1
|
Silva A, Pinto C, Cravo S, Mota S, Rego L, Ratanji S, Quintas C, Silva JRE, Afonso C, Tiritan ME, Cidade H, Cruz T, Almeida IF. Sustainable Skincare Innovation: Cork Powder Extracts as Active Ingredients for Skin Aging. Pharmaceuticals (Basel) 2025; 18:121. [PMID: 39861182 PMCID: PMC11769245 DOI: 10.3390/ph18010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background: An emerging practice within the concept of circular beauty involves the upcycling of agro-industrial by-products. Cork processing, for instance, yields by-products like cork powder, which presents an opportunity to create value-added cosmetic ingredients. Building upon our previous research, demonstrating the antioxidant potential of hydroalcoholic extracts derived from two distinct cork powders (P0 and P1), in this work, aqueous extracts were prepared and analyzed. The safety and bioactivities of the newly obtained aqueous extracts, as well as the 30% ethanol extracts, previously reported to be the most promising for skin application, were also evaluated. Methods: Aqueous extracts were obtained from cork powders (P0 and P1) and the identification and quantification of some polyphenols was achieved by liquid chromatography (LC). Antioxidant potential was screened by DPPH method and the bioactivity and safety of extracts were further explored using cell-based assays. Results: All extracts exhibited a reduction in age-related markers, including senescence-associated beta-galactosidase (SA-β-gal) activity. Additionally, they demonstrated a pronounced anti-inflammatory effect by suppressing the production of several pro-inflammatory mediators in macrophages upon lipopolysaccharide stimulation. Moreover, the extracts upregulated genes and proteins associated with antioxidant activity, such as heme oxygenase 1. The aqueous extract from P1 powder was especially active in reducing pro-inflammatory mediators, namely the Nos2 gene, inducible nitric oxide protein levels, and nitric oxide production. Moreover, it did not induce skin irritation, as assessed by the EpiSkin test, in compliance with the OECD Test Guidelines. Conclusions: Overall, our findings underscore the potential of aqueous extracts derived from cork waste streams to mitigate various hallmarks of skin aging, including senescence and inflammaging, and their suitability for incorporation into cosmetics formulations. These results warrant further exploration for their application in the pharmaceutical and cosmetic industries and could foster a sustainable and circular bioeconomy.
Collapse
Affiliation(s)
- Ana Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology/CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Cláudia Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.P.); (S.C.); (C.A.); (M.E.T.)
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Sara Cravo
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.P.); (S.C.); (C.A.); (M.E.T.)
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Sandra Mota
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.M.); (L.R.); (I.F.A.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.R.); (C.Q.)
| | - Liliana Rego
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.M.); (L.R.); (I.F.A.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.R.); (C.Q.)
| | - Smeera Ratanji
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.R.); (C.Q.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Clara Quintas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.R.); (C.Q.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Joana Rocha e Silva
- Dimas & Silva, Lda. Industry, Rua Central de Goda 345, 4535-167 Mozelos, Portugal;
| | - Carlos Afonso
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.P.); (S.C.); (C.A.); (M.E.T.)
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Maria Elizabeth Tiritan
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.P.); (S.C.); (C.A.); (M.E.T.)
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (CESPU), 4585-116 Gandra, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (C.P.); (S.C.); (C.A.); (M.E.T.)
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (CESPU), 4585-116 Gandra, Portugal
| | - Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology/CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Isabel F. Almeida
- UCIBIO—Applied Molecular Biosciences Unit, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.M.); (L.R.); (I.F.A.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.R.); (C.Q.)
| |
Collapse
|
2
|
Schou C, Kolören Z, Sendker J, Sarigiannis Y, Jovanovic A, Karanis P. Odontites linkii subsp. cyprius Ethanolic Extract Indicated In Vitro Anti- Acanthamoeba Effect. Microorganisms 2024; 12:2303. [PMID: 39597691 PMCID: PMC11596351 DOI: 10.3390/microorganisms12112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
This study aims to investigate three endemic ethanolic leaf extracts from Cyprus for anti-Acanthamoeba activities: Odontites linkii subsp. cyprius (Boiss.) Bolliger, Ptilostemon chamaepeuce subsp. cyprius (Greuter) Chrtek & B. Slavík, and Quercus alnifolia Poech. Screening for radical scavenging activity, total phenolic content (TPC), and total flavonoid content (TFC) were performed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABST) methods, Folin-Ciocalteu method, and aluminum chloride method, respectively. An antibacterial-susceptibility test (AST) was performed using a broth microdilution assay to estimate the minimum inhibitory concentration (MIC) using iodonitrotetrazolium chloride (INT). Trypan blue (0.5%) was used to assess in vitro anti-Acanthamoeba cell viability of the ethanolic leaf extracts after 24-, 48-, and 72-h exposure-screening of ethanolic leaf extracts with liquid chromatography-mass spectrometry (LC-MS) for known compounds with biological activity. The ethanolic leaf extract of Odontites linkii subsp. cyprius demonstrated the highest anti-Acanthamoeba activity, with an inhibitory concentration (IC50) of 7.02 mg/mL after 72 h. This extract also showed an in vitro minimum inhibitory concentration (MIC) of 0.625 mg/mL against Enterococcus faecalis, a common nosocomial pathogen. The LC-MS analysis revealed the presence of bioactive iridoid compounds in O. linkii subsp. cyprius, further highlighting its potential as a source for new drug compounds. The ethanolic extract of O. linkii subsp. cyprius demonstrated a dose-dependent and time-dependent anti-Acanthamoeba effect in vitro. This study is the first to report the presence of iridoid compounds and anti-Acanthamoeba activities in the ethanolic extract of O. linkii subsp. cyprius. These promising findings highlight the potential of plant extracts, particularly O. linkii subsp. cyprius, as a source for new drug compounds for Acanthamoeba infections.
Collapse
Affiliation(s)
- Chad Schou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, CY-1700 Nicosia, Cyprus; (C.S.); (A.J.)
| | - Zeynep Kolören
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ordu University, 5200 Altınordu, Ordu, Turkey;
| | - Jandirk Sendker
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, PharmaCampus, Corrensstraße 48, 48149 Münster, Germany;
| | - Yiannis Sarigiannis
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, CY-2417 Nicosia, Cyprus;
- Bioactive Molecules Research Center, School of Life & Health Sciences, University of Nicosia, CY-2417 Nicosia, Cyprus
| | - Aleksandar Jovanovic
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, CY-1700 Nicosia, Cyprus; (C.S.); (A.J.)
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, CY-1700 Nicosia, Cyprus
| | - Panagiotis Karanis
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, CY-1700 Nicosia, Cyprus; (C.S.); (A.J.)
- Faculty of Medicine and University Hospital, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
3
|
Soltaniband V, Barrada A, Delisle-Houde M, Dorais M, Tweddell RJ, Michaud D. Forest tree extracts induce resistance to Pseudomonas syringae pv. tomato in Arabidopsis. Sci Rep 2024; 14:24726. [PMID: 39433573 PMCID: PMC11494186 DOI: 10.1038/s41598-024-74576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
The widespread use of conventional pesticides for plant pathogen control poses significant risks to human health and the environment, and it is therefore crucial to develop environmentally friendly, human-safe alternatives to these products that offer a sustainable approach for crop protection. Here, we examined the potential of ethanolic extracts from four forest tree species for their antibacterial activity against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) and their ability to trigger effective defense responses in the model plant Arabidopsis thaliana. The extracts exhibited direct toxic effects against Pst and triggered the expression of defense-related genes naturally induced by oxidative stress cues or the defense elicitor salicylic acid in leaf tissue. The direct antibacterial effects of the tree extracts, together with their defense gene-inducing effects in planta, resulted in a strong host plant-protecting effect against Pst. These findings suggest the eventual effectiveness of forest tree extracts as plant protectants against the bacterial pathogen Pst. They also suggest the potential of these extracts as a sustainable, eco-friendly alternative to conventional pesticides for the management of economically important plant pathogens.
Collapse
Affiliation(s)
- Veedaa Soltaniband
- Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Adam Barrada
- Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Maxime Delisle-Houde
- Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Martine Dorais
- Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Russell J Tweddell
- Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Dominique Michaud
- Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, G1V 0A6, Canada.
- Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
4
|
Coman NA, Nicolae-Maranciuc A, Berța L, Nicolescu A, Babotă M, Man A, Chicea D, Farczadi L, Jakab-Farkas L, Silva B, Veiga-Matos J, Tanase C. Green Synthesis of Metallic Nanoparticles from Quercus Bark Extracts: Characterization and Functional Properties. Antioxidants (Basel) 2024; 13:822. [PMID: 39061891 PMCID: PMC11274062 DOI: 10.3390/antiox13070822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Quercus species are utilized for their durable wood, providing sustenance for wildlife, conserving biodiversity, and contributing ecological, medicinal, and esthetic benefits to ecosystems and landscapes. In this study, we aimed to use the bark of three Quercus species (Q. dalechampi, Q. fraineto, and Q. petraea) for the synthesis of silver and gold nanoparticles (AgNPs and AuNPs). The aqueous extracts from the bark of Quercus sp. acted both as reducing and stabilizing agent, facilitating the rapid synthesis of AuNPs (AuQD, AuQF, and AuQP) and AgNPs (AgQD, AgQF, and AgQP). The obtained nanoparticles were characterized using UV-vis spectroscopy, TEM, DLS, and FTIR. Characterizations revealed that the nanoparticles exhibited a variety of shapes, such as polygonal, triangular, and spherical forms, with sizes ranging between 14 and 24 nm for AuNPs and 45-70 nm for AgNPs. The total phenolic content was assessed through spectroscopic methods, while several individual phenolic compounds were identified and quantified using UPLC-PDA. Furthermore, we assessed the antioxidant, antibacterial, and antifungal capacities of AuNPs, AgNPs, and raw extracts. The highest antioxidant activity was observed for raw extracts, followed by AgNPs and AuNPs, while the most potent antibacterial and antifungal activity was observed in AgQP. Moreover, cytotoxicity was examined in a human keratinocyte cell line (HaCaT). The results indicated no cytotoxic effects for AuNPs, while AgNPs and the raw extracts exhibited cytotoxic effects after 48 h of incubation. This research underscores the multifaceted utility of Quercus bark extracts in the green synthesis of metallic nanoparticles and their subsequent bioactivity assessment, suggesting promising perspectives for their application in various fields while urging cautious consideration of their cytotoxic implications.
Collapse
Affiliation(s)
- Năstaca-Alina Coman
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania;
| | - Alexandra Nicolae-Maranciuc
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania; (A.N.-M.); (D.C.)
- Institute for Interdisciplinary Studies and Research (ISCI), Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Lavinia Berța
- Department of General and Inorganic Chemistry, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania;
| | - Alexandru Nicolescu
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Mihai Babotă
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
- Research Center of Medicinal and Aromatic Plants, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania;
| | - Adrian Man
- Department of Microbiology, Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania;
| | - Dan Chicea
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania; (A.N.-M.); (D.C.)
| | - Lenard Farczadi
- Chromatography and Mass Spectrometry Laboratory, Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania;
| | - László Jakab-Farkas
- Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, 540485 Târgu Mures, Romania;
| | - Barbara Silva
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (B.S.); (J.V.-M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jéssica Veiga-Matos
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (B.S.); (J.V.-M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Corneliu Tanase
- Research Center of Medicinal and Aromatic Plants, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania;
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
| |
Collapse
|
5
|
Li C, Yang X, Chen S, Huang Y, Yang Y, Qiu J. Comparative Anatomical Analysis of Bark Structure in 10 Quercus Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:1871. [PMID: 38999713 PMCID: PMC11244080 DOI: 10.3390/plants13131871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Detailed anatomical features of bark are used and interpreted in plant taxonomy, phylogenetics, and other areas of plant science. However, the delicate nature of bark cells, combined with the difficulty of obtaining high-quality sections and reliable data, limits the potential for utilizing and processing bark. In this study, the anatomical structure of the bark of 10 Quercus species growing in Yunnan Province, China, was characterized in detail. The results indicate that the anatomical features of the barks of 10 Quercus spp. show a certain degree of consistency. Specifically, sieve tubes are distributed in solitary elements or in small groups, mostly as compound sieve plates containing 2-8 sieve areas, suggesting that Quercus spp. may occupy a conservative evolutionary position. Additionally, for the first time, this study reports the presence of simple sieve plates in the sieve tube elements of Quercus phloem. Each sieve tube element has a companion cell on one side. The companion cell strands contain 2-7 cells. Axial parenchyma is diffuse, with parenchyma strands typically consisting of 4-7 cells; druses are present within chambered crystalliferous cells. Phloem rays are of two distinct sizes and often exhibit dilatation and sclerification, and the ray composition consists of procumbent cells. Sclerenchyma is composed of fibers and sclereids, both of which contain prismatic crystals. Most of the fibers are gelatinous fibers, which are distributed in discontinuous tangential bands of about five cells in width. Sclereids appear in clusters. The presence of sclerenchyma provides mechanical support to the bark, reducing the collapse of the phloem. Periderm usually consists of around 10-30 layers of phellem, and Quercus acutissima and Q. variabilis can reach dozens or hundreds layers. The phelloderm typically consists of from two to five layers, with Q. variabilis having up to ten or more layers. The filling tissue of lenticels in all Quercus species is nonstratified (homogeneous) and largely nonsuberized. Overall, this study enriches our comprehension of Quercus bark anatomy, elucidating evolutionary patterns, functional adaptations, and ecological ramifications within this significant botanical genus.
Collapse
Affiliation(s)
- Changzhao Li
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xiaorui Yang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Songyang Chen
- Tsingyan Lingzhi Information Consulting (Beijing) Co., Ltd., Beijing 100088, China
| | - Yuxi Huang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Yushan Yang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Jian Qiu
- International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
6
|
Cristani M, Micale N. Bioactive Compounds from Medicinal Plants as Potential Adjuvants in the Treatment of Mild Acne Vulgaris. Molecules 2024; 29:2394. [PMID: 38792254 PMCID: PMC11124055 DOI: 10.3390/molecules29102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, there has been a growing interest in the use of medicinal plants and phytochemicals as potential treatments for acne vulgaris. This condition, characterized by chronic inflammation, predominantly affects adolescents and young adults. Conventional treatment typically targets the key factors contributing to its development: the proliferation of Cutibacterium acnes and the associated inflammation. However, these treatments often involve the use of potent drugs. As a result, the exploration of herbal medicine as a complementary approach has emerged as a promising strategy. By harnessing the therapeutic properties of medicinal plants and phytochemicals, it may be possible to address acne vulgaris while minimizing the reliance on strong drugs. This approach not only offers potential benefits for individuals seeking alternative treatments but also underscores the importance of natural remedies of plant origin in dermatological care. The primary aim of this study was to assess the antimicrobial, antioxidant, and anti-inflammatory properties of plants and their phytochemical constituents in the management of mild acne vulgaris. A comprehensive search of scientific databases was conducted from 2018 to September 2023. The findings of this review suggest that medicinal plants and their phytochemical components hold promise as treatments for mild acne vulgaris. However, it is crucial to note that further research employing high-quality evidence and standardized methodologies is essential to substantiate their efficacy and safety profiles.
Collapse
Affiliation(s)
| | - Nicola Micale
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D’Alcontres 31, I-98166 Messina, Italy;
| |
Collapse
|
7
|
Kougioumoutzis K, Constantinou I, Panitsa M. Rising Temperatures, Falling Leaves: Predicting the Fate of Cyprus's Endemic Oak under Climate and Land Use Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:1109. [PMID: 38674518 PMCID: PMC11053427 DOI: 10.3390/plants13081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Endemic island species face heightened extinction risk from climate-driven shifts, yet standard models often underestimate threat levels for those like Quercus alnifolia, an iconic Cypriot oak with pre-adaptations to aridity. Through species distribution modelling, we investigated the potential shifts in its distribution under future climate and land-use change scenarios. Our approach uniquely combines dispersal constraints, detailed soil characteristics, hydrological factors, and anticipated soil erosion data, offering a comprehensive assessment of environmental suitability. We quantified the species' sensitivity, exposure, and vulnerability to projected changes, conducting a preliminary IUCN extinction risk assessment according to Criteria A and B. Our projections uniformly predict range reductions, with a median decrease of 67.8% by the 2070s under the most extreme scenarios. Additionally, our research indicates Quercus alnifolia's resilience to diverse erosion conditions and preference for relatively dry climates within a specific annual temperature range. The preliminary IUCN risk assessment designates Quercus alnifolia as Critically Endangered in the future, highlighting the need for focused conservation efforts. Climate and land-use changes are critical threats to the species' survival, emphasising the importance of comprehensive modelling techniques and the urgent requirement for dedicated conservation measures to safeguard this iconic species.
Collapse
Affiliation(s)
| | | | - Maria Panitsa
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece; (K.K.); (I.C.)
| |
Collapse
|
8
|
Teterovska R, Sile I, Paulausks A, Kovalcuka L, Koka R, Mauriņa B, Bandere D. The Antioxidant Activity of Wild-Growing Plants Containing Phenolic Compounds in Latvia. PLANTS (BASEL, SWITZERLAND) 2023; 12:4108. [PMID: 38140435 PMCID: PMC10748313 DOI: 10.3390/plants12244108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Ethnobotanical reports from Latvia show that Tanacetum vulgare, Calluna vulgaris, Quercus robur, Artemisa absinthium, and Artemisia vulgaris contain phenolic compounds that have antioxidant properties, which can be beneficial in the treatment and prophylaxis of many diseases. The aim of this study was to characterize the phenolic compounds and antioxidant properties of these plants. Plant extracts were prepared using ethanol or acetone and then freeze-dried. Their total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC) were determined and characterized by HPLC. Their antioxidant properties were determined using a DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay. C. vulgaris herb and T. vulgare leaf extracts contained the highest amounts of flavonoids, but the bark of Q. robur had mostly tannins and phenolic acids. A. absinthium and A. vulgaris had the lowest amounts of polyphenols. When compared using extraction solvents, all acetone extracts had more TPC, more TFC, and better antioxidant activity. All plants contained chlorogenic acid, which contributes to antioxidant properties. The analysed plant extracts could be used in future studies to develop medicinal products with antioxidant properties.
Collapse
Affiliation(s)
- Renāte Teterovska
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia;
- Department of Pharmaceuticals, Red Cross Medical College of Riga Stradiņš University, LV-1009 Riga, Latvia
| | - Inga Sile
- Department of Applied Pharmacy, Riga Stradinš University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (I.S.); (B.M.)
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, LV-1006 Riga, Latvia
| | - Artūrs Paulausks
- Laboratory of Finished Dosage Forms, Riga Stradiņš University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
| | - Liga Kovalcuka
- Clinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia;
| | - Rudīte Koka
- Department of Biology and Microbiology, Riga Stradinš University, 16 Dzirciema Street, LV-1007 Riga, Latvia;
| | - Baiba Mauriņa
- Department of Applied Pharmacy, Riga Stradinš University, 16 Dzirciema Street, LV-1007 Riga, Latvia; (I.S.); (B.M.)
| | - Dace Bandere
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1658 Riga, Latvia
| |
Collapse
|
9
|
Banc R, Rusu ME, Filip L, Popa DS. Phytochemical Profiling and Biological Activities of Quercus sp. Galls (Oak Galls): A Systematic Review of Studies Published in the Last 5 Years. PLANTS (BASEL, SWITZERLAND) 2023; 12:3873. [PMID: 38005770 PMCID: PMC10674842 DOI: 10.3390/plants12223873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Quercus species have been widely used in traditional medicine, and recently, researchers' attention has focused on galls of the genus Quercus as a source of health-promoting phytochemicals. This review presents a summary of the most recent findings on the phytochemistry and bioactivity of oak galls, following the screening of scientific papers published in two relevant databases, PubMed and Embase, between January 2018 and June 2023. The oak galls are rich in active compounds, mostly gallotannins and phenolic acids. Due to these secondary metabolites, the reviewed studies have demonstrated a wide range of biological activities, including antioxidant and anti-inflammatory actions, antimicrobial properties, tissue-protective effects, and antitumor, anti-aging, and hypoglycemic potential. Thus, oak galls are a promising natural matrix, to be considered in obtaining pharmaceutical and cosmetic preparations used in anti-aging strategies and, together with medications, in the management of age-related diseases. In further evaluations, the valuable functional properties of oak galls, reported mostly in preclinical studies, should be confirmed with clinical studies that would also take into account the potential health risks of their use.
Collapse
Affiliation(s)
- Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (L.F.)
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangǎ Street, 400010 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (L.F.)
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
10
|
Gourich AA, Touijer H, Drioiche A, Asbabou A, Remok F, Saidi S, Siddique F, Ailli A, Bourhia M, Salamatullah AM, Ouahmane L, Mouradi A, Eto B, Zair T. Insight into biological activities of chemically characterized extract from Marrubium vulgare L. in vitro, in vivo and in silico approaches. Front Chem 2023; 11:1238346. [PMID: 37663139 PMCID: PMC10470090 DOI: 10.3389/fchem.2023.1238346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Aqueous extracts of Marrubium vulgare L. (M. vulgare) are widely used in traditional medicine for their therapeutic effects. Hence, this study aims to evaluate in vitro, in vivo, and in silico the biological activities of M. vulgare aqueous extract to further support their traditional use. Qualitative phytochemical tests of M. vulgare extracts showed the presence of primary and secondary metabolites, while quantitative analyses recorded revealed the contents of total phenols, flavonoids, and tannins, with values of 488.432 ± 7.825 mg/EAG gallic acid extract/g, 25.5326 ± 1.317 mg/EQ Quercetin extract/g and 23.966 ± 0.187 mg/EC catechin extract/g, respectively. Characterization of the phytochemical constituents of the extract revealed the presence of catechin and maleic acid as the most abundant while the evaluation of the antioxidant power revealed that the extract possesses significant antioxidant capacity, antimitotic potential, and antimicrobial properties against Streptococcus agalactiae and Staphylococcus epidermidis among many others. The antidiabetic activity of the extract showed a potent antihyperglycemic effect and a significant modulation of the pancreatic α-amylase activity as revealed by both in vitro and in vivo analysis, while an in silico evaluation showed that chemicals in the studied extract exhibited the aforementioned activities by targeting 1XO2 antimitotic protein, W93 antidiabetic protein and 1AJ6 antimicrobial protein, which revealed them as worthy of exploration in drug discovery odyssey. Conclusively, the result of this study demonstrates the numerous biological activities of M. vulgare and gives credence to their folkloric and traditional usage.
Collapse
Affiliation(s)
- Aman Allah Gourich
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Hanane Touijer
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Aziz Drioiche
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Ayoub Asbabou
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Firdaous Remok
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Soukaina Saidi
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Atika Ailli
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lahcen Ouahmane
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Labeled Research Unit-CNRSTN 4, Cadi Ayyad University, Marrakech, Morocco
| | - Aicha Mouradi
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| | - Bruno Eto
- Laboratoires TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, Lille, France
| | - Touriya Zair
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Research Team of Chemistry of Bioactive Molecules and the Environment, Faculty of Sciences, Moulay Ismaïl University, Meknes, Morocco
| |
Collapse
|
11
|
Jaber SA. In vitro alpha-amylase and alpha-glucosidase inhibitory activity and in vivo antidiabetic activity of Quercus coccifera (Oak tree) leaves extracts. Saudi J Biol Sci 2023; 30:103688. [PMID: 37292253 PMCID: PMC10245109 DOI: 10.1016/j.sjbs.2023.103688] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Quercus species are group of plants known as oak which represent important genus of Fagaceae family. These species are widely distributed in Mediterranean countries. Many of those species used in traditional medicine to treat and prevent various human disorders such as diabetes. Exhausted extraction for Quercus coccifera leaves were carried out using n-hexane, chloroform, methanol, boiled water and microwaved water. Extracts were subjected to phytochemical screening, acute toxicity study, and in vitro and in vivo animal model to evaluate antidiabetic activity of the produced extracts. The highest in vitro activity against α-amylase and α-glucosidase activity was obtained from methanolic extract with an IC50 of 0.17 and 0.38 µg/ml respectively and better than the positive control acarbose. While the rest of the extract was either with moderate or low activity. Similarly, in the in vivo study, methanolic extract with a concentration of 200 mg/kg/day was able to reduce the blood glucose level for the diabetic mice to 146.8 mg/dL with normal bodyweight and biochemical signs when compared to the normal mice group. While the rest of the extracts were either with moderate or low ability to maintain blood glucose level for diabetic mice with few signs of hepatic and renal toxicity and weight loss. All data were statistically significantly different with p-value of less than 0.001 at confidence interval of 95% with high variance homogeneity. In conclusion, methanolic plant leaves extract of Q. coccifera can possibly be used alone to control the elevation of blood glucose level with a renal and hepatic protective property.
Collapse
|
12
|
Monkai J, Hongsanan S, Bhat DJ, Dawoud TM, Lumyong S. Integrative Taxonomy of Novel Diaporthe Species Associated with Medicinal Plants in Thailand. J Fungi (Basel) 2023; 9:603. [PMID: 37367539 DOI: 10.3390/jof9060603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
During our investigations of the microfungi on medicinal plants in Thailand, five isolates of Diaporthe were obtained. These isolates were identified and described using a multiproxy approach, viz. morphology, cultural characteristics, host association, the multiloci phylogeny of ITS, tef1-α, tub2, cal, and his3, and DNA comparisons. Five new species, Diaporthe afzeliae, D. bombacis, D. careyae, D. globoostiolata, and D. samaneae, are introduced as saprobes from the plant hosts, viz. Afzelia xylocarpa, Bombax ceiba, Careya sphaerica, a member of Fagaceae, and Samanea saman. Interestingly, this is the first report of Diaporthe species on these plants, except on the Fagaceae member. The morphological comparison, updated molecular phylogeny, and pairwise homoplasy index (PHI) analysis strongly support the establishment of novel species. Our phylogeny also revealed the close relationship between D. zhaoqingensis and D. chiangmaiensis; however, the evidence from the PHI test and DNA comparison indicated that they are distinct species. These findings improve the existing knowledge of taxonomy and host diversity of Diaporthe species as well as highlight the untapped potential of these medicinal plants for searching for new fungi.
Collapse
Affiliation(s)
- Jutamart Monkai
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sinang Hongsanan
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Darbhe J Bhat
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Vishnugupta Vishwavidyapeetam, Ashoke, Gokarna 581326, India
| | - Turki M Dawoud
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
13
|
El-Sayed EK, Ibrahim RR, Ahmed AA, Khattab MA, Chen LY, Lai KH, Shaarawy FSE, Tawfik NF, Moharram FA. Quercus coccinea Münchh leaves polyphenols: Appraisal acute lung injury induced by lipopolysaccharide in mice. Biomed Pharmacother 2023:114765. [PMID: 37246132 DOI: 10.1016/j.biopha.2023.114765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 05/30/2023] Open
Abstract
Genus Quercus is a well-known source for its polyphenolic content and important biological activity. Plants belonging to the Quercus genus were traditionally used in asthma, inflammatory diseases, wound healing, acute diarrhea, and hemorrhoid. Our work intended to study the polyphenolic profile of the Q. coccinea (QC) leaves and to assess the protective activity of its 80% aqueous methanol extract (AME) against lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Together, the potential molecular mechanism was investigated. Nineteen polyphenolic compounds (1-18), including tannins, flavone, and flavonol glycosides. Phenolic acids and aglycones were purified and identified from the AME of QC leaves. Treatment with AME of QC showed an anti-inflammatory effect evidenced by a remarkable decline in the count of white blood cells and neutrophils which was in harmony with decreasing the levels of high mobility group box-1, nuclear factor kappa B, tumor necrosis factor-α, and interleukin 1 beta. In addition, the antioxidant activity of QC was documented through the significant reduction in malondialdehyde level and elevation of reduced glutathione level and superoxide dismutase activity. Furthermore, the mechanism involved in the pulmonary protective effect of QC involved the downregulation of the TLR4/MyD88 pathway. The AME of QC showed a protective effect against LPS-induced ALI through the powerful anti-inflammatory and antioxidant activities which are linked to its abundancy with polyphenols.
Collapse
Affiliation(s)
- Elsayed K El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
| | - Reham R Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Asmaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
| | - Mohamed A Khattab
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lo-Yun Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Fatheya S El Shaarawy
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Nashwa F Tawfik
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Fatma A Moharram
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
14
|
Boy FR, Casquete R, Gudiño I, Merchán AV, Peromingo B, Benito MJ. Antifungal Effect of Autochthonous Aromatic Plant Extracts on Two Mycotoxigenic Strains of Aspergillus flavus. Foods 2023; 12:foods12091821. [PMID: 37174358 PMCID: PMC10178858 DOI: 10.3390/foods12091821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
This study identified the compounds obtained from four native Dehesa plants, which were holm oak, elm, blackberry and white rockrose, and evaluated their ability to inhibit the growth and production of aflatoxins B1 and B2 of two strains of mycotoxigenic Aspergillus flavus. For this purpose, phenolic compounds present in the leaves and flowers of the plants were extracted and identified, and subsequently, the effect on the growth of A. flavus, aflatoxin production and the expression of a gene related to its synthesis were studied. Cistus albidus was the plant with the highest concentration of phenolic compounds, followed by Quercus ilex. Phenolic acids and flavonoids were mainly identified, and there was great variability among plant extracts in terms of the type and quantity of compounds. Concentrated and diluted extracts were used for each individual plant. The influence on mold growth was not very significant for any of the extracts. However, those obtained from plants of the genus Quercus ilex, followed by Ulmus sp., were very useful for inhibiting the production of aflatoxin B1 and B2 produced by the two strains of A. flavus. Expression studies of the gene involved in the aflatoxin synthesis pathway did not prove to be effective. The results indicated that using these new natural antifungal compounds from the Dehesa for aflatoxin production inhibition would be desirable, promoting respect for the environment by avoiding the use of chemical fungicides. However, further studies are needed to determine whether the specific phenolic compounds responsible for the antifungal activity of Quercus ilex and Ulmus sp. produce the antifungal activity in pure form, as well as to verify the action mechanism of these compounds.
Collapse
Affiliation(s)
- Francisco Ramiro Boy
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Rocío Casquete
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Iris Gudiño
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Almudena V Merchán
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Belén Peromingo
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - María José Benito
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| |
Collapse
|
15
|
Bencheikh N, Radi FZ, Fakchich J, Elbouzidi A, Ouahhoud S, Ouasti M, Bouhrim M, Ouasti I, Hano C, Elachouri M. Ethnobotanical, Phytochemical, Toxicological, and Pharmacological Properties of Ziziphus lotus (L.) Lam.: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:575. [PMID: 37111332 PMCID: PMC10142143 DOI: 10.3390/ph16040575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Ziziphus lotus (L.) Lam. (Rhamnaceae) is a plant species found across the Mediterranean area. This comprehensive overview aims to summarize the botanical description and ethnobotanical uses of Z. lotus and its phytochemical compounds derived with recent updates on its pharmacological and toxicological properties. The data were collected from electronic databases including the Web of Science, PubMed, ScienceDirect, Scopus, SpringerLink, and Google Scholars. It can be seen from the literature that Z. lotus is traditionally used to treat and prevent several diseases including diabetes, digestive problems, urinary tract problems, infectious diseases, cardiovascular disorders, neurological diseases, and dermal problems. The extracts of Z. lotus demonstrated several pharmacological properties in vitro and in vivo such as antidiabetic, anticancer, anti-oxidant, antimicrobials, anti-inflammatory, immunomodulatory, analgesic, anti-proliferative, anti-spasmodic, hepatoprotective, and nephroprotective effects. The phytochemical characterization of Z. lotus extracts revealed the presence of over 181 bioactive compounds including terpenoids, polyphenols, flavonoids, alkaloids, and fatty acids. Toxicity studies on Z. lotus showed that extracts from this plant are safe and free from toxicity. Thus, further research is needed to establish a possible relationship between traditional uses, plant chemistry, and pharmacological properties. Furthermore, Z. lotus is quite promising as a medicinal agent, so further clinical trials should be conducted to prove its efficacy.
Collapse
Affiliation(s)
- Noureddine Bencheikh
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Fatima Zahrae Radi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University of Meknes, B.P. 11201, Zitoune, Meknes 50070, Morocco
| | - Jamila Fakchich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco
| | - Sabir Ouahhoud
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Mohammed Ouasti
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Mohamed Bouhrim
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, Faculty of Sciences and Technology Beni Mellal, University Sultan Moulay Slimane, Beni-Mellal 23000, Morocco
| | - Imane Ouasti
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France
| | - Mostafa Elachouri
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco
| |
Collapse
|
16
|
Othón-Díaz ED, Fimbres-García JO, Flores-Sauceda M, Silva-Espinoza BA, López-Martínez LX, Bernal-Mercado AT, Ayala-Zavala JF. Antioxidants in Oak (Quercus sp.): Potential Application to Reduce Oxidative Rancidity in Foods. Antioxidants (Basel) 2023; 12:antiox12040861. [PMID: 37107236 PMCID: PMC10135015 DOI: 10.3390/antiox12040861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
This review explores the antioxidant properties of oak (Quercus sp.) extracts and their potential application in preventing oxidative rancidity in food products. Oxidative rancidity negatively impacts food quality, causing changes in color, odor, and flavor and reducing the shelf life of products. The use of natural antioxidants from plant sources, such as oak extracts, has gained increasing interest due to potential health concerns associated with synthetic antioxidants. Oak extracts contain various antioxidant compounds, including phenolic acids, flavonoids, and tannins, which contribute to their antioxidative capacity. This review discusses the chemical composition of oak extracts, their antioxidative activity in different food systems, and the safety and potential challenges related to their application in food preservation. The potential benefits and limitations of using oak extracts as an alternative to synthetic antioxidants are highlighted, and future research directions to optimize their application and determine their safety for human consumption are suggested.
Collapse
Affiliation(s)
- Elsa Daniela Othón-Díaz
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Jorge O. Fimbres-García
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Marcela Flores-Sauceda
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Brenda A. Silva-Espinoza
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Leticia X. López-Martínez
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| | - Ariadna T. Bernal-Mercado
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Sonora, Mexico
| | - Jesus F. Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
17
|
Guo C, Han F, Geng S, Shi Y, Ma H, Liu B. The physicochemical properties and Pickering emulsifying capacity of acorn starch. Int J Biol Macromol 2023; 239:124289. [PMID: 37011752 DOI: 10.1016/j.ijbiomac.2023.124289] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
In this work, the granule characteristics, functional properties, in-vitro digestibility, antioxidant capacity, and phenolic composition of acorn starch were investigated and compared to those of potato starch and corn starch, and its Pickering emulsifying ability was also evaluated. The results showed that the acorn starch granules were spherical and oval in shape, with a smaller particle size, and the amylose content and crystallinity degree were similar to those of corn starch. However, the acorn starch was difficult to swell, with poor aqueous solubility, though it had a strong gel strength and setback viscosity. Because acorn starch contained more free and bound polyphenols, its resistant starch content after cooking and ABTS and DPPH radical scavenging activities were significantly higher than those of potato starch and corn starch. Acorn starch also exhibited outstanding particle wettability and could stabilize Pickering emulsions. The assessed emulsion showed an outstanding effect for protecting β-carotene against ultraviolet irradiation and was positively correlated with the acorn starch addition amount. The obtained results may serve as a reference for the further development of acorn starch.
Collapse
|
18
|
Potential Use of Quercus dalechampii Ten. and Q. frainetto Ten. Barks Extracts as Antimicrobial, Enzyme Inhibitory, Antioxidant and Cytotoxic Agents. Pharmaceutics 2023; 15:pharmaceutics15020343. [PMID: 36839665 PMCID: PMC9965348 DOI: 10.3390/pharmaceutics15020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The bark resulted as a by-product after different Quercus sp. processing is a valuable alternative source of phenolic compounds (mainly tannins). Hence, the focus of the present work was to obtain eight extracts from the rhytidome of the less-studied Q. dalechampii and Q. frainetto and characterize them in terms of chemical and bioactive profiles. Ultrasound and microwave-assisted extraction methods were used for the preparation of the extracts. Total phenolic and tannin contents were assessed through classic spectrophotometric methods, while several individual phenolic compounds were identified and quantified using UPLC-PDA. Antioxidant, enzyme-inhibitory, antibacterial, and cytotoxic activities were tested using in vitro assays; additionally being evaluated was the ability of the extracts to inhibit the adherence of MRSA to suture wires. The UPLC analysis confirmed the presence of gallic acid, catechin, taxifolin, vanillic acid, epicatechin, and caffeic acid. The results showed that tested extracts were able to exert cytotoxic effects, at 6% and 3% concentrations, on confluent cells. The tested solutions inhibit α-glucosidase activity and the antibacterial potential suggested a mild to moderate effect against the Gram-positive strains. Overall, the obtained results revealed rich phenolic and tannin contents for the extracts obtained from both species through microwave-assisted extraction, probably responsible for their mild antibacterial and cytotoxic effects.
Collapse
|
19
|
Häsler Gunnarsdottir S, Sommerauer L, Schnabel T, Oostingh GJ, Schuster A. Antioxidative and Antimicrobial Evaluation of Bark Extracts from Common European Trees in Light of Dermal Applications. Antibiotics (Basel) 2023; 12:antibiotics12010130. [PMID: 36671331 PMCID: PMC9854852 DOI: 10.3390/antibiotics12010130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Plant species have developed effective defense strategies for colonizing diverse habitats and protecting themselves from numerous attacks from a wide range of organisms, including insects, vertebrates, fungi, and bacteria. The bark of trees in particular constitutes a number of components that protect against unwanted intruders. This review focuses on the antioxidative, dermal immunomodulatory, and antimicrobial properties of bark extracts from European common temperate trees in light of various skin pathogens, wound healing, and the maintenance of skin health. The sustainability aspect, achieved by utilizing the bark, which is considered a byproduct in the forest industry, is addressed, as are various extraction methods applied to retrieve extracts from bark.
Collapse
Affiliation(s)
| | - Lukas Sommerauer
- Department of Forest Products Technology & Timber Constructions, Salzburg University of Applied Sciences, Markt 136a, 5431 Kuchl, Austria
- Salzburg Center for Smart Materials, c/o Department of Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria
- Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Thomas Schnabel
- Department of Forest Products Technology & Timber Constructions, Salzburg University of Applied Sciences, Markt 136a, 5431 Kuchl, Austria
- Faculty of Furniture Design and Wood Engineering, Transilvania University of Brasov, B-dul. Eroilor nr. 29, 500036 Brasov, Romania
| | - Gertie Janneke Oostingh
- Biomedical Sciences, Salzburg University of Applied Sciences, Urstein Sued 1, 5412 Puch, Austria
| | - Anja Schuster
- Biomedical Sciences, Salzburg University of Applied Sciences, Urstein Sued 1, 5412 Puch, Austria
- Correspondence:
| |
Collapse
|
20
|
Mady MS, Ibrahim RR, El-Sayed EK, El-Shazly M, Chen LY, Lai KH, El Shaarawy FS, Moharram FA. UHPLC-MS profiles and antidiarrheal activity of Quercus coccinea münchh. and Quercus robur L. employing in vivo technique. Front Pharmacol 2023; 14:1120146. [PMID: 36874027 PMCID: PMC9982048 DOI: 10.3389/fphar.2023.1120146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction: Quercus L. genus (Oak) belongs to the family Fagaceae and their galls are used commercially in leather tanning, dyeing, and ink preparation. Several Quercus species were traditionally used to manage wound healing, acute diarrhea, hemorrhoid, and inflammatory diseases. The present study aims to investigate the phenolic content of the 80% aqueous methanol extract (AME) of Q. coccinea and Q. robur leaves as well as to assess their anti-diarrheal activity. Methods: Polyphenolic content of Q. coccinea and Q. robur AME were investigated using UHPLC/MS. The antidiarrheal potential of the obtained extracts was evaluated by conducting a castor oil-induced diarrhea in-vivo model. Result and Discussion: Twenty-five and twenty-six polyphenolic compounds were tentatively identified in Q. coccinea and Q. robur AME, respectively. The identified compounds are related to quercetin, kaempferol, isorhamnetin, and apigenin glycosides and their aglycones. In addition, hydrolyzable tannins, phenolic acid, phenyl propanoides derivatives, and cucurbitacin F were also identified in both species AME of Q. coccinea (250, 500, and 1000 mg/kg) exhibited a significant prolongation in the onset of diarrhea by 17.7 %, 42.6%, and 79.7% respectively while AME of Q. robur at the same doses significantly prolonged the onset of diarrhea by 38.6%, 77.3%, and 2.4 folds respectively as compared to the control. Moreover, the percentage of diarrheal inhibition of Q. coccinea was 23.8%, 28.57%, and 42,86% respectively, and for Q. robur 33.34%, 47.3%, and 57.14% respectively as compared to the control group. Both extracts significantly decreased the volume of intestinal fluid by 27%, 39.78%, and 50.1% for Q. coccinea respectively; and by 38.71%, 51.19%, and 60% for Q. robur respectively as compared to the control group. In addition, AME of Q. coccinea exhibited a peristaltic index of 53.48, 47.18, and 42.28 with significant inhibition of gastrointestinal transit by 18.98%, 28.53%, and 35.95 % respectively; while AME of Q. robur exhibited a peristaltic index of 47.71, 37, and 26.41 with significant inhibition of gastrointestinal transit by 27.72%, 43.89%, and 59.99% respectively as compared with the control group. Notably, Q. robur showed a better antidiarrheal effect in comparison with Q. coccinea and, the highest effect was observed for Q. robur at 1000 mg/kg as it was nonsignificant from the loperamide standard group in all measured parameters.
Collapse
Affiliation(s)
- Mohamed S Mady
- Faculty of Pharmacy, Pharmacognosy Department, Helwan University, Cairo, Egypt
| | - Reham R Ibrahim
- Faculty of Pharmacy, Pharmacognosy Department, Helwan University, Cairo, Egypt
| | - Elsayed K El-Sayed
- Faculty of Pharmacy, Pharmacology and Toxicology Department, Helwan University, Cairo, Egypt
| | - Mohamed El-Shazly
- Faculty of Pharmacy, Pharmacognosy Department, Ain-Shams University, Cairo, Egypt
| | - Lo-Yun Chen
- College of Pharmacy, Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Kuei-Hung Lai
- College of Pharmacy, Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.,College of Pharmacy, Ph.D Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Medical University Hospital, Traditional Herbal Medicine Research Center, Taipei, Taiwan
| | | | - Fatma A Moharram
- Faculty of Pharmacy, Pharmacognosy Department, Helwan University, Cairo, Egypt
| |
Collapse
|
21
|
Saleem A, Hameed I, Akhtar MF, Ashraf GM, Alghamdi BS, Rahman MH, Almashjary MN. Exploration of acute and chronic anti-inflammatory potential of Quercus leucotrichophora A. Camus extracts in Wistar rats: A mechanistic insight. Front Pharmacol 2023; 14:1002999. [PMID: 37113751 PMCID: PMC10126476 DOI: 10.3389/fphar.2023.1002999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction: This research was conducted to validate the folkloric use of Quercus leucotrichophora (QL) leaf extracts against inflammation and arthritis and to determine the chemical composition using HPLC. Method: The aqueous and methanolic extracts of QL were evaluated by in vitro anti-oxidant, anti-inflammatory (inhibition of protein denaturation and membrane stabilization) assays, and in vivo anti-inflammatory (carrageenan and xylene-induced edema) and anti-arthritic models. For anti-arthritic potential, 0.1 mL Complete Freund's Adjuvant (CFA) was inoculated into the left hind paw of a Wistar rat on day 1, and oral dosing with QL methanolic extract (QLME) at 150, 300, and 600 mg/kg was begun at day 8 till the 28th day in all groups, except disease control that was given distilled water, while methotrexate was given as standard treatment. Results and discussion: There was a noteworthy (p < 0.05-0.0001) restoration in body weight, paw edema, arthritic index, altered blood parameters, and oxidative stress biomarkers in treated rats as compared to the diseased group. Moreover, QLME treatment significantly (p < 0.0001) downregulated TNF-α, IL-6, IL-1β, COX-2, and NF-κB, while significantly (p < 0.0001) upregulating IL-10, I-κB, and IL-4 in contrast to the diseased group. The QLME exhibited no mortality in the acute toxicity study. It was concluded that QLME possessed substantial anti-oxidant, anti-inflammatory, and anti-arthritic potential at all dosage levels prominently at 600 mg/kg might be due to the presence of quercetin, gallic, sinapic, and ferulic acids.
Collapse
Affiliation(s)
- Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- *Correspondence: Ammara Saleem, , Muhammad Furqan Akhtar,
| | - Izza Hameed
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
- *Correspondence: Ammara Saleem, , Muhammad Furqan Akhtar,
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Badrah S. Alghamdi
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Majed N. Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Antiacne and Anti-Inflammatory Effects of Phenolic Compounds from Quercus acutissima Carruth. Leaves. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9078475. [PMID: 36624865 PMCID: PMC9825228 DOI: 10.1155/2022/9078475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/02/2023]
Abstract
Quercus plants are widely distributed in Korea and have been used for their antiallergic and anti-inflammatory properties to treat dermatitis. The phenolic compounds of Quercus acutissima Carruth (QA) are estimated to have antioxidant and anti-inflammatory activities, based on the results of previous studies with Quercus mongilica, Quercus stenophylla, Quercus gilva Blame., and Quercus acuta Thunb. We yield QA extract and the isolated phenolic compounds (hyperoside (1), astragalin (2), kaempferol 3-O-(6″- galloyl)-β-D-glucopyranoside (KGG) (3), quercetin 3-O-(6″-O-galloyl)-β-D-glucopyranoside (QGG) (4), pedunculagin (5), and casuarinin (6)) and were identified using NMR. Among them, KGG (3) and QGG (4) were isolated for the first time from QA. QA extract and the isolated phenolic compounds demonstrated antioxidative, anti-inflammatory, and antiacne activities in RAW 264.7 mouse macrophage cells in vitro. 3-6 demonstrated strong inhibitory activities in the DPPH scavenging and NO production assay and anti-inflammatory and antiacne activities through western blotting (NLRP3, IL-1β, and 5α-reductase). The most outstanding activity in all experiments was casuarinin (6). The study findings suggest potential therapeutic candidates for acne.
Collapse
|
23
|
Antioxidants in Animal Nutrition: UHPLC-ESI-Q qTOF Analysis and Effects on In Vitro Rumen Fermentation of Oak Leaf Extracts. Antioxidants (Basel) 2022; 11:antiox11122366. [PMID: 36552573 PMCID: PMC9774136 DOI: 10.3390/antiox11122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
The genus Quercus supplies a large amount of residual material (e.g., bark, acorns, leaves, wood), the valorization of which can favor a supply of antioxidant polyphenols to be used in the pharmaceutical, nutraceutical, or cosmeceutical sector. The recovery of specialized metabolites could also benefit livestock feeding, so much so that polyphenols have gained attention as rumen fermentation modifiers and for mitigating the oxidative imbalance to which farm animals are subject. In this context, leaves of Quercus robur L. from Northern Germany were of interest and the alcoholic extract obtained underwent an untargeted profiling by means of ultra-high-performance liquid chromatography/high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) techniques. As triterpenes and fatty acids occurred, the alcoholic extract fractionation pointed out the obtainment of a polyphenol fraction, broadly constituted by coumaroyl flavonol glycosides and condensed tannins. Total phenol, flavonoid and condensed tannins content assays, as well as antiradical (DPPH● and ABTS+●) and reducing activity (PFRAP) were carried out on the alcoholic extract and its fractions. When the effects on rumen liquor was evaluated in vitro in terms of changes in fermentation characteristics, it was observed that oak leaf extract and its fractions promoted an increase in total volatile fatty acids and differently modulated the relative content of each fatty acid.
Collapse
|
24
|
Karbalaiee M, Daneshpajooh A, Khanjani N, Sohbati S, Mehrabani M, Mehrbani M, Mehrabani M. Efficacy of frankincense‐based herbal product in urinary incontinence: A randomized, double‐blind, placebo‐ and active‐controlled clinical trial. Phytother Res 2022; 37:1754-1770. [PMID: 36442480 DOI: 10.1002/ptr.7691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/30/2022]
Abstract
Urinary incontinence is a silent epidemic that has a serious impact on a person's quality of life (QOL). This study aimed to evaluate the efficacy of frankincense-based herbal product (FHP) in urinary incontinence compared with placebo and solifenacin. In this randomized, double-blind clinical trial, 120 postmenopausal women with mixed urinary incontinence were randomized to one of the three groups of FHP, placebo, and standard treatment (solifenacin). Frequency, amount of leakage, and score of urinary incontinence as well as the QOL were measured at the end of the second and fourth weeks and 2 weeks after the interruption of the treatment. The ICIQ-UI SF and I-QOL questionnaires were used for the measurements. Mean frequency of urinary incontinence and amount of leakage significantly decreased in the FHP and solifenacin groups in the fourth week compared to the placebo group. In addition, 2 weeks after treatment completion, the effects of the FHP were significant compared to the solifenacin group. Due to the effect of FHP on improving the QOL and also the prolonged effect of this drug, the use of FHP in urinary incontinence, as a complementary treatment could be suggested.
Collapse
Affiliation(s)
- Mahbubeh Karbalaiee
- Physiology Research Center, Institute of Neuropharmacology Kerman University of Medical Sciences Kerman Iran
- Department of Traditional Medicine, Faculty of Persian Medicine Kerman University of Medical Sciences Kerman Iran
| | - Azar Daneshpajooh
- Department of Urology, Shahid Bahonar Hospital Kerman University of Medical Sciences Kerman Iran
| | - Narges Khanjani
- Neurology Research Center Kerman University of Medical Sciences Kerman Iran
| | - Samira Sohbati
- Department of Obstetrics and Gynecology, Clinical Research Development Unit, Afzalipour Hospital Kerman University of Medical Sciences Kerman Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology Kerman University of Medical Sciences Kerman Iran
| | - Mehrzad Mehrbani
- Herbal and Traditional Medicines Research Center Kerman University of Medical Sciences Kerman Iran
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center Kerman University of Medical Sciences Kerman Iran
| |
Collapse
|
25
|
Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases. Molecules 2022; 27:molecules27217593. [DOI: 10.3390/molecules27217593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Plants rich in hydrolyzable tannins were traditionally used all over the world for a variety of chronic inflammatory disorders, including arthritis, colitis, and dermatitis. However, the knowledge of their immunological targets is still limited though fundamental for their rational use in phytotherapy. The recent advances regarding the pathogenesis of inflammatory-based diseases represent an opportunity to elucidate the pharmacological mechanism of plant-derived metabolites with immunomodulatory activity. This review collects recent articles regarding the role of hydrolyzable tannins and their gut metabolites in Th1, Th2, and Th17 inflammatory responses. In line with the traditional use, rheumatoid arthritis (RA), inflammatory bowel diseases (IBDs), psoriasis, atopic dermatitis (AD), and asthma were the most investigated diseases. A substantial body of in vivo studies suggests that, beside innate response, hydrolyzable tannins may reduce the levels of Th-derived cytokines, including IFN-γ, IL-17, and IL-4, following oral administration. The mode of action is multitarget and may involve the impairment of inflammatory transcription factors (NF-κB, NFAT, STAT), enzymes (MAPKs, COX-2, iNOS), and ion channels. However, their potential impact on pathways with renewed interest for inflammation, such as JAK/STAT, or the modulation of the gut microbiota demands dedicate studies.
Collapse
|
26
|
Hama AA, Khwarahm NR. Predictive mapping of two endemic oak tree species under climate change scenarios in a semiarid region: Range overlap and implications for conservation. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Golubkina N, Plotnikova U, Lapchenko V, Lapchenko H, Sheshnitsan S, Amagova Z, Matsadze V, Naumenko T, Bagrikova N, Logvinenko L, Sakhno T, Shevchuk O, Pirogov N, Caruso G. Evaluation of Factors Affecting Tree and Shrub Bark's Antioxidant Status. PLANTS (BASEL, SWITZERLAND) 2022; 11:2609. [PMID: 36235475 PMCID: PMC9571727 DOI: 10.3390/plants11192609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The importance of using the barks of trees and shrubs as powerful natural antioxidants suggests the necessity to evaluate the effect of different environmental factors on bark extracts’ quality. The determination of total antioxidant activity (AOA) and polyphenol content (TP) in the bark of 58 tree and shrub species from 7 regions differing in mean annual temperature, insolation, humidity, salinity level, and altitude was performed. The above stress factors positively affected bark AOA but did not have a statistically significant effect on TP. The bark of trees grown in the seashore proximity was characterized by significantly higher AOA than samples gathered in other areas, similarly to the trees grown at high altitude. The bark antioxidant status of 18 species was described for the first time. New sources of powerful antioxidants were represented by the ornamental shrubs Cornus sanguinea and Cornus alba, which showed the highest AOA (169−171 mg GAE g−1 d.w.). Among the typical halophytes, Calligonum and Tamarix had high AOA (172 and 85 mg GAE g−1 d.w.), while in the bark of tamarisk, an Se accumulator, an Se concentration of about 900 µg kg−1 d.w. was recorded. A significant positive correlation was found between leaves and bark AOA in the Karadag Nature Reserve’s deciduous trees (r = 0.898, p < 0.01). The relationship between bark AOA and TP was highly significant (r = 0.809; p < 0.001) for all samples except the mountainous ones. The results of the present research revealed new opportunities in successive bark utilization.
Collapse
Affiliation(s)
- Nadezhda Golubkina
- Analytical Laboratory Department, Federal Scientific Vegetable Center, 143072 Moscow, Russia
| | - Ulyana Plotnikova
- Analytical Laboratory Department, Federal Scientific Vegetable Center, 143072 Moscow, Russia
| | - Vladimir Lapchenko
- T.I. Vyazemsky Karadag Scientific Station, Nature Reserve of RAS, 298188 Feodosia, Russia
| | - Helene Lapchenko
- T.I. Vyazemsky Karadag Scientific Station, Nature Reserve of RAS, 298188 Feodosia, Russia
| | - Sergey Sheshnitsan
- Department of Landscape Architecture and Soil Science, Voronezh State University of Forestry and Technologies, 394036 Voronezh, Russia
| | - Zarema Amagova
- Chechen Scientific Institute of Agriculture, 366021 Gikalo, Grozny Region, Russia
| | - Visita Matsadze
- Chechen Scientific Institute of Agriculture, 366021 Gikalo, Grozny Region, Russia
| | - Tatiana Naumenko
- Nikitsky Botanic Gardens, National Scientific Center of RAS, 298648 Yalta, Russia
| | - Natalia Bagrikova
- Nikitsky Botanic Gardens, National Scientific Center of RAS, 298648 Yalta, Russia
| | - Lidia Logvinenko
- Nikitsky Botanic Gardens, National Scientific Center of RAS, 298648 Yalta, Russia
| | - Tatiana Sakhno
- Nikitsky Botanic Gardens, National Scientific Center of RAS, 298648 Yalta, Russia
| | - Oksana Shevchuk
- Nikitsky Botanic Gardens, National Scientific Center of RAS, 298648 Yalta, Russia
| | - Nikolay Pirogov
- Bogdinsko-Baskunchak Nature Reserve, 416532 Akhtubinsk, Russia
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|
28
|
Kim JK, Yang HJ, Go Y. Quercus acuta Thunb. Suppresses LPS-Induced Neuroinflammation in BV2 Microglial Cells via Regulating MAPK/NF-κB and Nrf2/HO-1 Pathway. Antioxidants (Basel) 2022; 11:antiox11101851. [PMID: 36290574 PMCID: PMC9598750 DOI: 10.3390/antiox11101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Microglial activation-mediated neuroinflammation is associated with the pathogenesis of neurodegenerative disorders. Therefore, the management of microglial cell activation and their inflammatory response is an important therapeutic approach for preventing neurodegenerative diseases. Quercus acuta Thunb. (QA) (Fagaceae) is a tree found in Korea, China, and Japan. The current study investigated the anti-neuroinflammatory effects of QA and its mechanism of action in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Pretreatment with a methanol extract of dried QA stems (QAE) inhibited the production of nitric oxide and proinflammatory cytokines and decreased the expression of inducible nitric oxide synthase, cyclooxygenase-2 in LPS-stimulated BV2 microglial cells. Furthermore, it inhibited the phosphorylation and degradation of inhibitory κBα and decreased the nuclear translocation and phosphorylation of nuclear factor-κB (NF-κB). Moreover, QAE inhibited the phosphorylation of extracellular signal-regulated kinase, p38 and c-Jun N-terminal kinase, which is known as mitogen-activated protein kinase (MAPK). Additionally, QAE treatment increased heme oxygenase-1 (HO-1) expression by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, thereby ameliorating LPS-induced intracellular hydrogen peroxide production. Finally, it was found that catechin and taxifolin, two phytochemicals of QAE, also reduced the expression of inflammatory mediators. These findings suggest that QA is beneficial for preventing microglia-mediated neuroinflammatory response through the inhibition of NF-κB, MAPK and the activation of Nrf2/HO-1 signaling pathways.
Collapse
|
29
|
Sirasanagandla SR, Al-Huseini I, Sakr H, Moqadass M, Das S, Juliana N, Abu IF. Natural Products in Mitigation of Bisphenol A Toxicity: Future Therapeutic Use. Molecules 2022; 27:molecules27175384. [PMID: 36080155 PMCID: PMC9457803 DOI: 10.3390/molecules27175384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxin with deleterious endocrine-disrupting effects. It is widely used in producing epoxy resins, polycarbonate plastics, and polyvinyl chloride plastics. Human beings are regularly exposed to BPA through inhalation, ingestion, and topical absorption routes. The prevalence of BPA exposure has considerably increased over the past decades. Previous research studies have found a plethora of evidence of BPA’s harmful effects. Interestingly, even at a lower concentration, this industrial product was found to be harmful at cellular and tissue levels, affecting various body functions. A noble and possible treatment could be made plausible by using natural products (NPs). In this review, we highlight existing experimental evidence of NPs against BPA exposure-induced adverse effects, which involve the body’s reproductive, neurological, hepatic, renal, cardiovascular, and endocrine systems. The review also focuses on the targeted signaling pathways of NPs involved in BPA-induced toxicity. Although potential molecular mechanisms underlying BPA-induced toxicity have been investigated, there is currently no specific targeted treatment for BPA-induced toxicity. Hence, natural products could be considered for future therapeutic use against adverse and harmful effects of BPA exposure.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Isehaq Al-Huseini
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Hussein Sakr
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Marzie Moqadass
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Correspondence: or
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur 50250, Malaysia
| |
Collapse
|
30
|
Altamish M, Khan M, Baig MS, Pathak B, Rani V, Akhtar J, Khan AA, Ahmad S, Krishnan A. Therapeutic Potential of Medicinal Plants against Dengue Infection: A Mechanistic Viewpoint. ACS OMEGA 2022; 7:24048-24065. [PMID: 35874231 PMCID: PMC9301714 DOI: 10.1021/acsomega.2c00625] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Dengue is a tropical disease caused by the Dengue virus (DENV), a positive-sense, single stranded RNA virus of the family Flaviviridae, which is transmitted by Aedes mosquitoes. The occurrence of dengue has grown dramatically around the globe in recent decades, and it is rapidly becoming a global burden. Furthermore, all four DENV serotypes cocirculate and create a problematic hyperendemic situation. Characteristic symptoms range from being asymptomatic, dengue fever to life-threatening complications such as hemorrhagic fever and shock. Apart from the inherent virulence of the virus strain, a dysregulated host immune response makes the condition worse. Currently, there is no highly recommended vaccine or therapeutic agent against dengue. With the advent of virus strains resistant to antiviral agents, there is a constant need for new therapies to be developed. Since time immemorial, human civilization has utilized plants in traditional medicine to treat various diseases, including infectious viral diseases. With the advancement in molecular biology, cell biology techniques, and bioinformatics, recent studies have tried to provide scientific evidence and determine the mechanism of anti-dengue activity of various plant extracts and plant-derived agents. The current Review consolidates the studies on the last 20 years of in vitro and in vivo experiments on the ethnomedicinal plants used against the dengue virus. Several active phytoconstituents like quercetin, castanospermine, α-mangostin, schisandrin-A, hirsutin have been found to be promising to inhibition of all the four DENV serotypes. However, novel therapeutics need to be reassessed in relevant cells using high-throughput techniques. Further, in vivo dose optimization for the immunomodulatory and antiviral activity should be examined on a vast sample size. Such a Review should help take the knowledge forward, validate it, and use medicinal plants in different combinations targeting multiple stages of virus infection for more effective multipronged therapy against dengue infection.
Collapse
Affiliation(s)
- Mohammad Altamish
- Department
of Pharmacology School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Muzayyana Khan
- Bioactive
Natural Product Laboratory, School of Pharmaceutical Education and
Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mirza Sarwar Baig
- Department
of Molecular Medicine, School of Interdisciplinary Sciences &
Technology, Jamia Hamdard, New Delhi-110062 India
| | - Bharti Pathak
- Department
of Molecular Medicine, School of Interdisciplinary Sciences &
Technology, Jamia Hamdard, New Delhi-110062 India
| | - Veena Rani
- Department
of SciencesIndira Gandhi National Open University
(IGNOU), New Delhi, 110068, India
| | - Jamal Akhtar
- Central
Council for Research in Unani Medicine, Ministry of AYUSH, Government
of India, New Delhi, 110058, India
| | - A. Ali Khan
- Central
Council for Research in Unani Medicine, Ministry of AYUSH, Government
of India, New Delhi, 110058, India
| | - Sayeed Ahmad
- Bioactive
Natural Product Laboratory, School of Pharmaceutical Education and
Research, Jamia Hamdard, New Delhi, 110062, India
| | - Anuja Krishnan
- Department
of Molecular Medicine, School of Interdisciplinary Sciences &
Technology, Jamia Hamdard, New Delhi-110062 India
| |
Collapse
|
31
|
Al Safi MA, Rashid HM, Afifi FU, Talib WH. Gaz Alafi: A Traditional Dessert in the Middle East With Anticancer, Immunomodulatory, and Antimicrobial Activities. Front Nutr 2022; 9:900506. [PMID: 35845806 PMCID: PMC9283951 DOI: 10.3389/fnut.2022.900506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundFrom the earliest times, manna has been widely used as a tasty local sweet or folk medicine. The type of manna being investigated in the present study is called Gaz-alafi, a mixture of insect and Quercus brantii leaves secretions from oak forests in the north of Iraq and west of Iran.MethodsAqueous and ethanol extracts were prepared as decoction. Various phytochemical tests were conducted to analyze manna composition, including total phenolic contents using the Folin-Ciocalteu method and LC-MS. Gallic acid and catechin were detected in both extracts, in addition to tiliroside presence in ethanol extract, which added more value to the phenolic content of ethanol extract. Cytotoxic activities of Gaz alafi were evaluated against breast cancer cell lines and compared to normal cell lines and doxorubicin using the MTT assay. Antimicrobial properties were assessed against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, and Candida albicans using the dilution method of the micro-titer plate. Serum levels of IFN-γ, interleukin-2 (IL-2), interleukin-4 (IL-4), and interleukin-10 (IL-10) were measured using ELISA. The effect of extracts on splenocyte proliferation was evaluated using the lymphocytes proliferation assay. Macrophage function was evaluated using the nitro blue tetrazolium assay, whereas pinocytosis was evaluated using the neutral red uptake assay. Ten days after tumor inoculation, changes in tumor size, survival rates, levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and creatinine were measured.ResultsThe growth of cancer cells was inhibited by Gaz alafi ethanol extract. An alteration in IFN- γ, IL-2, and IL-4 levels toward antiproliferation immune response were reported for both extracts. The aqueous extract efficiently stimulated lymphocyte proliferation, phagocytosis, and pinocytosis, followed by the ethanol extracts with moderate activity. After treating the mice with ethanol extracts, a significant reduction in tumor size and several undetected tumors were recorded.ConclusionsGaz alafi extracts (aqueous and ethanol) are promising sources for anticancer and immunostimulatory agents. Further studies are needed to fully identify the chemical composition of Gaz alafi extracts.
Collapse
Affiliation(s)
- Meena A. Al Safi
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Hasan M. Rashid
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
| | - Fatma U. Afifi
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman, Jordan
| | - Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman, Jordan
- *Correspondence: Wamidh H. Talib
| |
Collapse
|
32
|
Detection of Volatiles by HS-SPME-GC/MS and Biological Effect Evaluation of Buddha's Hand Fruit. Molecules 2022; 27:molecules27051666. [PMID: 35268766 PMCID: PMC8911557 DOI: 10.3390/molecules27051666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The present work aimed to chemically characterize and evaluate the antiradical power and biological effects of Citrus medica var. sarcodactylus essential oil (EO) and hydrolate (Hy) from exocarp as well as methanol extracts, from both exocarp and mesocarp (EEX and MEX). The whole fresh fruit was also investigated by SPME-GC/MS to describe its volatile composition. EO and Hy were analyzed by GC/MS and HS-GC/MS techniques, respectively. Limonene and γ-terpinene were found to be the most abundant compounds both in the fresh parts of the fruit and in the EO, while α-terpineol and terpinen-4-ol were in the Hy. The extracts were also rich in furan and coumarin derivatives. A good antiradical activity of all samples except Hy was detected both against ABTS·+ than DPPH·, removed up to about 50%. The antibacterial activity against Bacillus cereus and Escherichia coli was evaluated by microwell dilution method to determine MIC and MBC values. EEX and MEX showed efficacy at very high concentrations against both tested bacteria. The MIC value of EO against B. cereus was 0.5% v/v, while Hy was not able to inhibit the bacterial growth at the tested concentrations. Cytotoxicity investigated on the HL60 leukemia cell line by MTT assay provided an EC50 of 1.24% v/v for EO. Interesting activity of Hy was also observed.
Collapse
|
33
|
Alaaddin Ahmed A, Anwar Qadir S, Tahir NAR. CDDP and ISSR markers-assisted diversity and structure analysis in Iraqi Mazu (Quercus infectoria Oliv.) accessions. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2042401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Aven Alaaddin Ahmed
- Department of Forestry, College of Agricultural Engineering Sciences, University of Salahaddin, Erbil, Iraq
| | - Sirwa Anwar Qadir
- Department of Forestry, College of Agricultural Engineering Sciences, University of Salahaddin, Erbil, Iraq
| | - Nawroz Abdul-Razzak Tahir
- Department of Horticulture, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani, Iraq
| |
Collapse
|
34
|
Kausar F, Kim KH, Farooqi HMU, Farooqi MA, Kaleem M, Waqar R, Khalil AAK, Khuda F, Abdul Rahim CS, Hyun K, Choi KH, Mumtaz AS. Evaluation of Antimicrobial and Anticancer Activities of Selected Medicinal Plants of Himalayas, Pakistan. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010048. [PMID: 35009052 PMCID: PMC8747275 DOI: 10.3390/plants11010048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 05/28/2023]
Abstract
Medicinal plants are known for their diverse use in the traditional medicine of the Himalayan region of Pakistan. The present study is designed to investigate the anticancer and antimicrobial activities of Prunus cornuta and Quercus semicarpifolia. The anticancer activity was performed using cancerous human cell lines (HepG2, Caco-2, A549, MDA-MB-231, and NCI-H1437 carcinoma cells), while the antimicrobial activity was conducted with the agar-well diffusion method. Furthermore, toxicity studies were performed on alveolar and renal primary epithelial cells. Initially, different extracts were prepared by maceration techniques using n-hexane, chloroform, ethyl acetate, butanol, and methanol. The preliminary phytochemical screening showed the presence of secondary metabolites such as alkaloids, tannins, saponins, flavonoids, glycosides, and quinones. The chloroform extract of P. cornuta (PCC) exhibited significant inhibitory activity against Acinetobacter baumannii (16 mm) and Salmonella enterica (14.5 mm). The A. baumannii and S. enterica strains appeared highly susceptible to n-hexane extract of P. cornuta (PCN) with an antibacterial effect of 15 mm and 15.5 mm, respectively. The results also showed that the methanolic extracts of Quercus semecarpifolia (QSM) exhibited considerable antibacterial inhibitory activity in A. baumannii (18 mm), Escherichia coli (15 mm). The QSN and QSE extracts also showed good inhibition in A. baumannii with a 16 mm zone of inhibition. The Rhizopus oryzae strain has shown remarkable mycelial inhibition by PCM and QSN with 16 mm and 21 mm inhibition, respectively. Furthermore, the extracts of P. cornuta and Q. semicarpifolia exhibited prominent growth inhibition of breast (MDA-MB-231) and lung (A549) carcinoma cells with 19-30% and 22-39% cell viabilities, respectively. The gut cell line survival was also significantly inhibited by Q. semicarpifolia (24-34%). The findings of this study provide valuable information for the future development of new antibacterial and anticancer medicinal agents from P. cornuta and Q. semicarpifolia extracts.
Collapse
Affiliation(s)
- Farzana Kausar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.K.); (M.K.); (R.W.)
| | - Kyung-Hwan Kim
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (K.-H.K.); (H.M.U.F.); (M.A.F.); (C.S.A.R.); (K.H.)
| | - Hafiz Muhammad Umer Farooqi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (K.-H.K.); (H.M.U.F.); (M.A.F.); (C.S.A.R.); (K.H.)
- National Control Laboratory for Biologicals, Drug Regulatory Authority of Pakistan, Islamabad 44090, Pakistan
| | - Muhammad Awais Farooqi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (K.-H.K.); (H.M.U.F.); (M.A.F.); (C.S.A.R.); (K.H.)
| | - Muhammad Kaleem
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.K.); (M.K.); (R.W.)
| | - Rooma Waqar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.K.); (M.K.); (R.W.)
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Fazli Khuda
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan;
| | - Chethikkattuveli Salih Abdul Rahim
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (K.-H.K.); (H.M.U.F.); (M.A.F.); (C.S.A.R.); (K.H.)
| | - Kinam Hyun
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (K.-H.K.); (H.M.U.F.); (M.A.F.); (C.S.A.R.); (K.H.)
| | - Kyung-Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Korea; (K.-H.K.); (H.M.U.F.); (M.A.F.); (C.S.A.R.); (K.H.)
- BioSpero, Inc., Jeju-si 63243, Korea
| | - Abdul Samad Mumtaz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (F.K.); (M.K.); (R.W.)
| |
Collapse
|
35
|
Gallotannin-Enriched Fraction from Quercus infectoria Galls as an Antioxidant and Inhibitory Agent against Human Glioblastoma Multiforme. PLANTS 2021; 10:plants10122581. [PMID: 34961052 PMCID: PMC8708140 DOI: 10.3390/plants10122581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
In recent years, herbal medicine has experienced rapid development in the search for alternative anticancer compounds. Various phytochemicals present in Quercus infectoria (QI) galls have been reported to trigger cytotoxic effects on many types of cancer cells. However, a specific active constituent of QI galls with the potential to inhibit highly invasive stage IV malignant brain tumor, glioblastoma multiforme (GBM), is yet to be discovered. In this study, a two-phase system composed of aqueous soxhlet extraction and methanolic enrichment fractionation was employed to extract an anticancer compound, gallotannin, from the QI galls. This optimized two-phase system successfully generated a fraction (F4) with ~71% gallotannin, verified by the TLC and HPLC assays. Astoundingly, this fraction showed significantly higher (~1.15-fold) antioxidant activities compared to its crude extract, as well as to a commercial synthetic pure gallotannin. The F4 was also found to significantly suppress GBM cell growth, better than the synthetic pure gallotannin and the QI gall crude extract, probably related to its significantly higher antioxidant property. Moreover, the inhibitory effects exerted by the F4 treatment on GBM cells were comparable to the effects of two clinically used chemo-drugs (Temozolomide and Tamoxifen), indicating its high efficiency in combating human cancer. In conclusion, this study pioneered the development of an optimized extraction procedure for enriched yield of the natural gallotannin metabolite from the galls of the QI medicinal plant with high antioxidant potential and inhibitory effects on human GBM cells.
Collapse
|
36
|
Evaluation of antibacterial, antioxidant, and nephroprotective proficiency of methanol extract of Aerva lanata. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Arya A, Kumar S, Paul R, Suryavanshi A, Kain D, Sahoo RN. Ethnopharmacological survey of indigenous medicinal plants of Palampur, Himachal Pradesh in north-western Himalaya, India. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Abstract
The major component of acorn is starch, which may amount up to 55% of the dry weight. Lack of systematic knowledge on acorn starch greatly hinders the further development of acorns as sustainable crops. This review aims to summarize the current knowledge of the isolation, chemical composition, physicochemical properties, and uses of acorn starches and to provide future research directions. The amylose content of the acorn starches is reported to vary in the range of 20–39%. Moisture content, lipid, ash, and protein contents of the acorn starches have been reported varying from 2.20 to 15.50%, 0.23 to 2.64%, 0.01 to 1.41%, and 0.01 to 6.7%, respectively. Thermal and pasting properties that have usually been determined using differential scanning calorimeter (DSC) and rapid viscoanalyzer (RVA) are also discussed in this article. Acorn starch has great potential for various food and nonfood applications due to the unique structural and functional features.
Collapse
|
39
|
Ouassou H, Bouhrim M, Kharchoufa L, Imtara H, Daoudi NE, Benoutman A, Bencheikh N, Ouahhoud S, Elbouzidi A, Bnouham M. Caralluma europaea (Guss) N.E.Br.: A review on ethnomedicinal uses, phytochemistry, pharmacological activities, and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113769. [PMID: 33412248 DOI: 10.1016/j.jep.2020.113769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/10/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caralluma europaea (Guss) N.E.Br. (Apocynaceae), is a medicinal plant distributed in Morocco, Algeria, Tunisia, Libya, Egypt, Jordan, Spain, and Italy. The different parts of the plant are used traditionally to treat various diseases such as diabetes mellitus, flu, caught, kidney stones, cysts, respiratory infection, cancer, digestives disorders, urogenital infections, metabolic disorders, and cardiovascular problems. AIM OF THE REVIEW In this review, previous reports on C. europaea concerning its morphological description, geographical distribution, ethnomedicinal uses, phytochemistry, pharmacological properties, and toxicological studies were critically summarized. MATERIALS AND METHODS A systematic review of the literature on C. europaea was performed by searching the scientific databases Science Direct, PubMed, Scopus, and Google Scholar. RESULTS In traditional medicine, C. europaea used to treat several illnesses including diabetes, cancer, and kidney stones. Our analysis of the previous reports confirmed the scientific evidence of C. europaea ethnomedicinal uses, especially the antidiabetic activity. However, there was no clear correlation between previous pharmacological reports on C. europaea and its other ethnomedicinal uses in the treatment of kidney stones, flu, caught, metabolic, digestive, cardiovascular and respiratory disorders. The essential oils and extracts of C. europaea exhibited several in vitro and in vivo pharmacological properties such as antidiabetic, antioxidant, anti-inflammatory, analgesic, anti-proliferative, antibacterial, antimicrobial, toxicological, and immunomodulatory effects. Phytochemical characterization of C. europaea revealed the presence of several classes of secondary metabolites such as terpenoids, polyphenols, and flavonoids compounds. Finally, the food preservative ability of the extracts and essential oil obtained from C. europaea has been fully discussed. CONCLUSION Ethnomedicinal surveys indicated the use of C. europaea for the treatment of numerous diseases. Pharmacological reports showed that C. europaea exhibited significant antidiabetic, antioxidant, anti-inflammatory, analgesic, anti-proliferative, antibacterial, antimicrobial, and immunomodulatory effects. Further studies on the phytochemistry of bioactive compounds should be performed by using bioactivity-guided isolation strategy and improve their biological potency as well as scientific exploitation of traditional uses. An in-depth investigation is needed to valid the food preservative properties.
Collapse
Affiliation(s)
- Hayat Ouassou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Mohamed Bouhrim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Loubna Kharchoufa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Hamada Imtara
- Faculty of Arts and Sciences, Arab American University Palestine, P. O. Box 240, Jenin, Palestine.
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Amina Benoutman
- Laboratory of Biology, Environment, and Sustainable Development, Higher Normal School, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Noureddine Bencheikh
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Saber Ouahhoud
- Laboratory of Biochemistry and Biotechnology, Department of Biology, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Amine Elbouzidi
- Faculty of Sciences, Mohamed First University, Boulevard Mohamed VI BP 717, Oujda, 60000, Morocco.
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| |
Collapse
|
40
|
Guha B, Arman M, Islam MN, Tareq SM, Rahman MM, Sakib SA, Mutsuddy R, Tareq AM, Emran TB, Alqahtani AM. Unveiling pharmacological studies provide new insights on Mangifera longipes and Quercus gomeziana. Saudi J Biol Sci 2020; 28:183-190. [PMID: 33424295 PMCID: PMC7785437 DOI: 10.1016/j.sjbs.2020.09.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/17/2023] Open
Abstract
Mangifera longipes and Quercus gomeziana both is an ethnomedicinally important Asian herb that has been known for numerous healing activity of tribal people. The present research aims to investigate the phytochemical analysis with in vitro, in vivo possibilities of the soluble ethanol extract of M. longipes root (EEMLR) and Q. gomeziana leaves (EEQGL) by an experimental approach. The plant extract of EEMLR and EEQGL was found secondary metabolites, notably steroids, glycosides, tannins, flavonoids, saponins, gums, and alkaloids. Additionally, the extract showed significant activity in antioxidant, antipyretic, anti-inflammatory, membrane stabilization, cytotoxic, thrombolytic, and analgesic activities while no response in antibacterial activity. Our findings reveal that soluble ethanol extract of EEMLR and EEQGL is safe, which can be an effective source for exploring new medicinal products. This research's outcomes may provide potentials for mitigating pyrexia, inflammation, pain, cellular toxicity, and coagulation.
Collapse
Affiliation(s)
- Bishwajit Guha
- Department of Pharmacy, Southern University Bangladesh, 739/A Mehedibag Road, Chittagong 4000, Bangladesh
| | - Mohammad Arman
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Syed Mohammed Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Md Masudur Rahman
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Shahenur Alam Sakib
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh.,Department of Theoretical and Computational Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rahul Mutsuddy
- Department of Pharmacy, Southern University Bangladesh, 739/A Mehedibag Road, Chittagong 4000, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|