1
|
Huang W, Zhou P, Zou X, Liu Y, Zhou L, Zhang Y. Emodin ameliorates myocardial fibrosis in mice by inactivating the ROS/PI3K/Akt/mTOR axis. Clin Exp Hypertens 2024; 46:2326022. [PMID: 38507311 DOI: 10.1080/10641963.2024.2326022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Emodin is a traditional medicine that has been shown to exert anti-inflammatory and anti-oxidative effects. Previous research has indicated that emodin can alleviate myocardial remodeling and inhibit myocardial hypertrophy and fibrosis. However, the mechanism by which emodin affects myocardial fibrosis (MF) has not yet been elucidated. METHODS Fibroblasts were treated with ANGII, and a mouse model of MF was established by ligation of the left anterior descending coronary artery. Cell proliferation was examined by a Cell Counting Kit-8 (CCK8) assay. Dihydroethidium (DHE) was used to measure reactive oxygen species (ROS) levels, and Masson and Sirius red staining were used to examine changes in collagen fiber levels. PI3K was over-expressed by lentiviral transfection to verify the effect of emodin on the PI3K/AKT/mTOR signaling axis. Changes in cardiac function in each group were examined by echocardiography. RESULTS Emodin significantly inhibited fibroblast proliferation, decreased intracellular ROS levels, significantly upregulated collagen II expression, downregulated α-SMA expression, and inhibited PI3K/AKT/mTOR pathway activation in vitro. Moreover, the in vivo results were consistent with the in vitro. Emodin significantly decreased ROS levels in heart tissue and reduced collagen fibrillogenesis. Emodin could regulate the activity of PI3K to increase the expression of collagen II and downregulate α-SMA expression in part through the PI3K/AKT/mTOR pathway, and emodin significantly improved cardiac structure and function in mice. CONCLUSIONS This study revealed that emodin targeted the PI3K/AKT/mTOR pathway to inhibit the development of myocardial fibrosis and may be an antifibrotic agent for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Wei Huang
- Department of Vascular Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R.China
| | - Peiting Zhou
- Department of biomedical engineer, General Hospital of Western Theater Command, Chengdu, P.R.China
| | - Xinyun Zou
- Department of Oncology, General Hospital of Western Theater Command, Chengdu, P.R.China
| | - Yunchuan Liu
- Department of biomedical engineer, General Hospital of Western Theater Command, Chengdu, P.R.China
| | - Longfu Zhou
- Department of biomedical engineer, General Hospital of Western Theater Command, Chengdu, P.R.China
| | - Yaolei Zhang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, P.R.China
| |
Collapse
|
2
|
Wu S, Ding D, Wang D. Regulated Cell Death Pathways in Pathological Cardiac Hypertrophy. Rev Cardiovasc Med 2024; 25:366. [PMID: 39484135 PMCID: PMC11522757 DOI: 10.31083/j.rcm2510366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 11/03/2024] Open
Abstract
Cardiac hypertrophy is characterized by an increased volume of individual cardiomyocytes rather than an increase in their number. Myocardial hypertrophy due to pathological stimuli encountered by the heart, which reduces pressure on the ventricular walls to maintain cardiac function, is known as pathological hypertrophy. This eventually progresses to heart failure. Certain varieties of regulated cell death (RCD) pathways, including apoptosis, pyroptosis, ferroptosis, necroptosis, and autophagy, are crucial in the development of pathological cardiac hypertrophy. This review summarizes the molecular mechanisms and signaling pathways underlying these RCD pathways, focusing on their mechanism of action findings for pathological cardiac hypertrophy. It intends to provide new ideas for developing therapeutic approaches targeted at the cellular level to prevent or reverse pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Shengnan Wu
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| | - Ding Ding
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| | - Deguo Wang
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| |
Collapse
|
3
|
Zhang J, Gu Y, Sun W, Yu L, Li T. Tetrahydrocurcumin Protects Against GSK3β/PTEN/PI3K/Akt-Mediated Neuroinflammatory Responses and Microglial Polarization Following Traumatic Brain Injury. Mol Neurobiol 2024; 61:7026-7036. [PMID: 38368289 DOI: 10.1007/s12035-024-04034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Tetrahydrocurcumin (THC) and microglial polarization play crucial roles in neuroprotection during traumatic brain injury (TBI). However, whether THC regulates microglial polarization in TBI is unknown. Thus, we intended to analyze the functions and mechanism of THC in nerve injury after TBI via the regulation of microglial polarization. A TBI rat model was established, and modified neurological function score (mNSS), brain water content, Nissl staining, and Fluoro-Jade B (FJB) staining were used to evaluate neurological function. The expression of the M1-linked markers CD16 and CD86, as well as the M2-associated markers CD206 and YM-1, was analyzed via qRT-PCR, western blotting, and immunofluorescence. The levels of inflammatory cytokines were assessed via ELISA. Primary microglia were isolated from the brain and treated with lipopolysaccharide (LPS) to induce injury. TUNEL staining was used to measure primary microglial apoptosis. The expression of GSK3β, PTEN, and PI3K/Akt pathway proteins was detected via western blotting. TBI induced nerve injury, while THC improved neurological function recovery after TBI. Further analysis indicated that THC enhanced M2 microglial polarization and attenuated the inflammatory reaction mediated by microglia both in vitro and in vivo. Moreover, we found that THC promoted the M2 microglial phenotype through upregulating GSK3β expression. Additionally, we proved that GSK3β activated the PI3K/Akt pathway by phosphorylating PTEN. In conclusion, we demonstrated that THC protected against nerve injury after TBI via microglial polarization via the GSK3B/PTEN/PI3K/Akt signaling axis, suggesting the potential of THC for TBI treatment by promoting microglial M2 polarization.
Collapse
Affiliation(s)
- Jie Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, 215500, People's Republic of China
| | - Yue Gu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wenxue Sun
- Jining First People's Hospital, Jining Medical University, Jining, 272000, People's Republic of China
| | - Lisha Yu
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, 215500, People's Republic of China
| | - Tushuai Li
- Wuxi School of Medicine, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214013, People's Republic of China.
| |
Collapse
|
4
|
Lu G, Tang Y, Chen O, Guo Y, Xiao M, Wang J, Liu Q, Li J, Gao T, Zhang X, Zhang J, Cheng Q, Kuang R, Gu J. Aberrant activation of p53-TRIB3 axis contributes to diabetic myocardial insulin resistance and sulforaphane protection. J Adv Res 2024:S2090-1232(24)00307-2. [PMID: 39069209 DOI: 10.1016/j.jare.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION Insulin resistance (IR) is associated with multiple pathological features. Although p53- or TRIB3-orchestrated IR is extensively studied in adipose tissue and liver, the role of p53-TRIB3 axis in myocardial IR remains unknown, and more importantly target-directed therapies of myocardial IR are missing. OBJECTIVES Considering the beneficial effects of sulforaphane (SFN) on cardiovascular health, it is of particular interest to explore whether SFN protects against myocardial IR with a focus on the regulatory role of p53-TRIB3 axis. METHODS Mouse models including cardiac specific p53-overexpressing transgenic (p53-cTg) mice and Trib3 knockout (Trib3-KO) mice, combined with primary cardiomyocytes treated with p53 activator (nutlin-3a) and inhibitor (pifithrin-α, PFT-α), or transfected with p53-shRNA and Trib3-shRNA, followed by multiple molecular biological methodologies, were used to investigate the role of p53-TRIB3 axis in SFN actions on myocardial IR. RESULTS Here, we report that knockdown of p53 rescued cardiac insulin-stimulated AKT phosphorylation, while up-regulation of p53 by nutlin-3a or p53-cTg mice blunted insulin sensitivity in cardiomyocytes under diabetic conditions. Diabetic attenuation of AKT-mediated cardiac insulin signaling was markedly reversed by SFN in p53-Tgfl/fl mice, but not in p53-cTg mice. Importantly, we identified TRIB3 was elevated in p53-cTg diabetic mice, and confirmed the physical interaction between p53 and TRIB3. Trib3-KO diabetic mice displayed improved insulin sensitivity in the heart. More specifically, the AMPKα-triggered CHOP phosphorylation and degradation were essential for p53 on the transcriptional regulation of Trib3. CONCLUSION Overall, these results indicate that inhibiting the p53-TRIB3 pathway by SFN plays an unsuspected key role in the improvement of myocardial IR, which may be a promising strategy for attenuating diabetic cardiomyopathy (DCM) in diabetic patients.
Collapse
Affiliation(s)
- Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250014, China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, and Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, China
| | - Quanli Cheng
- Department of Cardiovascular Disease, First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Rong Kuang
- NMPA Key Laboratory for Animal Alternative Testing Technology of Cosmetics, Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310004, China.
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Liu R, Li Y, Zheng Q, Ding M, Zhou H, Li X. Epigenetic modification in liver fibrosis: Promising therapeutic direction with significant challenges ahead. Acta Pharm Sin B 2024; 14:1009-1029. [PMID: 38486982 PMCID: PMC10935124 DOI: 10.1016/j.apsb.2023.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 03/17/2024] Open
Abstract
Liver fibrosis, characterized by scar tissue formation, can ultimately result in liver failure. It's a major cause of morbidity and mortality globally, often associated with chronic liver diseases like hepatitis or alcoholic and non-alcoholic fatty liver diseases. However, current treatment options are limited, highlighting the urgent need for the development of new therapies. As a reversible regulatory mechanism, epigenetic modification is implicated in many biological processes, including liver fibrosis. Exploring the epigenetic mechanisms involved in liver fibrosis could provide valuable insights into developing new treatments for chronic liver diseases, although the current evidence is still controversial. This review provides a comprehensive summary of the regulatory mechanisms and critical targets of epigenetic modifications, including DNA methylation, histone modification, and RNA modification, in liver fibrotic diseases. The potential cooperation of different epigenetic modifications in promoting fibrogenesis was also highlighted. Finally, available agonists or inhibitors regulating these epigenetic mechanisms and their potential application in preventing liver fibrosis were discussed. In summary, elucidating specific druggable epigenetic targets and developing more selective and specific candidate medicines may represent a promising approach with bright prospects for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 22460, USA
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| |
Collapse
|
6
|
Mihanfar A, Akbarzadeh M, Ghazizadeh Darband S, Sadighparvar S, Majidinia M. SIRT1: a promising therapeutic target in type 2 diabetes mellitus. Arch Physiol Biochem 2024; 130:13-28. [PMID: 34379994 DOI: 10.1080/13813455.2021.1956976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
A significant increase in the worldwide incidence and prevalence of type 2 diabetic mellitus (T2DM) has elevated the need for studies on novel and effective therapeutic strategies. Sirtuin 1 (SIRT1) is an NAD + dependent protein deacetylase with a critical function in the regulation of glucose/lipid metabolism, insulin resistance, inflammation, oxidative stress, and mitochondrial function. SIRT1 is also involved in the regulation of insulin secretion from pancreatic β-cells and protecting these cells from inflammation and oxidative stress-mediated tissue damages. In this regard, major SIRT1 activators have been demonstrated to exert a beneficial impact in reversing T2DM-related complications including cardiomyopathy, nephropathy, retinopathy, and neuropathy, hence treating T2DM. Therefore, an accumulating number of recent studies have investigated the efficacy of targeting SIRT1 as a therapeutic strategy in T2DM. In this review we aimed to discuss the current understanding of the physiological and biological roles of SIRT1, then its implication in the pathogenesis of T2DM, and the therapeutic potential of SIRT1 in combating T2DM.
Collapse
Affiliation(s)
- Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Akbarzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
7
|
Li M, Luo L, Xiong Y, Wang F, Xia Y, Zhang Z, Ke J. Resveratrol Inhibits Restenosis through Suppressing Proliferation, Migration and Trans-differentiation of Vascular Adventitia Fibroblasts via Activating SIRT1. Curr Med Chem 2024; 31:242-256. [PMID: 37151061 DOI: 10.2174/0929867330666230505161041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023]
Abstract
AIM After the balloon angioplasty, vascular adventitia fibroblasts (VAFs), which proliferate, trans-differentiate to myofibroblasts and migrate to neointima, are crucial in restenosis. Resveratrol (RSV) has been reported to protect the cardiovascular by reducing restenosis and the mechanism remains unclear. METHODS This study was dedicated to investigate the effect of RSV on VAFs in injured arteries and explore the potential mechanism. In this work, carotid artery balloon angioplasty was performed on male SD rats to ensure the injury of intima and VAFs were isolated to explore the effects in vitro. The functional and morphological results showed the peripheral delivery of RSV decreased restenosis of the injured arteries and suppressed the expression of proliferation, migration and transformation related genes. Moreover, after being treated with RSV, the proliferation, migration and trans-differentiation of VAFs were significantly suppressed and exogenous TGF-β1 can reverse this effect. RESULT Mechanistically, RSV administration activated SIRT1 and decreased the translation and expression of TGF-β1, SMAD3 and NOX4, and reactive oxygen species (ROS) decreased significantly after VAFs treated with RSV. CONCLUSION Above results indicated RSV inhibited restenosis after balloon angioplasty through suppressing proliferation, migration and trans-differentiation of VAFs via regulating SIRT1- TGF-β1-SMAD3-NOX4 to decrease ROS.
Collapse
Affiliation(s)
- Mengyun Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Lan Luo
- Department of Anesthesiology, First People's Hospital of Foshan, Foshan, 528010, Guangdong, China
| | - Ying Xiong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Fuyu Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yun Xia
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Jianjuan Ke
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| |
Collapse
|
8
|
Zhang B, Yang J, Li X, Zhu H, Sun J, Jiang L, Xue C, Zhang L, Xu C, Xing S, Jin Z, Liu J, Yu S, Duan W. Tetrahydrocurcumin ameliorates postinfarction cardiac dysfunction and remodeling by inhibiting oxidative stress and preserving mitochondrial function via SIRT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155127. [PMID: 37812853 DOI: 10.1016/j.phymed.2023.155127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Myocardial infarction (MI) often leads to sudden cardiac death. Persistent myocardial ischemia increases oxidative stress and impairs mitochondrial function, contributing significantly to postinfarction cardiac dysfunction and remodeling, and the subsequent progression to heart failure (HF). Tetrahydrocurcumin (THC), isolated from the rhizome of turmeric, has antioxidant properties and has been shown to protect against cardiovascular diseases. However, its effects on HF after MI are poorly understood. PURPOSE The objective was the investigation of the pharmacological effects of THC and its associated mechanisms in the pathogenesis of HF after MI. METHODS A total of 120 mice (C57BL/6, male) were used for the in vivo experiments. An MI mouse model was created by permanent ligation of the left anterior descending coronary artery. The mice received oral dose of THC at 120 mg/kg/d and the effects on MI-induced myocardial injury were evaluated by assessment of cardiac function, histopathology, myocardial oxidative levels, and mitochondrial function. Molecular mechanisms were investigated by intraperitoneal injection of 50 mg/kg of the SIRT3 selective inhibitor 3-TYP. Meanwhile, mouse neonatal cardiomyocytes were isolated and cultured in a hypoxic incubator to verify the effects of THC in vitro. Lastly, SIRT3 and Nrf2 were silenced using siRNAs to further explore the regulatory mechanism of key molecules in this process. RESULTS The mouse hearts showed significant impairment in systolic function after MI, together with enlarged infarct size, increased myocardial fibrosis, cardiac hypertrophy, and apoptosis of cardiomyocytes. A significant reversal of these changes was seen after treatment with THC. Moreover, THC markedly reduced reactive oxygen species generation and protected mitochondrial function, thus mitigating oxidative stress in the post-MI myocardium. Mechanistically, THC counteracted reduced Nrf2 nuclear accumulation and SIRT3 signaling in the MI mice while inhibition of Nrf2 or SIRT3 reversed the effects of THC. Cell experiments showed that Nrf2 silencing markedly reduced SIRT3 levels and deacetylation activity while inhibition of SIRT3 signaling had little impact on Nrf2 expression. CONCLUSION This is the first demonstration that THC protects against the effects of MI. THC reduced both oxidative stress and mitochondrial damage by regulating Nrf2-SIRT3 signaling. The results suggest the potential of THC in treating myocardial ischemic diseases.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China; Department of Surgery, The 954th Hospital of the Chinese People's Liberation Army, Shannan, Tibet 856100, China
| | - Jiachang Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Xiayun Li
- College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hanzhao Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Jingwei Sun
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Liqing Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Chao Xue
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Liyun Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Chennian Xu
- Department of Cardiothoracic Surgery, The 79th Group Military Hospital of the People's Liberation Army, Liaoyang, Liaoning 111000, China
| | - Shishi Xing
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China.
| | - Weixun Duan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
9
|
Xu N, Liu S, Zhang Y, Chen Y, Zuo Y, Tan X, Liao B, Li P, Feng J. Oxidative stress signaling in the pathogenesis of diabetic cardiomyopathy and the potential therapeutic role of antioxidant naringenin. Redox Rep 2023; 28:2246720. [PMID: 37747066 PMCID: PMC10538464 DOI: 10.1080/13510002.2023.2246720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders that poses a global threat to human health. It can lead to complications in multiple organs and tissues, owing to its wide-ranging impact on the human body. Diabetic cardiomyopathy (DCM) is a specific cardiac manifestation of DM, which is characterized by heart failure in the absence of coronary heart disease, hypertension and valvular heart disease. Given that oxidative stress is a key factor in the pathogenesis of DCM, intervening to mitigate oxidative stress may serve as a therapeutic strategy for managing DCM. Naringenin is a natural product with anti-oxidative stress properties that can suppress oxidative damage by regulating various oxidative stress signaling pathways. In this review, we address the relationship between oxidative stress and its primary signaling pathways implicated in DCM, and explores the therapeutic potential of naringenin in DCM.
Collapse
Affiliation(s)
- Nan Xu
- Department of Cardiology, The First People's Hospital of Neijiang, Neijiang, People’s Republic of China
| | - Siqi Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yongqiang Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yujing Chen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yumei Zuo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xiaoqiu Tan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
| | - Pengyun Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
10
|
Łanoszka K, Vlčková N. Natural Sirtuin1 Activators and Atherosclerosis: an Overview. Curr Atheroscler Rep 2023; 25:979-994. [PMID: 38038821 PMCID: PMC10770200 DOI: 10.1007/s11883-023-01165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the most recent findings investigating the impact of several natural sirtuin (SIRT) activators, particularly SIRT1, on atherosclerosis. RECENT FINDINGS Sirtuins that belong to a family of class III histone deacetylases are believed to be novel therapeutic targets to treat age-related and chronic diseases. SIRT expression is regulated by small molecules called SIRT-activating compounds that can be found in natural food products. SIRT1 may exert protective effects in atherosclerosis, which is said to be a major cause of cardiovascular diseases. Most of the evidence supporting the beneficial effects of these natural compounds comes from in vitro or animal-based studies, while there have been particularly few or inconsistent human-based studies evaluating their long-term impact in recent years. SIRT1 activation has been demonstrated to mitigate or prevent atherosclerosis through various mechanisms. However, further research is required to determine the optimal SIRT activator dosage and to establish a stronger correlation between health effects and the administration of bioactive compounds. Additionally, conducting more human clinical trials is necessary to ensure the safety of these compounds for preventing atherosclerosis development.
Collapse
Affiliation(s)
- Karolina Łanoszka
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland
| | - Nimasha Vlčková
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland.
| |
Collapse
|
11
|
李 京, 李 凡, 牛 璐, 安 斌, 成 晓, 刘 媛, 王 金. [Smeglutide inhibits high glucose-induced proliferation of myocardial fibroblasts by downregulating TGFβ/Smad3 signaling]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1935-1940. [PMID: 38081612 PMCID: PMC10713456 DOI: 10.12122/j.issn.1673-4254.2023.11.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVE To investigate the effect of semaglutide on high glucose-induced proliferation of cardiac fibroblasts (CFs) and explore its possible mechanism. METHODS Primary mouse CFs, identified by detecting vimentin expression, were stimulated with 25 mmol/L and treated with 5-20 nmol/L semaglutide, and the cell proliferation was examined with CKK-8 assay for concentration screening.Cultured CFs exposed to high glucose (25 mmol/L) were treated with 5 nmol/L semaglutide, and the changes in cell cycle were detected using Cell Cycle Staining Kit; The mRNA expressions of α-smooth muscle actin (α-SMA), transforming growth factor-β1(TGF-β1) and Smad3 were detected using RT-qPCR, and the levels of type Ⅰ collagen (CoLⅠ) and type Ⅲ collagen (CoLIII) in the cell cultures were determined with ELISA. RESULTS Compared with the control cells, the CFs cultured in high glucose exhibited significantly enhanced proliferative activity (P<0.05) with increased percentage of S-phase cells.Semagutide treatment obviously inhibited high glucose-induced proliferation of the CFs (P<0.05) and reduced the percentage of S-phase cells.High glucose stimulation significantly increased the mRNA expressions of α-SMA, CoL Ⅰ and CoLIII in the cells (P<0.01), which were effectively lowered by semaglutide treatment (P<0.01).The expressions of TGF-β1 and Smad3 were significantly increased in high glucose-stimulated CFs (P<0.01) and were lowered by semaglutide treatment (P<0.01). CONCLUSION Semaglutide can inhibit high glucose-induced proliferation and collagen synthesis in mouse CFs possibly by downregulating the TGFβ/Smad3 signaling pathway.
Collapse
Affiliation(s)
- 京娟 李
- 甘肃中医药大学第一临床医学院,甘肃 兰州 730000First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - 凡凡 李
- 甘肃中医药大学第一临床医学院,甘肃 兰州 730000First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - 璐 牛
- 甘肃中医药大学第一临床医学院,甘肃 兰州 730000First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - 斌斌 安
- 甘肃中医药大学第一临床医学院,甘肃 兰州 730000First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - 晓琼 成
- 甘肃中医药大学第一临床医学院,甘肃 兰州 730000First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - 媛媛 刘
- 甘肃省人民医院内分泌科,甘肃 兰州 730000Department of Endocrinology, Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - 金羊 王
- 甘肃省人民医院内分泌科,甘肃 兰州 730000Department of Endocrinology, Gansu Provincial People's Hospital, Lanzhou 730000, China
| |
Collapse
|
12
|
Yang Y, Yang J, Ma T, Yang X, Yuan Y, Guo Y. The role and mechanism of TGF-β1 in the antidepressant-like effects of tetrahydrocurcumin. Eur J Pharmacol 2023; 959:176075. [PMID: 37802279 DOI: 10.1016/j.ejphar.2023.176075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Astrocytes and the activation of inflammatory factors are associated with depression. Tetrahydrocurcumin (THC), the principal metabolite of natural curcumin, is renowned for its anti-inflammatory properties. In this research, we explored the impact of THC on the expression of inflammatory factors, neurotrophins, and transforming growth factor β1 (TGF-β1) in the prefrontal cortex after chronic restraint stress (CRS) in mice and in lipopolysaccharide (LPS)-induced TNC1 astrocytes. Our findings indicated that THC mitigated the anxiety and depression-like behaviours observed in CRS mice. It also influenced the expression of TGF-β1, p-SMAD3/SMAD3, sirtuin 1 (SIRT1), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), inducible nitric oxide synthase (iNOS), and tumour necrosis factor α (TNF-α). Specifically, THC augmented the expressions of TGF-β1, p-SMAD3/SMAD3, SIRT1, BDNF, and GDNF, whilst diminishing the expressions of iNOS and TNF-α in LPS-induced astrocytes. However, when pre-treated with SB431542, a TGF-β1 receptor inhibitor, it nullified the aforementioned effects of THC on astrocytes. Our results propose that THC delivers its anti-depressive effects through the activation of TGF-β1, enhancement of p-SMAD3/SMAD3 and SIRT1 expression, upregulation of BDNF and GDNF, and downregulation of iNOS and TNF-α. This research furnishes new perspectives on the anti-inflammatory mechanism that underpins the antidepressant-like impact of THC.
Collapse
Affiliation(s)
- Yan Yang
- Kunming Medical University, Kunming, China
| | | | | | - Xueke Yang
- Kunming Medical University, Kunming, China
| | - Yun Yuan
- Kunming Medical University, Kunming, China.
| | - Ying Guo
- Kunming Medical University, Kunming, China.
| |
Collapse
|
13
|
He T, Bai X, Li Y, Zhang D, Xu Z, Yang X, Hu D, Han J. Insufficient SIRT1 in macrophages promotes oxidative stress and inflammation during scarring. J Mol Med (Berl) 2023; 101:1397-1407. [PMID: 37707556 DOI: 10.1007/s00109-023-02364-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
Macrophage is a critical regulator in wound healing and scar formation, and SIRT1 is related to macrophage activation and polarization, while the specific mechanism is still unclear. To explore the specific effects of SIRT1 in scarring, we established a skin incision mouse model and LPS-induced inflammation cell model. The expression of SIRT1 in tissue and macrophage was detected, and the level of SIRT1 was changed to observe the downstream effects. LPS-induced macrophages with or without SIRT1 deficiency were used for TMT-based quantitative proteomic analysis. SIRT1 was suppressed in scar while increased in macrophages of scar tissue. And macrophages were proven to be necessary for wound healing. In the early stage of wound healing, knockout of SIRT1 in macrophage could greatly strengthen inflammation and finally promote scarring. NADH-related activities and oxidoreductase activities were differentially expressed in TMT-based quantitative proteomic analysis. We confirmed that ROS production and NOX2 level were elevated after LPS stimulation while the Nrf2 pathway and the downstream proteins, such as Nqo-1 and HO-1, were suppressed. In contrast, the suppression of SIRT1 strengthened this trend. The NF-κB pathway was remarkably activated compared with the control group. Insufficient increase of SIRT1 in macrophage leads to over activated oxidative stress and activates NF-κB pathways, which then promotes inflammation in wound healing and scarring. Further increasing SIRT1 in macrophages could be a promising method to alleviate scarring. KEY MESSAGES: SIRT1 was suppressed in scar while increased in macrophages of scar tissue. Inhibition of SIRT1 in macrophage leads to further activated oxidative stress. SIRT1 is negatively related to oxidative stress in macrophage. The elevation of SIRT1 in macrophage is insufficient during scarring.
Collapse
Affiliation(s)
- Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Dongliang Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Zhigang Xu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China.
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
14
|
Zhang M, Qiang Y. Catalpol ameliorates inflammation and oxidative stress via regulating Sirt1 and activating Nrf2/HO-1 signaling against acute kidney injury. ENVIRONMENTAL TOXICOLOGY 2023; 38:2182-2191. [PMID: 37436358 DOI: 10.1002/tox.23855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Septic acute kidney injury (SAKI) is usually caused by sepsis. It has been shown that catalpol (Cat) impairs sepsis-evoked organ dysfunction to a certain degree. The current work aims to evaluate the protective effects of Cat on SAKI and potential mechanisms in vivo and in vitro. METHODS SAKI cellular and murine model were set up using lipopolysaccharide (LPS) in vitro and in vivo. Cell apoptosis in cells was determined by TUNEL assay. Levels of inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). The levels of the markers of oxidative injury were evaluated by corresponding commercial kits. Protein levels were assayed via western blotting and immunohistochemistry (IHC) staining. RESULTS The results demonstrated that LPS upregulated TNF-α, IL-6, and malondialdehyde levels, and downregulated superoxide dismutase, whereas Cat treated cells have the opposite results. Functional assays displayed that Cat remarkably reversed the LPS-challenged damage as the impairment of TNF-α and IL-6 levels, oxidative stress, and the apoptosis in HK-2 cells. Moreover, knockdown of Sirtuin 1 (Sirt1) counteracted the suppressive impact of Cat on LPS-triggered inflammatory response, oxidative stress, and renal damage. Further, Cat elevated Sirt1 expression and activated the Nrf2/HO-1 signaling in LPS-engendered SAKI in vivo and in vitro. CONCLUSION Our study clearly proved that Cat protected against LPS-induced SAKI via synergic antioxidant and anti-inflammatory actions by regulating Sirt1 and Nrf2/HO-1 signaling pathways.
Collapse
Affiliation(s)
- Manli Zhang
- Department of Nephrology, Changzhou Wujin People's Hospital, Wujin Clinical College of Xuzhou Medical University, Xuzhou, China
| | - Yanjuan Qiang
- Department of Nephrology, Changzhou Wujin People's Hospital, Wujin Clinical College of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Chiu CC, Cheng KC, Lin YH, He CX, Bow YD, Li CY, Wu CY, Wang HMD, Sheu SJ. Prolonged Exposure to High Glucose Induces Premature Senescence Through Oxidative Stress and Autophagy in Retinal Pigment Epithelial Cells. Arch Immunol Ther Exp (Warsz) 2023; 71:21. [PMID: 37638991 DOI: 10.1007/s00005-023-00686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 08/29/2023]
Abstract
Chronic hyperglycemia involves persistent high-glucose exposure and correlates with retinal degeneration. It causes various diseases, including diabetic retinopathy (DR), a major cause of adult vision loss. Most in vitro studies have investigated the damaging short-term effects of high glucose exposure on retinal pigment epithelial (RPE) cells. DR is also a severe complication of diabetes. In this study, we established a model with prolonged high-glucose exposure (15 and 75 mM exogenous glucose for two months) to mimic RPE tissue pathophysiology in patients with hyperglycemia. Prolonged high-glucose exposure attenuated glucose uptake and clonogenicity in ARPE-19 cells. It also significantly increased reactive oxygen species levels and decreased antioxidant protein (superoxide dismutase 2) levels in RPE cells, possibly causing oxidative stress and DNA damage and impairing proliferation. Western blotting showed that autophagic stress, endoplasmic reticulum stress, and genotoxic stress were induced by prolonged high-glucose exposure in RPE cells. Despite a moderate apoptotic cell population detected using the Annexin V-staining assay, the increases in the senescence-associated proteins p53 and p21 and SA-β-gal-positive cells suggest that prolonged high-glucose exposure dominantly sensitized RPE cells to premature senescence. Comprehensive next-generation sequencing suggested that upregulation of oxidative stress and DNA damage-associated pathways contributed to stress-induced premature senescence of ARPE-19 cells. Our findings elucidate the pathophysiology of hyperglycemia-associated retinal diseases and should benefit the future development of preventive drugs. Prolonged high-glucose exposure downregulates glucose uptake and oxidative stress by increasing reactive oxygen species (ROS) production through regulation of superoxide dismutase 2 (SOD2) expression. Autophagic stress, ER stress, and DNA damage stress (genotoxic stress) are also induced by prolonged high-glucose exposure in RPE cells. Consequently, multiple stresses induce the upregulation of the senescence-associated proteins p53 and p21. Although both apoptosis and premature senescence contribute to high glucose exposure-induced anti-proliferation of RPE cells, the present work shows that premature senescence rather than apoptosis is the dominant cause of RPE degeneration, eventually leading to the pathogenesis of DR.
Collapse
Affiliation(s)
- Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Kai-Chun Cheng
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, 807, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Hsiung Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Xi He
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yung-Ding Bow
- Ph.D. Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
16
|
Wiciński M, Erdmann J, Nowacka A, Kuźmiński O, Michalak K, Janowski K, Ohla J, Biernaciak A, Szambelan M, Zabrzyński J. Natural Phytochemicals as SIRT Activators-Focus on Potential Biochemical Mechanisms. Nutrients 2023; 15:3578. [PMID: 37630770 PMCID: PMC10459499 DOI: 10.3390/nu15163578] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Sirtuins are a family of proteins with enzymatic activity. There are seven mammalian sirtuins (SIRT1-SIRT7) that are found in different cellular compartments. They are a part of crucial cellular pathways and are regulated by many factors, such as chemicals, environmental stress, and phytochemicals. Several in vitro and in vivo studies have presented their involvement in anti-inflammatory, antioxidant, and antiapoptotic processes. Recent findings imply that phytochemicals such as resveratrol, curcumin, quercetin, fisetin, berberine, and kaempferol may regulate the activity of sirtuins. Resveratrol mainly activates SIRT1 and indirectly activates AMPK. Curcumin influences mainly SIRT1 and SIRT3, but its activity is broad, and many pathways in different cells are affected. Quercetin mainly modulates SIRT1, which triggers antioxidant and antiapoptotic responses. Fisetin, through SIRT1 regulation, modifies lipid metabolism and anti-inflammatory processes. Berberine has a wide spectrum of effects and a significant impact on SIRT1 signaling pathways. Finally, kaempferol triggers anti-inflammatory and antioxidant effects through SIRT1 induction. This review aims to summarize recent findings on the properties of phytochemicals in the modulation of sirtuin activity, with a particular focus on biochemical aspects.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Jakub Erdmann
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Agnieszka Nowacka
- Department of Neurosurgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland
| | - Oskar Kuźmiński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Klaudia Michalak
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Kacper Janowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Jakub Ohla
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Adrian Biernaciak
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Monika Szambelan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland (K.M.)
| | - Jan Zabrzyński
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| |
Collapse
|
17
|
Zeng YF, Guo QH, Wei XY, Chen SY, Deng S, Liu JJ, Yin N, Liu Y, Zeng WJ. Cardioprotective effect of curcumin on myocardial ischemia/reperfusion injury: a meta-analysis of preclinical animal studies. Front Pharmacol 2023; 14:1184292. [PMID: 37284318 PMCID: PMC10239943 DOI: 10.3389/fphar.2023.1184292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Objective: This meta-analysis aimed to determine the efficacy of curcumin in preventing myocardial ischemia/reperfusion (I/R) injury in animal models. Methods: Studies published from inception to January 2023 were systematically searched in databases including PubMed, Web of Science, Embase, China's National Knowledge Infrastructure (CNKI), Wan-Fang database, and VIP database (VIP). The SYRCLE's RoB tool was used to determine methodological quality. Sensitivity analysis and subgroup analysis were performed when there was high heterogeneity. Publication bias was assessed using a funnel plot. Results: Thirty-seven studies involving 771 animals were included in this meta-analysis with methodology quality scores ranging from 4 to 7. The results indicated that curcumin treatment significantly improved myocardial infarction size standard mean difference (SMD) = -5.65; 95% confidence interval (CI): 6.94, -4.36; p < 0.01; I2 = 90%). The sensitivity analysis for infarct size showed that the results were stable and reliable. However, the funnel plot was asymmetric. The subgroup analysis included species, animal model, dose, administration, and duration. The results showed that the subgroup dose was statistically significant between subgroups. In addition, curcumin treatment improved cardiac function, myocardial injury enzymes, and oxidative stress levels in animal models of myocardial I/R injury. The funnel plot revealed that there is publication bias for creatine kinase and lactate dehydrogenase. Finally, we performed a meta-analysis of inflammatory cytokines and apoptosis index. The results showed that curcumin treatment downregulated serum inflammatory cytokine levels and myocardial apoptosis index. Conclusion: This meta-analysis suggests that curcumin has excellent potential for the treatment of myocardial I/R injury in animal models. However, this conclusion needs to be further discussed and verified in large animal models and human clinical trials. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022383901.
Collapse
Affiliation(s)
- Yi-Fan Zeng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi-Hao Guo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Yu Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Si-Yu Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Jia Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ni Yin
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Liu
- Department of Pharmacy, Hunan Aerospace Hospital, Hunan Normal University, Changsha, Hunan, China
| | - Wen-Jing Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Zhu ML, Yu YN, Song YT, Wang CY, Miao Z, Chen BL, Guo S, Shen MM, Zhang MX, Zhan HQ, Yang PF, Wang QQ, Yin YL, Li P. Cardioprotective role of A-cycloglycosylated derivative of Rubiadin in diabetic cardiomyopathy in rats. Int Immunopharmacol 2023; 118:110008. [PMID: 36989899 DOI: 10.1016/j.intimp.2023.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a kind of idiopathic heart disease, which is one of the main complications of diabetes and seriously threatens the life of diabetic patients. Rubiadin, an anthraquinone compound extracted from the stems and roots of rubiaceae, has been widely discussed for its anti-diabetes, anti-oxidation and other pharmacological effects. However, Rubiadin can cause drug-induced liver injury. Therefore, A-cycloglycosylated derivative of Rubiadin (ACDR) was obtained by modifying its structure. The purpose of this study was to investigate the effect of ACDR on DCM cardiac injury and its mechanism. The DCM animal model was established by streptozotocin, and the success of DCM was verified by blood glucose level, echocardiographic evidence of impaired myocardial functions along with enhanced myocardial fibrosis. We performed liver function tests, morphological staining of the heart and tests for oxidative stress to evaluate cardiac functional and structural changes. Finally, the expression of Na+/H+ exchanger (NHE1) protein was analyzed by immunohistochemistry and western bolt, and the expression of hairy/enhancer-of-split related with YRPW motif 1 (Hey1) and P-p38 protein was detected by immunofluorescence chemistry and western blotting. The results showed that ACDR can improve cardiac dysfunction, reduce myocardial injury, reduce oxidative stress, and protect the liver in DCM rats. Interestingly, all variations were countered by LiCl. Our study suggests that, along with controlling hyperglycemia, ACDR may improve DCM by reducing NHE1 expression, further inhibiting P-p38 activity and increasing Hey1 expression to reduce oxidative stress.
Collapse
|
19
|
Hao Z, Liu G, Ren L, Liu J, Liu C, Yang T, Wu X, Zhang X, Yang L, Xia J, Li W. A Self-Healing Multifunctional Hydrogel System Accelerates Diabetic Wound Healing through Orchestrating Immunoinflammatory Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19847-19862. [PMID: 37042619 DOI: 10.1021/acsami.2c23323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Developing an effective treatment strategy of drug delivery to improve diabetic wound healing remains a major challenge in clinical practice nowadays, due to multidrug-resistant bacterial infections, angiopathy, and oxidative damage in the wound microenvironment. Herein, an effective and convenient strategy was designed through a self-healing multiple-dynamic-bond cross-linked hydrogel with interpenetrating networks, which was formed by multiple-dynamic-bond cross-linking of reversible catechol-Fe3+ coordinate bonds, hydrogen bonding, and Schiff base bonds. The excellent autonomous healing of the hydrogel was initiated and accelerated by Schiff bonds with reversible breakage between 3,4-dihydroxybenzaldehyde containing catechol and aldehyde groups and chitosan chains, and further consolidated by the co-optation of other noncovalent interactions contributed of hydrogen bonding and Fe3+ coordinate bonds. Intriguingly, cathelicidin LL-37 was introduced and uniformly dispersed in the dynamic interpenetrating networks of the hydrogel as a bioactive molecular to orchestrate the diabetic wound healing microenvironment. This multifunctional wound dressing can significantly promote diabetic wound healing by antibacterial activity, immunomodulation, anti-inflammation, neovascularization, and antioxidant activity. Therefore, this study provided an effective and safe strategy for guiding the diabetic wound treatment in clinical applications.
Collapse
Affiliation(s)
- Zhichao Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Gen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Lin Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Jiangchen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Chuanzi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Tao Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Xiangnan Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Xinchun Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Ling Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510050, China
| |
Collapse
|
20
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
21
|
Chen R, Chen H, Yang Z, Zhu L, Bei Y, Chen W, Qiu Y. Danlou tablet inhibits high-glucose-induced cardiomyocyte apoptosis via the miR-34a-SIRT1 axis. Heliyon 2023; 9:e14479. [PMID: 36950610 PMCID: PMC10025156 DOI: 10.1016/j.heliyon.2023.e14479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is highly prevalent and increases the risk of heart failure and sudden death. Therefore, proper and effective treatments for DCM are in urgent demand. Danlou tablet (Dan) is reported to confer protective effects on several heart diseases. However, to our knowledge, whether Dan provides protection against DCM is unclear. In this study, we explored the effect of Dan on DCM with the in vitro DCM model using AC16 cardiomyocytes. We found that Dan treatment significantly reduced cardiomyocyte apoptosis and oxidative stress in high-glucose (HG)-treated cardiomyocytes, as evidenced by decreased Annexin V-FITC+ cardiomyocytes, intracellular reactive oxygen species (ROS) levels, Bax/Bcl2 ratio, and cleaved-Caspase3/Caspase3 ratio. Interestingly, Dan treatment caused a decreased level of microRNA-34a (miR-34a), which could enhance cardiomyocyte apoptosis. Furthermore, miR-34a mimic blocked Dan's effect in apoptosis prevention. Finally, we observed that the miR-34a mimic effectively decreased the level of sirtuin 1 (SIRT1), while the miR-34a inhibitor increased the level of SIRT1. And downregulation of SIRT1 effectively reversed the effect of miR-34a inhibitor on cardiomyocyte apoptosis. Taken together, our study showed that Dan prevented HG-induced cardiomyocyte apoptosis through downregulating miR-34a and upregulating SIRT1. Our study has provided experimental support for the potential use of Dan in treating DCM. Further detailed study of Dan and the underlying mechanisms may shed light on the prevention and treatment of DCM.
Collapse
Affiliation(s)
- Rui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
| | - Hongjian Chen
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Zijiang Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Liyun Zhu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Wei Chen
- Emergency Department, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Corresponding author.
| | - Yan Qiu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
- Corresponding author.
| |
Collapse
|
22
|
Shu J, Shi J, Gu Y, Deng L, Zhao C, Wu C, Zhao J, Wang H, Jin L. Levocarnitine regulates the growth of angiotensin II-induced myocardial fibrosis cells via TIMP-1. Open Life Sci 2023; 18:20220554. [PMID: 36816804 PMCID: PMC9922061 DOI: 10.1515/biol-2022-0554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/03/2022] [Accepted: 11/30/2022] [Indexed: 02/11/2023] Open
Abstract
This study aimed to explore the effects of tissue inhibitor of metalloproteinases-1 (TIMP-1) on levocarnitine (LC)-mediated regulation of angiotensin II (AngII)-induced myocardial fibrosis (MF) and its underlying mechanisms. H9C2 cells were treated with AngII for 24 h to induce fibrosis. The cells were then treated with LC or transfected with TIMP-1-OE plasmid/si‑TIMP-1. Cell apoptosis, viability, migration, and related gene expression were analyzed. AngII treatment significantly upregulated Axl, α-SMA, and MMP3 expression (P < 0.05) and downregulated STAT4 and TIMP1 expression (P < 0.05) relative to the control levels. After transfection, cells with TIMP-1 overexpression/knockdown were successfully established. Compared with that of the control, AngII significantly inhibited cell viability and cell migration while promoting cell apoptosis (P < 0.05). LC and TIMP-1-OE transfection further suppressed cell viability and migration induced by Ang II and upregulated apoptosis, whereas si-TIMP-1 had the opposite effect. Furthermore, LC and TIMP-1-OE transfection downregulated Axl, AT1R, α-SMA, collagen III, Bcl-2, and MMP3 expression caused by AngII and upregulated caspase 3, p53, and STAT4 expression, whereas si-TIMP-1 had the opposite effect. TIMP-1 is therefore a potential therapeutic target for delaying MF progression.
Collapse
Affiliation(s)
- Jin Shu
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| | - Jue Shi
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| | - Yiwen Gu
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| | - Lei Deng
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| | - Chen Zhao
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| | - Chun Wu
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| | - Jiachen Zhao
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| | - Haiya Wang
- Department of Gerontology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200023, China
| | - Li Jin
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| |
Collapse
|
23
|
Fotaki A, Velasco C, Prieto C, Botnar RM. Quantitative MRI in cardiometabolic disease: From conventional cardiac and liver tissue mapping techniques to multi-parametric approaches. Front Cardiovasc Med 2023; 9:991383. [PMID: 36756640 PMCID: PMC9899858 DOI: 10.3389/fcvm.2022.991383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
Cardiometabolic disease refers to the spectrum of chronic conditions that include diabetes, hypertension, atheromatosis, non-alcoholic fatty liver disease, and their long-term impact on cardiovascular health. Histological studies have confirmed several modifications at the tissue level in cardiometabolic disease. Recently, quantitative MR methods have enabled non-invasive myocardial and liver tissue characterization. MR relaxation mapping techniques such as T1, T1ρ, T2 and T2* provide a pixel-by-pixel representation of the corresponding tissue specific relaxation times, which have been shown to correlate with fibrosis, altered tissue perfusion, oedema and iron levels. Proton density fat fraction mapping approaches allow measurement of lipid tissue in the organ of interest. Several studies have demonstrated their utility as early diagnostic biomarkers and their potential to bear prognostic implications. Conventionally, the quantification of these parameters by MRI relies on the acquisition of sequential scans, encoding and mapping only one parameter per scan. However, this methodology is time inefficient and suffers from the confounding effects of the relaxation parameters in each single map, limiting wider clinical and research applications. To address these limitations, several novel approaches have been proposed that encode multiple tissue parameters simultaneously, providing co-registered multiparametric information of the tissues of interest. This review aims to describe the multi-faceted myocardial and hepatic tissue alterations in cardiometabolic disease and to motivate the application of relaxometry and proton-density cardiac and liver tissue mapping techniques. Current approaches in myocardial and liver tissue characterization as well as latest technical developments in multiparametric quantitative MRI are included. Limitations and challenges of these novel approaches, and recommendations to facilitate clinical validation are also discussed.
Collapse
Affiliation(s)
- Anastasia Fotaki
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,*Correspondence: Anastasia Fotaki,
| | - Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom,School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| |
Collapse
|
24
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
DiNicolantonio JJ, McCarty MF, O'Keefe JH. Nutraceutical activation of Sirt1: a review. Open Heart 2022; 9:openhrt-2022-002171. [PMID: 36522127 PMCID: PMC9756291 DOI: 10.1136/openhrt-2022-002171] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The deacetylase sirtuin 1 (Sirt1), activated by calorie restriction and fasting, exerts several complementary effects on cellular function that are favourable to healthspan; it is often thought of as an 'anti-aging' enzyme. Practical measures which might boost Sirt1 activity are therefore of considerable interest. A number of nutraceuticals have potential in this regard. Nutraceuticals reported to enhance Sirt1 synthesis or protein expression include ferulic acid, tetrahydrocurcumin, urolithin A, melatonin, astaxanthin, carnosic acid and neochlorogenic acid. The half-life of Sirt1 protein can be enhanced with the natural nicotinamide catabolite N1-methylnicotinamide. The availability of Sirt1's obligate substrate NAD+ can be increased in several ways: nicotinamide riboside and nicotinamide mononucleotide can function as substrates for NAD+ synthesis; activators of AMP-activated kinase-such as berberine-can increase expression of nicotinamide phosphoribosyltransferase, which is rate limiting for NAD+ synthesis; and nutraceutical quinones such as thymoquinone and pyrroloquinoline quinone can boost NAD+ by promoting oxidation of NADH. Induced ketosis-as via ingestion of medium-chain triglycerides-can increase NAD+ in the brain by lessening the reduction of NAD+ mediated by glycolysis. Post-translational modifications of Sirt1 by O-GlcNAcylation or sulfonation can increase its activity, suggesting that administration of glucosamine or of agents promoting hydrogen sulfide synthesis may aid Sirt1 activity. Although resveratrol has poor pharmacokinetics, it can bind to Sirt1 and activate it allosterically-as can so-called sirtuin-activating compound drugs. Since oxidative stress can reduce Sirt1 activity in multiple ways, effective antioxidant supplementation that blunts such stress may also help preserve Sirt1 activity in some circumstances. Combination nutraceutical regimens providing physiologically meaningful doses of several of these agents, capable of activating Sirt1 in complementary ways, may have considerable potential for health promotion. Such measures may also amplify the benefits of sodium-glucose cotransporter-2 (SGLT2) inhibitors in non-diabetic disorders, as these benefits appear to reflect upregulation of Sirt1 and AMP-activated protein kinase activities.
Collapse
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | - Mark F McCarty
- Catalytic Longevity Foundation, Encinitas, California, USA
| | - James H O'Keefe
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
26
|
Zhang D, Li Y, Wang W, Lang X, Zhang Y, Zhao Q, Yan J, Zhang Y. NOX1 promotes myocardial fibrosis and cardiac dysfunction via activating the TLR2/NF-κB pathway in diabetic cardiomyopathy. Front Pharmacol 2022; 13:928762. [PMID: 36225554 PMCID: PMC9549956 DOI: 10.3389/fphar.2022.928762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a prevalent complication in patients with diabetes, resulting in high morbidity and mortality. However, the molecular mechanisms of diabetic cardiomyopathy have yet to be fully elucidated. In this study, we investigated a novel target, NOX1, an isoform of superoxide-producing NADPH oxidase with key functional involvement in the pathophysiology of DCM. The DCM rat model was established by a high-fat diet combined with streptozotocin injections. DCM rats elicited myocardial fibrosis exacerbation, which was accompanied by a marked elevation of NOX1 expression in cardiac tissue. In particular, a specific NOX1 inhibitor, ML171, effectively decreased myocardial fibrosis and protected against cardiac dysfunction in DCM rats. Rat neonatal cardiac fibroblasts were incubated with high glucose (HG, 33 mM) as an in vitro model of DCM. We also observed that the expression of NOX1 was upregulated in HG-cultured cardiac fibroblasts. Silencing of NOX1 was found to attenuate myocardial fibrosis and oxidative stress in HG-induced cardiac fibroblasts. Furthermore, the upregulation of NOX1 by hyperglycemia induced activation of the TLR2/NF-κB pathway both in vitro and in vivo, whereas these effects were significantly attenuated with NOX1 gene silencing and further enhanced with NOX1 gene overexpression. In summary, we demonstrated that NOX1 induced activation of the TLR2/NF-κB pathway and increased reactive oxygen species production accumulation, which ultimately increased myocardial fibrosis and deteriorated cardiac function in diabetic cardiomyopathy. Our study revealed that NOX1 was a potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Yilan Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Weijie Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xueyan Lang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Yanxiu Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Qianqian Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Jingru Yan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Yao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- *Correspondence: Yao Zhang,
| |
Collapse
|
27
|
Nutraceutical Prevention of Diabetic Complications—Focus on Dicarbonyl and Oxidative Stress. Curr Issues Mol Biol 2022; 44:4314-4338. [PMID: 36135209 PMCID: PMC9498143 DOI: 10.3390/cimb44090297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative and dicarbonyl stress, driven by excess accumulation of glycolytic intermediates in cells that are highly permeable to glucose in the absence of effective insulin activity, appear to be the chief mediators of the complications of diabetes. The most pathogenically significant dicarbonyl stress reflects spontaneous dephosphorylation of glycolytic triose phosphates, giving rise to highly reactive methylglyoxal. This compound can be converted to harmless lactate by the sequential activity of glyoxalase I and II, employing glutathione as a catalyst. The transcription of glyoxalase I, rate-limiting for this process, is promoted by Nrf2, which can be activated by nutraceutical phase 2 inducers such as lipoic acid and sulforaphane. In cells exposed to hyperglycemia, glycine somehow up-regulates Nrf2 activity. Zinc can likewise promote glyoxalase I transcription, via activation of the metal-responsive transcription factor (MTF) that binds to the glyoxalase promoter. Induction of glyoxalase I and metallothionein may explain the protective impact of zinc in rodent models of diabetic complications. With respect to the contribution of oxidative stress to diabetic complications, promoters of mitophagy and mitochondrial biogenesis, UCP2 inducers, inhibitors of NAPDH oxidase, recouplers of eNOS, glutathione precursors, membrane oxidant scavengers, Nrf2 activators, and correction of diabetic thiamine deficiency should help to quell this.
Collapse
|
28
|
Role of Iron-Related Oxidative Stress and Mitochondrial Dysfunction in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5124553. [PMID: 36120592 PMCID: PMC9473912 DOI: 10.1155/2022/5124553] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Iron is indispensable in numerous biologic processes, but abnormal iron regulation and accumulation is related to pathological processes in cardiovascular diseases. However, the underlying mechanisms still need to be further explored. Iron plays a key role in metal-catalyzed oxidative reactions that generate reactive oxygen species (ROS), which can cause oxidative stress. As the center for oxygen and iron utilization, mitochondria are vulnerable to damage from iron-induced oxidative stress and participate in processes involved in iron-related damage in cardiovascular disease, although the mechanism remains unclear. In this review, the pathological roles of iron-related oxidative stress in cardiovascular diseases are summarized, and the potential effects and mechanisms of mitochondrial iron homeostasis and dysfunction in these diseases are especially highlighted.
Collapse
|
29
|
Lin L, Chen X, Sun X, Xiao B, Li J, Liu J, Li G. MiR-125b-5p is targeted by curcumin to regulate the cellular antioxidant capacity. Free Radic Res 2022; 56:640-650. [PMID: 36583645 DOI: 10.1080/10715762.2022.2162393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As a natural polyphenolic food supplement and the principal curcuminoid in turmeric, curcumin shows antioxidant, anti-inflammatory, and antitumor activities. However, its specific functional mechanism remains unclear. Our preliminary study indicated that miR-125b-5p was downregulated by a curcumin extract. This study aimed to determine whether miR-125b-5p is involved in the antioxidant regulation of curcumin. The results showed that miR-125b-5p overexpression had a pro-oxidant effect by reducing the cellular antioxidant capacity, as well as decreasing the activities of catalase (CAT) and superoxide dismutase (SOD) in the normal liver cell line LO2. However, miR-125b-5p repression significantly increased the cellular antioxidant capacity and enhanced the activities of CAT and SOD. Further investigation demonstrated that the cellular antioxidant capacity induced by curcumin extract was inhibited by miR-125b-5p overexpression. Thus, curcumin may exhibit antioxidant effects by repressing miR-125b-5p expression, which provides new insights into the molecular antioxidant mechanism of curcumin and other functional food components.
Collapse
Affiliation(s)
- Lingli Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| | - Xi Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| | - Xiaoting Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| | - Baoping Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Guiling Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China.,Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian, China
| |
Collapse
|
30
|
Shirpoor A, Naderi R. Maternal Ethanol Exposure-Induced Cardiac Fibrosis is Associated with Changes in TGF-β and SIRT1/FOXO3a Signaling in Male Rat Offspring: A Three-Month Follow-up Study. Cardiovasc Toxicol 2022; 22:858-865. [PMID: 35900665 DOI: 10.1007/s12012-022-09761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
Ethanol exposure during pregnancy induces cardiac fibrosis in the fetal heart. However, the mechanisms by which consumption of ethanol induces fibrotic changes are not known. Pregnant rats were received ethanol 4.5 g/kg BW once per day from the 7th day of pregnancy (GD7) throughout lactation. Our findings demonstrated that, area of fibrosis increased in cardiac tissue in the pups on both postnatal day twenty one (PN21) and postnatal day ninety (PN90) after prenatal and early postnatal period ethanol treatment compared with the controls. It was accompanied by a decline in the expression of SIRT1 protein along with the elevation of FOXO3a and TGF-β protein expressions which were determined by western blot. Overall, our data reveal that prenatal alcohol usage increase in fibrotic regions in the pup hearts possibly by regulating TGF-β, FOXO3a and SIRT1 protein levels. These are potential therapeutic molecular targets that can be modulated to protect heart against maternal ethanol exposure.
Collapse
Affiliation(s)
- Alireza Shirpoor
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.,Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran. .,Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
31
|
Eldesoqui M, Eldken ZH, Mostafa SA, Al-Serwi RH, El-Sherbiny M, Elsherbiny N, Mohammedsaleh ZM, Sakr NH. Exercise Augments the Effect of SGLT2 Inhibitor Dapagliflozin on Experimentally Induced Diabetic Cardiomyopathy, Possible Underlying Mechanisms. Metabolites 2022; 12:metabo12070635. [PMID: 35888760 PMCID: PMC9315877 DOI: 10.3390/metabo12070635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
One of the most prevalent cardiovascular problems linked with type 2 diabetes mellitus (T2DM) is diabetic cardiomyopathy (DCM). DCM is associated with myocardial oxidative stress, inflammation, apoptosis, suppressed autophagy, extracellular matrix remodeling, and fibrosis. The current study aims to investigate the protective effect of sodium-glucose transport 2 inhibitor (SGLT2i) dapagliflozin and/or exercise on DCM. Thirty adult male Sprague Dawley rats are used. T2DM is induced by a 6-week high-fat diet (HFD) followed by a single intraperitoneal (IP) injection of 35 mg/kg streptozotocin (STZ). Rats are divided into five groups, control, diabetic (DM), DM + swimming, DM + dapagliflozin, and DM + dapagliflozin and swimming. Serum glucose, insulin, insulin resistance (HOMA-IR), and cardiac enzymes (CK-MB and lactate dehydrogenase (LDH) are measured. Heart specimens are used for evaluation of cellular oxidative stress markers malondialdehyde (MDA), antioxidant enzymes, glutathione (GSH), and catalase (CAT), as well as mRNA expression of TGF-β, MMP9, IL-1β, and TNF-α. Stained sections with haematoxylin and eosin (H & E) and Masson trichrome are used for histopathological evaluation and detection of fibrosis, respectively. Immunohistochemical staining for apoptosis (caspase-3), and autophagy (LC3) are also carried out. The combinations of SGLT2i and exercise exhibited the most significant cardioprotective effect. It improved diabetic-induced histopathological alterations in the myocardium and attenuated the elevation of serum blood glucose, CK-MB, LDH, myocardial MDA, and mRNA expression of TNF-α, IL-1β, TGF-β, MMP9, and the immune expression of caspase-3. Moreover, this combination increased the serum insulin, myocardial antioxidants GSH and CAT, and increase the immune expression of the LC-3. In conclusion, a combination of SGLT2i and exercise exerted a better antioxidant, anti-inflammatory, and antifibrotic effect in DCM. Moreover, the combination enhances the autophagic capacity of the heart.
Collapse
Affiliation(s)
- Mamdouh Eldesoqui
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Zienab Helmy Eldken
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Sally Abdallah Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Noha Hammad Sakr
- Department of Anatomy, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh 33511, Egypt;
| |
Collapse
|
32
|
Ungurianu A, Zanfirescu A, Margină D. Regulation of Gene Expression through Food—Curcumin as a Sirtuin Activity Modulator. PLANTS 2022; 11:plants11131741. [PMID: 35807694 PMCID: PMC9269530 DOI: 10.3390/plants11131741] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
The sirtuin family comprises NAD+-dependent protein lysine deacylases, mammalian sirtuins being either nuclear (SIRT1, SIRT2, SIRT6, and SIRT7), mitochondrial (SIRT3, SIRT4, and SIRT5) or cytosolic enzymes (SIRT2 and SIRT5). They are able to catalyze direct metabolic reactions, thus regulating several physiological functions, such as energy metabolism, stress response, inflammation, cell survival, DNA repair, tissue regeneration, neuronal signaling, and even circadian rhythms. Based on these data, recent research was focused on finding molecules that could regulate sirtuins’ expression and/or activity, natural compounds being among the most promising in the field. Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) can induce, through SIRT, modulation of cancer cell senescence, improve endothelial cells protection against atherosclerotic factors, enhance muscle regeneration in atrophy models, and act as a pro-longevity factor counteracting the neurotoxicity of amyloid-beta. Although a plethora of protective effects was reported (antioxidant, anti-inflammatory, anticancer, etc.), its therapeutical use is limited due to its bioavailability issues. However, all the reported effects may be explained via the bioactivation theory, which postulates that curcumin’s observed actions are modulated via its metabolites and/or degradation products. The present article is focused on bringing together the literature data correlating the ability of curcumin and its metabolites to modulate SIRT activity and its consequent beneficial effects.
Collapse
Affiliation(s)
- Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia, 020956 Bucharest, Romania; (A.U.); (D.M.)
| | - Anca Zanfirescu
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia, 020956 Bucharest, Romania
- Correspondence:
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia, 020956 Bucharest, Romania; (A.U.); (D.M.)
| |
Collapse
|
33
|
Vallée A. Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review). Int J Mol Med 2022; 49:79. [PMID: 35445729 PMCID: PMC9083851 DOI: 10.3892/ijmm.2022.5135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
Curcumin is a natural product widely used due to its pharmacological effects. Nevertheless, only a limited number of studies concerning the effects of curcumin on exudative age‑related macular degeneration (AMD) is currently available. Since ophthalmic diseases, including exudative AMD, have a marked impact on public health, the prevention and therapy of ophthalmic disorders remain of increasing concern. Exudative AMD is characterized by choroidal neovascularization (CNV) invading the subretinal space, ultimately enhancing exudation and hemorrhaging. The exudative AMD subtype corresponds to 10 to 15% of cases of macular degeneration; however, the occurrence of this subtype has been reported as the major cause of vision loss and blindness, with the occurrence of CNV being responsible for 80% of the cases with vision loss. In CNV increased expression of VEGF has been observed, stimulated by the overactivation of Wnt/β‑catenin signaling pathway. The stimulation of the Wnt/β‑catenin signaling pathway is responsible for the activation of several cellular mechanisms, simultaneously enhancing inflammation, oxidative stress and angiogenesis in numerous diseases, including ophthalmic disorders. Some studies have previously demonstrated the possible advantage of the use of curcumin for the inhibition of Wnt/β‑catenin signaling. In the present review article, the different mechanisms of curcumin are described concerning its effects on oxidative stress, inflammation and angiogenesis in exudative AMD, by interacting with Wnt/β‑catenin signaling.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology-Data-Biostatistics, Delegation of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
34
|
Xu C, Liu Y, Yang J, Zhai M, Fan Z, Qiao R, Jin P, Yang L. Effects of berbamine against myocardial ischemia/reperfusion injury: Activation of the 5' adenosine monophosphate-activated protein kinase/nuclear factor erythroid 2-related factor pathway and changes in the mitochondrial state. Biofactors 2022; 48:651-664. [PMID: 35129229 PMCID: PMC9305777 DOI: 10.1002/biof.1820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
This study was designed to investigate whether berbamine (BA)-induced cardioprotective effects were related to 5' adenosine monophosphate-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor (Nrf2) signaling and changes in the mitochondria in myocardial ischemia/reperfusion (I/R) injury. C57/BL6 mice were exposed to BA (10 mg/kg/d), with or without administration of the AMPK specific inhibitor compound C (5 mg/kg/d) or the Nrf2 specific inhibitor ML-385 (30 mg/kg/d), and then subjected to a myocardial I/R operation. As expected, BA significantly improved post-ischemic cardiac function, reduced infarct size and apoptotic cell death, decreased oxidative stress, and improved the mitochondrial state. Furthermore, BA markedly increased AMPK activation, Nrf2 nuclear translocation, and the levels of NAD(P)H quinone dehydrogenase and heme oxygenase-1. Nevertheless, these BA-induced changes were abrogated by compound C. In addition, ML-385 also canceled the cardioprotective effects of BA but had little effect on AMPK activation. Our results demonstrate that BA alleviates myocardial I/R injury and the mitochondrial state by inhibiting apoptosis and oxidative stress via the AMPK/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Chennian Xu
- Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangChina
- Department of Cardiovascular SurgeryXijing Hospital, Air Force Medical UniversityXi'anChina
| | - Yang Liu
- Department of Cardiovascular SurgeryXijing Hospital, Air Force Medical UniversityXi'anChina
| | - Jian Yang
- Department of Cardiovascular SurgeryXijing Hospital, Air Force Medical UniversityXi'anChina
| | - Mengen Zhai
- Department of Cardiovascular SurgeryXijing Hospital, Air Force Medical UniversityXi'anChina
| | - Zhenge Fan
- Department of Cardiovascular SurgeryXijing Hospital, Air Force Medical UniversityXi'anChina
| | - Rui Qiao
- Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangChina
| | - Ping Jin
- Department of Cardiovascular SurgeryXijing Hospital, Air Force Medical UniversityXi'anChina
| | - Lifang Yang
- Department of AnesthesiologyXi'an Children's HospitalXi'anChina
| |
Collapse
|
35
|
Wang Y, Cai F, Li G, Tao Y. Novel dual glucagon-like peptide-1/ glucose-dependent insulinotropic polypeptide receptor agonist attenuates diabetes and myocardial injury through inhibiting hyperglycemia, inflammation and oxidative stress in rodent animals. Bioengineered 2022; 13:9184-9196. [PMID: 35383532 PMCID: PMC9161981 DOI: 10.1080/21655979.2022.2051859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This study was aimed to evaluate the therapeutic effects and potent mechanisms of a novel GLP-1/GIP dual agonist on hyperglycemia and myocardial injury in diabetic mice. Novel dual-receptor agonists were designed and then evaluated via in vitro receptor activation assays. Acute hypoglycemic effects were assessed in diabetic mice induced by intraperitoneal injection of streptozotocin. Chronic effects of dual-receptor agonists on diabetes as well as diabetic cardiomyopathy were investigated in DCM model mice. Effects of the in vitro coculture of dual-receptor agonists with or without signaling pathway inhibitors on the cell viability and apoptosis of primary cardiomyocytes under a high-glucose state were assessed via MTT and western blotting methods to investigate the probable mechanism. AP5 exhibited balanced activities of dual-receptor activation in vitro and improved hypoglycemic ability in diabetic mice. Moreover, chronic treatment of AP5 achieved the prominently improved efficacy in reversing the deteriorative diabetic disorders and reducing the myocardial injury markers in DCM mice. Moreover, AP5 also inhibited the apoptosis and improved the survival rate of primary cardiomyocytes under a high-glucose state via increasing the expression levels of antiapoptotic proteins and inhibiting the release of apoptotic proteins, respectively, as well as activating the AMPK/PI3K/Akt signaling pathway. In conclusion, the dual GLP-1/GIP receptor agonist, AP5, can effectively improve diabetic symptoms and exert therapeutic effects on DCM via activating the AMPK/PI3K/Akt pathway, reducing the ROS production, oxidative stress and inflammatory markers in the rodent DCM model.Abbreviation: Diabetes mellitus, DM; diabetic cardiomyopathy, DCM; streptozotocin, STZ; glucagon-like peptide-1, GLP-1; malondialdehyde, MDA; glucose-dependent insulinotropic polypeptide, GIP; creatine kinase, CK; diabetic cardiomyopathy, DCM; serum superoxide dismutase; SOD; total superoxide disumutase, T-SOD; Methyl Thiazolyl Tetrazolium, MTT; lactate dehydrogenase; LDH; Adenosine Monophosphate-Activated Protein Kinase, AMPK; Dulbecco’s modified Eagle medium, DMEM; Fetal Bovine Serum, FBS; Reactive Oxygen Species, ROS; Glyceraldehyde-phosphate dehydrogenase, GAPDH; Surface Plasmon Resonance, SPR; Ethylene Diamine Tetraacetic Acid, EDTA; Interleukin-1β, IL-1β; Phosphoinositol 3-kinase, PI3K; Tumor necrosis factor, TNF-α; Renin-angiotensin-aldosterone system, RAAS; Glucose transporter, GLUT; Dipeptidyl peptidase-IV, DPP-IV; oxygen free radicals, OFR;
Collapse
Affiliation(s)
- Ying Wang
- Department of Cardiology, Nantong Third People's Hospital and the Third People's Hospital Affiliated to Nantong University, Nantong, People's Republic of China
| | - Fei Cai
- Department of Cardiology, Nantong Third People's Hospital and the Third People's Hospital Affiliated to Nantong University, Nantong, People's Republic of China
| | - Gang Li
- Department of Cardiology, Nantong Third People's Hospital and the Third People's Hospital Affiliated to Nantong University, Nantong, People's Republic of China
| | - Yong Tao
- Department of Intensive Care Unit, Tumor Hospital Affiliated to Nantong University, Nantong Tumor Hospital, Nantong, People's Republic of China
| |
Collapse
|
36
|
Liu Y, Chen L, Wu H, Zhang H. Delivery of astragalus polysaccharide by ultrasound microbubbles attenuate doxorubicin-induced cardiomyopathy in rodent animals. Bioengineered 2022; 13:8419-8431. [PMID: 35322740 PMCID: PMC9161865 DOI: 10.1080/21655979.2022.2050481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The aim of this study was to investigate the cardioprotective effects and probable mechanism of ultrasound-targeted microbubble destruction (UTMD) combined with astragalus polysaccharide (APS) on diabetic cardiomyopathy (DCM) model rats. The DCM rats with diabetes and cardiomyopathy were induced via chronic treatment of doxorubicin and then randomly divided into the (1) DCM model group; (2) APS microbubble group; (3) UTMDgroup; and (4) APS microbubbles combined with UTMD group. After 4-week intervention, the fasting blood glucose levels, body weight, %HbA1c level and glucose tolerance of DCM rats received combination therapy were significantly improved as compared with those of UTMD or saline-treated ones. Moreover, the heart/body weight ratio, and myocardial contractility were all improved after receiving combination therapy groups compared with others. In addition, significantly upregulated activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) as well as significantly downregulated malondialdehyde (MDA) levels were all observed in the ones received combined treatment compared to others. Furthermore, the lipid accumulation and the expression levels of inflammatory factors were all significantly down-regulated in those ones received combination therapy compared with others (all P < 0.05). Further pathological analysis demonstrated that combination therapy effectively ameliorated fibrosis and myocardial morphological changes of DCM rats via activating the upregulation of AMPK and PPAR-γ signaling pathway, and inhibiting NF-κB activity in myocardial tissues of DCM rats. In conclusion, APS microbubbles combined with UTMD effectively protect the myocardial injury of DCM rats via activating AMPK signaling pathway to alleviate inflammation response, fibrosis and oxidative stress in myocardial tissues.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Ultrasound, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Li Chen
- Department of Ultrasound, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Hao Wu
- Department of Ultrasound, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Hebin Zhang
- Department of Ultrasound, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
37
|
Wu H, Norton V, Cui K, Zhu B, Bhattacharjee S, Lu YW, Wang B, Shan D, Wong S, Dong Y, Chan SL, Cowan D, Xu J, Bielenberg DR, Zhou C, Chen H. Diabetes and Its Cardiovascular Complications: Comprehensive Network and Systematic Analyses. Front Cardiovasc Med 2022; 9:841928. [PMID: 35252405 PMCID: PMC8891533 DOI: 10.3389/fcvm.2022.841928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a worldwide health problem that usually comes with severe complications. There is no cure for diabetes yet and the threat of these complications is what keeps researchers investigating mechanisms and treatments for diabetes mellitus. Due to advancements in genomics, epigenomics, proteomics, and single-cell multiomics research, considerable progress has been made toward understanding the mechanisms of diabetes mellitus. In addition, investigation of the association between diabetes and other physiological systems revealed potentially novel pathways and targets involved in the initiation and progress of diabetes. This review focuses on current advancements in studying the mechanisms of diabetes by using genomic, epigenomic, proteomic, and single-cell multiomic analysis methods. It will also focus on recent findings pertaining to the relationship between diabetes and other biological processes, and new findings on the contribution of diabetes to several pathological conditions.
Collapse
Affiliation(s)
- Hao Wu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Vikram Norton
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Kui Cui
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Bo Zhu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Sudarshan Bhattacharjee
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yao Wei Lu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Beibei Wang
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Dan Shan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Scott Wong
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yunzhou Dong
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Siu-Lung Chan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Douglas Cowan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Jian Xu
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Diane R Bielenberg
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Hong Chen
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
38
|
Khutami C, Sumiwi SA, Khairul Ikram NK, Muchtaridi M. The Effects of Antioxidants from Natural Products on Obesity, Dyslipidemia, Diabetes and Their Molecular Signaling Mechanism. Int J Mol Sci 2022; 23:ijms23042056. [PMID: 35216172 PMCID: PMC8875143 DOI: 10.3390/ijms23042056] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity is a risk factor that leads to the development of other diseases such as dyslipidemia and diabetes. These three metabolic disorders can occur simultaneously, hence, the treatment requires many drugs. Antioxidant compounds have been reported to have activities against obesity, dyslipidemia and diabetes via several mechanisms. This review aims to discuss the antioxidant compounds that have activity against obesity, dyslipidemia and diabetes together with their molecular signaling mechanism. The literature discussed in this review was obtained from the PUBMED database. Based on the collection of literature obtained, antioxidant compounds having activity against the three disorders (obesity, dyslipidemia and diabetes) were identified. The activity is supported by various molecular signaling pathways that are influenced by these antioxidant compounds, further study of which would be useful in predicting drug targets for a more optimal effect. This review provides insights on utilizing one of these antioxidant compounds as opposed to several drugs. It is hoped that in the future, the number of drugs in treating obesity, dyslipidemia and diabetes altogether can be minimized consequently reducing the risk of side effects.
Collapse
Affiliation(s)
- Chindiana Khutami
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia; (C.K.); (S.A.S.)
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia; (C.K.); (S.A.S.)
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Research in Biotechnology for Agriculture (CEBAR), Kuala Lumpur 50603, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia
- Correspondence:
| |
Collapse
|
39
|
Tang Z, Wang P, Dong C, Zhang J, Wang X, Pei H. Oxidative Stress Signaling Mediated Pathogenesis of Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5913374. [PMID: 35103095 PMCID: PMC8800599 DOI: 10.1155/2022/5913374] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
As a serious cardiovascular complication, diabetic cardiomyopathy (DCM) refers to diabetes-related changes in myocardial structure and function, which is obviously different from those cardiomyopathy secondary to hypertension, coronary heart disease, and valvular disease. The clinical features of DCM are left ventricular hypertrophy, myocardial fibrosis, and impaired diastolic function. DCM will lead to cardiac dysfunction, eventually progress to cardiac arrhythmia, heart failure, and sudden cardiac death. At present, the pathogenesis of DCM is complex and not fully elucidated, and oxidative stress (OS), inflammatory response, glucolipid metabolism disorder, etc., are considered as the potential pathophysiological mechanisms. As a consequence, there is no specific and effective treatment for DCM. OS refers to the imbalance between reactive oxygen species (ROS) accumulation and scavenging, oxidation, and antioxidants in vivo, which is widely studied in DCM. Numerous studies have pointed out that regulating the OS signaling pathways and reducing the generation and accumulation of ROS are potential directions for the treatment of DCM. This review summarizes the major OS signaling pathways that are related to the pathogenesis of DCM, providing ideas about further research and therapy.
Collapse
Affiliation(s)
- Zhaobing Tang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Peng Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Chao Dong
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Juan Zhang
- Emei Rehabilitation and Sanatorium Center of PLA, Leshan 614201, China
| | - Xiong Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Haifeng Pei
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
40
|
Li Y, Luo WW, Cheng X, Xiang HR, He B, Zhang QZ, Peng WX. Curcumin attenuates isoniazid-induced hepatotoxicity by the upregulating SIRT1/PGC-1α/NRF1 pathway. J Appl Toxicol 2022; 42:1192-1204. [PMID: 35032049 DOI: 10.1002/jat.4288] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022]
Abstract
As a serious infectious disease, tuberculosis threatens global public health. Isoniazid is the first-line drug not only in active tuberculosis but also in its prevention. Severe hepatotoxicity greatly limits its use. Curcumin, extracted from turmeric, has been found to relieve isoniazid-induced hepatotoxicity. However, the mechanism of isoniazid-induced hepatotoxicity and the protective effects of curcumin are not yet understood completely. We established both cell and animal models about isoniazid-induced hepatotoxicity, and investigated the new mechanism of curcumin against isoniazid-induced liver injury. The experimental data in our study demonstrated that curcumin ameliorated isoniazid-mediated liver oxidative stress. The protective effects of curcumin were demonstrated confirmed to be correlated with upregulating SIRT1/PGC-1α/NRF1 pathway. Western blot revealed that while inhibiting SIRT1 by the siRNA1 (a SIRT1 inhibitor), the expressions of SIRT1, PGC-1α/Ac-PGC-1α, and NRF1 decreased, and the protective effect that curcumin exerted on isoniazid-treated L-02 cells was significantly attenuated. Furthermore, curcumin improved liver functions and reduced necrosis of the isoniazid-treated BALB/c mice, accompanied by downregulating oxidative stress and inflammation in liver. Western blot revealed that curcumin treatment activates the SIRT1/PGC-1α/NRF1 pathway in the isoniazid-treated BALB/c mice. In conclusion, we found one mechanism of isoniazid-induced hepatotoxicity was downregulating the SIRT1/PGC-1α/NRF1 pathway, and curcumin attenuated this hepatotoxicity by activating it. Our study provided a novel approach and mechanism for the treatment of isoniazid-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yun Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen-Wen Luo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuan Cheng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huai-Rong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bei He
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi-Zhi Zhang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen-Xing Peng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| |
Collapse
|
41
|
da Silva JS, Gonçalves RGJ, Vasques JF, Rocha BS, Nascimento-Carlos B, Montagnoli TL, Mendez-Otero R, de Sá MPL, Zapata-Sudo G. Mesenchymal Stem Cell Therapy in Diabetic Cardiomyopathy. Cells 2022; 11:cells11020240. [PMID: 35053356 PMCID: PMC8773977 DOI: 10.3390/cells11020240] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
The incidence and prevalence of diabetes mellitus (DM) are increasing worldwide, and the resulting cardiac complications are the leading cause of death. Among these complications is diabetes-induced cardiomyopathy (DCM), which is the consequence of a pro-inflammatory condition, oxidative stress and fibrosis caused by hyperglycemia. Cardiac remodeling will lead to an imbalance in cell survival and death, which can promote cardiac dysfunction. Since the conventional treatment of DM generally does not address the prevention of cardiac remodeling, it is important to develop new alternatives for the treatment of cardiovascular complications induced by DM. Thus, therapy with mesenchymal stem cells has been shown to be a promising approach for the prevention of DCM because of their anti-apoptotic, anti-fibrotic and anti-inflammatory effects, which could improve cardiac function in patients with DM.
Collapse
Affiliation(s)
- Jaqueline S. da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
| | - Renata G. J. Gonçalves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-170, RJ, Brazil; (R.G.J.G.); (R.M.-O.)
| | - Juliana F. Vasques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-170, RJ, Brazil;
| | - Bruna S. Rocha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
| | - Bianca Nascimento-Carlos
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
| | - Tadeu L. Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
| | - Rosália Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-170, RJ, Brazil; (R.G.J.G.); (R.M.-O.)
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil
| | - Mauro P. L. de Sá
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro 21941-902, RJ, Brazil; (J.S.d.S.); (B.S.R.); (B.N.-C.); (T.L.M.)
- Instituto do Coração Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco, 255, Rio de Janeiro 21941-617, RJ, Brazil;
- Correspondence: or ; Tel.: +55-21-39386505
| |
Collapse
|
42
|
Peng M, Liu H, Ji Q, Ma P, Niu Y, Ning S, Sun H, Pang X, Yang Y, Zhang Y, Han J, Hao G. Fufang Xueshuantong Improves Diabetic Cardiomyopathy by Regulating the Wnt/ β-Catenin Pathway. Int J Endocrinol 2022; 2022:3919161. [PMID: 36237833 PMCID: PMC9553353 DOI: 10.1155/2022/3919161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/02/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the main complications of diabetic patients and the major reason for the high prevalence of heart failure in diabetic patients. Fufang Xueshuantong (FXST) is a traditional Chinese medicine formula commonly used in the treatment of diabetic retinopathy and stable angina pectoris. However, the role of FXST in DCM has not yet been clarified. This study was conducted to investigate the effects of FXST on diabetic myocardial lesions and reveal its molecular mechanism. The rats were intraperitoneally injected with 65 mg/kg streptozotocin (STZ) to induce diabetes mellitus (DM). DM rats were given saline or FXST. The rats in the control group were intraperitoneally injected with an equal amount of sodium citrate buffer and gavaged with saline. After 12 weeks, echocardiography, heart weight index (HWI), and myocardial pathological changes were determined. The expression of transforming growth factor-beta1 (TGF-β1), collagen I, and collagen III was examined using immunofluorescence staining and western blot. The expressions of Wnt/β-catenin signaling pathway-related proteins and mRNA were detected by western blot and real-time PCR. The results showed that FXST significantly improved cardiac function, ameliorated histopathological changes, and decreased HWI in the DM rats. FXST significantly inhibited the expression of myocardial TGF-β1, collagen I, and collagen III in DM rats. Furthermore, FXST significantly inhibited the Wnt/β-catenin pathway. Taken together, FXST has a protective effect on DCM, which might be mediated by suppressing the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Meizhong Peng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hanying Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingxuan Ji
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Pan Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yiting Niu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shangqiu Ning
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huihui Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinxin Pang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqian Yang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Zhang
- Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Han
- Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei Hao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Gansu, China
| |
Collapse
|
43
|
Tetrahydrocurcumin Upregulates the Adiponectin-AdipoR Pathway and Improves Insulin Signaling and Pancreatic β-Cell Function in High-Fat Diet/Streptozotocin-Induced Diabetic Obese Mice. Nutrients 2021; 13:nu13124552. [PMID: 34960104 PMCID: PMC8707974 DOI: 10.3390/nu13124552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Impairment of adiponectin production and function is closely associated with insulin resistance and type 2 diabetes, which are linked to obesity. Studies in animal models have documented the anti-diabetic effects of tetrahydrocurcumin (THC). Although several possible mechanisms have been proposed, the contribution of adiponectin signaling on THC-mediated antihyperglycemic effects remains unknown. Here, we report that adiposity, steatosis, and hyperglycemia were potently attenuated in high-fat diet/streptozotocin-induced diabetic obese mice after they received 20 and 100 mg/kg THC for 14 weeks. THC upregulated UCP-1 in adipose tissue and elevated adiponectin levels in the circulation. THC upregulated the AdipoR1/R2-APPL1-mediated pathway in the liver and skeletal muscle, which contributes to improved insulin signaling, glucose utilization, and lipid metabolism. Furthermore, THC treatment significantly (p < 0.05) preserved islet mass, reduced apoptosis, and restored defective insulin expression in the pancreatic β-cells of diabetic obese mice, which was accompanied by an elevation of AdipoR1 and APPL1. These results demonstrated a potential mechanism underlying the beneficial effects of THC against hyperglycemia via the adiponectin-AdipoR pathway, and thus, may lead to a novel therapeutic use for type 2 diabetes.
Collapse
|
44
|
Bahrami A, Montecucco F, Carbone F, Sahebkar A. Effects of Curcumin on Aging: Molecular Mechanisms and Experimental Evidence. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8972074. [PMID: 34692844 PMCID: PMC8528582 DOI: 10.1155/2021/8972074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/01/2023]
Abstract
Aging is characterized by a progressive inability to maintain homeostasis, self-repair, renewal, performance, and fitness of different tissues throughout the lifespan. Senescence is occurring following enormous intracellular or extracellular stress stimuli. Cellular senescence serves as an antiproliferative process that causes permanent cell cycle arrest and restricts the lifespan. Senescent cells are characterized by terminal cell cycle arrest, enlarged lysosome, and DNA double-strand breaks as well as lipofuscin granularity, senescence-associated heterochromatin foci, and activation of DNA damage response. Curcumin, a hydrophobic polyphenol, is a bioactive chemical constituent of the rhizomes of Curcuma longa Linn (turmeric), which has been extensively used for the alleviation of various human disorders. In addition to its pleiotropic effects, curcumin has been suggested to have antiaging features. In this review, we summarized the therapeutic potential of curcumin in the prevention and delaying of the aging process.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit of Akbar Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Parker AM, Tate M, Prakoso D, Deo M, Willis AM, Nash DM, Donner DG, Crawford S, Kiriazis H, Granata C, Coughlan MT, De Blasio MJ, Ritchie RH. Characterisation of the Myocardial Mitochondria Structural and Functional Phenotype in a Murine Model of Diabetic Cardiomyopathy. Front Physiol 2021; 12:672252. [PMID: 34539423 PMCID: PMC8442993 DOI: 10.3389/fphys.2021.672252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
People affected by diabetes are at an increased risk of developing heart failure than their non-diabetic counterparts, attributed in part to a distinct cardiac pathology termed diabetic cardiomyopathy. Mitochondrial dysfunction and excess reactive oxygen species (ROS) have been implicated in a range of diabetic complications and are a common feature of the diabetic heart. In this study, we sought to characterise impairments in mitochondrial structure and function in a recently described experimental mouse model of diabetic cardiomyopathy. Diabetes was induced in 6-week-old male FVB/N mice by the combination of three consecutive-daily injections of low-dose streptozotocin (STZ, each 55 mg/kg i.p.) and high-fat diet (42% fat from lipids) for 26 weeks. At study end, diabetic mice exhibited elevated blood glucose levels and impaired glucose tolerance, together with increases in both body weight gain and fat mass, replicating several aspects of human type 2 diabetes. The myocardial phenotype of diabetic mice included increased myocardial fibrosis and left ventricular (LV) diastolic dysfunction. Elevated LV superoxide levels were also evident. Diabetic mice exhibited a spectrum of LV mitochondrial changes, including decreased mitochondria area, increased levels of mitochondrial complex-III and complex-V protein abundance, and reduced complex-II oxygen consumption. In conclusion, these data suggest that the low-dose STZ-high fat experimental model replicates some of the mitochondrial changes seen in diabetes, and as such, this model may be useful to study treatments that target the mitochondria in diabetes.
Collapse
Affiliation(s)
- Alex M Parker
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - Mitchel Tate
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Darnel Prakoso
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Andrew M Willis
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - David M Nash
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Daniel G Donner
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Simon Crawford
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Melbourne, VIC, Australia
| | - Helen Kiriazis
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Cesare Granata
- Department of Diabetes, Monash University, Melbourne, VIC, Australia.,Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | | | - Miles J De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
46
|
Cao Y, Jiang W, Bai H, Li J, Zhu H, Xu L, Li Y, Li K, Tang H, Duan W, Wang S. Study on active components of mulberry leaf for the prevention and treatment of cardiovascular complications of diabetes. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
47
|
Quercetin Alleviates the Accumulation of Superoxide in Sodium Iodate-Induced Retinal Autophagy by Regulating Mitochondrial Reactive Oxygen Species Homeostasis through Enhanced Deacetyl-SOD2 via the Nrf2-PGC-1α-Sirt1 Pathway. Antioxidants (Basel) 2021; 10:antiox10071125. [PMID: 34356358 PMCID: PMC8301007 DOI: 10.3390/antiox10071125] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/18/2023] Open
Abstract
Oxidative damage of retinal pigment epithelium (RPE) cells plays an important role in the pathogenesis of blindness-related diseases, such as age-related macular degeneration (AMD). Quercetin, a bioactive flavonoid compound, has been shown to have a protective effect against oxidative stress-induced cell apoptosis and inflammation in RPE cells; however, the detailed mechanism underlying this protective effect is unclear. Therefore, the aim of this study was to investigate the regulatory mechanism of quercetin in a sodium iodate (NaIO3)-induced retinal damage. The clinical features of the mice, the production of oxidative stress, and the activity of autophagy and mitochondrial biogenesis were examined. In the mouse model, NaIO3 treatment caused changes in the retinal structure and reduced pupil constriction, and quercetin treatment reversed the oxidative stress-related pathology by decreasing the level of superoxide dismutase 2 (SOD2) while enhancing the serum levels of catalase and glutathione. The increased level of reactive oxygen species in the NaIO3-treated ARPE19 cells was improved by treatment with quercetin, accompanied by a reduction in autophagy and mitochondrial biogenesis. Our findings indicated that the effects of quercetin on regulating the generation of mtROS were dependent on increased levels of deacetyl-SOD2 through the Nrf2-PGC-1α-Sirt1 signaling pathway. These results demonstrated that quercetin may have potential therapeutic efficacy for the treatment of AMD through the regulation of mtROS homeostasis.
Collapse
|
48
|
Abstract
Cardiac fibrosis stems from the changes in the expression of fibrotic genes in cardiac fibroblasts (CFs) in response to the tissue damage induced by various cardiovascular diseases (CVDs) leading to their transformation into active myofibroblasts, which produce high amounts of extracellular matrix (ECM) proteins leading, in turn, to excessive deposition of ECM in cardiac tissue. The excessive accumulation of ECM elements causes heart stiffness, tissue scarring, electrical conduction disruption and finally cardiac dysfunction and heart failure. Curcumin (Cur; also known as diferuloylmethane) is a polyphenol compound extracted from rhizomes of Curcuma longa with an influence on an extensive spectrum of biological phenomena including cell proliferation, differentiation, inflammation, pathogenesis, chemoprevention, apoptosis, angiogenesis and cardiac pathological changes. Cumulative evidence has suggested a beneficial role for Cur in improving disrupted cardiac function developed by cardiac fibrosis by establishing a balance between degradation and synthesis of ECM components. There are various molecular mechanisms contributing to the development of cardiac fibrosis. We presented a review of Cur effects on cardiac fibrosis and the discovered underlying mechanisms by them Cur interact to establish its cardio-protective effects.
Collapse
|
49
|
Li L, Liu X, Li S, Wang Q, Wang H, Xu M, An Y. Tetrahydrocurcumin protects against sepsis-induced acute kidney injury via the SIRT1 pathway. Ren Fail 2021; 43:1028-1040. [PMID: 34187277 PMCID: PMC8253188 DOI: 10.1080/0886022x.2021.1942915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sepsis-induced acute kidney injury (AKI) continues to be associated with poor outcomes in critical care patients. Previous research has revealed that tetrahydrocurcumin (THC) exerts renoprotective effects in multiple nephritic disorders by modulating inflammation and oxidative stress. However, the effects of THC on sepsis-induced AKI and the underlying mechanisms remain unclear. In this study, a mouse model of sepsis-induced AKI, generated by cecal ligation and puncture operation, was used to investigate the protective effects of THC and the role of SIRT1. Histological manifestation and TUNEL analysis were observed to determine the severity of kidney damage. Levels of BUN, SCr, KIM-1, and UAlb/Cr were calculated to assess the renal function. Expressions of IL-1β, IL-6, and TNF-α were measured to evaluate the inflammatory response. MDA content, SOD, GSH, CAT, and GPx activities and DHE staining were analyzed to estimate the degree of oxidative stress. Protein expressions of SIRT1, Ac-p65, and Ac-foxo1 were detected to explore the underlying mechanisms. We observed that THC not only increased the survival rate, improved the kidney function and ameliorated the renal histological damage of septic mice, but also inhibited inflammatory response, prohibited oxidative stress, and prevented cell apoptosis in renal tissues in septic mice. Mechanistically, THC remarkably increased the expression of SIRT1, accompanied by decreased expressions of downstream molecules Ac-p65 and Ac-foxo1. Meanwhile, the beneficial effects of THC were clearly abolished by the SIRT1-specific inhibitor EX527. These results delineate that THC prevents sepsis-induced AKI by suppressing inflammation and oxidative stress through activating the SIRT1 signaling. Abbreviation: Ac-p65: acetylated p65; Ac-foxo 1: acetylated forkhead box O1; AKI: acute kidney injury; BUN: blood urea nitrogen; CAT: catalase; DHE: dihydroethidium; GPx: glutathione peroxidase; GSH: reduced glutathione; IL-1β: Interleukin-1 beta; IL-6: Interleukin-6; KIM-1: kidney injury molecule 1; MDA: malondialdehyde; SCr: serum creatinine; SIRT1: silent information regulator 1; SOD: superoxide dismutase; THC: tetrahydrocurcumin; TNF-α: tumor necrosis factor-alpha; TUNEL: TdT-mediated dUTP Nick-End Labeling; UAlb/Cr: urine micro albumin/creatinine.
Collapse
Affiliation(s)
- Lu Li
- Department of Nephrology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Xiaoxi Liu
- Department of Nephrology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Shasha Li
- Department of Nephrology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Qingyan Wang
- Department of Nephrology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Hongru Wang
- Department of Nephrology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Menglu Xu
- Department of Nephrology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital, Xi'an Medical University, Xi'an, China
| |
Collapse
|
50
|
Zhu HZ, Zhang LY, Zhai ME, Xia L, Cao Y, Xu L, Li KF, Jiang LQ, Shi H, Li X, Zhou YN, Ding W, Wang DX, Gao EH, Liu JC, Yu SQ, Duan WX. GDF11 Alleviates Pathological Myocardial Remodeling in Diabetic Cardiomyopathy Through SIRT1-Dependent Regulation of Oxidative Stress and Apoptosis. Front Cell Dev Biol 2021; 9:686848. [PMID: 34262905 PMCID: PMC8273395 DOI: 10.3389/fcell.2021.686848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor β superfamily that alleviates cardiac hypertrophy, myocardial infarction, and vascular injury by regulating oxidative stress, inflammation, and cell survival. However, the roles and underlying mechanisms of GDF11 in diabetic cardiomyopathy (DCM) remain largely unknown. In this study, we sought to determine whether GDF11 could prevent DCM. After establishing a mouse model of diabetes by administering a high-fat diet and streptozotocin, intramyocardial injection of an adeno-associated virus was used to achieve myocardium-specific GDF11 overexpression. GDF11 remarkably improved cardiac dysfunction and interstitial fibrosis by reducing the levels of reactive oxygen species and protecting against cardiomyocyte loss. Mechanistically, decreased sirtuin 1 (SIRT1) expression and activity were observed in diabetic mice, which was significantly increased after GDF11 overexpression. To further explore how SIRT1 mediates the role of GDF11, the selective inhibitor EX527 was used to block SIRT1 signaling pathway, which abolished the protective effects of GDF11 against DCM. In vitro studies confirmed that GDF11 protected against H9c2 cell injury in high glucose and palmitate by attenuating oxidative injury and apoptosis, and these effects were eliminated by SIRT1 depletion. Our results demonstrate for the first time that GDF11 protects against DCM by regulating SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Han-Zhao Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Li-Yun Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Meng-En Zhai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Lin Xia
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yu Cao
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| | - Lu Xu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, China
| | - Kai-Feng Li
- Basic Medical Teaching Experiment Center, Basic Medical College, The Air Force Medical University, Xi'an, China
| | - Li-Qing Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Heng Shi
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Xiang Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Ye-Nong Zhou
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Wei Ding
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Dong-Xu Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Er-He Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, United States
| | - Jin-Cheng Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Shi-Qiang Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| | - Wei-Xun Duan
- Department of Cardiovascular Surgery, The First Affiliated Hospital, The Air Force Medical University, Xi'an, China
| |
Collapse
|