1
|
Vargas-Vázquez A, Fermín-Martínez CA, Antonio-Villa NE, Fernández-Chirino L, Ramírez-García D, Dávila-López G, Díaz-Sánchez JP, Aguilar-Salinas CA, Seiglie JA, Bello-Chavolla OY. Insulin resistance potentiates the effect of remnant cholesterol on cardiovascular mortality in individuals without diabetes. Atherosclerosis 2024; 395:117508. [PMID: 38570208 DOI: 10.1016/j.atherosclerosis.2024.117508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND AND AIMS Remnant cholesterol (RC) and insulin resistance (IR) have been independently associated with cardiovascular risk. Here, we evaluated the role of IR and RC on cardiovascular disease (CVD) mortality. METHODS We conducted an analysis of 16,113 individuals ≥20 years without diabetes from the National Health and Nutrition Examination Survey (NHANES-III/IV). RC levels were calculated using total cholesterol, non-HDL-c, and LDL-c; IR was defined as HOMA2-IR≥2.5 and CVD mortality as a composite of cardiovascular and cerebrovascular mortality. Multiple linear regression was used to assess the relationship between HOMA2-IR and RC and Cox regression models to assess their joint role in CVD mortality. Causally ordered mediation models were used to explore the mediating role of IR in RC-associated CVD mortality. RESULTS We identified an association between higher HOMA2-IR and higher RC levels. The effect of IR on CVD mortality was predominant (HR 1.32, 95%CI 1.18-1.48) and decreased at older ages (HR 0.934, 95%CI 0.918-0.959) compared to RC (HR 0.983, 95%CI 0.952-1.014). Higher risk of CVD mortality was observed in individuals with IR but normal RC (HR 1.37, 95%CI 1.25-1.50) and subjects with IR and high RC (HR 1.24, 95%CI 1.13-1.37), but not in subjects without IR but high RC. In mediation models, HOMA2-IR accounted for 78.2% (95%CI 28.11-98.89) of the effect of RC levels on CVD mortality. CONCLUSIONS Our findings suggest that RC potentiates the risk of CVD mortality through its effect on whole-body insulin sensitivity, particularly among younger individuals.
Collapse
Affiliation(s)
- Arsenio Vargas-Vázquez
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Carlos A Fermín-Martínez
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico; Research Division, Instituto Nacional de Geriatría, Mexico
| | | | | | - Daniel Ramírez-García
- Research Division, Instituto Nacional de Geriatría, Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Gael Dávila-López
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico; Research Division, Instituto Nacional de Geriatría, Mexico
| | - Juan Pablo Díaz-Sánchez
- MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico; Research Division, Instituto Nacional de Geriatría, Mexico
| | - Carlos A Aguilar-Salinas
- División de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Jacqueline A Seiglie
- Diabetes Unit, Massachusetts General Hospital, Harvard Medical School, Mexico; Department of Medicine, Harvard Medical School, Mexico
| | | |
Collapse
|
2
|
Hashmi S, Shah PW, Aherrahrou Z, Aikawa E, Aherrahrou R. Beyond the Basics: Unraveling the Complexity of Coronary Artery Calcification. Cells 2023; 12:2822. [PMID: 38132141 PMCID: PMC10742130 DOI: 10.3390/cells12242822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Coronary artery calcification (CAC) is mainly associated with coronary atherosclerosis, which is an indicator of coronary artery disease (CAD). CAC refers to the accumulation of calcium phosphate deposits, classified as micro- or macrocalcifications, that lead to the hardening and narrowing of the coronary arteries. CAC is a strong predictor of future cardiovascular events, such as myocardial infarction and sudden death. Our narrative review focuses on the pathophysiology of CAC, exploring its link to plaque vulnerability, genetic factors, and how race and sex can affect the condition. We also examined the connection between the gut microbiome and CAC, and the impact of genetic variants on the cellular processes involved in vascular calcification and atherogenesis. We aimed to thoroughly analyze the existing literature to improve our understanding of CAC and its potential clinical and therapeutic implications.
Collapse
Affiliation(s)
- Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan;
| | - Pashmina Wiqar Shah
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany; (P.W.S.); (Z.A.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany; (P.W.S.); (Z.A.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Rédouane Aherrahrou
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany; (P.W.S.); (Z.A.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
3
|
Martini N, Streckwall L, McCarthy AD. Osteoporosis and vascular calcifications. Endocr Connect 2023; 12:e230305. [PMID: 37698112 PMCID: PMC10563638 DOI: 10.1530/ec-23-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
In post-menopausal women, aged individuals, and patients with diabetes mellitus or chronic renal disease, bone mineral density (BMD) decreases while the vasculature accumulates arterial calcifications (ACs). AC can be found in the tunica intima and/or in the tunica media. Prospective studies have shown that patients with initially low BMD and/or the presence of fragility fractures have at follow-up a significantly increased risk for coronary and cerebrovascular events and for overall cardiovascular mortality. Similarly, patients presenting with abdominal aorta calcifications (an easily quantifiable marker of vascular pathology) show a significant decrease in the BMD (and an increase in the fragility) of bones irrigated by branches of the abdominal aorta, such as the hip and lumbar spine. AC induction is an ectopic tissue biomineralization process promoted by osteogenic transdifferentiation of vascular smooth muscle cells as well as by local and systemic secreted factors. In many cases, the same regulatory molecules modulate bone metabolism but in reverse. Investigation of animal and in vitro models has identified several potential mechanisms for this reciprocal bone-vascular regulation, such as vitamin K and D sufficiency, advanced glycation end-products-RAGE interaction, osteoprotegerin/RANKL/RANK, Fetuin A, oestrogen deficiency and phytooestrogen supplementation, microbiota and its relation to diet, among others. Complete elucidation of these potential mechanisms, as well as their clinical validation via controlled studies, will provide a basis for pharmacological intervention that could simultaneously promote bone and vascular health.
Collapse
Affiliation(s)
- Nancy Martini
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Lucas Streckwall
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Antonio Desmond McCarthy
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
4
|
Sutton NR, Malhotra R, Hilaire C, Aikawa E, Blumenthal RS, Gackenbach G, Goyal P, Johnson A, Nigwekar SU, Shanahan CM, Towler DA, Wolford BN, Chen Y. Molecular Mechanisms of Vascular Health: Insights From Vascular Aging and Calcification. Arterioscler Thromb Vasc Biol 2023; 43:15-29. [PMID: 36412195 PMCID: PMC9793888 DOI: 10.1161/atvbaha.122.317332] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular disease is the most common cause of death worldwide, especially beyond the age of 65 years, with the vast majority of morbidity and mortality due to myocardial infarction and stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and the biologic changes associated with aging. The pathogenesis underlying the development of vascular aging, and vascular calcification with aging, in particular, is still not fully understood. Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, environmental factors, including diabetes and chronic kidney disease, and the plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies to promote healthy vascular aging. This article summarizes current knowledge of concepts and mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.
Collapse
Affiliation(s)
- Nadia R. Sutton
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Cynthia Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, 1744 BSTWR, 200 Lothrop St, Pittsburgh, PA, 15260 USA
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Roger S. Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease; Baltimore, MD
| | - Grace Gackenbach
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Parag Goyal
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Adam Johnson
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Sagar U. Nigwekar
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Catherine M. Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | - Dwight A. Towler
- Department of Medicine | Endocrine Division and Pak Center for Mineral Metabolism Research, UT Southwestern Medical Center, Dallas, TX USA
| | - Brooke N. Wolford
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham and Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| |
Collapse
|
5
|
Xu Z, Zhang H, Wu C, Zheng Y, Jiang J. Effect of metformin on adverse outcomes in T2DM patients: Systemic review and meta-analysis of observational studies. Front Cardiovasc Med 2022; 9:944902. [PMID: 36211585 PMCID: PMC9539433 DOI: 10.3389/fcvm.2022.944902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022] Open
Abstract
Background The cardiovascular protection effect of metformin on patients with type 2 diabetes mellitus (T2DM) remains inconclusive. This systemic review and meta-analysis were to estimate the effect of metformin on mortality and cardiovascular events among patients with T2DM. Methods A search of the Pubmed and EMBASE databases up to December 2021 was performed. Adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were pooled by a random-effects model with an inverse variance method. Results A total of 39 studies involving 2473009 T2DM patients were adopted. Compared to non-metformin therapy, the use of metformin was not significantly associated with a reduced risk of major adverse cardiovascular event (MACE) (HR = 1.06, 95%CI 0.91–1.22; I2 = 82%), hospitalization (HR = 0.85, 95%CI 0.64–1.13; I2 = 98%), heart failure (HR = 0.86, 95%CI 0.60–1.25; I2 = 99%), stroke (HR = 1.16, 95%CI 0.88–1.53; I2 = 84%), and risk of AMI (HR = 0.88, 95%CI 0.69–1.14; I2 = 88%) in T2DM patients. Metformin was also not associated with significantly lowered risk of MACE compared to dipeptidyl peptidase-4 inhibitor (DPP-4i) in T2DM patients (HR = 0.95, 95%CI 0.73–1.23; I2 = 84%). Conclusions The effect of metformin on some cardiovascular outcomes was not significantly better than the non-metformin therapy or DPP-4i in T2DM patients based on observational studies.
Collapse
Affiliation(s)
- Zhicheng Xu
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Zhicheng Xu
| | - Haidong Zhang
- Department of Nephrology, Peking University Third Hospital, Bejing, China
- Haidong Zhang
| | - Chenghui Wu
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yuxiang Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingzhou Jiang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Jingzhou Jiang
| |
Collapse
|
6
|
Sow MA, Magne J, Salle L, Nobecourt E, Preux PM, Aboyans V. Prevalence, determinants and prognostic value of high coronary artery calcium score in asymptomatic patients with diabetes: A systematic review and meta-analysis. J Diabetes Complications 2022; 36:108237. [PMID: 35773171 DOI: 10.1016/j.jdiacomp.2022.108237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Mamadou Adama Sow
- EpiMaCT, INSERM U1094, and IRD U270, University of Limoges, Limoges, France; Department of Cardiology, Dupuytren-2 University Hospital, Limoges, France.
| | - Julien Magne
- EpiMaCT, INSERM U1094, and IRD U270, University of Limoges, Limoges, France; Department of Cardiology, Dupuytren-2 University Hospital, Limoges, France
| | - Laurence Salle
- EpiMaCT, INSERM U1094, and IRD U270, University of Limoges, Limoges, France; Department of Endocrinology, Dupuytren-2 University Hospital, Limoges, France
| | - Estelle Nobecourt
- Inserm U1188 Diabète Athérothrombose Thérapies Réunion Océan Indien, France; Inserm U1410, Reunion University Hospital, Reunion Island, France
| | - Pierre-Marie Preux
- EpiMaCT, INSERM U1094, and IRD U270, University of Limoges, Limoges, France
| | - Victor Aboyans
- EpiMaCT, INSERM U1094, and IRD U270, University of Limoges, Limoges, France; Department of Cardiology, Dupuytren-2 University Hospital, Limoges, France.
| |
Collapse
|
7
|
Potential Effects of Metformin on the Vitality, Invasion, and Migration of Human Vascular Smooth Muscle Cells via Downregulating lncRNA-ATB. DISEASE MARKERS 2022; 2022:7480199. [PMID: 35027983 PMCID: PMC8752240 DOI: 10.1155/2022/7480199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022]
Abstract
Objective To elucidate the role of metformin in influencing VSMCs via the involvement of lncRNA-ATB. Methods qRT-PCR was conducted to detect serum levels of lncRNA-ATB and p53 in CHD patients (n = 50) and healthy subjects (n = 50). Correlation in serum levels of lncRNA-ATB and p53 in CHD patients was assessed by Pearson correlation test. ROC curves were depicted for analyzing the predictive potential of lncRNA-ATB in the occurrence of CHD. After metformin induction in VSMCs overexpressing lncRNA-ATB, relative levels of lncRNA-ATB and p53 were detected. Meanwhile, proliferative, migratory, and invasive abilities in VSMCs were, respectively, examined by CCK-8 and transwell assay. The interaction between lncRNA-ATB and p53 was tested by RIP. In addition, the coregulation of lncRNA-ATB and p53 in cell functions of VSMCs was finally determined. Results Increased serum level of lncRNA-ATB and decreased p53 level were detected in CHD patients than those of healthy subjects. LncRNA-ATB could interact with p53 and negatively regulate its level. In addition, lncRNA-ATB could serve as a potential biomarker for predicting the occurrence of CHD. The overexpression of lncRNA-ATB triggered viability, migratory, and invasive abilities in VSMCs, and the above trends were abolished by metformin induction. The overexpression of p53 partially abolished the promotive effects of lncRNA-ATB on proliferative, migratory, and invasive abilities in VSMCs. Conclusions Metformin induction inhibits proliferative, migratory, and invasive abilities in VSMCs by downregulating lncRNA-ATB, which may be related to p53 activation.
Collapse
|
8
|
Ala M, Ala M. Metformin for Cardiovascular Protection, Inflammatory Bowel Disease, Osteoporosis, Periodontitis, Polycystic Ovarian Syndrome, Neurodegeneration, Cancer, Inflammation and Senescence: What Is Next? ACS Pharmacol Transl Sci 2021; 4:1747-1770. [PMID: 34927008 DOI: 10.1021/acsptsci.1c00167] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Diabetes is accompanied by several complications. Higher prevalence of cancers, cardiovascular diseases, chronic kidney disease (CKD), obesity, osteoporosis, and neurodegenerative diseases has been reported among patients with diabetes. Metformin is the oldest oral antidiabetic drug and can improve coexisting complications of diabetes. Clinical trials and observational studies uncovered that metformin can remarkably prevent or alleviate cardiovascular diseases, obesity, polycystic ovarian syndrome (PCOS), osteoporosis, cancer, periodontitis, neuronal damage and neurodegenerative diseases, inflammation, inflammatory bowel disease (IBD), tuberculosis, and COVID-19. In addition, metformin has been proposed as an antiaging agent. Numerous mechanisms were shown to be involved in the protective effects of metformin. Metformin activates the LKB1/AMPK pathway to interact with several intracellular signaling pathways and molecular mechanisms. The drug modifies the biologic function of NF-κB, PI3K/AKT/mTOR, SIRT1/PGC-1α, NLRP3, ERK, P38 MAPK, Wnt/β-catenin, Nrf2, JNK, and other major molecules in the intracellular signaling network. It also regulates the expression of noncoding RNAs. Thereby, metformin can regulate metabolism, growth, proliferation, inflammation, tumorigenesis, and senescence. Additionally, metformin modulates immune response, autophagy, mitophagy, endoplasmic reticulum (ER) stress, and apoptosis and exerts epigenetic effects. Furthermore, metformin protects against oxidative stress and genomic instability, preserves telomere length, and prevents stem cell exhaustion. In this review, the protective effects of metformin on each disease will be discussed using the results of recent meta-analyses, clinical trials, and observational studies. Thereafter, it will be meticulously explained how metformin reprograms intracellular signaling pathways and alters molecular and cellular interactions to modify the clinical presentations of several diseases.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), 1416753955 Tehran, Iran
| | - Mahan Ala
- School of Dentistry, Golestan University of Medical Sciences (GUMS), 4814565589 Golestan, Iran
| |
Collapse
|
9
|
Lu Y, Yuan T, Min X, Yuan Z, Cai Z. AMPK: Potential Therapeutic Target for Vascular Calcification. Front Cardiovasc Med 2021; 8:670222. [PMID: 34046440 PMCID: PMC8144331 DOI: 10.3389/fcvm.2021.670222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification (VC) is an urgent worldwide health issue with no available medical treatment. It is an active cell-driven process by osteogenic differentiation of vascular cells with complex mechanisms. The AMP-activated protein kinase (AMPK) serves as the master sensor of cellular energy status. Accumulating evidence reveals the vital role of AMPK in VC progression. AMPK is involved in VC in various ways, including inhibiting runt-related transcription factor 2 signaling pathways, triggering autophagy, attenuating endoplasmic reticulum stress and dynamic-related protein 1-mediated mitochondrial fission, and activating endothelial nitric oxide synthase. AMPK activators, like metformin, are associated with reduced calcification deposits in certain groups of patients, indicating that AMPK is a potential therapeutic target for VC.
Collapse
Affiliation(s)
- Yi Lu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tan Yuan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinjia Min
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Yuan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Jiaxing Key Laboratory of Cardiac Rehabilitation, Jiaxing, China
| |
Collapse
|
10
|
Chakrabarti A, Goldstein DR, Sutton NR. Age-associated arterial calcification: the current pursuit of aggravating and mitigating factors. Curr Opin Lipidol 2020; 31:265-272. [PMID: 32773466 PMCID: PMC7891872 DOI: 10.1097/mol.0000000000000703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW The incidence of arterial calcification increases with age, can occur independently of atherosclerosis and hyperlipidemia, contributes to vessel stiffening, and is associated with adverse cardiovascular outcomes. Here, we provide an up-to-date review of how aging leads to arterial calcification and discuss potential therapies. RECENT FINDINGS Recent research suggests that mitochondrial dysfunction (impaired efficiency of the respiratory chain, increased reactive oxygen species production, and a high mutation rate of mitochondrial DNA), cellular senescence, ectonucleotidases, and extrinsic factors such as hyperglycemia promote age-determined calcification. We discuss the future potential impact of antilipidemics, senolytics, and poly(ADP-ribose)polymerases inhibitors on age-associated arterial calcification. SUMMARY Understanding how mechanisms of aging lead to arterial calcification will allow us to pinpoint prospective strategies to mitigate arterial calcification, even after the effects of aging have already begun to occur.
Collapse
Affiliation(s)
- Apurba Chakrabarti
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
11
|
Ram E, Lavee J, Tenenbaum A, Klempfner R, Fisman EZ, Maor E, Ovdat T, Amunts S, Sternik L, Peled Y. Metformin therapy in patients with diabetes mellitus is associated with a reduced risk of vasculopathy and cardiovascular mortality after heart transplantation. Cardiovasc Diabetol 2019; 18:118. [PMID: 31526382 PMCID: PMC6747732 DOI: 10.1186/s12933-019-0925-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022] Open
Abstract
Background Cardiac allograft vasculopathy (CAV) is a major cause of morbidity and mortality following heart transplantation (HT). Reduced cardiovascular mortality and morbidity have been reported in non-HT patients treated with metformin. Given the high prevalence of type 2 diabetes mellitus (T2DM) in HT patients, we investigated the association between metformin therapy and cardiovascular outcomes after HT. Methods The study population comprised 103 DM patients who had undergone HT between 1994 and 2018 and were prospectively followed-up. We excluded from the study patients with type 1 diabetes mellitus. Fifty-five HT patients (53%) in the cohort were treated with metformin. Clinical data were recorded on prospectively designed forms. The primary outcomes included CAV, survival, and the combined end-point of CAV or cardiovascular mortality. Results Kaplan–Meier survival analysis showed that the CAV rate at 20 years of follow-up was lower in DM patients treated with metformin than in those who were not (30 vs. 65%; log-rank p = 0.044). Similarly, the combined risk of CAV or cardiovascular mortality was lower in the metformin-treated patients than in those not receiving metformin (32 vs. 68%; log rank p = 0.01). Consistently, multivariate analysis adjusted for age and comorbidities showed that metformin therapy was independently associated with a significant 90% reduction (95% confidence interval 0.02–0.46, p = 0.003) in the risk for the development of CAV, and a 91% reduction (95% confidence interval 0.02–0.42; p = 0.003) in the risk for CAV or cardiovascular mortality. Conclusions In diabetic HT patients, metformin therapy is independently associated with a significant reduction in the long-term risk for CAV and the combined end-point of CAV or cardiovascular mortality after HT.
Collapse
Affiliation(s)
- Eilon Ram
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Lavee
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Tenenbaum
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Robert Klempfner
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Enrique Z Fisman
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elad Maor
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Ovdat
- Israeli Association for Cardiovascular Trials, Ramat Gan, Israel
| | - Sergei Amunts
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Leonid Sternik
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Peled
- Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|