliation(s)
- Irina Chifu
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Britta Heinze
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
- *Correspondence: Britta Heinze,
| | - Carmina T. Fuss
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Katharina Lang
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Matthias Kroiss
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Kircher
- Institute of Pathology, Interdisciplinary Bank of Biomaterials and Data (ibdw), University of Wuerzburg, Wuerzburg, Germany
| | - Cristina L. Ronchi
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Andreas Schirbel
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
- Department of Nuclear Medicine, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Stefanie Hahner
- Division of Endocrinology and Diabetes, Department of Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
29
|
Li X, Gao Y, Xu Z, Zhang Z, Zheng Y, Qi F. Identification of prognostic genes in adrenocortical carcinoma microenvironment based on bioinformatic methods. Cancer Med 2019; 9:1161-1172. [PMID: 31856409 PMCID: PMC6997077 DOI: 10.1002/cam4.2774] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/04/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Background To identify prognostic genes which were associated with adrenocortical carcinoma (ACC) tumor microenvironment (TME). Methods and materials Transcriptome profiles and clinical data of ACC samples were collected from The Cancer Genome Atlas (TCGA) database. We use ESTIMATE (estimation of stromal and Immune cells in malignant tumor tissues using expression data) algorithm to calculate immune scores, stromal scores and estimate scores. Heatmap and volcano plots were applied for differential analysis. Venn plots were used for intersect genes selection. We used protein‐protein interaction (PPI) networks and functional analysis to explore underlying pathways. After performing stepwise regression method and multivariate Cox analysis, we finally screened hub genes associated with ACC TME. We calculated risk scores (RS) for ACC cases based on multivariate Cox results and evaluated the prognostic value of RS shown by receiver operating characteristic curve (ROC). We investigated the association between hub genes with immune infiltrates supported by algorithm from online TIMER database. Results Gene expression profiles and clinical data were downloaded from TCGA. Lower immune scores were observed in disease with distant metastasis (DM) and locoregional recurrence (LR) than other cases (P = .0204). Kaplan‐Meier analysis revealed that lower immune scores were significantly associated with poor overall survival (OS) (P = .0495). We screened 1649 differentially expressed genes (DEGs) and 1521 DEGs based on immune scores and stromal scores, respectively. Venn plots helped us find 1122 intersect genes. After analysing by cytoHubba from Cytoscape software, 18 hub genes were found. We calculated RS and ROC showed significantly predictive accuracy (area under curve (AUC) = 0.887). ACC patients with higher RS had worse survival outcomes (P < .0001). Results from TIMER (tumor immune estimation resource) database revealed that HLA‐DOA was significantly related with immune cells infiltration. Conclusion We screened a list of TME‐related genes which predict poor survival outcomes in ACC patients from TCGA database.
Collapse
Affiliation(s)
- Xiao Li
- Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Gao
- Department of Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zicheng Xu
- Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Zhang
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yuxiao Zheng
- Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Qi
- Department of Urology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Parise IZS, Parise GA, Noronha L, Surakhy M, Woiski TD, Silva DB, Costa TEIJB, Del-Valle MHCP, Komechen H, Rosati R, Ribeiro MG, Nascimento ML, de Souza JA, Andrade DP, Paraizo MM, Galvão MMR, Barbosa JRS, Barbosa ML, Custódio GC, Figueiredo MMO, Fabro ALMR, Bond G, Volante M, Lalli E, Figueiredo BC. The Prognostic Role of CD8 + T Lymphocytes in Childhood Adrenocortical Carcinomas Compared to Ki-67, PD-1, PD-L1, and the Weiss Score. Cancers (Basel) 2019; 11:E1730. [PMID: 31694270 PMCID: PMC6896110 DOI: 10.3390/cancers11111730] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/24/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare disease among children. Our goal was to identify prognostic biomarkers in 48 primary ACCs from children (2.83 ± 2.3 y; mean age ± SD) by evaluating the tumor stage and outcome for an age of diagnosis before or after 3 years, and association with ACC cluster of differentiation 8 positive (CD8+) cytotoxic T lymphocytes (CD8+-CTL) and Ki-67 immunohistochemical expression (IHC). Programmed death 1(PD-1)/Programmed death-ligand 1 (PD-L1) immunohistochemistry (IHC) in ACC was analyzed in a second, partially overlapping cohort (N = 19) with a similar mean age. All patients and control children were carriers of the germline TP53 R337H mutation. Survival without recurrence for less than 3 years and death unrelated to disease were excluded. Higher counts of CD8+-CTL were associated with patients diagnosed with ACC at a younger age and stage I, whereas a higher percentage of the Ki-67 labeling index (LI) and Weiss scores did not differentiate disease free survival (DFS) in children younger than 3 years old. No PD-1 staining was observed, whereas weakly PD-L1-positive immune cells were found in 4/19 (21%) of the ACC samples studied. A high CD8+-CTL count in ACC of surviving children is compelling evidence of an immune response against the disease. A better understanding of the options for enhancement of targets for CD8+ T cell recognition may provide insights for future pre-clinical studies.
Collapse
Affiliation(s)
- Ivy Zortéa S. Parise
- Pelé Pequeno Príncipe Research Institute, 1532 Silva Jardim, AV., Curitiba, PR 80250-200, Brazil
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, PR 80230-902, Brazil
- Hospital Infantil Joana Gusmão, 152 Rui Barbosa St., Florianópolis, SC 88025-300, Brazil
| | - Guilherme A. Parise
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
| | - Lúcia Noronha
- Serviço de Anatomia Patológica, Hospital de Clínicas, Universidade Federal do Paraná, 181 General Carneiro, Alto da Glória, Curitiba, PR 80060-900, Brazil
- Departamento de Medicina, PUCPR, 1155 Imaculada Conceição St., Prado Velho, Curitiba, PR 80215-901, Brazil
| | - Mirvat Surakhy
- Oxford Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford OX3 7DQ, UK
| | - Thiago Demetrius Woiski
- Pelé Pequeno Príncipe Research Institute, 1532 Silva Jardim, AV., Curitiba, PR 80250-200, Brazil
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
| | - Denise B. Silva
- Hospital Infantil Joana Gusmão, 152 Rui Barbosa St., Florianópolis, SC 88025-300, Brazil
| | - Tatiana EI-Jaick B. Costa
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, PR 80230-902, Brazil
- Hospital Infantil Joana Gusmão, 152 Rui Barbosa St., Florianópolis, SC 88025-300, Brazil
| | | | - Heloisa Komechen
- Pelé Pequeno Príncipe Research Institute, 1532 Silva Jardim, AV., Curitiba, PR 80250-200, Brazil
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
| | - Roberto Rosati
- Pelé Pequeno Príncipe Research Institute, 1532 Silva Jardim, AV., Curitiba, PR 80250-200, Brazil
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, PR 80230-902, Brazil
| | - Melyssa Grignet Ribeiro
- Serviço de Anatomia Patológica, Hospital de Clínicas, Universidade Federal do Paraná, 181 General Carneiro, Alto da Glória, Curitiba, PR 80060-900, Brazil
| | | | - José Antônio de Souza
- Hospital Infantil Joana Gusmão, 152 Rui Barbosa St., Florianópolis, SC 88025-300, Brazil
| | - Diancarlos P. Andrade
- Pelé Pequeno Príncipe Research Institute, 1532 Silva Jardim, AV., Curitiba, PR 80250-200, Brazil
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, PR 80230-902, Brazil
| | - Mariana M. Paraizo
- Pelé Pequeno Príncipe Research Institute, 1532 Silva Jardim, AV., Curitiba, PR 80250-200, Brazil
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, PR 80230-902, Brazil
| | - Marjorana Martini R. Galvão
- Ciência Laboratório Médico Ltda-Hospital Infantil Joana de Gusmão, 152 Rui Barbosa St., Florianópolis, SC 88025-300, Brazil
| | - José Renato S. Barbosa
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
| | - Miriam Lacerda Barbosa
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
| | - Gislaine C. Custódio
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
| | - Mirna M. O. Figueiredo
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
| | - Ana Luiza M. R. Fabro
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, PR 80230-902, Brazil
- Hospital Pequeno Príncipe, 1070 Desembargador Motta Av., Curitiba, Paraná 80250-060, Brazil
| | - Gareth Bond
- Oxford Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford OX3 7DQ, UK
| | - Marco Volante
- Department of Oncology, University of Turin, San Luigi Hospital, regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Bonald C. Figueiredo
- Pelé Pequeno Príncipe Research Institute, 1532 Silva Jardim, AV., Curitiba, PR 80250-200, Brazil
- Faculdades Pequeno Príncipe, 333 Iguaçu Av., Rebouças, Curitiba, PR 80230-902, Brazil
- Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), UFPR, 400 Agostinho Leão Jr. Av., Curitiba, PR 80030-110, Brazil
- Departamento de Saúde Coletiva, Federal University of Paraná, 280 Padre Camargo, Alto da Glória, Curitiba, PR 80060-240, Brazil
| |
Collapse
|
31
|
Billon E, Finetti P, Bertucci A, Niccoli P, Birnbaum D, Mamessier E, Bertucci F. PDL1 expression is associated with longer postoperative, survival in adrenocortical carcinoma. Oncoimmunology 2019; 8:e1655362. [PMID: 31646101 DOI: 10.1080/2162402x.2019.1655362] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/08/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Adrenocortical carcinomas (ACCs) are heterogeneous cancers associated with a very poor prognosis. The improvement of prognostic tools and systemic therapy are urgently needed. Targeting the immune system using checkpoint inhibitors such as PD1/PDL1 inhibitors is an attractive novel therapeutic strategy for poor-prognosis tumors. Multiple clinical trials are ongoing, including in advanced ACC. However, PDL1 expression has been studied in ACC in only one heterogeneous series of 28 clinical samples. Here, we have retrospectively analyzed PDL1 mRNA expression in 146 clinical ACC samples and searched for correlations between expression and biological and clinicopathological data, including post-operative disease-free survival (DFS). PDL1 mRNA expression was heterogeneous across samples. "PDL1-high" tumors were not associated with the classical prognostic variables but were associated with longer DFS in both uni- and multivariate analyses. High PDL1 mRNA expression was associated with biological signs of the cytotoxic local immune response. Supervised analysis between "PDL1-high" and "PDL1-low" tumors identified a robust 370-gene signature whose ontology analysis suggested the existence in "PDL1-high" tumors of a cytotoxic T-cell response, however, associated with some degree of T-cell exhaustion. In conclusion, PDL1 mRNA expression refines the prognostication in ACC and high expression is associated with longer DFS. Clinical validation at the protein level and functional validation are required to fully understand the role of PDL1 in ACC. Reactivation of dormant tumor-infiltrating lymphocytes by PDL1-inhibitors could represent a promising strategy in "PDL1-high" ACCs, supporting the ongoing clinical trials.
Collapse
Affiliation(s)
- Emilien Billon
- Département d'Oncologie Médicale, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Marseille, France
| | - Pascal Finetti
- Laboratoire Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - Alexandre Bertucci
- Département d'Oncologie Médicale, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Marseille, France
| | - Patricia Niccoli
- Département d'Oncologie Médicale, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Marseille, France
| | - Daniel Birnbaum
- Laboratoire Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - Emilie Mamessier
- Laboratoire Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - François Bertucci
- Laboratoire Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France.,Département d'Oncologie Médicale, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Marseille, France.,Faculté de Médecine, Aix-Marseille Université, Marseille, France
| |
Collapse
|
32
|
Abstract
Adrenocortical carcinoma (ACC) is a rare, aggressive, and frequently deadly cancer. Up to 75% of all patients will eventually develop metastatic disease, and our current medical therapies for ACC provide limited - if any - survival benefit. These statistics highlight a crucial need for novel approaches. Recent studies performing comprehensive molecular profiling on ACC have illuminated that ACC is comprised of three clinically distinct molecular subtypes, bearing differential regulation of cell cycle, epigenetics, Wnt/β-catenin signaling, PKA signaling, steroidogenesis and immune cell biology. Furthermore, these studies have spurred the development of molecular subtype-based biomarkers, contextualized outcomes of recent clinical trials, and advanced our understanding of the underlying biology of adrenocortical homeostasis and cancer. In this review, we describe these findings and their implications for new strategies to apply targeted therapies to ACC.
Collapse
|