1
|
Kieronska-Rudek A, Kij A, Bar A, Kurpinska A, Mohaissen T, Grosicki M, Stojak M, Sternak M, Buczek E, Proniewski B, Kuś K, Suraj-Prazmowska J, Panek A, Pietrowska M, Zapotoczny S, Shanahan CM, Szabo C, Chlopicki S. Phylloquinone improves endothelial function, inhibits cellular senescence, and vascular inflammation. GeroScience 2024; 46:4909-4935. [PMID: 38980631 PMCID: PMC11336140 DOI: 10.1007/s11357-024-01225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/24/2024] [Indexed: 07/10/2024] Open
Abstract
Phylloquinon (PK) and menaquinones (MK) are both naturally occurring compounds belonging to vitamin K group. Present study aimed to comprehensively analyze the influence of PK in several models of vascular dysfunction to determine whether PK has vasoprotective properties, similar to those previously described for MK. Effects of PK and MK on endothelial dysfunction were studied in ApoE/LDLR-/- mice in vivo, in the isolated aorta incubated with TNF, and in vascular cells as regard inflammation and cell senescence (including replicative and stress-induced models of senescence). Moreover, the vascular conversion of exogenous vitamins to endogenous MK-4 was analyzed. PK, as well as MK, given for 8 weeks in diet (10 mg/kg) resulted in comparable improvement in endothelial function in the ApoE/LDLR-/- mice. Similarly, PK and MK prevented TNF-induced impairment of endothelium-dependent vasorelaxation in the isolated aorta. In in vitro studies in endothelial and vascular smooth muscle cells, we identified that both PK and MK displayed anti-senescence effects via decreasing DNA damage while in endothelial cells anti-inflammatory activity was ascribed to the modulation of NFκB activation. The activity of PK and MK was comparable in terms of their effect on senescence and inflammation. Presence of endogenous synthesis of MK-4 from PK in aorta and endothelial and smooth muscle cells suggests a possible involvement of MK in vascular effects of PK. In conclusion, PK and MK display comparable vasoprotective effects, which may be ascribed, at least in part, to the inhibition of cell senescence and inflammation. The vasoprotective effect of PK in the vessel wall can be related to the direct effects of PK, as well as to the action of MK formed from PK in the vascular wall.
Collapse
Affiliation(s)
- Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marek Grosicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Elżbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Kuś
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Panek
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Monika Pietrowska
- Centre for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Szczepan Zapotoczny
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Catherine M Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, London, UK
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
2
|
Elajaili HB, Dee NM, Dikalov SI, Kao JPY, Nozik ES. Use of Electron Paramagnetic Resonance (EPR) to Evaluate Redox Status in a Preclinical Model of Acute Lung Injury. Mol Imaging Biol 2024; 26:495-502. [PMID: 37193807 PMCID: PMC10188229 DOI: 10.1007/s11307-023-01826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Patients with hyper- vs. hypo-inflammatory subphenotypes of acute respiratory distress syndrome (ARDS) exhibit different clinical outcomes. Inflammation increases the production of reactive oxygen species (ROS) and increased ROS contributes to the severity of illness. Our long-term goal is to develop electron paramagnetic resonance (EPR) imaging of lungs in vivo to precisely measure superoxide production in ARDS in real time. As a first step, this requires the development of in vivo EPR methods for quantifying superoxide generation in the lung during injury, and testing if such superoxide measurements can differentiate between susceptible and protected mouse strains. PROCEDURES In WT mice, mice lacking total body extracellular superoxide dismutase (EC-SOD) (KO), or mice overexpressing lung EC-SOD (Tg), lung injury was induced with intraperitoneal (IP) lipopolysaccharide (LPS) (10 mg/kg). At 24 h after LPS treatment, mice were injected with the cyclic hydroxylamines 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) or 4-acetoxymethoxycarbonyl-1-hydroxy-2,2,5,5-tetramethylpyrrolidine-3-carboxylic acid (DCP-AM-H) probes to detect, respectively, cellular and mitochondrial ROS - specifically superoxide. Several probe delivery strategies were tested. Lung tissue was collected up to one hour after probe administration and assayed by EPR. RESULTS As measured by X-band EPR, cellular and mitochondrial superoxide increased in the lungs of LPS-treated mice compared to control. Lung cellular superoxide was increased in EC-SOD KO mice and decreased in EC-SOD Tg mice compared to WT. We also validated an intratracheal (IT) delivery method, which enhanced the lung signal for both spin probes compared to IP administration. CONCLUSIONS We have developed protocols for delivering EPR spin probes in vivo, allowing detection of cellular and mitochondrial superoxide in lung injury by EPR. Superoxide measurements by EPR could differentiate mice with and without lung injury, as well as mouse strains with different disease susceptibilities. We expect these protocols to capture real-time superoxide production and enable evaluation of lung EPR imaging as a potential clinical tool for subphenotyping ARDS patients based on redox status.
Collapse
Affiliation(s)
- Hanan B Elajaili
- Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA
| | - Nathan M Dee
- Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA
| | - Sergey I Dikalov
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eva S Nozik
- Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Kwiatkowski G, Czyzynska-Cichon I, Tielemans B, Geerkens L, Jasztal A, Velde GV, Chłopicki S. Retrospectively gated ultrashort-echo-time MRI T 1 mapping reveals compromised pulmonary microvascular NO-dependent function in a murine model of acute lung injury. NMR IN BIOMEDICINE 2024; 37:e5105. [PMID: 38225796 DOI: 10.1002/nbm.5105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
This study sought to develop noninvasive, in vivo imaging schemes that allow for quantitative assessment of pulmonary microvascular functional status based on the combination of pulmonary T1 mapping and dynamic contrast-enhanced (DynCE) imaging. Ultrashort-echo-time (UTE) imaging at 9.4 T of lung parenchyma was performed. Retrospective gating was based on modulation of the first point in each recorded spoke. T1 maps were obtained using a series of five consecutive images with varying RF angles and analyzed with the variable flip angle approach. The obtained mean T1 lung value of 1078 ± 38 ms correlated well with previous reports. Improved intersession variability was observed, as evident from a decreased standard deviation of motion-resolved T1 mapping (F-test = 0.051). Animals received lipopolysaccharide (LPS) and were imaged at t = 2, 6, and 12 h after administration. The nitric oxide (NO)-dependent function was assessed according to changes in lung T1 after L-NAME injection, while microvascular perfusion and oxidant stress were assessed with contrast-enhanced imaging after injection of gadolinium or 3-carbamoyl-proxyl nitroxide radical, respectively. Retrospectivel gated UTE allowed robust, motion-compensated imaging that could be used for T1 mapping of lung parenchyma. Changes in lung T1 after L-NAME injection indicated that LPS induced overproduction of NO at t = 2 and 6 h after LPS, but NO-dependent microvascular function was impaired at t = 12 h after LPS. DynCE imaging at t = 6 h after LPS injection revealed decreased microvascular perfusion, with increased vascular permeability and oxidant stress. MRI allows to visualize and quantify lung microvascular NO-dependent function and its concomitant impairment during acute respiratory distress syndrome development with high sensitivity. UTE T1 mapping appears to be sensitive and useful in probing pulmonary microvascular functional status.
Collapse
Affiliation(s)
- Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Birger Tielemans
- Department of Imaging and Pathology, Biomedical MRI Unit/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Lotte Geerkens
- Department of Imaging and Pathology, Biomedical MRI Unit/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI Unit/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Stefan Chłopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Faculty of Medicine, Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
4
|
Kij A, Bar A, Czyzynska-Cichon I, Przyborowski K, Proniewski B, Mateuszuk L, Kurylowicz Z, Jasztal A, Buczek E, Kurpinska A, Suraj-Prazmowska J, Marczyk B, Matyjaszczyk-Gwarda K, Daiber A, Oelze M, Walczak M, Chlopicki S. Vascular protein disulfide isomerase A1 mediates endothelial dysfunction induced by angiotensin II in mice. Acta Physiol (Oxf) 2024; 240:e14116. [PMID: 38400621 DOI: 10.1111/apha.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
AIM Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice. METHODS Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat. Endothelial function was assessed in vivo with magnetic resonance imaging and ex vivo with a myography, while arterial stiffness was measured as pulse wave velocity. Nitric oxide (NO) bioavailability was measured in the aorta (spin-trapping electron paramagnetic resonance) and plasma (NO2 - and NO3 - levels). Oxidative stress, eNOS uncoupling (DHE-based aorta staining), and thrombin activity (thrombin-antithrombin complex; calibrated automated thrombography) were evaluated. RESULTS The inhibition of PDIA1 by bepristat in Ang II-treated mice prevented the impairment of NO-dependent vasodilation in the aorta as evidenced by the response to acetylcholine in vivo, increased systemic NO bioavailability and the aortic NO production, and decreased vascular stiffness. Bepristat's effect on NO-dependent function was recapitulated ex vivo in Ang II-induced endothelial dysfunction in isolated aorta. Furthermore, bepristat diminished the Ang II-induced eNOS uncoupling and overproduction of ROS without affecting thrombin activity. CONCLUSION In Ang II-treated mice, the inhibition of PDIA1 normalized the NO-ROS balance, prevented endothelial eNOS uncoupling, and, thereby, improved vascular function. These results indicate the importance of vascular PDIA1 in regulating endothelial function, but further studies are needed to elucidate the details of the mechanisms involved.
Collapse
Affiliation(s)
- Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | | | - Andreas Daiber
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Maria Walczak
- Department of Toxicology, Jagiellonian University Medical College, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Skibska B, Kochan E, Stanczak A, Lipert A, Skibska A. Antioxidant and Anti-inflammatory Effects of α-Lipoic Acid on Lipopolysaccharide-induced Oxidative Stress in Rat Kidney. Arch Immunol Ther Exp (Warsz) 2023; 71:16. [PMID: 37378741 DOI: 10.1007/s00005-023-00682-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
α-Lipoic acid (α-LA) is a naturally occurring organosulfur component. Oxidative stress plays an essential role in the pathogenesis of various diseases, such as kidney and cardiovascular diseases, diabetes, neurodegenerative disorders, cancer and aging. Kidneys are especially vulnerable to oxidative stress and damage. The aim of the study was to evaluate the effect of α-LA on lipopolysaccharide (LPS)-induced oxidative stress parameters in rat kidneys. The experimental rats were divided into four groups: I-control (0.9% NaCl i.v.); II-α-LA (60 mg/kg b.w. i.v.); III-LPS (30 mg/kg b.w. i.v.); and IV-LPS + LA (30 mg/kg b.w. i.v. and 60 mg/kg b.w. i.v., respectively). In kidney homogenates the concentration of thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), sulfhydryl groups (-SH), total protein, superoxide dismutase (SOD), total glutathione (tGSH), reduced glutathione (GSH), glutathione disulphide (GSSG) and the GSH/GSSG ratio were determined. In addition, the levels of tumour necrosis factor (TNF)-α, and interleukin (IL)-6 were measured to assess inflammation and was estimated kidney oedema. Studies have shown that α-LA administered after LPS administration attenuated kidney oedema and significantly decreased TBARS, H2O2, TNF-α, and IL-6 levels in rat kidneys. α-LA also resulted in increase -SH group, total protein, and SOD levels and ameliorated the GSH redox status when compared to the LPS group. The results suggest that α-LA plays an important role against LPS-induced oxidative stress in kidney tissue as well as downregulating the expression of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Beata Skibska
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland.
| | - Ewa Kochan
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Lodz, Poland
| | - Andrzej Stanczak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Anna Lipert
- Department of Sports Medicine, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Skibska
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Xie QM, Chen N, Song SM, Zhao CC, Ruan Y, Sha JF, Liu Q, Jiang XQ, Fei GH, Wu HM. Itaconate Suppresses the Activation of Mitochondrial NLRP3 Inflammasome and Oxidative Stress in Allergic Airway Inflammation. Antioxidants (Basel) 2023; 12:489. [PMID: 36830047 PMCID: PMC9951851 DOI: 10.3390/antiox12020489] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Itaconate has emerged as a novel anti-inflammatory and antioxidative endogenous metabolite, yet its role in allergic airway inflammation (AAI) and the underlying mechanism remains elusive. Here, the itaconate level in the lung was assessed by High Performance Liquid Chromatography (HPLC), and the effects of the Irg1/itaconate pathway on AAI and alveolar macrophage (AM) immune responses were evaluated using an ovalbumin (OVA)-induced AAI model established by wild type (WT) and Irg1-/- mice, while the mechanism of this process was investigated by metabolomics analysis, mitochondrial/cytosolic protein fractionation and transmission electron microscopy in the lung tissues. The results demonstrated that the Irg1 mRNA/protein expression and itaconate production in the lung were significantly induced by OVA. Itaconate ameliorated while Irg1 deficiency augmented AAI, and this may be attributed to the fact that itaconate suppressed mitochondrial events such as NLRP3 inflammasome activation, oxidative stress and metabolic dysfunction. Furthermore, we identified that the Irg1/itaconate pathway impacted the NLRP3 inflammasome activation and oxidative stress in AMs. Collectively, our findings provide evidence for the first time, supporting the conclusion that in the allergic lung, the itaconate level is markedly increased, which directly regulates AMs' immune responses. We therefore propose that the Irg1/itaconate pathway in AMs is a potential anti-inflammatory and anti-oxidative therapeutic target for AAI.
Collapse
Affiliation(s)
- Qiu-Meng Xie
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei 230022, China
| | - Ning Chen
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei 230022, China
| | - Si-Ming Song
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei 230022, China
| | - Cui-Cui Zhao
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei 230022, China
| | - Ya Ruan
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei 230022, China
| | - Jia-Feng Sha
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei 230022, China
| | - Qian Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Department of Respiratory Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
| | - Xu-Qin Jiang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Department of Respiratory Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
| | - Guang-He Fei
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei 230022, China
| | - Hui-Mei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Geriatric Molecular Medicine of Anhui Province, Jixi Road 218, Hefei 230022, China
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, Jixi Road 218, Hefei 230022, China
| |
Collapse
|
7
|
Sharma K, Zhang G, Saito R. SUPPRESION OF MITOCHONDRIAL RESPIRATION IS A FEATURE OF CELLULAR GLUCOSE TOXICITY. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2023; 133:24-33. [PMID: 37701600 PMCID: PMC10493723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Glucose toxicity is central to the myriad complications of diabetes and is now believed to encompass neurodegenerative diseases and cancer as well as microvascular and macrovascular disease. Due to the widespread benefits of SGLT2 inhibitors, which affect glucose uptake in the kidney proximal tubular cell, a focus on cell metabolism in response to glucose has important implications for overall health. We previously found that a -Warburg-type effect underlies diabetic kidney disease and involves metabolic reprogramming. This is now supported by quantitative measurements of superoxide measurement in the diabetic kidney and systems biology analysis of urine metabolites in patients. Further exploration of mechanisms underlying mediators of mitochondrial suppression will be critical in understanding the chronology of glucose-induced toxicity and developing new therapeutics to arrest the systemic glucose toxicity of diabetes.
Collapse
|
8
|
Cardoso RDR, Chambo SD, Zaninelli TH, Bianchini BHS, da Silva MDV, Bertozzi MM, Saraiva-Santos T, Franciosi A, Martelossi-Cebinelli G, Garcia-Miguel PE, Borghi SM, Casagrande R, Verri WA. Resolvin D5 (RvD5) Reduces Renal Damage Caused by LPS Endotoxemia in Female Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010121. [PMID: 36615318 PMCID: PMC9821966 DOI: 10.3390/molecules28010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
In self-revolving gram-negative Escherichia coli infection, Resolvin D5 (RvD5) was found to enhance bacteria phagocytosis and reduce the production of inflammatory mediators, contributing to the resolution of infection. LPS (lipopolysaccharide) is a gram-negative bacterial structure product which activates the immune system and, at high doses, leads to endotoxemia. To our knowledge, the effect of RvD5 against LPS endotoxemia has not been investigated to date. Female Swiss mice received an i.p. treatment with RvD5 (0.1, 1 or 10 ng/animal). After 1 h, they were stimulated with LPS (10 mg/kg, i.v.), and samples were collected after additional 6 h. The resulting data demonstrated that RvD5 protected the kidneys (urea and creatinine serum levels) from tissue injury. These effects were related to an improvement in histopathological parameters and a reduction of enzymatic markers of leukocyte infiltration, pro-inflammatory cytokine (IL-1β, TNF-α, and IL-6) production, and oxidative stress. Antioxidant markers were also increased by RvD5, but IL-10 (an anti-inflammatory cytokine) levels were unaltered. We also observed that RvD5 reduced the infiltration of CD45+ hematopoietic cells into the kidneys, reduced the activation of NFκB and promoted the Nrf2 pathway by reducing Keap-1 levels. Our data indicate that RvD5 may be a therapeutic possibility to reduce kidney lesions in LPS endotoxemia.
Collapse
Affiliation(s)
- Renato D. R. Cardoso
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Sandmary D. Chambo
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Tiago H. Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Beatriz H. S. Bianchini
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Matheus Deroco Veloso da Silva
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Mariana M. Bertozzi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Anelise Franciosi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Pamela E. Garcia-Miguel
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Sergio M. Borghi
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina 86039-440, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina 86057-970, Brazil
- Correspondence: ; Tel.: +55-43-3371-4979
| |
Collapse
|
9
|
Tampio J, Markowicz-Piasecka M, Montaser A, Rysä J, Kauppinen A, Huttunen KM. L-type Amino Acid Transporter 1 Utilizing Ferulic Acid Derivatives Show Increased Drug Delivery in the Mouse Pancreas Along with Decreased Lipid Peroxidation and Prostaglandin Production. Mol Pharm 2022; 19:3806-3819. [PMID: 36027044 PMCID: PMC9644403 DOI: 10.1021/acs.molpharmaceut.2c00328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Oxidative stress and pathological changes of Alzheimer’s
disease (AD) overlap with metabolic diseases, such as diabetes mellitus
(DM). Therefore, tackling oxidative stress with antioxidants is a
compelling drug target against multiple chronic diseases simultaneously.
Ferulic acid (FA), a natural antioxidant, has previously been studied
as a therapeutic agent against both AD and DM. However, FA suffers
from poor bioavailability and delivery. As a solution, we have previously
reported about L-type amino acid transporter 1 (LAT1)-utilizing derivatives
with increased brain delivery and efficacy. In the present study,
we evaluated the pharmacokinetics and antioxidative efficacy of the
two derivatives in peripheral mouse tissues. Furthermore, we quantified
the LAT1 expression in studied tissues with a targeted proteomics
method to verify the transporter expression in mouse tissues. Additionally,
the safety of the derivatives was assessed by exploring their effects
on hemostasis in human plasma, erythrocytes, and endothelial cells.
We found that both derivatives accumulated substantially in the pancreas,
with over a 100-times higher area under curve compared to the FA.
Supporting the pharmacokinetics, the LAT1 was highly expressed in
the mouse pancreas. Treating mice with the LAT1-utilizing derivative
of FA lowered malondialdehyde and prostaglandin E2 production
in the pancreas, highlighting its antioxidative efficacy. Additionally,
the LAT1-utilizing derivatives were found to be hemocompatible in
human plasma and endothelial cells. Since antioxidative derivative
1 was substantially delivered into the pancreas along the previously
studied brain, the derivative can be considered as a safe dual-targeting
drug candidate in both the pancreas and the brain.
Collapse
Affiliation(s)
- Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211Kuopio, Finland
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151Lodz, Poland
| | - Ahmed Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211Kuopio, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211Kuopio, Finland
| |
Collapse
|
10
|
Mohaissen T, Proniewski B, Targosz-Korecka M, Bar A, Kij A, Bulat K, Wajda A, Blat A, Matyjaszczyk-Gwarda K, Grosicki M, Tworzydlo A, Sternak M, Wojnar-Lason K, Rodrigues-Diez R, Kubisiak A, Briones A, Marzec KM, Chlopicki S. Temporal relationship between systemic endothelial dysfunction and alterations in erythrocyte function in a murine model of chronic heart failure. Cardiovasc Res 2021; 118:2610-2624. [PMID: 34617995 PMCID: PMC9491865 DOI: 10.1093/cvr/cvab306] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
Aims Endothelial dysfunction (ED) and red blood cell distribution width (RDW) are both
prognostic factors in heart failure (HF), but the relationship between them is not
clear. In this study, we used a unique mouse model of chronic HF driven by
cardiomyocyte-specific overexpression of activated Gαq protein (Tgαq*44 mice) to
characterize the relationship between the development of peripheral ED and the
occurrence of structural nanomechanical and biochemical changes in red blood cells
(RBCs). Methods and results Systemic ED was detected in vivo in 8-month-old Tgαq*44 mice, as
evidenced by impaired acetylcholine-induced vasodilation in the aorta and increased
endothelial permeability in the brachiocephalic artery. ED in the aorta was associated
with impaired nitric oxide (NO) production in the aorta and diminished systemic NO
bioavailability. ED in the aorta was also characterized by increased superoxide and
eicosanoid production. In 4- to 6-month-old Tgαq*44 mice, RBC size and membrane
composition displayed alterations that did not result in significant changes in their
nanomechanical and functional properties. However, 8-month-old Tgαq*44 mice presented
greatly accentuated structural and size changes and increased RBC stiffness. In
12-month-old Tgαq*44 mice, the erythropathy was featured by severely altered RBC shape
and elasticity, increased RDW, impaired RBC deformability, and increased oxidative
stress (gluthatione (GSH)/glutathione disulfide (GSSG) ratio). Moreover, RBCs taken from
12-month-old Tgαq*44 mice, but not from 12-month-old FVB mice, coincubated with aortic
rings from FVB mice, induced impaired endothelium-dependent vasodilation and this effect
was partially reversed by an arginase inhibitor [2(S)-amino-6-boronohexanoic acid]. Conclusion In the Tgαq*44 murine model of HF, systemic ED accelerates erythropathy and,
conversely, erythropathy may contribute to ED. These results suggest that erythropathy
may be regarded as a marker and a mediator of systemic ED in HF. RBC arginase and
possibly other RBC-mediated mechanisms may represent novel therapeutic targets for
systemic ED in HF.
Collapse
Affiliation(s)
- Tasnim Mohaissen
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland.,Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow, 30-688 Poland
| | - Bartosz Proniewski
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Marta Targosz-Korecka
- Faculty of Physics, Institute of Astronomy and Applied Computer Science, Jagiellonian University Medical College, 11 Lojasiewicza St., Krakow, 30-348 Poland
| | - Anna Bar
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Agnieszka Kij
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Aleksandra Wajda
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland.,Faculty of Chemistry, Jagiellonian University, 2Gronostajowa St, Krakow, 30-387 Poland
| | - Aneta Blat
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland.,Faculty of Chemistry, Jagiellonian University, 2Gronostajowa St, Krakow, 30-387 Poland
| | - Karolina Matyjaszczyk-Gwarda
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland.,Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow, 30-688 Poland
| | - Marek Grosicki
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Anna Tworzydlo
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Magdalena Sternak
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Kamila Wojnar-Lason
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland.,Faculty of Medicine, Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka St, Krakow, 31-531 Poland
| | - Raquel Rodrigues-Diez
- Hospital La Paz Institute for Health Research IdiPAZ Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, CV, Spain,; Ciber
| | - Agata Kubisiak
- Faculty of Physics, Institute of Astronomy and Applied Computer Science, Jagiellonian University Medical College, 11 Lojasiewicza St., Krakow, 30-348 Poland
| | - Ana Briones
- Hospital La Paz Institute for Health Research IdiPAZ Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, CV, Spain,; Ciber
| | - Katarzyna M Marzec
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Stefan Chlopicki
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland.,Faculty of Medicine, Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka St, Krakow, 31-531 Poland
| |
Collapse
|
11
|
Hoffman RA, Huang S, Chalasani G, Vallejo AN. Disparate Recruitment and Retention of Plasmacytoid Dendritic Cells to The Small Intestinal Mucosa between Young and Aged Mice. Aging Dis 2021; 12:1183-1196. [PMID: 34341701 PMCID: PMC8279532 DOI: 10.14336/ad.2021.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/19/2021] [Indexed: 11/01/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC), a highly specialized class of innate immune cells that serve as rapid sensors of danger signals in circulation or in lymphoid tissue are well studied. However, there remains knowledge gaps about age-dependent changes of pDC function in the intestinal mucosa. Here, we report that under homeostatic conditions, the proportion of pDC expressing C-C chemokine receptor 9 (CCR9) in the intestinal intraepithelial cell (iIEC) population is comparable between young (2-4 months) and aged (18-24 months) mice, but the absolute numbers of iIEC and pDC are significantly lower in aged mice. Employing the classic model of acute endotoxemia induced by lipopolysaccharide (LPS), we found a decrease in the proportion and absolute number of intraepithelial pDC in both young and aged mice despite the LPS-induced increased expression of the chemokine C-C ligand 25 (CCL25), the ligand of CCR9, in the intestinal mucosa of young mice. In adoptive transfer experiments, a significantly lower number of pDC was retained into the intestinal layer of aged host mice after LPS administration. This was associated with recoverable pDC numbers in the intestinal lumen. Furthermore, co-adoptive transfer of young and aged pDC into young hosts also showed significantly lower retention of aged pDC in the epithelial layer compared to the co-transferred young pDC. Collectively, these data show age-associated changes in mucosal CCL25 gene expression and in pDC number. These may underlie the reported inadequate responses to gastrointestinal pathogens during chronologic aging.
Collapse
Affiliation(s)
| | - Sulan Huang
- Department of Health Promotion and Development,
| | | | - Abbe N Vallejo
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh,
- Division of Rheumatology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
12
|
Proniewski B, Bar A, Kieronska-Rudek A, Suraj-Prażmowska J, Buczek E, Czamara K, Majka Z, Czyzynska-Cichon I, Kwiatkowski G, Matyjaszczyk-Gwarda K, Chlopicki S. Systemic Administration of Insulin Receptor Antagonist Results in Endothelial and Perivascular Adipose Tissue Dysfunction in Mice. Cells 2021; 10:cells10061448. [PMID: 34207844 PMCID: PMC8230211 DOI: 10.3390/cells10061448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023] Open
Abstract
Hyperglycemia linked to diabetes results in endothelial dysfunction. In the present work, we comprehensively characterized effects of short-term hyperglycemia induced by administration of an insulin receptor antagonist, the S961 peptide, on endothelium and perivascular adipose tissue (PVAT) in mice. Endothelial function of the thoracic and abdominal aorta in 12-week-old male C57Bl/6Jrj mice treated for two weeks with S961 infusion via osmotic pumps was assessed in vivo using magnetic resonance imaging and ex vivo by detection of nitric oxide (NO) production using electron paramagnetic resonance spectroscopy. Additional methods were used to analyze PVAT, aortic segments and endothelial-specific plasma biomarkers. Systemic disruption of insulin signaling resulted in severe impairment of NO-dependent endothelial function and a loss of vasoprotective function of PVAT affecting the thoracic as well as abdominal parts of the aorta, however a fall in adiponectin expression and decreased uncoupling protein 1-positive area were more pronounced in the thoracic aorta. Results suggest that dysfunctional PVAT contributes to vascular pathology induced by altered insulin signaling in diabetes, in the absence of fat overload and obesity.
Collapse
Affiliation(s)
- Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
- Faculty of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland
| | - Joanna Suraj-Prażmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Elżbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Zuzanna Majka
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Karolina Matyjaszczyk-Gwarda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
- Faculty of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland
- Correspondence:
| |
Collapse
|
13
|
Zhang C, Liao Y, Liu Z, Zeng L, Peng Z, Liao J, Yang Z. Mapping the Multi-Organ miRNA-mRNA Regulatory Network in LPS-Mediated Endotoxemic Mice: Exploring the Shared Underlying Key Genes and Mechanisms. Front Mol Biosci 2020; 7:573327. [PMID: 33330617 PMCID: PMC7732439 DOI: 10.3389/fmolb.2020.573327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Background To this day, the molecular mechanism of endotoxin-induced multi-organ failure has not been completely clarified. This study aimed to construct an miRNA-mRNA regulatory network and identify main pathways and key genes in multi-organ of LPS-mediated endotoxemic mice. Methods Public datasets from six mRNA and three miRNA microarray datasets were downloaded from the GEO website to screen final differentially expressed genes (FDEGs) and hub genes in the heart, lung, liver, and kidney of LPS-mediated endotoxemic mice. Functional and pathway enrichment analysis of FDEGs was used to identify the main pathways in multi-organ damage of LPS-treated mice. Finally, hub genes of each organ were intersected to obtain the key genes of multi-organ. Results Firstly, 158, 358, 299, and 91 FDEGs were identified in the heart, lung, liver, and kidney, respectively. The pathway enrichment analysis of the FDEGs then showed that the TNF signaling pathway, Toll-like receptor signaling pathway, and some viral-infection-related pathways (influenza A, measles, and herpes simplex) were the main pathways in multi-organ damage of LPS-mediated endotoxemic mice. Moreover, miRNA-mRNA or PPI regulatory networks were constructed based on FDEGs. According to these networks, 31, 34, 34, and 31 hub genes were identified in the heart, lung, liver, and kidney, respectively. Among them, nine key genes (Cd274, Cxcl1, Cxcl9, Icam1, Ifit2, Isg15, Stat1, Tlr2, and Usp18) were enriched in Toll-like receptor signaling pathway and chemokine signaling pathway. Finally, seven potential drugs were predicted based on these key genes. Conclusion The shared underlying molecular pathways in endotoxin-induced multi-organ damage that have been identified include Toll-like receptor signaling pathway and TNF signaling pathway. Besides, nine key genes (Cd274, Cxcl1, Cxcl9, Icam1, Ifit2, Isg15, Stat1, Tlr2, and Usp18) and seven potential drugs were identified. Our data provide a new sight and potential target for future therapy in endotoxemia-induced multi-organ failure.
Collapse
Affiliation(s)
- Cong Zhang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Ying Liao
- Department of Medical, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zhihao Liu
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijin Zeng
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Zhihua Peng
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Jinli Liao
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen Yang
- Division of Emergency Medicine, Department of Emergency Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
14
|
Shi J, Wang W, Sang G, Xi H, Sun Y, Lu C, Ye H, Huang L. Short Term Usage of Omega-3 Polyunsaturated Fatty Acids Ameliorate Lipopolysaccharide-Induced Inflammatory Response and Oxidative Stress in the Neonatal Rat Hippocampal Tissue. Front Nutr 2020; 7:572363. [PMID: 33282898 PMCID: PMC7705230 DOI: 10.3389/fnut.2020.572363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Objective: To investigate the effect of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on lipopolysaccharide (LPS)-induced inflammatory response and oxidative stress in neonatal rat brain. Methods: Ninety-six 3-day-old Sprague Dawley rats were divided into four groups: control (saline/saline), LPS/ω-3, LPS/ω-6, and LPS/saline (n = 24/group). All rats, except those in the control group, were intraperitoneally challenged once with LPS (0.6 mg/kg) and were treated with ω-3 PUFAs, ω-6 PUFAs, or saline at 15 mL/kg for 1 or 5 consecutive days beginning on the day of LPS-challenge. Rats in the control group underwent the same procedures and received saline (vehicle). After 1 or 5 days of treatment, 12 rats from each group were sacrificed and their hippocampuses were collected. The expression of inflammation-related genes as well as the levels of oxidative stress markers in hippocampal tissues were determined. Results: After 1 or 5 days of treatment, the expression of toll-like receptor 4 and multiple proinflammatory cytokines were significantly decreased in the LPS/ω-3 group compared with those in the LPS/saline group. The activities of superoxide dismutase and glutathione (GSH) were significantly elevated, whereas amounts of malondialdehyde and oxidized glutathione (GSSG) and the ratio of GSSG/GSH were remarkably lowered in the LPS/ω-3 group compared with those in the LPS/saline group after 1 day of treatment. Opposite effects were observed in the LPS/ω-6 group. Conclusion: ω-3 PUFAs may protect rat brain tissue against LPS-induced inflammatory response and oxidative stress.
Collapse
Affiliation(s)
- Jipeng Shi
- Henan Key Laboratory of Neurorestoratology, Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Weiwei Wang
- Henan Key Laboratory of Neurorestoratology, Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Guimei Sang
- Henan Key Laboratory of Neurorestoratology, Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Huifang Xi
- Henan Key Laboratory of Neurorestoratology, Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yazhou Sun
- Henan Key Laboratory of Neurorestoratology, Department of Neonatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chaosheng Lu
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Hezhen Ye
- The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Limi Huang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, China
| |
Collapse
|
15
|
Oxidation of ethidium-based probes by biological radicals: mechanism, kinetics and implications for the detection of superoxide. Sci Rep 2020; 10:18626. [PMID: 33122809 PMCID: PMC7596101 DOI: 10.1038/s41598-020-75373-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Hydroethidine (HE) and hydropropidine (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {HPr}^{+}$$\end{document}HPr+) are fluorogenic probes used for the detection of the intra- and extracellular superoxide radical anion (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {O}_{ {2}}^{\bullet -}$$\end{document}O2∙-). In this study, we provide evidence that HE and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {HPr}^{+}$$\end{document}HPr+ react rapidly with the biologically relevant radicals, including the hydroxyl radical, peroxyl radicals, the trioxidocarbonate radical anion, nitrogen dioxide, and the glutathionyl radical, via one-electron oxidation, forming the corresponding radical cations. At physiological pH, the radical cations of the probes react rapidly with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {O}_{ {2}}^{\bullet -}$$\end{document}O2∙-, leading to the specific 2-hydroxylated cationic products. We determined the rate constants of the reaction between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {O}_{ {2}}^{\bullet -}$$\end{document}O2∙- and the radical cations of the probes. We also synthesized N-methylated analogs of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {HPr}^{+}$$\end{document}HPr+ and HE which were used in mechanistic studies. Methylation of the amine groups was not found to prevent the reaction between the radical cation of the probe and the superoxide, but it significantly increased the lifetime of the radical cation and had a substantial effect on the profiles of the oxidation products by inhibiting the formation of dimeric products. We conclude that the N-methylated analogs of HE and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {HPr}^{+}$$\end{document}HPr+ may be used as a scaffold for the design of a new generation of probes for intra- and extracellular superoxide.
Collapse
|
16
|
Dual Effect of Soloxolone Methyl on LPS-Induced Inflammation In Vitro and In Vivo. Int J Mol Sci 2020; 21:ijms21217876. [PMID: 33114200 PMCID: PMC7660695 DOI: 10.3390/ijms21217876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
Plant-extracted triterpenoids belong to a class of bioactive compounds with pleotropic functions, including antioxidant, anti-cancer, and anti-inflammatory effects. In this work, we investigated the anti-inflammatory and anti-oxidative activities of a semisynthetic derivative of 18βH-glycyrrhetinic acid (18βH-GA), soloxolone methyl (methyl 2-cyano-3,12-dioxo-18βH-olean-9(11),1(2)-dien-30-oate, or SM) in vitro on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and in vivo in models of acute inflammation: LPS-induced endotoxemia and carrageenan-induced peritonitis. SM used at non-cytotoxic concentrations was found to attenuate the production of reactive oxygen species and nitric oxide (II) and increase the level of reduced glutathione production by LPS-stimulated RAW264.7 cells. Moreover, SM strongly suppressed the phagocytic and migration activity of activated macrophages. These effects were found to be associated with the stimulation of heme oxigenase-1 (HO-1) expression, as well as with the inhibition of nuclear factor-κB (NF-κB) and Akt phosphorylation. Surprisingly, it was found that SM significantly enhanced LPS-induced expression of the pro-inflammatory cytokines interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in RAW264.7 cells via activation of the c-Jun/Toll-like receptor 4 (TLR4) signaling axis. In vivo pre-exposure treatment with SM effectively inhibited the development of carrageenan-induced acute inflammation in the peritoneal cavity, but it did not improve LPS-induced inflammation in the endotoxemia model.
Collapse
|
17
|
Bar A, Kieronska-Rudek A, Proniewski B, Suraj-Prażmowska J, Czamara K, Marczyk B, Matyjaszczyk-Gwarda K, Jasztal A, Kuś E, Majka Z, Kaczor A, Kurpińska A, Walczak M, Pieterman EJ, Princen HMG, Chlopicki S. In Vivo Magnetic Resonance Imaging-Based Detection of Heterogeneous Endothelial Response in Thoracic and Abdominal Aorta to Short-Term High-Fat Diet Ascribed to Differences in Perivascular Adipose Tissue in Mice. J Am Heart Assoc 2020; 9:e016929. [PMID: 33073641 PMCID: PMC7763398 DOI: 10.1161/jaha.120.016929] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Long-term feeding with a high-fat diet (HFD) induces endothelial dysfunction in mice, but early HFD-induced effects on endothelium have not been well characterized. Methods and Results Using an magnetic resonance imaging-based methodology that allows characterization of endothelial function in vivo, we demonstrated that short-term (2 weeks) feeding with a HFD to C57BL/6 mice or to E3L.CETP mice resulted in the impairment of acetylcholine-induced response in the abdominal aorta (AA), whereas, in the thoracic aorta (TA), the acetylcholine-induced response was largely preserved. Similarly, HFD resulted in arterial stiffness in the AA, but not in the TA. The difference in HFD-induced response was ascribed to distinct characteristics of perivascular adipose tissue in the TA and AA, related to brown- and white-like adipose tissue, respectively, as assessed by histology, immunohistochemistry, and Raman spectroscopy. In contrast, short-term HFD-induced endothelial dysfunction could not be linked to systemic insulin resistance, changes in plasma concentration of nitrite, or concentration of biomarkers of glycocalyx disruption (syndecan-1 and endocan), endothelial inflammation (soluble form of vascular cell adhesion molecule 1, soluble form of intercellular adhesion molecule 1 and soluble form of E-selectin), endothelial permeability (soluble form of fms-like tyrosine kinase 1 and angiopoietin 2), and hemostasis (tissue plasminogen activator and plasminogen activator inhibitor 1). Conclusions Short-term feeding with a HFD induces endothelial dysfunction in the AA but not in the TA, which could be ascribed to a differential response of perivascular adipose tissue to a HFD in the AA versus TA. Importantly, early endothelial dysfunction in the AA is not linked to elevation of classical systemic biomarkers of endothelial dysfunction.
Collapse
Affiliation(s)
- Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair of Pharmacology Faculty of Medicine Jagiellonian University Medical College Krakow Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Joanna Suraj-Prażmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair and Department of Toxicology Faculty of Pharmacy Jagiellonian University Medical College Krakow Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair of Pharmacology Faculty of Medicine Jagiellonian University Medical College Krakow Poland
| | - Karolina Matyjaszczyk-Gwarda
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair and Department of Toxicology Faculty of Pharmacy Jagiellonian University Medical College Krakow Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Edyta Kuś
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Zuzanna Majka
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Faculty of Chemistry Jagiellonian University Krakow Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Faculty of Chemistry Jagiellonian University Krakow Poland
| | - Anna Kurpińska
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Maria Walczak
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair and Department of Toxicology Faculty of Pharmacy Jagiellonian University Medical College Krakow Poland
| | - Elsbet J Pieterman
- Metabolic Health Research Gaubius Laboratory The Netherlands Organisation of Applied Scientific Research (TNO) Leiden The Netherlands
| | - Hans M G Princen
- Metabolic Health Research Gaubius Laboratory The Netherlands Organisation of Applied Scientific Research (TNO) Leiden The Netherlands
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair of Pharmacology Faculty of Medicine Jagiellonian University Medical College Krakow Poland
| |
Collapse
|
18
|
Rius-Pérez S, Torres-Cuevas I, Monsalve M, Miranda FJ, Pérez S. Impairment of PGC-1 Alpha Up-Regulation Enhances Nitrosative Stress in the Liver during Acute Pancreatitis in Obese Mice. Antioxidants (Basel) 2020; 9:antiox9090887. [PMID: 32961723 PMCID: PMC7554866 DOI: 10.3390/antiox9090887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis is an inflammatory process of the pancreatic tissue that often leads to distant organ dysfunction. Although liver injury is uncommon in acute pancreatitis, obesity is a risk factor for the development of hepatic complications. The aim of this work was to evaluate the role of PGC-1α in inflammatory response regulation in the liver and its contribution to the detrimental effect of obesity on the liver during acute pancreatitis. For this purpose, we induced acute pancreatitis by cerulein in not only wild-type (WT) and PGC-1α knockout (KO) mice, but also in lean and obese mice. PGC-1α levels were up-regulated in the mice livers with pancreatitis. The increased PGC-1α levels were bound to p65 to restrain its transcriptional activity toward Nos2. Lack of PGC-1α favored the assembly of the p65/phospho-STAT3 complex, which promoted Nos2 expression during acute pancreatitis. The increased transcript Nos2 levels and the pro-oxidant liver status caused by the down-regulated expression of the PGC-1α-dependent antioxidant genes enhanced nitrosative stress and decreased energy charge in the livers of the PGC-1α KO mice with pancreatitis. It is noteworthy that the PGC-1α levels lowered in the obese mice livers, which increased the Nos2 mRNA expression and protein nitration levels and decreased energy charge during pancreatitis. In conclusion, obesity impairs PGC-1α up-regulation in the liver to cause nitrosative stress during acute pancreatitis.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andres Estelles s/n, 46100 Burjassot, Spain; (S.R.-P.); (F.J.M.)
| | - Isabel Torres-Cuevas
- Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain;
| | - María Monsalve
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain;
| | - Francisco J. Miranda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andres Estelles s/n, 46100 Burjassot, Spain; (S.R.-P.); (F.J.M.)
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andres Estelles s/n, 46100 Burjassot, Spain; (S.R.-P.); (F.J.M.)
- Correspondence: ; Tel.: +34-963-54-3253
| |
Collapse
|
19
|
Smeda M, Kij A, Proniewski B, Matyjaszczyk-Gwarda K, Przyborowski K, Jasztal A, Derszniak K, Berkowicz P, Kieronska-Rudek A, Stojak M, Sternak M, Chlopicki S. Unexpected effects of long-term treatment with acetylsalicylic acid on late phase of pulmonary metastasis in murine model of orthotopic breast cancer. PLoS One 2020; 15:e0230520. [PMID: 32251451 PMCID: PMC7135281 DOI: 10.1371/journal.pone.0230520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Long-term administration of acetylsalicylic acid (ASA) was effective in prevention of colorectal cancer, whereas the efficacy of this compound in other cancer types, including breast cancer, has been less convincingly documented. Indeed, the antimetastatic effect of low-dose ASA was observed only in the early intravascular phase of metastasis of breast cancer. In the present work, we characterized the effects of long-term treatment with ASA on the late phase of pulmonary metastasis in a mouse orthotopic 4T1 breast cancer model. Mice were treated with ASA at a dose of 12 mg·kg-1 of body weight daily starting one week prior to inoculation of 4T1 breast cancer cells, and the treatment was continued throughout progression of the disease. ASA administration decreased platelet TXB2 production in ex vivo assays but did not change thrombin-induced platelet reactivity. Although the number of metastases in the lungs remained unchanged in ASA-treated mice, infiltration of inflammatory cells was increased concomitantly with higher G-CSF and serotonin concentrations in the lungs. Pulmonary NO production was compromised compared to control 4T1 mice. ASA treatment also evoked an increase in platelet and granulocyte counts and decreased systemic NO bioavailability along with increased markers of systemic oxidant stress such as higher GSSG/lower GSH concentrations in RBC. Analysis of eicosanoids in stirred blood demonstrated that administration of ASA at a dose of 12 mg·kg-1 to cancer-bearing mice had an effect beyond inhibition of platelet COX-1, suggesting long-term treatment with low-dose aspirin is not a selective murine platelet COX-1/TXA2 pathway inhibitor in cancer-bearing mice. In summary, quite surprisingly, long-term treatment with low-dose ASA administered until the advanced phase of breast cancer in a murine orthotopic model of 4T1 breast cancer negatively affected the phenotype of the disease.
Collapse
Affiliation(s)
- Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | | | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Katarzyna Derszniak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Piotr Berkowicz
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
- * E-mail:
| |
Collapse
|
20
|
Rios N, Radi R, Kalyanaraman B, Zielonka J. Tracking isotopically labeled oxidants using boronate-based redox probes. J Biol Chem 2020; 295:6665-6676. [PMID: 32217693 DOI: 10.1074/jbc.ra120.013402] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/26/2020] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen and nitrogen species have been implicated in many biological processes and diseases, including immune responses, cardiovascular dysfunction, neurodegeneration, and cancer. These chemical species are short-lived in biological settings, and detecting them in these conditions and diseases requires the use of molecular probes that form stable, easily detectable, products. The chemical mechanisms and limitations of many of the currently used probes are not well-understood, hampering their effective applications. Boronates have emerged as a class of probes for the detection of nucleophilic two-electron oxidants. Here, we report the results of an oxygen-18-labeling MS study to identify the origin of oxygen atoms in the oxidation products of phenylboronate targeted to mitochondria. We demonstrate that boronate oxidation by hydrogen peroxide, peroxymonocarbonate, hypochlorite, or peroxynitrite involves the incorporation of oxygen atoms from these oxidants. We therefore conclude that boronates can be used as probes to track isotopically labeled oxidants. This suggests that the detection of specific products formed from these redox probes could enable precise identification of oxidants formed in biological systems. We discuss the implications of these results for understanding the mechanism of conversion of the boronate-based redox probes to oxidant-specific products.
Collapse
Affiliation(s)
- Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay.,Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay.,Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|