1
|
Li J, Luo W, Xiao C, Zhao J, Xiang C, Liu W, Gu R. Recent advances in endogenous neural stem/progenitor cell manipulation for spinal cord injury repair. Theranostics 2023; 13:3966-3987. [PMID: 37554275 PMCID: PMC10405838 DOI: 10.7150/thno.84133] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Traumatic spinal cord injury (SCI) can cause severe neurological impairments. Clinically available treatments are quite limited, with unsatisfactory remediation effects. Residing endogenous neural stem/progenitor cells (eNSPCs) tend to differentiate towards astrocytes, leaving only a small fraction towards oligodendrocytes and even fewer towards neurons; this has been suggested as one of the reasons for the failure of autonomous neuronal regeneration. Thus, finding ways to recruit and facilitate the differentiation of eNSPCs towards neurons has been considered a promising strategy for the noninvasive and immune-compatible treatment of SCI. The present manuscript first introduces the responses of eNSPCs after exogenous interventions to boost endogenous neurogenesis in various SCI models. Then, we focus on state-of-art manipulation approaches that enhance the intrinsic neurogenesis capacity and reconstruct the hostile microenvironment, mainly consisting of pharmacological treatments, stem cell-derived exosome administration, gene therapy, functional scaffold implantation, inflammation regulation, and inhibitory element delineation. Facing the extremely complex situation of SCI, combined treatments are also highlighted to provide more clues for future relevant investigations.
Collapse
Affiliation(s)
- Jincheng Li
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Wenqi Luo
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jianhui Zhao
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Chunyu Xiang
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Rui Gu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| |
Collapse
|
2
|
de Almeida MMA, Goodkey K, Voronova A. Regulation of microglia function by neural stem cells. Front Cell Neurosci 2023; 17:1130205. [PMID: 36937181 PMCID: PMC10014810 DOI: 10.3389/fncel.2023.1130205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Neural stem and precursor cells (NPCs) build and regenerate the central nervous system (CNS) by maintaining their pool (self-renewal) and differentiating into neurons, astrocytes, and oligodendrocytes (multipotency) throughout life. This has inspired research into pro-regenerative therapies that utilize transplantation of exogenous NPCs or recruitment of endogenous adult NPCs for CNS regeneration and repair. Recent advances in single-cell RNA sequencing and other "omics" have revealed that NPCs express not just traditional progenitor-related genes, but also genes involved in immune function. Here, we review how NPCs exert immunomodulatory function by regulating the biology of microglia, immune cells that are present in NPC niches and throughout the CNS. We discuss the role of transplanted and endogenous NPCs in regulating microglia fates, such as survival, proliferation, migration, phagocytosis and activation, in the developing, injured and degenerating CNS. We also provide a literature review on NPC-specific mediators that are responsible for modulating microglia biology. Our review highlights the immunomodulatory properties of NPCs and the significance of these findings in the context of designing pro-regenerative therapies for degenerating and diseased CNS.
Collapse
Affiliation(s)
- Monique M. A. de Almeida
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, Canada
| | - Kara Goodkey
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Multiple Sclerosis Centre and Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
| |
Collapse
|
3
|
ErbB Signaling Pathway Genes Are Differentially Expressed in Monozygotic Twins Discordant for Sports-Related Concussion. Twin Res Hum Genet 2022; 25:77-84. [PMID: 35616238 DOI: 10.1017/thg.2022.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transcriptional changes involved in neuronal recovery after sports-related concussion (SRC) may be obscured by inter-individual variation in mRNA expression and nonspecific changes related to physical exertion. Using a co-twin study, the objective of this study was to identify important differences in mRNA expression among a single pair of monozygotic (MZ) twins discordant for concussion. A pair of MZ twins were enrolled as part of a larger study of concussion biomarkers among collegiate athletes. During the study, Twin A sustained SRC, allowing comparison of mRNA expression to the nonconcussed Twin B. Twin A clinically recovered by Day 7. mRNA expression was measured pre-injury and at 6 h and 7 days postinjury using Affymetrix HG-U133 Plus 2.0 microarray. Changes in mRNA expression from pre-injury to each postinjury time point were compared between the twins; differences >1.5-fold were considered important. Kyoto Encyclopedia of Genes and Genomes identified biologic networks associated with important transcripts. Among 38,000 analyzed genes, important changes were identified in 153 genes. The ErbB (epidermal growth factor receptor) signaling pathway was identified as the top transcriptional network from pre-injury to 7 days postinjury. Genes in this pathway with important transcriptional changes included epidermal growth factor (2.41), epiregulin (1.73), neuregulin 1 (1.54) and mechanistic target of rapamycin (1.51). In conclusion, the ErbB signaling pathway was identified as a potential regulator of clinical recovery in a MZ twin pair discordant for SRC. A co-twin study design may be a useful method for identifying important gene pathways associated with concussion recovery.
Collapse
|
4
|
Vega-Torres JD, Ontiveros-Angel P, Terrones E, Stuffle EC, Solak S, Tyner E, Oropeza M, dela Peña I, Obenaus A, Ford BD, Figueroa JD. Short-term exposure to an obesogenic diet during adolescence elicits anxiety-related behavior and neuroinflammation: modulatory effects of exogenous neuregulin-1. Transl Psychiatry 2022; 12:83. [PMID: 35220393 PMCID: PMC8882169 DOI: 10.1038/s41398-022-01788-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 11/21/2022] Open
Abstract
Childhood obesity leads to hippocampal atrophy and altered cognition. However, the molecular mechanisms underlying these impairments are poorly understood. The neurotrophic factor neuregulin-1 (NRG1) and its cognate ErbB4 receptor play critical roles in hippocampal maturation and function. This study aimed to determine whether exogenous NRG1 administration reduces hippocampal abnormalities and neuroinflammation in rats exposed to an obesogenic Western-like diet (WD). Lewis rats were randomly divided into four groups (12 rats/group): (1) control diet+vehicle (CDV); (2) CD + NRG1 (CDN) (daily intraperitoneal injections: 5 μg/kg/day; between postnatal day, PND 21-PND 41); (3) WD + VEH (WDV); (4) WD + NRG1 (WDN). Neurobehavioral assessments were performed at PND 43-49. Brains were harvested for MRI and molecular analyses at PND 49. We found that NRG1 administration reduced hippocampal volume (7%) and attenuated hippocampal-dependent cued fear conditioning in CD rats (56%). NRG1 administration reduced PSD-95 protein expression (30%) and selectively reduced hippocampal cytokine levels (IL-33, GM-CSF, CCL-2, IFN-γ) while significantly impacting microglia morphology (increased span ratio and reduced circularity). WD rats exhibited reduced right hippocampal volume (7%), altered microglia morphology (reduced density and increased lacunarity), and increased levels of cytokines implicated in neuroinflammation (IL-1α, TNF-α, IL-6). Notably, NRG1 synergized with the WD to increase hippocampal ErbB4 phosphorylation and the tumor necrosis alpha converting enzyme (TACE/ADAM17) protein levels. Although the results did not provide sufficient evidence to conclude that exogenous NRG1 administration is beneficial to alleviate obesity-related outcomes in adolescent rats, we identified a potential novel interaction between obesogenic diet exposure and TACE/ADAM17-NRG1-ErbB4 signaling during hippocampal maturation. Our results indicate that supraoptimal ErbB4 activities may contribute to the abnormal hippocampal structure and cognitive vulnerabilities observed in obese individuals.
Collapse
Affiliation(s)
- Julio David Vega-Torres
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Perla Ontiveros-Angel
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Esmeralda Terrones
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Erwin C. Stuffle
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Sara Solak
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Emma Tyner
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Marie Oropeza
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Ike dela Peña
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Andre Obenaus
- grid.266093.80000 0001 0668 7243Department of Pediatrics, University of California-Irvine, Irvine, CA USA
| | - Byron D. Ford
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA USA
| | - Johnny D. Figueroa
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| |
Collapse
|
5
|
Hammond BP, Manek R, Kerr BJ, Macauley MS, Plemel JR. Regulation of microglia population dynamics throughout development, health, and disease. Glia 2021; 69:2771-2797. [PMID: 34115410 DOI: 10.1002/glia.24047] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The dynamic expansions and contractions of the microglia population in the central nervous system (CNS) to achieve homeostasis are likely vital for their function. Microglia respond to injury or disease but also help guide neurodevelopment, modulate neural circuitry throughout life, and direct regeneration. Throughout these processes, microglia density changes, as does the volume of area that each microglia surveys. Given that microglia are responsible for sensing subtle alterations to their environment, a change in their density could affect their capacity to mobilize rapidly. In this review, we attempt to synthesize the current literature on the ligands and conditions that promote microglial proliferation across development, adulthood, and neurodegenerative conditions. Microglia display an impressive proliferative capacity during development and in neurodegenerative diseases that is almost completely absent at homeostasis. However, the appropriate function of microglia in each state is critically dependent on density fluctuations that are primarily induced by proliferation. Proliferation is a natural microglial response to insult and often serves neuroprotective functions. In contrast, inappropriate microglial proliferation, whether too much or too little, often precipitates undesirable consequences for nervous system health. Thus, fluctuations in the microglia population are tightly regulated to ensure these immune cells can execute their diverse functions.
Collapse
Affiliation(s)
- Brady P Hammond
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rupali Manek
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Kataria H, Hart CG, Alizadeh A, Cossoy M, Kaushik DK, Bernstein CN, Marrie RA, Yong VW, Karimi-Abdolrezaee S. Neuregulin-1 beta 1 is implicated in pathogenesis of multiple sclerosis. Brain 2021; 144:162-185. [PMID: 33313801 PMCID: PMC7880664 DOI: 10.1093/brain/awaa385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis is characterized by immune mediated neurodegeneration that results in progressive, life-long neurological and cognitive impairments. Yet, the endogenous mechanisms underlying multiple sclerosis pathophysiology are not fully understood. Here, we provide compelling evidence that associates dysregulation of neuregulin-1 beta 1 (Nrg-1β1) with multiple sclerosis pathogenesis and progression. In the experimental autoimmune encephalomyelitis model of multiple sclerosis, we demonstrate that Nrg-1β1 levels are abated within spinal cord lesions and peripherally in the plasma and spleen during presymptomatic, onset and progressive course of the disease. We demonstrate that plasma levels of Nrg-1β1 are also significantly reduced in individuals with early multiple sclerosis and is positively associated with progression to relapsing-remitting multiple sclerosis. The functional impact of Nrg-1β1 downregulation preceded disease onset and progression, and its systemic restoration was sufficient to delay experimental autoimmune encephalomyelitis symptoms and alleviate disease burden. Intriguingly, Nrg-1β1 therapy exhibited a desirable and extended therapeutic time window of efficacy when administered prophylactically, symptomatically, acutely or chronically. Using in vivo and in vitro assessments, we identified that Nrg-1β1 treatment mediates its beneficial effects in EAE by providing a more balanced immune response. Mechanistically, Nrg-1β1 moderated monocyte infiltration at the blood-CNS interface by attenuating chondroitin sulphate proteoglycans and MMP9. Moreover, Nrg-1β1 fostered a regulatory and reparative phenotype in macrophages, T helper type 1 (Th1) cells and microglia in the spinal cord lesions of EAE mice. Taken together, our new findings in multiple sclerosis and experimental autoimmune encephalomyelitis have uncovered a novel regulatory role for Nrg-1β1 early in the disease course and suggest its potential as a specific therapeutic target to ameliorate disease progression and severity.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael Cossoy
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Deepak K Kaushik
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Charles N Bernstein
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Children Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Lilley E, Andrews MR, Bradbury EJ, Elliott H, Hawkins P, Ichiyama RM, Keeley J, Michael-Titus AT, Moon LDF, Pluchino S, Riddell J, Ryder K, Yip PK. Refining rodent models of spinal cord injury. Exp Neurol 2020; 328:113273. [PMID: 32142803 DOI: 10.1016/j.expneurol.2020.113273] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/16/2023]
Abstract
This report was produced by an Expert Working Group (EWG) consisting of UK-based researchers, veterinarians and regulators of animal experiments with specialist knowledge of the use of animal models of spinal cord injury (SCI). It aims to facilitate the implementation of the Three Rs (Replacement, Reduction and Refinement), with an emphasis on refinement. Specific animal welfare issues were identified and discussed, and practical measures proposed, with the aim of reducing animal use and suffering, reducing experimental variability, and increasing translatability within this critically important research field.
Collapse
Affiliation(s)
- Elliot Lilley
- Research Animals Department, Royal Society for the Prevention of Cruelty to Animals, Wilberforce Way, Southwater, Horsham, West Sussex RH13 9RS, UK.
| | - Melissa R Andrews
- Biological Sciences, University of Southampton, 3059, Life Sciences Bldg 85, Highfield Campus, Southampton SO17 1BJ, UK.
| | - Elizabeth J Bradbury
- King's College London, Regeneration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Guy's Campus, London SE1 1UL, UK.
| | - Heather Elliott
- Animals in Scientific Research Unit, 14th Floor, Lunar House, 40 Wellesley Road, Croydon CR9 2BY, UK.
| | - Penny Hawkins
- Research Animals Department, Royal Society for the Prevention of Cruelty to Animals, Wilberforce Way, Southwater, Horsham, West Sussex RH13 9RS, UK.
| | - Ronaldo M Ichiyama
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK.
| | - Jo Keeley
- University Biomedical Services, University of Cambridge, Greenwich House, Madingley Rise, Madingley Road, Cambridge CB3 0TX, UK.
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, London E1 2AT, UK.
| | - Lawrence D F Moon
- King's College London, Regeneration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Guy's Campus, London SE1 1UL, UK.
| | - Stefano Pluchino
- University Biomedical Services, University of Cambridge, Greenwich House, Madingley Rise, Madingley Road, Cambridge CB3 0TX, UK.
| | - John Riddell
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Kathy Ryder
- Animals in Scientific Research Unit, 14th Floor, Lunar House, 40 Wellesley Road, Croydon CR9 2BY, UK.
| | - Ping K Yip
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, London E1 2AT, UK.
| |
Collapse
|
8
|
Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog Neurobiol 2019; 180:101643. [PMID: 31229498 DOI: 10.1016/j.pneurobio.2019.101643] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
Neuregulin-1 (Nrg-1) is a member of the Neuregulin family of growth factors with essential roles in the developing and adult nervous system. Six different types of Nrg-1 (Nrg-1 type I-VI) and over 30 isoforms have been discovered; however, their specific roles are not fully determined. Nrg-1 signals through a complex network of protein-tyrosine kinase receptors, ErbB2, ErbB3, ErbB4 and multiple intracellular pathways. Genetic and pharmacological studies of Nrg-1 and ErbB receptors have identified a critical role for Nrg-1/ErbB network in neurodevelopment including neuronal migration, neural differentiation, myelination as well as formation of synapses and neuromuscular junctions. Nrg-1 signaling is best known for its characterized role in development and repair of the peripheral nervous system (PNS) due to its essential role in Schwann cell development, survival and myelination. However, our knowledge of the impact of Nrg-1/ErbB on the central nervous system (CNS) has emerged in recent years. Ongoing efforts have uncovered a multi-faceted role for Nrg-1 in regulating CNS injury and repair processes. In this review, we provide a timely overview of the most recent updates on Nrg-1 signaling and its role in nervous system injury and diseases. We will specifically highlight the emerging role of Nrg-1 in modulating the glial and immune responses and its capacity to foster neuroprotection and remyelination in CNS injury. Nrg-1/ErbB network is a key regulatory pathway in the developing nervous system; therefore, unraveling its role in neuropathology and repair can aid in development of new therapeutic approaches for nervous system injuries and associated disorders.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|