1
|
Homolak J. A simple and affordable open-source quantitative tribometric assay and the use thereof for the analysis of a commercial water-based lubricant. Comput Methods Biomech Biomed Engin 2024; 27:1322-1331. [PMID: 37504954 DOI: 10.1080/10255842.2023.2241592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Quantitative assessment of biotribological properties requires expensive specialized equipment. The aim was to: i) adapt an open-source load cell-based platform (PASTA) for biotribometric analysis; ii) study the effects of oxidation on the water-based lubricant using PASTA. Water-based lubricant was treated with 2,2'-azobis(2-amidinopropane) dihydrochloride and/or glutathione. The samples were analyzed with the ORP-146S redox microsensor and PASTA using a modified HX711 integrated circuit bord, NodeMCU ESP-32S, and an open-source Python script. PASTA can be adapted for affordable and reliable quantitative biotribometric assessment. Glutathione can prevent the loss of lubrication capacity of a water-based lubricant upon exposure to air.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
2
|
Tanaka LY, Kumar S, Gutierre LF, Magnun C, Kajihara D, Kang DW, Laurindo FRM, Jo H. Disturbed flow regulates protein disulfide isomerase A1 expression via microRNA-204. Front Physiol 2024; 15:1327794. [PMID: 38638277 PMCID: PMC11024637 DOI: 10.3389/fphys.2024.1327794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Redox processes can modulate vascular pathophysiology. The endoplasmic reticulum redox chaperone protein disulfide isomerase A1 (PDIA1) is overexpressed during vascular proliferative diseases, regulating thrombus formation, endoplasmic reticulum stress adaptation, and structural remodeling. However, both protective and deleterious vascular effects have been reported for PDIA1, depending on the cell type and underlying vascular condition. Further understanding of this question is hampered by the poorly studied mechanisms underlying PDIA1 expression regulation. Here, we showed that PDIA1 mRNA and protein levels were upregulated (average 5-fold) in the intima and media/adventitia following partial carotid ligation (PCL). Our search identified that miR-204-5p and miR-211-5p (miR-204/211), two broadly conserved miRNAs, share PDIA1 as a potential target. MiR-204/211 was downregulated in vascular layers following PCL. In isolated endothelial cells, gain-of-function experiments of miR-204 with miR mimic decreased PDIA1 mRNA while having negligible effects on markers of endothelial activation/stress response. Similar effects were observed in vascular smooth muscle cells (VSMCs). Furthermore, PDIA1 downregulation by miR-204 decreased levels of the VSMC contractile differentiation markers. In addition, PDIA1 overexpression prevented VSMC dedifferentiation by miR-204. Collectively, we report a new mechanism for PDIA1 regulation through miR-204 and identify its relevance in a model of vascular disease playing a role in VSMC differentiation. This mechanism may be regulated in distinct stages of atherosclerosis and provide a potential therapeutic target.
Collapse
Affiliation(s)
- Leonardo Y. Tanaka
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Lucas F. Gutierre
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Celso Magnun
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Daniela Kajihara
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| | - Francisco R. M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
3
|
Solanki K, Bezsonov E, Orekhov A, Parihar SP, Vaja S, White FA, Obukhov AG, Baig MS. Effect of reactive oxygen, nitrogen, and sulfur species on signaling pathways in atherosclerosis. Vascul Pharmacol 2024; 154:107282. [PMID: 38325566 DOI: 10.1016/j.vph.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease in which fats, lipids, cholesterol, calcium, proliferating smooth muscle cells, and immune cells accumulate in the intima of the large arteries, forming atherosclerotic plaques. A complex interplay of various vascular and immune cells takes place during the initiation and progression of atherosclerosis. Multiple reports indicate that tight control of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) production is critical for maintaining vascular health. Unrestricted ROS and RNS generation may lead to activation of various inflammatory signaling pathways, facilitating atherosclerosis. Given these deleterious consequences, it is important to understand how ROS and RNS affect the signaling processes involved in atherogenesis. Conversely, RSS appears to exhibit an atheroprotective potential and can alleviate the deleterious effects of ROS and RNS. Herein, we review the literature describing the effects of ROS, RNS, and RSS on vascular smooth muscle cells, endothelial cells, and macrophages and focus on how changes in their production affect the initiation and progression of atherosclerosis. This review also discusses the contribution of ROS, RNS, and RSS in mediating various post-translational modifications, such as oxidation, nitrosylation, and sulfation, of the molecules involved in inflammatory signaling.
Collapse
Affiliation(s)
- Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia; Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; The Cell Physiology and Pathology Laboratory, Turgenev State University of Orel, Orel, Russia
| | - Alexander Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Suraj P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shivani Vaja
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Fletcher A White
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India.
| |
Collapse
|
4
|
Otunla AA, Shanmugarajah K, Davies AH, Lucia Madariaga M, Shalhoub J. The Biological Parallels Between Atherosclerosis and Cardiac Allograft Vasculopathy: Implications for Solid Organ Chronic Rejection. Cardiol Rev 2024; 32:2-11. [PMID: 38051983 DOI: 10.1097/crd.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Atherosclerosis and solid organ chronic rejection are pervasive chronic disease states that account for significant morbidity and mortality in developed countries. Recently, a series of shared molecular pathways have emerged, revealing biological parallels from early stages of development up to the advanced forms of pathology. These shared mechanistic processes are inflammatory in nature, reflecting the importance of inflammation in both disorders. Vascular inflammation triggers endothelial dysfunction and disease initiation through aberrant vasomotor control and shared patterns of endothelial activation. Endothelial dysfunction leads to the recruitment of immune cells and the perpetuation of the inflammatory response. This drives lesion formation through the release of key cytokines such as IFN-y, TNF-alpha, and IL-2. Continued interplay between the adaptive and innate immune response (represented by T lymphocytes and macrophages, respectively) promotes lesion instability and thrombotic complications; hallmarks of advanced disease in both atherosclerosis and solid organ chronic rejection. The aim of this study is to identify areas of overlap between atherosclerosis and chronic rejection. We then discuss new approaches to improve current understanding of the pathophysiology of both disorders, and eventually design novel therapeutics.
Collapse
Affiliation(s)
- Afolarin A Otunla
- From the Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | | | - Alun H Davies
- Section of Vascular Surgery, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Joseph Shalhoub
- Section of Vascular Surgery, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
5
|
Hasan M, Al-Thani H, El-Menyar A, Zeidan A, Al-Thani A, Yalcin HC. Disturbed hemodynamics and oxidative stress interaction in endothelial dysfunction and AAA progression: Focus on Nrf2 pathway. Int J Cardiol 2023; 389:131238. [PMID: 37536420 DOI: 10.1016/j.ijcard.2023.131238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/30/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Hemodynamic shear stress is one of the major factors that are involved in the pathogenesis of many cardiovascular diseases including atherosclerosis and abdominal aortic aneurysm (AAA), through its modulatory effect on the endothelial cell's redox homeostasis and mechanosensitive gene expression. Among important mechanisms, oxidative stress, endoplasmic reticulum stress activation, and the subsequent endothelial dysfunction are attributed to disturbed blood flow and low shear stress in the vascular curvature and bifurcations which are considered atheroprone regions and aneurysm occurrence spots. Many pathways were shown to be involved in AAA progression. Of particular interest from recent findings is, the (Nrf2)/Keap-1 pathway, where Nrf2 is a transcription factor that has antioxidant properties and is strongly associated with several CVDs, yet, the exact mechanism by which Nrf2 alleviates CVDs still to be elucidated. Nrf2 expression is closely affected by shear stress and was shown to participate in AAA. In the current review paper, we discussed the link between disturbed hemodynamics and its effect on Nrf2 as a mechanosensitive gene and its role in the development of endothelial dysfunction which is linked to the progression of AAA.
Collapse
Affiliation(s)
- Maram Hasan
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hassan Al-Thani
- Department of Surgery, Trauma and Vascular Surgery, Hamad General Hospital, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ayman El-Menyar
- Department of Surgery, Trauma and Vascular Surgery, Hamad General Hospital, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar; Clinical Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Asad Zeidan
- Department of Basic Sciences, College of Medicine, QU health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Asmaa Al-Thani
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
6
|
Shu Y, Jin S. Caveolin-1 in endothelial cells: A potential therapeutic target for atherosclerosis. Heliyon 2023; 9:e18653. [PMID: 37554846 PMCID: PMC10405014 DOI: 10.1016/j.heliyon.2023.e18653] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
Atherosclerosis (AS) is a chronic vascular disease characterized by lipid accumulation and the activation of the inflammatory response; it remains the leading nation-wide cause of death. Early in the progression of AS, stimulation by pro-inflammatory agonists (TNF-α, LPS, and others), oxidized lipoproteins (ox-LDL), and biomechanical stimuli (low shear stress) lead to endothelial cell activation and dysfunction. Consequently, it is crucial to investigate how endothelial cells respond to different stressors and ways to alter endothelial cell activation in AS development, as they are the earliest cells to respond. Caveolin-1 (Cav1) is a 21-24-kDa membrane protein located in caveolae and highly expressed in endothelial cells, which plays a vital role in regulating lipid transport, inflammatory responses, and various cellular signaling pathways and has atherogenic effects. This review summarizes recent studies on the structure and physiological functions of Cav1 and outlines the potential mechanisms it mediates in AS development. Included are the roles of Cav1 in the regulation of endothelial cell autophagy, response to shear stress, modulation of the eNOS/NO axis, and transduction of inflammatory signaling pathways. This review provides a rationale for proposing Cav1 as a novel target for the prevention of AS, as well as new ideas for therapeutic strategies for early AS.
Collapse
Affiliation(s)
- Yan Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, China
| |
Collapse
|
7
|
Zhang H, Hu Z, Wang J, Xu J, Wang X, Zang G, Qiu J, Wang G. Shear stress regulation of nanoparticle uptake in vascular endothelial cells. Regen Biomater 2023; 10:rbad047. [PMID: 37351014 PMCID: PMC10281962 DOI: 10.1093/rb/rbad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 06/24/2023] Open
Abstract
Nanoparticles (NPs) hold tremendous targeting potential in cardiovascular disease and regenerative medicine, and exciting clinical applications are coming into light. Vascular endothelial cells (ECs) exposure to different magnitudes and patterns of shear stress (SS) generated by blood flow could engulf NPs in the blood. However, an unclear understanding of the role of SS on NP uptake is hindering the progress in improving the targeting of NP therapies. Here, the temporal and spatial distribution of SS in vascular ECs and the effect of different SS on NP uptake in ECs are highlighted. The mechanism of SS affecting NP uptake through regulating the cellular ROS level, endothelial glycocalyx and membrane fluidity is summarized, and the molecules containing clathrin and caveolin in the engulfment process are elucidated. SS targeting NPs are expected to overcome the current bottlenecks and change the field of targeting nanomedicine. This assessment on how SS affects the cell uptake of NPs and the marginalization of NPs in blood vessels could guide future research in cell biology and vascular targeting drugs.
Collapse
Affiliation(s)
- Hongping Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Ziqiu Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jinxuan Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jianxiong Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guangchao Zang
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Juhui Qiu
- Correspondence address: E-mail: (G.W.); (J.Q.)
| | - Guixue Wang
- Correspondence address: E-mail: (G.W.); (J.Q.)
| |
Collapse
|
8
|
Zhou W, Wang F, Qian X, Luo S, Wang Z, Gao X, Kong X, Zhang J, Chen S. Quercetin protects endothelial function from inflammation induced by localized disturbed flow by inhibiting NRP2 -VEGFC complex. Int Immunopharmacol 2023; 116:109842. [PMID: 36764279 DOI: 10.1016/j.intimp.2023.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/07/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Atherosclerosis is a focal chronic inflammatory disease, the initial pathogenic event of which is endothelial dysfunction, and disturbed flow (DF) is the primary and vital factor underlying endothelial dysfunction. The present research aims to elucidate the mechanism underlying the regulation of Neuropilin (NRP)2 under DF in endothelial cells (ECs) in an inflammatory state. We observed that NRP2 expression was significantly upregulated in DF-stimulated human umbilical vein endothelial cells (HUVECs). Knockdown of NRP2 in HUVECs significantly ameliorated cell inflammation induced by DF. In addition, quercetin inhibited NRP2 expression as well as endothelial inflammation. Animal experiments suggested that NRP2 knockdown or intraperitoneal injection of quercetin affected the expression of inflammation-related genes. Moreover, the upstream transcription factor GATA2 was found to regulate NRP2 transcription by binding to the -1100 to +100 bp region of the NRP2 promoter. Further studies showed that quercetin inhibited NRP2-VEGFC complex formation induced by disturbed flow, although did not inhibit GATA2 expression. These findings suggest that NRP2 plays an important role in promoting inflammation. Quercetin antagonizes atherosclerosis by inhibiting NRP2 and the formation of NRP2-VEGFC complex by inhibiting the inflammatory effects induced by disordered flow.
Collapse
Affiliation(s)
- Wenying Zhou
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China
| | - Xuesong Qian
- Department of Cardiology, The First People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Shuai Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China
| | - Zhimei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China
| | - Xiaofei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China; Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Xiangquan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China; Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Junjie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China; Department of Cardiology, Nanjing Heart Centre, Nanjing, China.
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University 210029, China; Department of Cardiology, Nanjing Heart Centre, Nanjing, China.
| |
Collapse
|
9
|
Hamrangsekachaee M, Wen K, Bencherif SA, Ebong EE. Atherosclerosis and endothelial mechanotransduction: current knowledge and models for future research. Am J Physiol Cell Physiol 2023; 324:C488-C504. [PMID: 36440856 PMCID: PMC10069965 DOI: 10.1152/ajpcell.00449.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
Endothelium health is essential to the regulation of physiological vascular functions. Because of the critical capability of endothelial cells (ECs) to sense and transduce chemical and mechanical signals in the local vascular environment, their dysfunction is associated with a vast variety of vascular diseases and injuries, especially atherosclerosis and subsequent cardiovascular diseases. This review describes the mechanotransduction events that are mediated through ECs, the EC subcellular components involved, and the pathways reported to be potentially involved. Up-to-date research efforts involving in vivo animal models and in vitro biomimetic models are also discussed, including their advantages and drawbacks, with recommendations on future modeling approaches to aid the development of novel therapies targeting atherosclerosis and related cardiovascular diseases.
Collapse
Affiliation(s)
| | - Ke Wen
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
| | - Sidi A Bencherif
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
- Bioengineering Department, Northeastern University, Boston, Massachusetts
- Laboratoire de BioMécanique et BioIngénierie, UMR CNRS 7388, Sorbonne Universités, Université de Technologie of Compiègne, Compiègne, France
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Eno E Ebong
- Chemical Engineering Department, Northeastern University, Boston, Massachusetts
- Bioengineering Department, Northeastern University, Boston, Massachusetts
- Neuroscience Department, Albert Einstein College of Medicine, New York, New York
| |
Collapse
|
10
|
Morphological and Functional Effects of Ultrasound on Blood-Brain Barrier Transitory Opening: An In Vitro Study on Rat Brain Endothelial Cells. Cells 2023; 12:cells12010192. [PMID: 36611987 PMCID: PMC9818236 DOI: 10.3390/cells12010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
With the recent advances in medicine, human life expectancy is increasing; however, the extra years of life are not necessarily spent in good health or free from disability, resulting in a significantly higher incidence of age-associated pathologies. Among these disorders, neurodegenerative diseases have a significant impact. To this end, the presence of the protective blood-brain barrier (BBB) represents a formidable obstacle to the delivery of therapeutics. Thus, this makes it imperative to define strategies to bypass the BBB in order to successfully target the brain with the appropriate drugs. It has been demonstrated that targeting the BBB by ultrasound (US) can transiently make this anatomical barrier permeable and in so doing, allow the delivery of therapeutics. Thus, our aim was to carry out an in depth in vitro molecular and morphological study on the effects of US treatment on the BBB. The rat brain endothelial (RBE4) cell line was challenged with exposure to 12 MHz diagnostic US treatment for 10, 20, and 30 min. Cell viability assays, Western blotting analysis on the endoplasmic reticulum (ER), and oxidative stress marker evaluation were then performed, along with cytological and immunofluorescence staining, in order to evaluate the effects of US on the intercellular spaces and tight junction distribution of the brain endothelial cells. We observed that the US treatment exerted no toxic effects on either RBE4 cell viability or the upregulation/dislocation of the ER and oxidative stress marker (GRP78 and cytochrome C, respectively). Further, we observed that the application of US induced an increase in the intercellular spaces, as shown by Papanicolaou staining, mainly due to the altered distribution of the tight junction protein zonula occludens-1 (ZO-1). This latter US-dependent effect was transient and disappeared 20 min after the removal of the stimulus. In conclusion, our results show that US induces a transient alteration of the BBB, without altering the intracellular signaling pathways such as the ER and oxidative stress that could potentially be toxic for endothelial cells. These results suggested that US treatment could represent a potential strategy for improving drug delivery to the brain.
Collapse
|
11
|
Wang L, Geng G, Zhu T, Chen W, Li X, Gu J, Jiang E. Progress in Research on TLR4-Mediated Inflammatory Response Mechanisms in Brain Injury after Subarachnoid Hemorrhage. Cells 2022; 11:cells11233781. [PMID: 36497041 PMCID: PMC9740134 DOI: 10.3390/cells11233781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is one of the common clinical neurological emergencies. Its incidence accounts for about 5-9% of cerebral stroke patients. Even surviving patients often suffer from severe adverse prognoses such as hemiplegia, aphasia, cognitive dysfunction and even death. Inflammatory response plays an important role during early nerve injury in SAH. Toll-like receptors (TLRs), pattern recognition receptors, are important components of the body's innate immune system, and they are usually activated by damage-associated molecular pattern molecules. Studies have shown that with TLR 4 as an essential member of the TLRs family, the inflammatory transduction pathway mediated by it plays a vital role in brain injury after SAH. After SAH occurrence, large amounts of blood enter the subarachnoid space. This can produce massive damage-associated molecular pattern molecules that bind to TLR4, which activates inflammatory response and causes early brain injury, thus resulting in serious adverse prognoses. In this paper, the process in research on TLR4-mediated inflammatory response mechanism in brain injury after SAH was reviewed to provide a new thought for clinical treatment.
Collapse
Affiliation(s)
- Lintao Wang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Guangping Geng
- Henan Technician College of Medicine and Health, Kaifeng 475000, China
| | - Tao Zhu
- Department of Geriatrics, Kaifeng Traditional Chinese Medicine Hospital, Kaifeng 475001, China
| | - Wenwu Chen
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Xiaohui Li
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Jianjun Gu
- Department of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China
- Correspondence:
| |
Collapse
|
12
|
He L, Zhang CL, Chen Q, Wang L, Huang Y. Endothelial shear stress signal transduction and atherogenesis: From mechanisms to therapeutics. Pharmacol Ther 2022; 235:108152. [PMID: 35122834 DOI: 10.1016/j.pharmthera.2022.108152] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Atherosclerotic vascular disease and its complications are among the top causes of mortality worldwide. In the vascular lumen, atherosclerotic plaques are not randomly distributed. Instead, they are preferentially localized at the curvature and bifurcations along the arterial tree, where shear stress is low or disturbed. Numerous studies demonstrate that endothelial cell phenotypic change (e.g., inflammation, oxidative stress, endoplasmic reticulum stress, apoptosis, autophagy, endothelial-mesenchymal transition, endothelial permeability, epigenetic regulation, and endothelial metabolic adaptation) induced by oscillatory shear force play a fundamental role in the initiation and progression of atherosclerosis. Mechano-sensors, adaptor proteins, kinases, and transcriptional factors work closely at different layers to transduce the shear stress force from the plasma membrane to the nucleus in endothelial cells, thereby controlling the expression of genes that determine cell fate and phenotype. An in-depth understanding of these mechano-sensitive signaling cascades shall provide new translational strategies for therapeutic intervention of atherosclerotic vascular disease. This review updates the recent advances in endothelial mechano-transduction and its role in the pathogenesis of atherosclerosis, and highlights the perspective of new anti-atherosclerosis therapies through targeting these mechano-regulated signaling molecules.
Collapse
Affiliation(s)
- Lei He
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Li H, Zhou WY, Xia YY, Zhang JX. Endothelial Mechanosensors for Atheroprone and Atheroprotective Shear Stress Signals. J Inflamm Res 2022; 15:1771-1783. [PMID: 35300215 PMCID: PMC8923682 DOI: 10.2147/jir.s355158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Vascular endothelial cells (ECs), derived from the mesoderm, form a single layer of squamous cells that covers the inner surface of blood vessels. In addition to being regulated by chemical signals from the extracellular matrix (ECM) and blood, ECs are directly confronted to complex hemodynamic environment. These physical inputs are translated into biochemical signals, dictating multiple aspects of cell behaviour and destination, including growth, differentiation, migration, adhesion, death and survival. Mechanosensors are initial responders to changes in mechanical environments, and the overwhelming majority of them are located on the plasma membrane. Physical forces affect plasma membrane fluidity and change of protein complexes on plasma membrane, accompanied by altering intercellular connections, cell-ECM adhesion, deformation of the cytoskeleton, and consequently, transcriptional responses in shaping specific phenotypes. Among the diverse forces exerted on ECs, shear stress (SS), defined as tangential friction force exerted by blood flow, has been extensively studied, from mechanosensing to mechanotransduction, as well as corresponding phenotypes. However, the precise mechanosensors and signalling pathways that determine atheroprone and atheroprotective phenotypes of arteries remain unclear. Moreover, it is worth to mention that some established mechanosensors of atheroprotective SS, endothelial glycocalyx, for example, might be dismantled by atheroprone SS. Therefore, we provide an overview of the current knowledge on mechanosensors in ECs for SS signals. We emphasize how these ECs coordinate or differentially participate in phenotype regulation induced by atheroprone and atheroprotective SS.
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Wen-Ying Zhou
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Yi-Yuan Xia
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Jun-Xia Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
- Correspondence: Jun-Xia Zhang, Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China, Tel +86 15366155682, Email
| |
Collapse
|
14
|
Lysophosphatidylcholine Offsets the Protective Effects of Bone Marrow Mesenchymal Stem Cells on Inflammatory Response and Oxidative Stress Injury of Retinal Endothelial Cells via TLR4/NF- κB Signaling. J Immunol Res 2021; 2021:2389029. [PMID: 34692851 PMCID: PMC8531799 DOI: 10.1155/2021/2389029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 11/22/2022] Open
Abstract
Diabetic retinopathy (DR), as a major cause of blindness worldwide, is one common complication of diabetes mellitus. Inflammatory response and oxidative stress injury of endothelial cells play significant roles in the pathogenesis of DR. The study is aimed at investigating the effects of lysophosphatidylcholine (LPC) on the dysfunction of high glucose- (HG-) treated human retinal microvascular endothelial cells (HRMECs) after being cocultured with bone marrow mesenchymal stem cells (BMSCs) and the underlying regulatory mechanism. Coculture of BMSCs and HRMECs was performed in transwell chambers. The activities of antioxidant-related enzymes and molecules of oxidative stress injury and the contents of inflammatory cytokines were measured by ELISA. Flow cytometry analyzed the apoptosis of treated HRMECs. HRMECs were further treated with 10-50 μg/ml LPC to investigate the effect of LPC on the dysfunction of HRMECs. Western blotting was conducted to evaluate levels of TLR4 and p-NF-κB proteins. We found that BMSCs alleviated HG-induced inflammatory response and oxidative stress injury of HRMECs. Importantly, LPC offsets the protective effects of BMSCs on inflammatory response and oxidative stress injury of HRMECs. Furthermore, LPC upregulated the protein levels of TLR4 and p-NF-κB, activating the TLR4/NF-κB signaling pathway. Overall, our study demonstrated that LPC offsets the protective effects of BMSCs on inflammatory response and oxidative stress injury of HRMECs via TLR4/NF-κB signaling.
Collapse
|
15
|
VIP Stabilizes the Cytoskeleton of Schlemm's Canal Endothelia via Reducing Caspase-3 Mediated ZO-1 Endolysosomal Degradation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9397960. [PMID: 34552687 PMCID: PMC8452417 DOI: 10.1155/2021/9397960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
Objectives In glaucomatous eyes, the main aqueous humor (AH) outflow pathway is damaged by accumulated oxidative stress arising from the microenvironment, vascular dysregulation, and aging, which results in increased outflow resistance and ocular hypertension. Schlemm's canal (SC) serves as the final filtration barrier of the main AH outflow pathway. The present study is aimed at investigating the possible regulation of vasoactive intestinal peptide (VIP) on the cytoskeleton by stabilizing ZO-1 in SC. Methods Model of chronic ocular hypertension (COH) induced by episcleral venous cauterization was treated with topical VIP. The ultrastructure of junctions, ZO-1 levels, and permeability of the SC inner wall to FITC-dextran (70 kDa) were detected in the COH models. The F-actin distribution, F/G-actin ratio, and ZO-1 degradation pathway in human umbilical vein endothelial cells (HUVECs) and HEK 293 cells were investigated. Results ZO-1 in the outer wall of the SC was less than that in the inner wall. COH elicited junction disruption, ZO-1 reduction, and increased permeability of the SC inner wall to FITC-dextran in rats. ZO-1 plays an essential role in maintaining the F/G-actin ratio and F-actin distribution. VIP treatment attenuated the downregulation of ZO-1 associated with COH or H2O2-induced oxidative damage. In H2O2-stimulated HUVECs, the caspase-3 inhibitor prevents ZO-1 disruption. Caspase-3 activation promoted endolysosomal degradation of ZO-1. Furthermore, a decrease in caspase-3 activation and cytoskeleton redistribution was demonstrated in VIP + H2O2-treated cells. The knockdown of ZO-1 or the overexpression of caspase-3 blocked the effect of VIP on the cytoskeleton. Conclusion This study provides insights into the role of VIP in stabilizing the interaction between the actin cytoskeleton and cell junctions and may provide a promising targeted strategy for glaucoma treatment.
Collapse
|
16
|
Anwaier G, Lian G, Ma GZ, Shen WL, Lee CI, Lee PL, Chang ZY, Wang YX, Tian XY, Gao XL, Chiu JJ, Qi R. Punicalagin Attenuates Disturbed Flow-Induced Vascular Dysfunction by Inhibiting Force-Specific Activation of Smad1/5. Front Cell Dev Biol 2021; 9:697539. [PMID: 34262908 PMCID: PMC8273543 DOI: 10.3389/fcell.2021.697539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background Pathophysiological vascular remodeling in response to disturbed flow with low and oscillatory shear stress (OSS) plays important roles in atherosclerosis progression. Pomegranate extraction (PE) was reported having anti-atherogenic effects. However, whether it can exert a beneficial effect against disturbed flow-induced pathophysiological vascular remodeling to inhibit atherosclerosis remains unclear. The present study aims at investigating the anti-atherogenic effects of pomegranate peel polyphenols (PPP) extraction and its purified compound punicalagin (PU), as well as their protective effects on disturbed flow-induced vascular dysfunction and their underlying molecular mechanisms. Methods The anti-atherogenic effects of PPP/PU were examined on low-density lipoprotein receptor knockout mice fed with a high fat diet. The vaso-protective effects of PPP/PU were examined in rat aortas using myograph assay. A combination of in vivo experiments on rats and in vitro flow system with human endothelial cells (ECs) was used to investigate the pharmacological actions of PPP/PU on EC dysfunction induced by disturbed flow. In addition, the effects of PPP/PU on vascular smooth muscle cell (VSMC) dysfunction were also examined. Results PU is the effective component in PPP against atherosclerosis. PPP/PU evoked endothelium-dependent relaxation in rat aortas. PPP/PU inhibited the activation of Smad1/5 in the EC layers at post-stenotic regions of rat aortas exposed to disturbed flow with OSS. PPP/PU suppressed OSS-induced expression of cell cycle regulatory and pro-inflammatory genes in ECs. Moreover, PPP/PU inhibited inflammation-induced VSMC dysfunction. Conclusion PPP/PU protect against OSS-induced vascular remodeling through inhibiting force-specific activation of Smad1/5 in ECs and this mechanism contributes to their anti-atherogenic effects.
Collapse
Affiliation(s)
- Gulinigaer Anwaier
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, China
| | - Guan Lian
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, China
| | - Gui-Zhi Ma
- College of Pharmacy, Xinjiang Medical University, Xinjiang, China.,Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Drugs, Xinjiang, China
| | - Wan-Li Shen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, China
| | - Chih-I Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Ling Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Zhan-Ying Chang
- College of Pharmacy, Xinjiang Medical University, Xinjiang, China.,Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Drugs, Xinjiang, China
| | - Yun-Xia Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, China
| | - Xiao-Yu Tian
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Li Gao
- College of Pharmacy, Xinjiang Medical University, Xinjiang, China.,Xinjiang Key Laboratory of Active Components and Drug Release Technology of Natural Drugs, Xinjiang, China
| | - Jeng-Jiann Chiu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.,Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan.,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing, China
| |
Collapse
|
17
|
Zeng Q, Ye L, Ling M, Ma R, Li J, Chen H, Pan L. TLR4/TRAF6/NOX2 signaling pathway is involved in ventilation-induced lung injury via endoplasmic reticulum stress in murine model. Int Immunopharmacol 2021; 96:107774. [PMID: 34020396 DOI: 10.1016/j.intimp.2021.107774] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 01/31/2023]
Abstract
In ventilation-induced lung injury (VILI), prolonged nonpathogen-mediated inflammation is triggered as a result of alveolar hyperinflation. In our previous study, we suggested that endoplasmic reticulum (ER) stress-mediated inflammation was involved in VILI, but how ER stress is triggered remains unknown. Toll-like receptor 4 (TLR4) activation plays an important role in mechanical ventilation (MV)-induced lung inflammation, however, it is unknown whether ER stress is activated by TLR4 to participate in VILI. In this study, C57BL/6 mice were exposed to MV with high tidal volumes (HTV 20 ml/kg). Mice were pretreated with TAK-242 the TLR4 inhibitor, C25-140, the TRAF6 inhibitor, or GSK2795039, the NOX2 inhibitor. Lung tissue and bronchoalveolar lavage fluid (BALF) were collected to measure lung injury, inflammatory responses and mRNA/protein expression associated with ER stress and the TLR4/TRAF6/NOX2 signaling pathway. Our results indicate that MV with HTV caused the TLR4/TRAF6/NOX2 signaling pathway activation and production of large amounts of ROS, which led to ER stress and NF-κB mediated inflammation in VILI. Furthermore, TLR4/TRAF6/NOX2 signaling pathway inhibition attenuated ER stress response and alleviate lung injury in mice.
Collapse
Affiliation(s)
- Qi Zeng
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Perioperative Medicine Research Center, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Liu Ye
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Perioperative Medicine Research Center, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Maoyao Ling
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Perioperative Medicine Research Center, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Riliang Ma
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Perioperative Medicine Research Center, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Junda Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Perioperative Medicine Research Center, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Haishao Chen
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Perioperative Medicine Research Center, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China; Perioperative Medicine Research Center, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
18
|
Lagatuz M, Vyas RJ, Predovic M, Lim S, Jacobs N, Martinho M, Valizadegan H, Kao D, Oza N, Theriot CA, Zanello SB, Taibbi G, Vizzeri G, Dupont M, Grant MB, Lindner DJ, Reinecker HC, Pinhas A, Chui TY, Rosen RB, Moldovan N, Vickerman MB, Radhakrishnan K, Parsons-Wingerter P. Vascular Patterning as Integrative Readout of Complex Molecular and Physiological Signaling by VESsel GENeration Analysis. J Vasc Res 2021; 58:207-230. [PMID: 33839725 PMCID: PMC9903340 DOI: 10.1159/000514211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022] Open
Abstract
The molecular signaling cascades that regulate angiogenesis and microvascular remodeling are fundamental to normal development, healthy physiology, and pathologies such as inflammation and cancer. Yet quantifying such complex, fractally branching vascular patterns remains difficult. We review application of NASA's globally available, freely downloadable VESsel GENeration (VESGEN) Analysis software to numerous examples of 2D vascular trees, networks, and tree-network composites. Upon input of a binary vascular image, automated output includes informative vascular maps and quantification of parameters such as tortuosity, fractal dimension, vessel diameter, area, length, number, and branch point. Previous research has demonstrated that cytokines and therapeutics such as vascular endothelial growth factor, basic fibroblast growth factor (fibroblast growth factor-2), transforming growth factor-beta-1, and steroid triamcinolone acetonide specify unique "fingerprint" or "biomarker" vascular patterns that integrate dominant signaling with physiological response. In vivo experimental examples described here include vascular response to keratinocyte growth factor, a novel vessel tortuosity factor; angiogenic inhibition in humanized tumor xenografts by the anti-angiogenesis drug leronlimab; intestinal vascular inflammation with probiotic protection by Saccharomyces boulardii, and a workflow programming of vascular architecture for 3D bioprinting of regenerative tissues from 2D images. Microvascular remodeling in the human retina is described for astronaut risks in microgravity, vessel tortuosity in diabetic retinopathy, and venous occlusive disease.
Collapse
Affiliation(s)
- Mark Lagatuz
- Redline Performance Solutions, Ames Research Center, National Aeronautics and Space Administration, Moffett Field CA, USA
| | - Ruchi J. Vyas
- Mori Associates, Space Biology Division, Ames Research Center, National Aeronautics and Space Administration, Moffett Field CA, USA
| | - Marina Predovic
- Blue Marble Space Institute of Science, Space Biology Division, Ames Research Center, National Aeronautics and Space Administration, Moffett Field CA, USA
| | - Shiyin Lim
- Blue Marble Space Institute of Science, Space Biology Division, Ames Research Center, National Aeronautics and Space Administration, Moffett Field CA, USA
| | - Nicole Jacobs
- Blue Marble Space Institute of Science, Space Biology Division, Ames Research Center, National Aeronautics and Space Administration, Moffett Field CA, USA
| | - Miguel Martinho
- Universities Space Research Association, Intelligent Systems Division, Exploration Technology Directorate, Ames Research Center, National Aeronautics and Space Administration, Moffett Field CA, USA
| | - Hamed Valizadegan
- Universities Space Research Association, Intelligent Systems Division, Exploration Technology Directorate, Ames Research Center, National Aeronautics and Space Administration, Moffett Field CA, USA
| | - David Kao
- Advanced Supercomputing & Intelligent Systems Divisions, Exploration Technology Directorate, Ames Research Center, National Aeronautics and Space Administration, Moffett Field CA, USA
| | - Nikunj Oza
- Advanced Supercomputing & Intelligent Systems Divisions, Exploration Technology Directorate, Ames Research Center, National Aeronautics and Space Administration, Moffett Field CA, USA
| | - Corey A. Theriot
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- KBRWyle, Johnson Space Center, National Aeronautics and Space Administration, Houston, TX, USA
| | - Susana B. Zanello
- KBRWyle, Johnson Space Center, National Aeronautics and Space Administration, Houston, TX, USA
| | - Giovanni Taibbi
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Gianmarco Vizzeri
- Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Mariana Dupont
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham AL, USA
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham AL, USA
| | - Daniel J. Lindner
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland OH, USA
| | - Hans-Christian Reinecker
- Departments of Medicine and Immunology, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexander Pinhas
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| | - Toco Y. Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| | - Richard B. Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicanor Moldovan
- Department of Ophthalmology, Indiana University School of Medicine and Indiana University Purdue University at Indianapolis IN, USA
- Richard L. Roudebush VA Medical Center, Veteran’s Administration, Indianapolis IN, USA
| | - Mary B. Vickerman
- Data Systems Branch, John Glenn Research Center, National Aeronautics and Space Administration, Cleveland, OH, USA (retired)
| | - Krishnan Radhakrishnan
- Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration, U.S. Department of Health and Human Services, Rockville, MD, USA
- College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Patricia Parsons-Wingerter
- Space Biology Division, Space Technology Mission Directorate, Ames Research Center, National Aeronautics and Space Administration, Moffett Field, CA, USA
- Low Gravity Exploration Technology, Research and Engineering Directorate, John Glenn Research Center, National Aeronautics and Space Administration, Cleveland, OH, USA
| |
Collapse
|
19
|
Chazelas P, Steichen C, Favreau F, Trouillas P, Hannaert P, Thuillier R, Giraud S, Hauet T, Guillard J. Oxidative Stress Evaluation in Ischemia Reperfusion Models: Characteristics, Limits and Perspectives. Int J Mol Sci 2021; 22:ijms22052366. [PMID: 33673423 PMCID: PMC7956779 DOI: 10.3390/ijms22052366] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia reperfusion injury is a complex process consisting of a seemingly chaotic but actually organized and compartmentalized shutdown of cell function, of which oxidative stress is a key component. Studying oxidative stress, which results in an imbalance between reactive oxygen species (ROS) production and antioxidant defense activity, is a multi-faceted issue, particularly considering the double function of ROS, assuming roles as physiological intracellular signals and as mediators of cellular component damage. Herein, we propose a comprehensive overview of the tools available to explore oxidative stress, particularly in the study of ischemia reperfusion. Applying chemistry as well as biology, we present the different models currently developed to study oxidative stress, spanning the vitro and the silico, discussing the advantages and the drawbacks of each set-up, including the issues relating to the use of in vitro hypoxia as a surrogate for ischemia. Having identified the limitations of historical models, we shall study new paradigms, including the use of stem cell-derived organoids, as a bridge between the in vitro and the in vivo comprising 3D intercellular interactions in vivo and versatile pathway investigations in vitro. We shall conclude this review by distancing ourselves from "wet" biology and reviewing the in silico, computer-based, mathematical modeling, and numerical simulation options: (a) molecular modeling with quantum chemistry and molecular dynamic algorithms, which facilitates the study of molecule-to-molecule interactions, and the integration of a compound in a dynamic environment (the plasma membrane...); (b) integrative systemic models, which can include many facets of complex mechanisms such as oxidative stress or ischemia reperfusion and help to formulate integrated predictions and to enhance understanding of dynamic interaction between pathways.
Collapse
Affiliation(s)
- Pauline Chazelas
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, 87032 Limoges, France; (P.C.); (F.F.)
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Limoges, 87042 Limoges, France
| | - Clara Steichen
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86074 Poitiers, France
| | - Frédéric Favreau
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, 87032 Limoges, France; (P.C.); (F.F.)
- Laboratoire de Biochimie et Génétique Moléculaire, CHU de Limoges, 87042 Limoges, France
| | - Patrick Trouillas
- INSERM U1248, IPPRITT, Université de Limoges, 87032 Limoges, France;
- RCPTM, University Palacký of Olomouc, 771 47 Olomouc, Czech Republic
| | - Patrick Hannaert
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
| | - Raphaël Thuillier
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86074 Poitiers, France
- Service de Biochimie, CHU de Poitiers, 86021 Poitiers, France
| | - Sébastien Giraud
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Service de Biochimie, CHU de Poitiers, 86021 Poitiers, France
| | - Thierry Hauet
- INSERM U1082, IRTOMIT, 86021 Poitiers, France; (C.S.); (P.H.); (R.T.); (S.G.); (T.H.)
- Faculté de Médecine et de Pharmacie, Université de Poitiers, 86074 Poitiers, France
- Service de Biochimie, CHU de Poitiers, 86021 Poitiers, France
- FHU SUPORT Survival Optimization in Organ Transplantation, 86021 Poitiers, France
- IBiSA Plateforme Modélisation Préclinique-Innovations Chirurgicale et Technologique (MOPICT), Do-maine Expérimental du Magneraud, 17700 Surgères, France
| | - Jérôme Guillard
- UMR CNRS 7285 IC2MP, Team 5 Chemistry, Université de Poitiers, 86073 Poitiers, France
- Correspondence: ; Tel.: +33-5-49-44-38-59
| |
Collapse
|
20
|
Andelovic K, Winter P, Jakob PM, Bauer WR, Herold V, Zernecke A. Evaluation of Plaque Characteristics and Inflammation Using Magnetic Resonance Imaging. Biomedicines 2021; 9:185. [PMID: 33673124 PMCID: PMC7917750 DOI: 10.3390/biomedicines9020185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is an inflammatory disease of large and medium-sized arteries, characterized by the growth of atherosclerotic lesions (plaques). These plaques often develop at inner curvatures of arteries, branchpoints, and bifurcations, where the endothelial wall shear stress is low and oscillatory. In conjunction with other processes such as lipid deposition, biomechanical factors lead to local vascular inflammation and plaque growth. There is also evidence that low and oscillatory shear stress contribute to arterial remodeling, entailing a loss in arterial elasticity and, therefore, an increased pulse-wave velocity. Although altered shear stress profiles, elasticity and inflammation are closely intertwined and critical for plaque growth, preclinical and clinical investigations for atherosclerosis mostly focus on the investigation of one of these parameters only due to the experimental limitations. However, cardiovascular magnetic resonance imaging (MRI) has been demonstrated to be a potent tool which can be used to provide insights into a large range of biological parameters in one experimental session. It enables the evaluation of the dynamic process of atherosclerotic lesion formation without the need for harmful radiation. Flow-sensitive MRI provides the assessment of hemodynamic parameters such as wall shear stress and pulse wave velocity which may replace invasive and radiation-based techniques for imaging of the vascular function and the characterization of early plaque development. In combination with inflammation imaging, the analyses and correlations of these parameters could not only significantly advance basic preclinical investigations of atherosclerotic lesion formation and progression, but also the diagnostic clinical evaluation for early identification of high-risk plaques, which are prone to rupture. In this review, we summarize the key applications of magnetic resonance imaging for the evaluation of plaque characteristics through flow sensitive and morphological measurements. The simultaneous measurements of functional and structural parameters will further preclinical research on atherosclerosis and has the potential to fundamentally improve the detection of inflammation and vulnerable plaques in patients.
Collapse
Affiliation(s)
- Kristina Andelovic
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
| | - Patrick Winter
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
- Internal Medicine I, Cardiology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Peter Michael Jakob
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
| | - Wolfgang Rudolf Bauer
- Internal Medicine I, Cardiology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Volker Herold
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
21
|
Kröpfl JM, Beltrami FG, Rehm M, Gruber HJ, Stelzer I, Spengler CM. Acute exercise-induced glycocalyx shedding does not differ between exercise modalities, but is associated with total antioxidative capacity. J Sci Med Sport 2021; 24:689-695. [PMID: 33632661 DOI: 10.1016/j.jsams.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/02/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Regular physical exercise is known to protect endothelial integrity. It has been proposed that acute exercise-induced changes of the (anti-)oxidative system influence early (glycocalyx shedding) and sustained endothelial activation (shedding of endothelial cells, ECs) as well as endothelial-cell repair by circulating hematopoietic stem and progenitor cells (HPCs). However, results are not conclusive and data in trained participants performing different exercise modalities is lacking. DESIGN Eighteen healthy, well-trained participants (9 runners, 9 cyclists; age: 29.7 ± 4.2 yrs) performed a strenuous acute exercise session consisting of 4 bouts of 4-min high-intensity with decreasing power profile and 3-min low-intensity in-between. METHODS Average power/speed of intense phases was 85% of the peak achieved in a previous incremental test. Before and shortly after exercise, total oxidative and antioxidative capacities (TAC), shedding of syndecan-1, heparan sulfate, hyaluronan, ECs, and circulating HPCs were investigated. RESULTS TAC decreased from 1.81 ± 0.42 nmol/L to 1.47 ± 0.23 nmol/L post-exercise (p = 0.010) only in runners. Exercise-induced early and sustained endothelial activation were enhanced post-exercise- syndecan-1: 103.2 ± 63.3 ng/mL to 111.3 ± 71.3 ng/mL, heparan sulfate: from 2637.9 ± 800.1 ng/mL to 3197.1 ± 1416.3 ng/mL, both p < 0.05; hyaluronan: 84.3 ± 21.8 ng/mL to 121.4 ± 29.4 ng/mL, ECs: from 6.6 ± 4.5 cells/μL to 9.5 ± 6.2 cells/μL, both p < 0.01; results were not different between exercise modalities and negatively related to TAC concentrations post-exercise. HPC proportions and self-renewal ability were negatively, while EC concentrations were positively associated with circulating hyaluronan concentrations. CONCLUSIONS These results highlight the importance of the antioxidative system to prevent the endothelium from acute exercise-induced vascular injury - independent of exercise modality - in well-trained participants. Endothelial-cell repair is associated with hyluronan signaling, possibly a similar mechanism as in wound repair.
Collapse
Affiliation(s)
- Julia M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland
| | - Fernando G Beltrami
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland
| | - Markus Rehm
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, Germany
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Ingeborg Stelzer
- Institute of Medical and Chemical Laboratory Diagnostics, LKH Hochsteiermark, Austria
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland.
| |
Collapse
|
22
|
Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1566-H1600. [PMID: 33385323 PMCID: PMC8260379 DOI: 10.1152/ajpheart.00719.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a dynamic process starting with endothelial dysfunction and inflammation and eventually leading to life-threatening arterial plaques. Exercise generally improves endothelial function in a dose-dependent manner by altering hemodynamics, specifically by increased arterial pressure, pulsatility, and shear stress. However, athletes who regularly participate in high-intensity training can develop arterial plaques, suggesting alternative mechanisms through which excessive exercise promotes vascular disease. Understanding the mechanisms that drive atherosclerosis in sedentary versus exercise states may lead to novel rehabilitative methods aimed at improving exercise compliance and physical activity. Preclinical tools, including in vitro cell assays, in vivo animal models, and in silico computational methods, broaden our capabilities to study the mechanisms through which exercise impacts atherogenesis, from molecular maladaptation to vascular remodeling. Here, we describe how preclinical research tools have and can be used to study exercise effects on atherosclerosis. We then propose how advanced bioengineering techniques can be used to address gaps in our current understanding of vascular pathophysiology, including integrating in vitro, in vivo, and in silico studies across multiple tissue systems and size scales. Improving our understanding of the antiatherogenic exercise effects will enable engaging, targeted, and individualized exercise recommendations to promote cardiovascular health rather than treating cardiovascular disease that results from a sedentary lifestyle.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education, and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
23
|
Zhao J, Quan X, Xie Z, Zhang L, Ding Z. Juglanin suppresses oscillatory shear stress-induced endothelial dysfunction: An implication in atherosclerosis. Int Immunopharmacol 2020; 89:107048. [PMID: 33049495 DOI: 10.1016/j.intimp.2020.107048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Atherosclerosis is characterized by endothelial cell dysfunction followed by lesion formation, arterial stenosis, potentially arterial occlusion, and severe outcomes. Novel treatments to slow or prevent the progression of the disease are of considerable clinical value. In the present study, we investigated the potential anti-atherosclerotic effects of the natural product juglanin in oscillatory shear stress (OSS) exposed endothelial cells. METHODS Human aortic endothelial cells (HAECs) were exposed to OSS generated by a micro fluidal Teflon cone at 1 Hz frequency cycles (±5 dyn/cm2) in the presence or absence of 2.5 and 5 μM juglanin for 24 h. The expression levels of inflammatory factors and vascular adhesion molecules were evaluated using qRT-PCR, Western Blot, and ELISA. DHE assay was used to detect the production of ROS. The monocytic THP-1 cells were labeled with calcein-AM and incubated with HAECs for adhesion assay. RESULTS Juglanin reduces OSS-induced oxidative stress by reducing the production of ROS through downregulation of NOX-2 and rescuing OSS-induced reduced expression of eNOS. Juglanin also inhibits the inflammatory response by suppressing OSS-induced expressions of IL-1β, MCP-1, and HMGB1. Using THP-1 monocytes, we show that juglanin reduces the attachment of monocytes to endothelial cells by inhibiting the expression of VCAM-1 and E-selectin. Moreover, Juglanin rescues OSS-reduced expression of atheroprotective transcriptional factor KLF2. CONCLUSIONS Our findings indicate that juglanin protects against various atheroprone OSS-induced endothelial dysfunction. Juglanin has potential implication as a candidate for vascular intervention of atherosclerosis.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan, China
| | - Xiaoqiang Quan
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan, China
| | - Zhouliang Xie
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan, China
| | - Leilei Zhang
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan, China
| | - Zhiwei Ding
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Henan, China
| |
Collapse
|
24
|
Zabad OM, Samra YA, Eissa LA. P-Coumaric acid alleviates experimental diabetic nephropathy through modulation of Toll like receptor-4 in rats. Life Sci 2019; 238:116965. [PMID: 31629762 DOI: 10.1016/j.lfs.2019.116965] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 01/05/2023]
Abstract
AIMS Diabetic nephropathy (DN) is responsible for the occurrence of 30-47% of the incident cases of end-stage renal disease (ESRD) worldwide. DN is a chronic inflammatory disorder, which results from hyperglycemia-induced alterations and leads to renal fibrosis and ESRD. Toll like receptor-4 (TLR-4) participates in regulation of inflammatory response through controlling of innate immune system. P-Coumaric Acid (P-CA) is a natural hydroxycinnamic acid derivative and is widely present in vegetables, fruits, mushrooms and cereals. This study aimed to explore the renoprotective effect of P-CA, as anti-inflammatory and antioxidant natural compound, against experimental DN. METHODS DN was induced by single intraperitoneal injection of streptozotocin (45 mg/kg) in rats. In kidney homogenate, levels of TLR-4, interleukin-6 (IL-6) and transforming growth factor β1 (TGFβ1) were measured using ELISA technique. Also, kidney collagen content was determined colorimetrically. KEY FINDINGS Oral administration of P-CA (100 mg/kg) for 8 weeks significantly alleviated the DN. P-CA significantly reduced serum concentrations of glucose, creatinine, blood urea nitrogen (BUN) and reduced protein content in urine. Also, P-CA significantly increased superoxide dismutase (SOD) activity and significantly reduced kidney contents of malondialdehyde (MDA), TLR-4, IL-6, TGFβ1 and collagen when compared with DN group. Moreover, P-CA significantly improved DN-induced histopathological abnormalities. SIGNIFICANCE P-CA confers protection against the progression of DN. This renoprotective effect can be attributed to its ability to decrease the generation of inflammatory and fibrotic cytokines in addition to restoring oxidant/antioxidant balance through its ability to down-regulate TLR-4 activation.
Collapse
Affiliation(s)
- Omar M Zabad
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Yara A Samra
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|