1
|
Smorodin E, Chuzmarov V, Veidebaum T. The Potential of Integrative Cancer Treatment Using Melatonin and the Challenge of Heterogeneity in Population-Based Studies: A Case Report of Colon Cancer and a Literature Review. Curr Oncol 2024; 31:1994-2023. [PMID: 38668052 PMCID: PMC11049198 DOI: 10.3390/curroncol31040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is a multifunctional hormone regulator that maintains homeostasis through circadian rhythms, and desynchronization of these rhythms can lead to gastrointestinal disorders and increase the risk of cancer. Preliminary clinical studies have shown that exogenous melatonin alleviates the harmful effects of anticancer therapy and improves quality of life, but the results are still inconclusive due to the heterogeneity of the studies. A personalized approach to testing clinical parameters and response to integrative treatment with nontoxic and bioavailable melatonin in patient-centered N-of-1 studies deserves greater attention. This clinical case of colon cancer analyzes and discusses the tumor pathology, the adverse effects of chemotherapy, and the dynamics of markers of inflammation (NLR, LMR, and PLR ratios), tumors (CEA, CA 19-9, and PSA), and hemostasis (D-dimer and activated partial thromboplastin time). The patient took melatonin during and after chemotherapy, nutrients (zinc, selenium, vitamin D, green tea, and taxifolin), and aspirin after chemotherapy. The patient's PSA levels decreased during CT combined with melatonin (19 mg/day), and melatonin normalized inflammatory markers and alleviated symptoms of polyneuropathy but did not help with thrombocytopenia. The results are analyzed and discussed in the context of the literature on oncostatic and systemic effects, alleviating therapy-mediated adverse effects, association with survival, and N-of-1 studies.
Collapse
Affiliation(s)
- Eugeniy Smorodin
- Department of Chronic Diseases, National Institute for Health Development, Paldiski mnt 80, 10617 Tallinn, Estonia;
| | - Valentin Chuzmarov
- 2nd Surgery Department, General Surgery and Oncology Surgery Centre, North Estonia Medical Centre, J. Sütiste Str. 19, 13419 Tallinn, Estonia
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Paldiski mnt 80, 10617 Tallinn, Estonia;
| |
Collapse
|
2
|
Rohilla S, Singh M, Priya S, Almalki WH, Haniffa SM, Subramaniyan V, Fuloria S, Fuloria NK, Sekar M, Singh SK, Jha NK, Chellappan DK, Negi P, Dua K, Gupta G. Exploring the Mechanical Perspective of a New Anti-Tumor Agent: Melatonin. J Environ Pathol Toxicol Oncol 2023; 42:1-16. [PMID: 36734949 DOI: 10.1615/jenvironpatholtoxicoloncol.2022042088] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a serotonin-derived pineal gland hormone with many biological functions like regulating the sleep-wake cycle, circadian rhythm, menstrual cycle, aging, immunity, and antioxidants. Melatonin synthesis and release are more pronounced during the night, whereas exposure to light decreases it. Evidence is mounting in favor of the therapeutic effects of melatonin in cancer prevention, treatment and delayed onset in various cancer subtypes. Melatonin exerts its anticancer effect through modification of its receptors such as melatonin 1 (MT1), melatonin 2 (MT2), and inhibition of cancer cell proliferation, epigenetic alterations (DNA methylation/demethylation, histone acetylation/deacetylation), metastasis, angiogenesis, altered cellular energetics, and immune evasion. Melatonin performs a significant function in immune modulation and enhances innate and cellular immunity. In addition, melatonin has a remarkable impact on epigenetic modulation of gene expression and alters the transcription of genes. As an adjuvant to cancer therapies, it acts by decreasing the side effects and boosting the therapeutic effects of chemotherapy. Since current treatments produce drug-induced unwanted toxicities and side effects, they require alternate therapies. A recent review article attempts to summarize the mechanistic perspective of melatonin in different cancer subtypes like skin cancer, breast cancer, hepatic cancer, renal cell cancer, non-small cell lung cancer (NSCLC), colon oral, neck, and head cancer. The various studies described in this review will give a firm basis for the future evolution of anticancer drugs.
Collapse
Affiliation(s)
- Suman Rohilla
- SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, 122505, India
| | - Mahaveer Singh
- Swami Keshvanand Institute of Pharmacy (SKIP), Raiser, Bikaner, 334803, India
| | - Sakshi Priya
- Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shahril Mohamed Haniffa
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Saujana Putra 42610, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom Selangor, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy /Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah 08100, Malaysia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy/Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah 08100, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Perak, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Uttar Pradesh, Greater Noida, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh GyanVihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
3
|
Yang X, Cao Q, Ma B, Xia Y, Liu M, Tian J, Chen J, Su C, Duan X. Probiotic powder ameliorates colorectal cancer by regulating Bifidobacterium animalis, Clostridium cocleatum, and immune cell composition. PLoS One 2023; 18:e0277155. [PMID: 36913356 PMCID: PMC10010516 DOI: 10.1371/journal.pone.0277155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2023] Open
Abstract
Based on the relationship between the gut microbiota and colorectal cancer, we developed a new probiotic powder for treatment of colorectal cancer. Initially, we evaluated the effect of the probiotic powder on CRC using hematoxylin and eosin staining, and evaluated mouse survival rate and tumor size. We then investigated the effects of the probiotic powder on the gut microbiota, immune cells, and apoptotic proteins using 16S rDNA sequencing, flow cytometry, and western blot, respectively. The results showed that the probiotic powder improved the intestinal barrier integrity, survival rate, and reduced tumor size in CRC mice. This effect was associated with changes in the gut microbiota. Specifically, the probiotic powder increased the abundance of Bifidobacterium animalis and reduced the abundance of Clostridium cocleatum. In addition, the probiotic powder resulted in decreased numbers of CD4+ Foxp3+ Treg cells, increased numbers of IFN-γ+ CD8+ T cells and CD4+ IL-4+ Th2 cells, decreased expression of the TIGIT in CD4+ IL-4+ Th2 cells, and increased numbers of CD19+ GL-7+ B cells. Furthermore, the expression of the pro-apoptotic protein BAX was significantly increased in tumor tissues in response to the probiotic powder. In summary, the probiotic powder ameliorated CRC by regulating the gut microbiota, reducing Treg cell abundance, promoting the number of IFN-γ+ CD8+ T cells, increasing Th2 cell abundance, inhibiting the expression of TIGIT in Th2 cells, and increasing B cell abundance in the immune microenvironment of CRC, thereby increasing the expression of BAX in CRC.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qian Cao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Bin Ma
- Department of Oncology Surgery, The First People's Hospital of Yinchuan, Yinchuan, China
| | - Yuhan Xia
- Department of Nutrition, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Miao Liu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jinhua Tian
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | | | - Chunxia Su
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Xiangguo Duan
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Laboratory Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
4
|
Li Y, Hung SW, Zhang R, Man GCW, Zhang T, Chung JPW, Fang L, Wang CC. Melatonin in Endometriosis: Mechanistic Understanding and Clinical Insight. Nutrients 2022; 14:nu14194087. [PMID: 36235740 PMCID: PMC9572886 DOI: 10.3390/nu14194087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Endometriosis is defined as the development of endometrial glands and stroma outside the uterine cavity. Pathophysiology of this disease includes abnormal hormone profiles, cell survival, migration, invasion, angiogenesis, oxidative stress, immunology, and inflammation. Melatonin is a neuroendocrine hormone that is synthesized and released primarily at night from the mammalian pineal gland. Increasing evidence has revealed that melatonin can be synthesized and secreted from multiple extra-pineal tissues where it regulates immune response, inflammation, and angiogenesis locally. Melatonin receptors are expressed in the uterus, and the therapeutic effects of melatonin on endometriosis and other reproductive disorders have been reported. In this review, key information related to the metabolism of melatonin and its biological effects is summarized. Furthermore, the latest in vitro and in vivo findings are highlighted to evaluate the pleiotropic functions of melatonin, as well as to summarize its physiological and pathological effects and treatment potential in endometriosis. Moreover, the pharmacological and therapeutic benefits derived from the administration of exogenous melatonin on reproductive system-related disease are discussed to support the potential of melatonin supplements toward the development of endometriosis. More clinical trials are needed to confirm its therapeutic effects and safety.
Collapse
Affiliation(s)
- Yiran Li
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Sze-Wan Hung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ruizhe Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Gene Chi-Wai Man
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Tao Zhang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jacqueline Pui-Wah Chung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Correspondence: (L.F.); (C.-C.W.); Tel.: +86-371-6691-3635 (L.F.); +852-3505-4267 (C.-C.W.)
| | - Chi-Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Laboratory of Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: (L.F.); (C.-C.W.); Tel.: +86-371-6691-3635 (L.F.); +852-3505-4267 (C.-C.W.)
| |
Collapse
|
5
|
Erdogan CS, Al Hassadi Y, Aru B, Yilmaz B, Gemici B. Combinatorial effects of melatonin and paclitaxel differ depending on the treatment scheme in colorectal cancer in vitro. Life Sci 2022; 308:120927. [PMID: 36063977 DOI: 10.1016/j.lfs.2022.120927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
AIMS Colorectal carcinoma (CRC) is the third most prevalent cancer with high mortality. Besides regulating the circadian rhythm, melatonin (MTN) exerts anticancer activities. Paclitaxel (PTX) is successful against different malignancies, however, acquired resistance and variability in patient response restrict its use. mTOR and MAPK pathways are often deregulated in human cancers. We aimed to investigate whether MTN enhances or sensitizes the chemotherapeutic activity of PTX and if so, determine the underlying possible mechanisms in CRC in vitro. MAIN METHODS Antiproliferative and cytotoxic activities of PTX and MTN were assessed alone and in combination, as well as with different treatment regimens (renewal or replacement of the treatment after 24 h), up to 48 h. Apoptosis, viability and autophagy were assessed by flow cytometry. mTOR and MAPK pathway activities were investigated by immunoblotting. KEY FINDINGS Both drugs reduced cell viability in a dose-dependent manner at 24 and 48 h. Only the highest dose of MTN (500 μM) potentiated the cytotoxicity of PTX (50 nM). Replacement of PTX after 24 h with MTN was superior in reducing cell viability than vice versa via apoptosis induction. Renewal of MTN treatment every 24 h reduced autophagy compared to the control group, while other treatments did not alter the autophagic activity. A 24 h MTN treatment followed by 24 h PTX treatment increased S6 phosphorylation in a mTOR-independent manner and increased Erk1/2 phosphorylation. SIGNIFICANCE The present study suggests that sequential treatment with MTN and PTX distinctly affect apoptosis and cytotoxicity via regulating mTOR and MAPK pathways differentially in CRC.
Collapse
Affiliation(s)
- Cihan Suleyman Erdogan
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Yasmine Al Hassadi
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Basak Aru
- Yeditepe University, Faculty of Medicine, Department of Immunology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Bayram Yilmaz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Burcu Gemici
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey.
| |
Collapse
|
6
|
Wu F, Yang J, Shang G, Zhang Z, Niu S, Liu Y, Liu H, Jing J, Fang Y. Exosomal miR-224-5p from Colorectal Cancer Cells Promotes Malignant Transformation of Human Normal Colon Epithelial Cells by Promoting Cell Proliferation through Downregulation of CMTM4. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5983629. [PMID: 35814269 PMCID: PMC9262543 DOI: 10.1155/2022/5983629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/23/2022] [Indexed: 11/18/2022]
Abstract
Background Interactions between malignant cells and neighboring normal cells are important for carcinogenesis. In addition, cancer cell-derived exosomes have been shown to promote the malignant transformation of recipient cells, but the mechanisms remain unclear. Methods The level of miR-224-5p in CRC cell-derived exosomes was determined by RT-qPCR assay. In addition, PKH26 dye-labeled exosomes were used to assess the efficacy of the transfer of exosomes between SW620 and normal colon epithelial cell line CCD 841 CoN. Results In this study, we found that overexpression of miR-224-5p significantly promoted the proliferation, migration, and invasion and inhibited the oxidative stress of SW620 cells. In addition, miR-224-5p can be transferred from SW620 cells to CCD 841 CoN cells via exosomes. SW620 cell-derived exosomal miR-224-5p markedly promoted proliferation, migration, and invasion of CCD 841 CoN cells. Meanwhile, SW620 cell-derived exosomal miR-224-5p notably decreased the expression of CMTM4 in CCD 841 CoN cells. Furthermore, SW620 cell-derived exosomal miR-224-5p significantly promoted tumor growth in a xenograft model in vivo. Conclusion These findings suggested that SW620 cell-derived exosomal miR-224-5p could promote malignant transformation and tumorigenesis in vitro and in vivo via downregulation of CMTM4, suggesting that miR-224-5p might be a potential target for therapies in CRC.
Collapse
Affiliation(s)
- Feng Wu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jiani Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Guoyin Shang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Zhijia Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Sijia Niu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yang Liu
- Pharmacy Intravenous Admixture Services, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Hongru Liu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jing Jing
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yu Fang
- Department of Phase I Clinical Trial Ward, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
7
|
Wu D, Zhang Y, Tang H, Yang J, Li M, Liu H, Li Q. [Melatonin inhibits growth and metastasis of MDA-MB-231 breast cancer cells by activating autophagy]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:278-285. [PMID: 35365454 DOI: 10.12122/j.issn.1673-4254.2022.02.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effects of melatonin on the growth and metastasis of MDA-MB-231 breast cancer cells and explore the mechanism. METHODS MDA-MB-231 cells were treated with 1, 3 or 5 mmol/L melatonin, and the changes in cell proliferation were examined using CCK-8 assay. Colony-forming assay and wound healing assay were used to assess the effects of melatonin treatmnent on colony-forming ability and migration of the cells. Flow cytometry and immunofluoresnce assay were employed to examine apoptosis and positive staining for autophagy-related proteins in the cells treated with 3 mmol/L melatonin. The effects of melatonin treatment alone or in combination with 3-methyladenine (3-MA) on the expressions of the proteins associated with autophagy (LC3, P62 and Beclin1), apoptosis (Bcl2 and Bax) and epithelial-mesenchymal transition (E-cadherin and Snail) were examined with Western blotting. RESULTS Melatonin treatment significantly inhibited the proliferation of breast cancer cells in a concentration- and time-dependent manner (P < 0.05), suppressed colony-forming ability and migration (P < 0.01), and promoted apoptosis of the cells (P < 0.01). Melatonin treatment alone significantly increased the expressions of Bax (P < 0.05), E-cadherin, LC3-II/LC3-I, and Beclin1 and lowered the expressions of Bcl2 (P < 0.05), Snail, P62 (P < 0.05), and Bcl2/Bax ratio (P < 0.01) in the cells, and caused enhanced positive staining of Beclin1 protein and attenuated staining of P62 protein. Compared with melatonin treatment alone, melatonin treatment combined with 3-MA significantly decreased the expressions of Beclin1 (P < 0.001), LC3-II/LC3-I (P < 0.05), Bax (P < 0.01), and E-cadherin (P < 0.001) and increased the expressions of Bcl2 (P < 0.05), Snail, and Bcl2/Bax ratio (P < 0.01). CONCLUSION Melatonin can induce autophagy of MDA-MB-231 breast cancer cells to inhibit cell proliferation and metastasis and promote cell apoptosis, and suppressing autophagy can weaken the inhibitory effect of melatonin on the growth and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- D Wu
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guiyang 550004, China
| | - Y Zhang
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guiyang 550004, China
| | - H Tang
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guiyang 550004, China
| | - J Yang
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guiyang 550004, China
| | - M Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - H Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100000, China
| | - Q Li
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guiyang 550004, China.,Guizhou Provincial Prenatal Diagnosis Center, Guiyang 550004, China
| |
Collapse
|
8
|
Yepes AF, Arias JD, Cardona-G W, Herrera-R A, Moreno G. New class of hybrids based on chalcone and melatonin: a promising therapeutic option for the treatment of colorectal cancer. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02805-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Kvietkauskas M, Zitkute V, Leber B, Strupas K, Stiegler P, Schemmer P. Dietary Melatonin and Glycine Decrease Tumor Growth through Antiangiogenic Activity in Experimental Colorectal Liver Metastasis. Nutrients 2021; 13:nu13062035. [PMID: 34199311 PMCID: PMC8231877 DOI: 10.3390/nu13062035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Despite multimodal treatment strategies, clinical outcomes of advanced stage colorectal cancer (CRC) patients remain poor. Neoadjuvant/adjuvant chemotherapy efficacy is limited due to chemoresistance, toxicity, and negative side effects. Since both melatonin and glycine have anti-cancer activities without relevant side effects, this study was designed to investigate their combined effects in experimental CRC liver metastases. CRC metastasis with CC531 cells were induced in male Wistar rats. Melatonin and glycine alone or their combination were supplemented for 14 days (n = 100). Blood parameters, a micro-computed tomography scan (tumor volume over time), and immunohistochemistry for Ki67 and CD31 expression in tumor tissue were compared between groups. Melatonin and glycine alone significantly reduced the tumor volume by 63.2% (p = 0.002) and 43% (p = 0.044) over time, respectively, while tumor volume increased by 8.7% in the controls. Moreover, treatment with melatonin and glycine alone reduced the tumor proliferation index. Most interestingly, the combination therapy did not have any influence on the above-mentioned tumor parameters. The leukocyte count was significantly increased with melatonin at the end of the experiment (p = 0.012) which was due to a high lymphocytes count. Tumor microvascular density was significantly reduced in all treatment groups. The results of this study suggest an inhibitory function for melatonin and glycine alone in the case of CRC liver metastasis growth by acting as natural antiangiogenic molecules, followed by angiogenesis-dependent cancer proliferation and immunomodulation.
Collapse
Affiliation(s)
- Mindaugas Kvietkauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Viktorija Zitkute
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Correspondence: ; Tel.: +43-316-385-83232
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
| |
Collapse
|
10
|
Pan X, Li B, Zhang G, Gong Y, Liu R, Chen B, Li Y. Identification of RORγ as a favorable biomarker for colon cancer. J Int Med Res 2021; 49:3000605211008338. [PMID: 33947261 PMCID: PMC8113924 DOI: 10.1177/03000605211008338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To evaluate the expression of retinoid-related orphan receptor gamma (RORγ)
and its potential role in the prognosis of colon cancer. Methods The Cancer Genome Atlas and GSE117606 were used to evaluate to RORγ levels in
colon cancer, and real-time quantitative polymerase chain reaction was
applied for validation. UALCAN and MEXPRESS were used to analyze the
associations of RORγ expression with clinical parameters. The survival
analysis was conducted in GEPIA. Results RORγ expression was significantly lower in colon tumors than in adjacent
normal mucosa tissues. RORγ expression was significantly associated with
tumor stage, lymph node metastasis, and liver metastasis. The area under the
curve for diagnosis was 0.71. Decreased RORγ expression was positively
correlated with the incidence of lymphatic invasion, microsatellite
instability, the presence of residual tumor, venous invasion, and copy
number variation. Overall survival was longer in patients with higher RORγ
expression, especially those with microsatellite instability-high features.
Methylation analysis revealed that hypermethylation of the RORγ promoter was
associated with the colon cancer stage. Conclusions RORγ downregulation could be a potential biomarker for colon cancer,
especially for predicting prognosis. Decreased RORγ expression in colon
tumor may be associated with promoter hypermethylation.
Collapse
Affiliation(s)
- Xiaofei Pan
- Department of Colorectal and Anal Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Bao Li
- Department of Colorectal and Anal Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Gan Zhang
- Department of Colorectal and Anal Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Yuyong Gong
- Department of Colorectal and Anal Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Rui Liu
- Department of Burns and Orthopedic Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Benxin Chen
- Department of Minimally Invasive Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| | - Yang Li
- Department of Colorectal and Anal Surgery, the Affiliated Hospital of West Anhui Health Vocational College, Lu'an, China
| |
Collapse
|
11
|
Wong KC, Sankaran S, Jayapalan JJ, Subramanian P, Abdul-Rahman PS. Melatonin improves cognitive behavior, oxidative stress, and metabolism in tumor-prone lethal giant larvae mutant of Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21785. [PMID: 33818826 DOI: 10.1002/arch.21785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/24/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Mutant lethal giant larvae (lgl) flies (Drosophila melanogaster) are known to develop epithelial tumors with invasive characteristics. The present study has been conducted to investigate the influence of melatonin (0.025 mM) on behavioral responses of lgl mutant flies as well as on biochemical indices (redox homeostasis, carbohydrate and lipid metabolism, transaminases, and minerals) in hemolymph, and head and intestinal tissues. Behavioral abnormalities were quantitatively observed in lgl flies but were found normalized among melatonin-treated lgl flies. Significantly decreased levels of lipid peroxidation products and antioxidants involved in redox homeostasis were observed in hemolymph and tissues of lgl flies, but had restored close to normalcy in melatonin-treated flies. Carbohydrates including glucose, trehalose, and glycogen were decreased and increased in the hemolymph and tissues of lgl and melatonin-treated lgl flies, respectively. Key enzymes of carbohydrate metabolism showed a significant increment in their levels in lgl mutants but had restored close to wild-type baseline levels in melatonin-treated flies. Variables of lipid metabolism showed significantly inverse levels in hemolymph and tissues of lgl flies, while normalization of most of these variables was observed in melatonin-treated mutants. Lipase, chitinase, transaminases, and alkaline phosphatase showed an increment in their activities and minerals exhibited decrement in lgl flies; reversal of changes was observed under melatonin treatment. The impairment of cognition, disturbance of redox homeostasis and metabolic reprogramming in lgl flies, and restoration of normalcy in all these cellular and behavioral processes indicate that melatonin could act as oncostatic and cytoprotective agents in Drosophila.
Collapse
Affiliation(s)
- Kar-Cheng Wong
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Srivani Sankaran
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Jaime J Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), University of Malaya, Kuala Lumpur, Malaysia
| | - Perumal Subramanian
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Puteri S Abdul-Rahman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research (UMCPR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Ji G, Zhou W, Li X, Du J, Li X, Hao H. Melatonin inhibits proliferation and viability and promotes apoptosis in colorectal cancer cells via upregulation of the microRNA-34a/449a cluster. Mol Med Rep 2021; 23:187. [PMID: 33398374 PMCID: PMC7809902 DOI: 10.3892/mmr.2021.11826] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) has a significant burden on healthcare systems worldwide, and is associated with high morbidity and mortality rates in patients. In 2020, the estimated new cases of colon cancer in the United States are 78,300 in men and 69,650 in women. Thus, developing effective and novel alternative agents and adjuvants with reduced side effects is important to reduce the lethality of the disease and improve the quality of life of patients. Melatonin, a pineal hormone that possesses numerous physiological functions, including anti-inflammatory and antitumor activities, can be found in various tissues, including the gastrointestinal tract. Melatonin exerts anticarcinogenic effects via various mechanisms; however, the identified underlying molecular mechanisms do not explain the full breadth of anti-CRC effects mediated by melatonin. MicroRNAs (miRs) serve critical roles in tumorigenesis, however, whether melatonin can inhibit CRC by regulating miRs is not completely understood. In the present study, the roles and mechanism underlying melatonin in CRC were investigated. The proliferation of human CRC cells was tested by CCK8, EDU and colony formation assay. The apoptosis of cancer cells was detected by flow cytometry and western blotting. A xenograft mouse model was constructed and the proliferation and apoptosis of tumor tissue was detected by Ki-67 and TUNEL staining assay respectively. Reverse transcription-quantitative PCR and western blotting were performed to measure the regulation of miRs on mRNA, and the dual-luciferase report analysis experiment was used to verify the direct target genes of miRs. Compared with the control group, melatonin inhibited viability and proliferation, and induced apoptosis in CRC cells. Additionally, the effect of melatonin in a xenograft mouse model was assessed. Compared with the control group, melatonin significantly enhanced the expression levels of the miR-34a/449a cluster, reduced CRC cell proliferation and viability, and increased CRC cell apoptosis. Finally, the dual-luciferase reporter assay indicated that Bcl-2 and Notch1 were the target mRNAs of the miR-34a/449a cluster. To the best of our knowledge, the present study was the first to suggest that melatonin inhibited proliferation and viability, and promoted apoptosis in CRC cells via upregulating the expression of the miR-34a/449a cluster in vitro and in vivo. Therefore, melatonin may serve as a potential therapeutic for CRC.
Collapse
Affiliation(s)
- Guangyu Ji
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xian Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xinyue Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hongbo Hao
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
13
|
Jastrzębski M, Przybyłkowski A. Biogenic amines in the colon. POSTEP HIG MED DOSW 2021; 75:183-190. [DOI: 10.5604/01.3001.0014.7954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
Summary
The gastrointestinal (GI) tract contains the highest concentration of biogenic amines in the human body. Neurons located in the GI tract, modulated by biogenic amines and various peptide and non-peptide transmitters, are called Enteric Nervous System (ENS). That explains why many medications used in neurology and psychiatry present side effects from the gut. Serotonin (5-hyroxytrypatamine, 5-HT), 95% of which is synthesized in the gut, is the most important amine (beside epinephrine and norepinephrine) colon functionality but another substances such as histamine, dopamine and melatonin are also potent in modulating intestine’s actions. Over 30 receptors for 5-HT were described in the human body, and 5-HT3, 5-HT4 and 5-HT7 are known to have the highest influence on motility and are a potent target for the drugs for treatment GI disorders, such as Irritable Bowel Syndrome (IBS) and Inflammatory Bowel Diseases (IBD). Histamine is a key biogenic amine for pathogenesis of allergy also in the colon. Alteration in histaminergic system is found in patients with diarrhea and allergic enteropathy. Dopamine affects functions of the large intestine but its modulating actions are more presented in the upper part of GI tract. Melatonin is best known for regulating circadian circle, but may also be a potent anti-inflammatory agent within the gut. Despite many years of research, it seems that more studies are needed to fully understand human colon neurochemistry.
Collapse
Affiliation(s)
- Miłosz Jastrzębski
- Department of Gastroenterology and Internal Medicine , Medical University of Warsaw , Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine , Medical University of Warsaw , Poland
| |
Collapse
|
14
|
Wang Y, Tao B, Li J, Mao X, He W, Chen Q. Melatonin Inhibits the Progression of Oral Squamous Cell Carcinoma via Inducing miR-25-5p Expression by Directly Targeting NEDD9. Front Oncol 2020; 10:543591. [PMID: 33344223 PMCID: PMC7738623 DOI: 10.3389/fonc.2020.543591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Melatonin exerts anti-cancer roles in various types of cancers. However, to the best of our knowledge, its role in oral squamous cell carcinoma (OSCC) is unknown. The present study aimed to investigate the role of melatonin and its underlying mechanism in OSCC. MTT, colony formation, wound healing, and transwell invasion assays proved that melatonin played anti-tumor effects in OSCC cells by inhibiting cell viability, proliferation, migration, and invasion in a concentration-dependent manner. The RT-qPCR analysis showed that miR-25-5p was significantly upregulated after melatonin treatment. Further, miR-25-5p might be involved in melatonin-induced inhibitory effects on the biological behavior of OSCC. The expression of miR-25-5p was decreased in tumor tissues and OSCC cells detected by RT-qPCR. MTT assay, colony formation assay, and TUNEL staining indicated miR-25-5p overexpression inhibited OSCC cell viability, proliferation, and induced OSCC cell apoptosis. Furthermore, wound healing, transwell invasion assay, and animal experiments suggested that miR-25-5p might exert suppressive effects on the migration, invasion, and tumor formation of OSCC cells, while miR-25-5p knockdown exhibited the opposite effects in OSCC cells. Bioinformatics analysis, western blot analysis, and luciferase reporter assay suggested that neural precursor cell expressed developmentally downregulated protein 9 (NEDD9) was proved to be a putative target for miR-25-5p. The role of NEDD9 in inhibiting OSCC cell proliferation, invasion, and migration was verified with NEDD9 siRNA transfection. Thus, melatonin exerted anti-proliferative, anti-invasive, and anti-migrative effects on OSCC via miR-25-5p/NEDD9 pathway. Melatonin could be applied as a potential novel drug on treating OSCC.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Stomatology, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Bo Tao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaying Li
- Huiqiao Medical Center, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Xiaoqun Mao
- Nursing Department, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qinbiao Chen
- Neurosurgery Department, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Wu J, Bai Y, Wang Y, Ma J. Melatonin and regulation of autophagy: Mechanisms and therapeutic implications. Pharmacol Res 2020; 163:105279. [PMID: 33161138 DOI: 10.1016/j.phrs.2020.105279] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are essential subcellular units that generate basic energy for the cell, as well as influence Ca2+ flux, apoptosis, and cell signaling. Mitophagy can selectively remove impaired mitochondria to preserve mitochondrial function, which is crucial for normal cellular maintenance. Mitochondrial dysfunction and mitophagy are widely reported to be linked to various pathogeneses. In addition, there is increasing evidence regarding the beneficial role of melatonin in the regulation and intervention of mitophagy progression. In this review, we focus on specific pathological conditions, including ischemia/reperfusion injury (IRI), cancer and neurodegenerative diseases, and elucidate the essential role of melatonin in the modulation of mitophagy in each of these distinct disorders.
Collapse
Affiliation(s)
- Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yaguang Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
16
|
ÖZTÜRK G, AKBULUT KG, GÜNEY Ş. Melatonin, aging, and COVID-19: Could melatonin be beneficial for COVID-19 treatment in the elderly? Turk J Med Sci 2020; 50:1504-1512. [PMID: 32777902 PMCID: PMC7605095 DOI: 10.3906/sag-2005-356] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to summarize current studies on the relationship between melatonin and aging. Nowadays, age-related diseases come into prominence, and identifying age-related changes and developing proper therapeutic approaches are counted as some of the major issues regarding community health. Melatonin is the main hormone of the pineal gland. Melatonin is known to influence many biological processes in the body, including circadian rhythms, the immune system, and neuroendocrine and cardiovascular functions.Melatoninrhythms also reflect the biological process of aging. Aging is an extremely complex and multifactorial process. Melatonin levels decline considerably with aging and its decline is associated with several age-related diseases. Aging is closely associated with oxidative damage and mitochondrial dysfunction. Free radical reactions initiated by the mitochondria constitute the inherent aging process. Melatonin plays a pivotal role in preventing age-related oxidative stress. Coronavirus disease 2019 (COVID-19) fatality rates increase with chronic diseases and age, where melatonin levels decrease. For this reason, melatonin supplementation in elderly could be beneficial in COVID-19 treatment. Therefore, studies on the usage of melatonin in COVID-19 treatment are needed.
Collapse
Affiliation(s)
- Güler ÖZTÜRK
- Department of Physiology, Faculty of Medicine, İstanbul Medeniyet University, İstanbulTurkey
| | | | - Şevin GÜNEY
- Department of Physiology, Faculty of Medicine, Gazi University, AnkaraTurkey
| |
Collapse
|
17
|
Zharinov GM, Bogomolov OA, Chepurnaya IV, Neklasova NY, Anisimov VN. Melatonin increases overall survival of prostate cancer patients with poor prognosis after combined hormone radiation treatment. Oncotarget 2020; 11:3723-3729. [PMID: 33110479 PMCID: PMC7566809 DOI: 10.18632/oncotarget.27757] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The antitumor and immunomodulating activities of melatonin are widely known. These activities are based upon the multifactorial mechanism of action on various links of carcinogenesis. In the present paper, the long-term results of the clinical use of melatonin in the combined treatment of patients with prostate cancer of various risk groups were evaluated. MATERIALS AND METHODS A retrospective study included 955 patients of various stages of prostate cancer (PCa) who received combined hormone radiation treatment from 2000 to 2019. Comprehensive statistical methods were used to analyze the overall survival rate of PCa patients treated with melatonin in various prognosis groups. RESULTS The overall survival rate of PCa patients with favorable and intermediate prognoses treated or not treated with melatonin was not statistically significantly different. In the poor prognosis group, the median overall survival in patients taking the drug was 153.5 months versus 64.0 months in patients not using it (p < 0.0001). The 5-year overall survival rates in the research and control groups were 66.8 ± 1.9 and 53.7 ± 2.6 (p < 0.0001) respectively. In a multivariate analysis, melatonin administration proved to be an independent prognostic factor and reduced the risk of death of PCa patients by more than twice (p < 0.0001). CONCLUSIONS The multicomponent antitumor effect of melatonin is fully realized and clearly demonstrated in treatment of PCa patients with poor prognosis with a set of unfavorable factors of the tumor progression.
Collapse
Affiliation(s)
- Gennady M. Zharinov
- A.M. Granov Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Pesochny, St. Petersburg 197758, Russia
| | - Oleg A. Bogomolov
- A.M. Granov Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Pesochny, St. Petersburg 197758, Russia
| | - Irina V. Chepurnaya
- A.M. Granov Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Pesochny, St. Petersburg 197758, Russia
| | - Natalia Yu. Neklasova
- A.M. Granov Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Pesochny, St. Petersburg 197758, Russia
| | - Vladimir N. Anisimov
- N.N. Petrov National Medical Research Center of Oncology, Pesochny, St. Petersburg 197758, Russia
| |
Collapse
|
18
|
Pourhanifeh MH, Mehrzadi S, Kamali M, Hosseinzadeh A. Melatonin and gastrointestinal cancers: Current evidence based on underlying signaling pathways. Eur J Pharmacol 2020; 886:173471. [PMID: 32877658 DOI: 10.1016/j.ejphar.2020.173471] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Gastrointestinal (GI) cancers, leading causes of cancer-related deaths, have been serious challenging human diseases up to now. Because of high rates of mortality, late-stage diagnosis, metastasis to distant locations, and low effectiveness and adverse events of routine standard therapies, the quality of life and survival time are low in patients with GI cancers. Hence, many efforts need to be done to explore and find novel efficient treatments. Beneficial effects of melatonin have been reported in a wide variety of human diseases. Melatonin has antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. Various studies have showed the regulatory effects of melatonin on apoptotsis, autophagy and angiogenesis; these properties result in the inhibition of invasion, migration, and proliferation of GI cancer cells in vivo and in vitro. Together, this review suggests that melatonin in combination with anticancer agents may improve the efficacy of routine medicine and survival rate of patients with cancer.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Gonzalez A, Estaras M, Martinez-Morcillo S, Martinez R, García A, Estévez M, Santofimia-Castaño P, Tapia JA, Moreno N, Pérez-López M, Míguez MP, Blanco-Fernández G, Lopez-Guerra D, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM. Melatonin modulates red-ox state and decreases viability of rat pancreatic stellate cells. Sci Rep 2020; 10:6352. [PMID: 32286500 PMCID: PMC7156707 DOI: 10.1038/s41598-020-63433-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
In this work we have studied the effects of pharmacological concentrations of melatonin (1 µM-1 mM) on pancreatic stellate cells (PSC). Cell viability was analyzed by AlamarBlue test. Production of reactive oxygen species (ROS) was monitored following CM-H2DCFDA and MitoSOX Red-derived fluorescence. Total protein carbonyls and lipid peroxidation were analyzed by HPLC and spectrophotometric methods respectively. Mitochondrial membrane potential (ψm) was monitored by TMRM-derived fluorescence. Reduced (GSH) and oxidized (GSSG) levels of glutathione were determined by fluorescence techniques. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Determination of SOD activity and total antioxidant capacity (TAC) were carried out by colorimetric methods, whereas expression of SOD was analyzed by Western blotting and RT-qPCR. The results show that melatonin decreased PSC viability in a concentration-dependent manner. Melatonin evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Oxidation of proteins was detected in the presence of melatonin, whereas lipids oxidation was not observed. Depolarization of ψm was noted with 1 mM melatonin. A decrease in the GSH/GSSG ratio was observed, that depended on the concentration of melatonin used. A concentration-dependent increase in the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 was detected in cells incubated with melatonin. Finally, decreases in the expression and in the activity of superoxide dismutase were observed. We conclude that pharmacological concentrations melatonin modify the redox state of PSC, which might decrease cellular viability.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| | - Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Remigio Martinez
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Alfredo García
- Department of Animal Production, CICYTEX-La Orden, Guadajira, Badajoz, Spain
| | - Mario Estévez
- IPROCAR Research Institute, Food Technology, University of Extremadura, 10003, Cáceres, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Jose A Tapia
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Noelia Moreno
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Marcos Pérez-López
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - María P Míguez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gerardo Blanco-Fernández
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez-Guerra
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
20
|
Importance of Melatonin in Assisted Reproductive Technology and Ovarian Aging. Int J Mol Sci 2020; 21:ijms21031135. [PMID: 32046301 PMCID: PMC7036809 DOI: 10.3390/ijms21031135] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Melatonin is probably produced in all cells but is only secreted by the pineal gland. The pineal secretion of melatonin is determined by the light–dark cycle, and it is only released at night. Melatonin regulates biological rhythms via its receptors located in the suprachiasmatic nuclei of the hypothalamus. Melatonin also has strong antioxidant activities to scavenge free radicals such as reactive oxygen species (ROS). The direct free radical scavenging actions are receptor independent. ROS play an important role in reproductive function including in the ovulatory process. However, excessive ROS can also have an adverse effect on oocytes because of oxidative stress, thereby causing infertility. It is becoming clear that melatonin is located in the ovarian follicular fluid and in the oocytes themselves, which protects these cells from oxidative damage as well as having other beneficial actions in oocyte maturation, fertilization, and embryo development. Trials on humans have investigated the improvement of outcomes of assisted reproductive technology (ART), such as in vitro fertilization and embryo transfer (IVF-ET), by way of administering melatonin to patients suffering from infertility. In addition, clinical research has examined melatonin as an anti-aging molecule via its antioxidative actions, and its relationship with the aging diseases, e.g., Alzheimer’s and Parkinson’s disease, is also underway. Melatonin may also reduce ovarian aging, which is a major issue in assisted reproductive technology. This review explains the relationship between melatonin and human reproductive function, as well as the clinical applications expected to improve the outcomes of assisted reproductive technology such as IVF, while also discussing possibilities for melatonin in preventing ovarian aging.
Collapse
|
21
|
Wang B, Li H, Wang X, Zhu X. The association of aberrant expression of NLRP3 and p-S6K1 in colorectal cancer. Pathol Res Pract 2019; 216:152737. [PMID: 31757663 DOI: 10.1016/j.prp.2019.152737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/26/2019] [Accepted: 11/10/2019] [Indexed: 01/07/2023]
Abstract
Colorectal carcinoma (CRC) is one of the most common malignancies worldwide, and except for surgery, treatments effects are limited. Recently, NLRP3 has been reported as an activator in the tumorigenesis of CRC. However, the function and mechanism of NLRP3 in CRC remains elusive. In this study, we revealed that NLRP3 was elevated in CRC tissues and related to clinical factors, such as lymph node invasion and tumor-node-metastasis (TNM) stage. Moreover, NLRP3-positive patients had a poor prognosis. Furthermore, univariate and multivariate analysis revealed that NLRP3 expression was an independent prognostic factor for the survival of CRC patients. We investigated whether NLRP3 linked with the mTOR-S6K1 pathway. The expression of p-S6K1 was upregulated in CRC tissues and NLRP3 expression level was positively associated with the p-S6K1 level. Thus, targeting NLRP3 may be promising for targeted therapy of CRC, especially for mTORC1-targeted resistant patients.
Collapse
Affiliation(s)
- Bin Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuchao Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|