1
|
Orywal K, Socha K, Iwaniuk P, Kaczyński P, Farhan JA, Zoń W, Łozowicka B, Perkowski M, Mroczko B. Vitamins in the Prevention and Support Therapy of Neurodegenerative Diseases. Int J Mol Sci 2025; 26:1333. [PMID: 39941101 PMCID: PMC11818229 DOI: 10.3390/ijms26031333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), which are a consequence of the progressive loss of neuronal function and structure, cause significant cognitive impairment. The incidence of these diseases in the world's population is constantly increasing as a result of an aging population. Although genetic and environmental factors are most often mentioned as the pathogenetic factors of these diseases, increasing evidence points to the important role of proper nutrition in the prevention and support of the treatment of these disorders. A healthy, balanced diet can mitigate the risks associated with the risk factors mentioned above and slow the progression of the disease by reducing oxidative stress and inflammation. Vitamins B, D, E, C, K, and A have been shown to support cognitive functions and protect the nervous system. This review demonstrates the importance of vitamins in preventing and supporting the therapy of neurodegenerative diseases. Information regarding the health-promoting properties of these vitamins must be effectively communicated to consumers seeking to protect their health, particularly in the context of neurodegenerative diseases. Consequently, this review also examines the authorized health claims under EU food law related to these vitamins, assessing their role in promoting awareness of the vitamins' potential benefits for neuroprotection and the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Karolina Orywal
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland;
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Piotr Iwaniuk
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland; (P.I.); (P.K.); (B.Ł.)
| | - Piotr Kaczyński
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland; (P.I.); (P.K.); (B.Ł.)
| | - Jakub Ali Farhan
- Department of Public International Law and European Law, University of Białystok, Mickiewicza 1, 15-213 Białystok, Poland; (J.A.F.); (W.Z.); (M.P.)
| | - Wojciech Zoń
- Department of Public International Law and European Law, University of Białystok, Mickiewicza 1, 15-213 Białystok, Poland; (J.A.F.); (W.Z.); (M.P.)
| | - Bożena Łozowicka
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland; (P.I.); (P.K.); (B.Ł.)
| | - Maciej Perkowski
- Department of Public International Law and European Law, University of Białystok, Mickiewicza 1, 15-213 Białystok, Poland; (J.A.F.); (W.Z.); (M.P.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
2
|
Li T, Steibel JP, Willette AA. Vitamin B6, B12, and Folate's Influence on Neural Networks in the UK Biobank Cohort. Nutrients 2024; 16:2050. [PMID: 38999798 PMCID: PMC11243472 DOI: 10.3390/nu16132050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND One-carbon metabolism coenzymes may influence brain aging in cognitively unimpaired adults. METHODS Baseline data were used from the UK Biobank cohort. Estimated intake of vitamin B6, B12, and folate was regressed onto neural network functional connectivity in five resting-state neural networks. Linear mixed models tested coenzyme main effects and interactions with Alzheimer's disease (AD) risk factors. RESULTS Increased B6 and B12 estimated intake were linked with less functional connectivity in most networks, including the posterior portion of the Default Mode Network. Conversely, higher folate was related to more connectivity in similar networks. AD family history modulated these associations: Increased estimated intake was positively associated with stronger connectivity in the Primary Visual Network and Posterior Default Mode Network in participants with an AD family history. In contrast, increased vitamin B12 estimated intake was associated with less connectivity in the Primary Visual Network and the Cerebello-Thalamo-Cortical Network in those without an AD family history. CONCLUSIONS The differential patterns of association between B vitamins and resting-state brain activity may be important in understanding AD-related changes in the brain. Notably, AD family history appears to play a key role in modulating these relationships.
Collapse
Affiliation(s)
- Tianqi Li
- Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA;
| | - Juan Pedro Steibel
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA;
| | - Auriel A. Willette
- Department of Neurology, Rutgers University, New Brunswick, NJ 07101, USA
| |
Collapse
|
3
|
Sale A, Noale M, Cintoli S, Tognoni G, Braschi C, Berardi N, Maggi S, Maffei L. Long-term beneficial impact of the randomised trial 'Train the Brain', a motor/cognitive intervention in mild cognitive impairment people: effects at the 14-month follow-up. Age Ageing 2023; 52:7160021. [PMID: 37167616 DOI: 10.1093/ageing/afad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/23/2023] [Indexed: 05/13/2023] Open
Abstract
No treatment options are currently available to counteract cognitive deficits and/or delay progression towards dementia in older people with mild cognitive impairment (MCI). The 'Train the Brain' programme is a combined motor and cognitive intervention previously shown to markedly improve cognitive functions in MCI individuals compared to non-trained MCI controls, as assessed at the end of the 7-month intervention. Here, we extended the previous analyses to include the long-term effects of the intervention and performed a data disaggregation by gender, education and age of the enrolled participants. We report that the beneficial impact on cognitive functions was preserved at the 14-month follow-up, with greater effects in low-educated compared to high-educated individuals, and in women than in men.
Collapse
Affiliation(s)
- Alessandro Sale
- Neuroscience Institute CNR (National Research Council), Via Moruzzi 1, Pisa 56124, Italy
| | - Marianna Noale
- Neuroscience Institute CNR (National Research Council), Via Giustiniani 2, Padua 35128, Italy
| | - Simona Cintoli
- Department of Clinical and Experimental Medicine-Neurology Unit, University of Pisa and AOU Pisa, Pisa, Italy
| | - Gloria Tognoni
- Department of Clinical and Experimental Medicine-Neurology Unit, University of Pisa and AOU Pisa, Pisa, Italy
| | - Chiara Braschi
- Neuroscience Institute CNR (National Research Council), Via Moruzzi 1, Pisa 56124, Italy
| | - Nicoletta Berardi
- Neuroscience Institute CNR (National Research Council), Via Moruzzi 1, Pisa 56124, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, Florence University, Via San Salvi, Florence 50100, Italy
| | - Stefania Maggi
- Neuroscience Institute CNR (National Research Council), Via Giustiniani 2, Padua 35128, Italy
| | - Lamberto Maffei
- Neuroscience Institute CNR (National Research Council), Via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
4
|
Poli A, Gemignani A, Miccoli M. Randomized Trial on the Effects of a Group EMDR Intervention on Narrative Complexity and Specificity of Autobiographical Memories: A Path Analytic and Supervised Machine-Learning Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7684. [PMID: 35805348 PMCID: PMC9265795 DOI: 10.3390/ijerph19137684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023]
Abstract
Narratives of autobiographical memories may be impaired by adverse childhood experiences, generating narrative fragmentation and increased levels of perceived distress. Eye movement desensitization and reprocessing (EMDR) proved to be an effective treatment to overcome traumatic experiences and to promote coherent autobiographical narratives. However, the specific mechanisms by which EMDR promotes narrative coherence remains largely unknown. We conducted a randomized controlled pilot trial (ClinicalTrials.gov Identifier NCT05319002) in a non-clinical sample of 27 children recruited in a primary school. Participants were randomly assigned to the experimental and control groups. The experimental group underwent a three-week group EMDR intervention. Subjective unit of distress (SUD), validity of cognition (VoC), classification of autobiographical memories, narrative complexity and specificity were assessed before and after the group EMDR intervention. The group EMDR intervention was able to improve SUD and VoC scales, narrative complexity and specificity, and promoted the classification of autobiographical memories as relational. The path analysis showed that SUD was able to predict VoC and narrative specificity, which, in turn, was able to predict both narrative complexity and the classification of autobiographical memories as relational. Machine-learning analysis showed that random tree classifier outperformed all other models by achieving a 93.33% accuracy. Clinical implications are discussed.
Collapse
Affiliation(s)
- Andrea Poli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and of Critical Care Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Mario Miccoli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
5
|
Eszlari N, Bruncsics B, Millinghoffer A, Hullam G, Petschner P, Gonda X, Breen G, Antal P, Bagdy G, Deakin JFW, Juhasz G. Biology of Perseverative Negative Thinking: The Role of Timing and Folate Intake. Nutrients 2021; 13:4396. [PMID: 34959947 PMCID: PMC8703428 DOI: 10.3390/nu13124396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Past-oriented rumination and future-oriented worry are two aspects of perseverative negative thinking related to the neuroticism endophenotype and associated with depression and anxiety. Our present aim was to investigate the genomic background of these two aspects of perseverative negative thinking within separate groups of individuals with suboptimal versus optimal folate intake. We conducted a genome-wide association study in the UK Biobank database (n = 72,621) on the "rumination" and "worry" items of the Eysenck Personality Inventory Neuroticism scale in these separate groups. Optimal folate intake was related to lower worry, but unrelated to rumination. In contrast, genetic associations for worry did not implicate specific biological processes, while past-oriented rumination had a more specific genetic background, emphasizing its endophenotypic nature. Furthermore, biological pathways leading to rumination appeared to differ according to folate intake: purinergic signaling and circadian regulator gene ARNTL emerged in the whole sample, blastocyst development, DNA replication, and C-C chemokines in the suboptimal folate group, and prostaglandin response and K+ channel subunit gene KCNH3 in the optimal folate group. Our results point to possible benefits of folate in anxiety disorders, and to the importance of simultaneously taking into account genetic and environmental factors to determine personalized intervention in polygenic and multifactorial disorders.
Collapse
Affiliation(s)
- Nora Eszlari
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.); (G.B.); (G.J.)
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (A.M.); (X.G.)
| | - Bence Bruncsics
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Magyar Tudósok krt. 2, H-1521 Budapest, Hungary; (B.B.); (G.H.); (P.A.)
| | - Andras Millinghoffer
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (A.M.); (X.G.)
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Magyar Tudósok krt. 2, H-1521 Budapest, Hungary; (B.B.); (G.H.); (P.A.)
| | - Gabor Hullam
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Magyar Tudósok krt. 2, H-1521 Budapest, Hungary; (B.B.); (G.H.); (P.A.)
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - Peter Petschner
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.); (G.B.); (G.J.)
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Xenia Gonda
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (A.M.); (X.G.)
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Gyulai Pál utca 2, H-1085 Budapest, Hungary
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Memory Lane, London SE5 8AF, UK;
- UK National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), London SE5 8AF, UK
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Magyar Tudósok krt. 2, H-1521 Budapest, Hungary; (B.B.); (G.H.); (P.A.)
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.); (G.B.); (G.J.)
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (A.M.); (X.G.)
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - John Francis William Deakin
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK;
| | - Gabriella Juhasz
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.); (G.B.); (G.J.)
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
- SE-NAP 2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| |
Collapse
|
6
|
Scabia G, Testa G, Scali M, Del Turco S, Desiato G, Berardi N, Sale A, Matteoli M, Maffei L, Maffei M, Mainardi M. Reduced ccl11/eotaxin mediates the beneficial effects of environmental stimulation on the aged hippocampus. Brain Behav Immun 2021; 98:234-244. [PMID: 34418501 DOI: 10.1016/j.bbi.2021.08.222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
A deterioration in cognitive performance accompanies brain aging, even in the absence of neurodegenerative pathologies. However, the rate of cognitive decline can be slowed down by enhanced cognitive and sensorimotor stimulation protocols, such as environmental enrichment (EE). Understanding how EE exerts its beneficial effects on the aged brain pathophysiology can help in identifying new therapeutic targets. In this regard, the inflammatory chemokine ccl11/eotaxin-1 is a marker of aging with a strong relevance for neurodegenerative processes. Here, we demonstrate that EE in both elderly humans and aged mice decreases circulating levels of ccl11. Interfering, in mice, with the ccl11 decrease induced by EE ablated the beneficial effects on long-term memory retention, hippocampal neurogenesis, activation of local microglia and of ribosomal protein S6. On the other hand, treatment of standard-reared aged mice with an anti-ccl11 antibody resulted in EE-like improvements in spatial memory, hippocampal neurogenesis, and microglial activation. Taken together, our findings point to a decrease in circulating ccl11 concentration as a key mediator of the enhanced hippocampal function resulting from exposure to EE.
Collapse
Affiliation(s)
- Gaia Scabia
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Pisa, Italy; Obesity and Lipodystrophies Center at Pisa University Hospital, Pisa, Italy
| | - Giovanna Testa
- Laboratory of Biology "Bio@SNS", Scuola Normale Superiore, Pisa, Italy
| | - Manuela Scali
- Institute of Neuroscience, National Research Council (IN-CNR), Pisa, Italy
| | - Serena Del Turco
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Pisa, Italy
| | - Genni Desiato
- Institute of Neuroscience, National Research Council (IN-CNR), Milan, Italy; Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Nicoletta Berardi
- Institute of Neuroscience, National Research Council (IN-CNR), Pisa, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA University of Florence, Florence, Italy
| | - Alessandro Sale
- Institute of Neuroscience, National Research Council (IN-CNR), Pisa, Italy
| | - Michela Matteoli
- Institute of Neuroscience, National Research Council (IN-CNR), Milan, Italy; Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy
| | - Lamberto Maffei
- Laboratory of Biology "Bio@SNS", Scuola Normale Superiore, Pisa, Italy; Institute of Neuroscience, National Research Council (IN-CNR), Pisa, Italy
| | - Margherita Maffei
- Institute of Clinical Physiology, National Research Council (IFC-CNR), Pisa, Italy; Obesity and Lipodystrophies Center at Pisa University Hospital, Pisa, Italy.
| | - Marco Mainardi
- Laboratory of Biology "Bio@SNS", Scuola Normale Superiore, Pisa, Italy; Institute of Neuroscience, National Research Council (IN-CNR), Pisa, Italy.
| | | |
Collapse
|
7
|
Wang X, Ding D, Zhao Q, Liang X, Peng L, Zhao X, Xi Q, Min Z, Wang W, Xu X, Guo Q, Wang PJ. Brain hemodynamic changes in amnestic mild cognitive impairment measured by pulsed arterial spin labeling. Aging (Albany NY) 2020; 12:4348-4356. [PMID: 32167487 PMCID: PMC7093201 DOI: 10.18632/aging.102888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/22/2020] [Indexed: 01/10/2023]
Abstract
We used pulsed arterial spin labeling (PASL) to investigate differences in cerebral blood flow (CBF) between 26 patients with amnestic mild cognitive impairment (aMCI) and 27 controls with normal cognition (NC). Hypoperfusion was observed in the right temporal pole of the middle temporal gyrus and the right inferior temporal gyrus in the aMCI compared with NC group. Interestingly, hyperperfusion was observed in the left temporal pole of the middle temporal gyrus, left superior temporal gyrus, bilateral precuneus, postcentral gyrus, right inferior parietal lobule, and right angular gyrus in the aMCI group, which likely resulted from a compensatory mechanism to maintain advanced neural activities. We found that mean CBF in the right inferior temporal gyrus, precuneus, and postcentral gyrus was positively correlated with cognitive ability in the aMCI but not NC group. Collectively, our data indicate that PASL is a useful noninvasive technique for monitoring changes in CBF and predicting cognitive decline in aMCI.
Collapse
Affiliation(s)
- Xiangbin Wang
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Ding Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Qianhua Zhao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Xiaoniu Liang
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Ling Peng
- Department of Radiology, Shanghai Liqun Hospital, Shanghai 200333, PR China
| | - Xiaohu Zhao
- Department of Radiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Qian Xi
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China
| | - Zhang Min
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Wei Wang
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Xiaowen Xu
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Qihao Guo
- Department of Geriatrics, The Sixth People's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 200233, PR China
| | - Pei-Jun Wang
- Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| |
Collapse
|