1
|
Guo X, Pu J, Tang Z, Jia C, Yang F, Liu T, Ding Y. LRP1 facilitates hepatic glycogenesis by improving the insulin signaling pathway in HFD-fed mice. Animal Model Exp Med 2024; 7:696-706. [PMID: 38567757 PMCID: PMC11528380 DOI: 10.1002/ame2.12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND LDL receptor-related protein-1 (LRP1) is a cell-surface receptor that functions in diverse physiological pathways. We previously demonstrated that hepatocyte-specific LRP1 deficiency (hLRP1KO) promotes diet-induced insulin resistance and increases hepatic gluconeogenesis in mice. However, it remains unclear whether LRP1 regulates hepatic glycogenesis. METHODS Insulin signaling, glycogenic gene expression, and glycogen content were assessed in mice and HepG2 cells. The pcDNA 3.1 plasmid and adeno-associated virus serotype 8 vector (AAV8) were used to overexpress the truncated β-chain (β∆) of LRP1 both in vitro and in vivo. RESULTS On a normal chow diet, hLRP1KO mice exhibited impaired insulin signaling and decreased glycogen content. Moreover, LRP1 expression in HepG2 cells was significantly repressed by palmitate in a dose- and time-dependent manner. Both LRP1 knockdown and palmitate treatment led to reduced phosphorylation of Akt and GSK3β, increased levels of phosphorylated glycogen synthase (GYS), and diminished glycogen synthesis in insulin-stimulated HepG2 cells, which was restored by exogenous expression of the β∆-chain. By contrast, AAV8-mediated hepatic β∆-chain overexpression significantly improved the insulin signaling pathway, thus activating glycogenesis and enhancing glycogen storage in the livers of high-fat diet (HFD)-fed mice. CONCLUSION Our data revealed that LRP1, especially its β-chain, facilitates hepatic glycogenesis by improving the insulin signaling pathway, suggesting a new therapeutic strategy for hepatic insulin resistance-related diseases.
Collapse
Affiliation(s)
- Xingxian Guo
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jiangxia Pu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Ziqi Tang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Can Jia
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Fan Yang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Tianyi Liu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Yinyuan Ding
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
2
|
Roy D, Kaur P, Ghosh M, Choudhary D, Rangra NK. The therapeutic potential of typical plant-derived compounds for the management of metabolic disorders. Phytother Res 2024. [PMID: 38864713 DOI: 10.1002/ptr.8238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 06/13/2024]
Abstract
Obesity and Type 2 diabetes are prevalent metabolic dysfunctions that present significant health challenges worldwide. Available cures for these ailments have constraints with accompanying unwanted effects that persistently exist. Compounds originated from plants have recently been introduced as hopeful remedies to treat metabolic disorders because of their diverse pharmacological activities. This detailed observation gives an introduction into the treatment capacity of plant-derived compounds regarding metabolic syndromes while analyzing various groups alongside their performance in this field despite unique mechanisms designed by nature itself. Interestingly, this study provides some examples including curcumin, resveratrol, quercetin, berberine, epigallocatechin gallate (EGCG), and capsaicin, which highlights potential therapeutic impacts for future testing. However, current clinical trials inspecting human studies investigating efficacies concerning metabolism challenge present limitations. Finally, the review weighs up bad reactions possibly inflicted after administering plant-originated materials though suggestive insights will be provided later. Above all, it outlines the chance to identify novel therapies encapsulated within natural substances based upon recent developments could hold significant promise toward managing misplaced metabolisms globally.
Collapse
Affiliation(s)
- Debajyoti Roy
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
| | - Prabhjot Kaur
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Maitrayee Ghosh
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
| | - Deepika Choudhary
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Naresh Kumar Rangra
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
3
|
Khaled AM, Othman MS, Obeidat ST, Aleid GM, Aboelnaga SM, Fehaid A, Hathout HMR, Bakkar AA, Moneim AEA, El-Garawani IM, Morsi DS. Green-Synthesized Silver and Selenium Nanoparticles Using Berberine: A Comparative Assessment of In Vitro Anticancer Potential on Human Hepatocellular Carcinoma Cell Line (HepG2). Cells 2024; 13:287. [PMID: 38334679 PMCID: PMC10854975 DOI: 10.3390/cells13030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
A well-known natural ingredient found in several medicinal plants, berberine (Ber), has been shown to have anticancer properties against a range of malignancies. The limited solubility and bioavailability of berberine can be addressed using Ber-loaded nanoparticles. In this study, we compared the in vitro cytotoxic effects of both Ber-loaded silver nanoparticles (Ber-AgNPs) and Ber-loaded selenium nanoparticles (Ber-SeNPs) in the human liver cancer cell line (HepG2) and mouse normal liver cells (BNL). The IC50 values in HepG2 for berberine, Ber-AgNPs, Ber-SeNPs, and cisplatin were 26.69, 1.16, 0.04, and 0.33 µg/mL, respectively. Our results show that Ber and its Ag and Se nanoparticles exerted a good antitumor effect against HepG2 cells by inducing apoptosis via upregulating p53, Bax, cytosolic cytochrome C levels, and caspase-3 activity, and the down-regulation of Bcl-2 levels. Similarly, incubation with Ber and both Ber-NPs (Ag and Se) led to a significant dose-dependent elevation in inflammatory markers' (TNF-α, NF-κB, and COX-2) levels compared to the control group. In addition, it led to the arrest of the G1 cell cycle by depleting the expression of cyclin D1 and CDK-2 mRNA. Furthermore, Ber and both Ber-NPs (Ag and Se) caused a significant dose-dependent increase in LDH activity in HepG2 cells. Furthermore, our findings offer evidence that Ber and its nanoparticles intensified oxidative stress in HepG2 cells. Furthermore, the migration rate of cells subjected to berberine and its nanoforms was notably decreased compared to that of control cells. It can be inferred that Ber nanoparticles exhibited superior anticancer efficacy against HepG2 compared to unprocessed Ber, perhaps due to their improved solubility and bioavailability. Furthermore, Ber-SeNPs exhibited greater efficacy than Ber-AgNPs, possibly as a result of the inherent anticancer characteristics of selenium.
Collapse
Affiliation(s)
- Azza M. Khaled
- Biochemistry Department, College of Medicine, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (A.M.K.); (M.S.O.); (G.M.A.)
| | - Mohamed S. Othman
- Biochemistry Department, College of Medicine, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (A.M.K.); (M.S.O.); (G.M.A.)
| | - Sofian T. Obeidat
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (S.T.O.); (S.M.A.)
| | - Ghada M. Aleid
- Biochemistry Department, College of Medicine, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (A.M.K.); (M.S.O.); (G.M.A.)
| | - Shimaa M. Aboelnaga
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (S.T.O.); (S.M.A.)
| | - Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, El Mansoura 35516, Egypt;
| | - Heba M. R. Hathout
- Natural Resources Department, Faculty of African Postgraduate Studies, Cairo University, Giza 12613, Egypt;
| | - Ashraf A. Bakkar
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza 12566, Egypt;
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt
| | - Islam M. El-Garawani
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt; (I.M.E.-G.); (D.S.M.)
| | - Dalia S. Morsi
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt; (I.M.E.-G.); (D.S.M.)
| |
Collapse
|
4
|
Khezri MR, Mohammadipanah S, Ghasemnejad-Berenji M. The pharmacological effects of Berberine and its therapeutic potential in different diseases: Role of the phosphatidylinositol 3-kinase/AKT signaling pathway. Phytother Res 2024; 38:349-367. [PMID: 37922566 DOI: 10.1002/ptr.8040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway plays a central role in cell growth and survival and is disturbed in various pathologies. The PI3K is a kinase that generates phosphatidylinositol-3,4,5-trisphosphate (PI (3-5) P3), as a second messenger responsible for the translocation of AKT to the plasma membrane and its activation. However, due to the crucial role of the PI3K/AKT pathway in regulation of cell survival processes, it has been introduced as a main therapeutic target for natural compounds during the progression of different pathologies. Berberine, a plant-derived isoquinone alkaloid, is known because of its anti-inflammatory, antioxidant, antidiabetic, and antitumor properties. The effect of this natural compound on cell survival processes has been shown to be mediated by modulation of the intracellular pathways. However, the effects of this natural compound on the PI3K/AKT pathway in various pathologies have not been reviewed so far. Therefore, this paper aims to review the PI3K/AKT-mediated effects of Berberine in different types of cancer, diabetes, cardiovascular, and central nervous system diseases.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Askari VR, Khosravi K, Baradaran Rahimi V, Garzoli S. A Mechanistic Review on How Berberine Use Combats Diabetes and Related Complications: Molecular, Cellular, and Metabolic Effects. Pharmaceuticals (Basel) 2023; 17:7. [PMID: 38275993 PMCID: PMC10819502 DOI: 10.3390/ph17010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid that can be extracted from herbs such as Coptis, Phellodendron, and Berberis. BBR has been widely used as a folk medicine to treat various disorders. It is a multi-target drug with multiple mechanisms. Studies have shown that it has antioxidant and anti-inflammatory properties and can also adjust intestinal microbial flora. This review focused on the promising antidiabetic effects of BBR in several cellular, animal, and clinical studies. Based on previous research, BBR significantly reduced levels of fasting blood glucose, hemoglobin A1C, inflammatory cytokines, and oxidative stress markers. Furthermore, BBR stimulated insulin secretion and improved insulin resistance through different pathways, including up-regulation of protein expression of proliferator-activated receptor (PPAR)-γ, glucose transporter (GLUT) 4, PI3K/AKT, and AMP-activated protein kinase (AMPK) activation. Interestingly, it was demonstrated that BBR has protective effects against diabetes complications, such as diabetic-induced hepatic damage, cardiovascular disorders, nephropathy, and neuropathy. Furthermore, multiple clinical trial studies have emphasized the ameliorative effects of BBR in type 2 diabetic patients.
Collapse
Affiliation(s)
- Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Kimia Khosravi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Shrivastava S, Sharma A, Saxena N, Bhamra R, Kumar S. Addressing the preventive and therapeutic perspective of berberine against diabetes. Heliyon 2023; 9:e21233. [PMID: 38027723 PMCID: PMC10663750 DOI: 10.1016/j.heliyon.2023.e21233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes has emerged as one the leading detrimental factors for human life expectancy worldwide. The disease is mainly considered as outcome of dysregulation in glucose metabolism, resulting in consistent high glucose concentration in blood. At initial stages, the diabetes particularly type 2 diabetes, is manageable by lifestyle interventions such as regular physical activity and diet with less carbohydrates. However, in advance stage, regular intake of external insulin dose and medicines like metformin are recommended. The long-term consumption of metformin is associated with several side effects such as nausea, vomiting, diarrhoea, lectic acidosis etc., In this scenario, several plant-based medicines have shown promising potential for the prevention and treatment of diabetes. Berberine is the bioactive compound present in the different plant parts of berberis family. Biochemical studies have shown that berberine improve insulin sensitivity and insulin secretion. Additionally, berberine induces glucose metabolism by activating AMPK signaling and inhibition of inflammation. A series of studies have demonstrated the antidiabetic potential of berberine at in vitro, pre-clinical and clinical trials. This review provides comprehensive details of preventive and therapeutic potential of berberine against diabetes.
Collapse
Affiliation(s)
- Suyesh Shrivastava
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Anamika Sharma
- National Institute of Pharmaceutical and Education and Research 500037, Hyderabad, India
| | - Nishant Saxena
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Rashmi Bhamra
- Global Research Institute of Pharmacy, Radour-135133, Haryana, India
| | - Sandeep Kumar
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| |
Collapse
|
7
|
Run L, Tian Z, Xu L, Du J, Li N, Wang Q, Sun H. Knockdown of IL4I1 Improved High Glucose-evoked Insulin Resistance in HepG2 Cells by Alleviating Inflammation and Lipotoxicity Through AHR Activation. Appl Biochem Biotechnol 2023; 195:6694-6707. [PMID: 36913096 DOI: 10.1007/s12010-023-04399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/14/2023]
Abstract
Insulin resistance (IR) is one of the leading causes of Type 2 diabetes mellitus (T2DM). Inflammation, as a result of the disordered immune response, plays important roles in IR and T2DM. Interleukin-4-induced gene 1 (IL4I1) has been shown to regulate immune response and be involved in inflammation progress. However, there was little known about its roles in T2DM. Here, high glucose (HG)-treated HepG2 cells were used for T2DM investigation in vitro. Our results indicated that the expression of IL4I1 was up-regulated in peripheral blood samples of T2DM-patients and HG-induced HepG2 cells. The silencing of IL4I1 alleviated the HG-evoked IR through elevating the expressions of p-IRS1, p-AKT and GLUT4, and enhancing glucose consumption. Furthermore, IL4I1 knockdown inhibited inflammatory response by reducing the levels of inflammatory mediators, and suppressed the accumulation of lipid metabolites triglyceride (TG) and palmitate (PA) in HG-induced cells. Notably, IL4I1 expression was positively correlated with aryl hydrocarbon receptor (AHR) in peripheral blood samples of T2DM-patients. The silencing of IL4I1 inhibited the AHR signaling by reducing the HG-induced expressions of AHR and CYP1A1. Subsequent experiments confirmed that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an agonist of AHR, reversed the suppressive effects of IL4I1 knockdown on HG-caused inflammation, lipid metabolism and IR in cells. In conclusion, we found that the silencing of IL4I1 attenuated inflammation, lipid metabolism and IR in HG-induced cells via inhibiting AHR signaling, suggesting that IL4I1 might be a potential therapy target for T2DM.
Collapse
Affiliation(s)
- Lin Run
- Department of Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China, NO. 76, Yanta West Road, Yanta District
- Department of Endocrinology, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Zhufang Tian
- Department of Endocrinology, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Lin Xu
- Department of Endocrinology, The Affiliated Guangren Hospital, Xi'an Jiaotong University College of Medicine, 710004, Xi'an, Shaanxi, China
| | - Junhui Du
- Department of Medicine Interdisciplinary Research, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China
| | - Nan Li
- Clinical Laboratory, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Qi Wang
- Department of Nuclear Medicine, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Hongzhi Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China, NO. 76, Yanta West Road, Yanta District.
| |
Collapse
|
8
|
Purwaningsih I, Maksum IP, Sumiarsa D, Sriwidodo S. A Review of Fibraurea tinctoria and Its Component, Berberine, as an Antidiabetic and Antioxidant. Molecules 2023; 28:1294. [PMID: 36770960 PMCID: PMC9919506 DOI: 10.3390/molecules28031294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia caused by resistance to insulin action, inadequate insulin secretion, or excessive glucagon production. Numerous studies have linked diabetes mellitus and oxidative stress. People with diabetes usually exhibit high oxidative stress due to persistent and chronic hyperglycemia, which impairs the activity of the antioxidant defense system and promotes the formation of free radicals. Recently, several studies have focused on exploring natural antioxidants to improve diabetes mellitus. Fibraurea tinctoria has long been known as the native Borneo used in traditional medicine to treat diabetes. Taxonomically, this plant is part of the Menispermaceae family, widely known for producing various alkaloids. Among them are protoberberine alkaloids such as berberine. Berberine is an isoquinoline alkaloid with many pharmacological activities. Berberine is receiving considerable interest because of its antidiabetic and antioxidant activities, which are based on many biochemical pathways. Therefore, this review explores the pharmacological effects of Fibraurea tinctoria and its active constituent, berberine, against oxidative stress and diabetes, emphasizing its mechanistic aspects. This review also summarizes the pharmacokinetics and toxicity of berberine and in silico studies of berberine in several diseases and its protein targets.
Collapse
Affiliation(s)
- Indah Purwaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
9
|
Li R, Dou J, Bai T, Cai B, Liu Y. Protein Phosphatase PPM1B Inhibits Gastric Cancer Progression and Serves as a Favorable Prognostic Biomarker. Appl Immunohistochem Mol Morphol 2022; 30:366-374. [PMID: 35319516 DOI: 10.1097/pai.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/22/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Protein phosphatase PPM1B, also named as PP2Cβ, is a member of serine/threonine phosphatase family. Dysregulated expression of PPM1B has been reported in several malignancies; nevertheless, its role in gastric cancer remains unknown. Here, we aimed to initially investigate the expression and function of PPM1B in gastric adenocarcinoma. METHODS We firstly evaluated the protein expression of PPM1B in our enrolled retrospective cohort (n=161) via immunohistochemistry staining. Univariate and multivariate analyses were conducted to assess its prognostic value. Cellular experiments and xenografts in mice model were also performed to validate the role of PPM1B in gastric adenocarcinoma progression. RESULTS The advanced tumor stage was characterized with a lower PPM1B level. Lower PPM1B was associated with poor prognosis in both The Cancer Genome Atlas (TCGA) dataset and our cohort (P<0.05). Furthermore, Cox regression analysis demonstrated that PPM1B was a novel independent prognostic factor for gastric adenocarcinoma patients (hazard ratio=0.35, P=0.001). Finally, cellular and xenografts data confirmed that overexpressing PPM1B can remarkably attenuated gastric adenocarcinoma growth. CONCLUSION Low expression of PPM1B may be a potential molecular marker for poor prognosis in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Riheng Li
- Department of Neurology, Zhuozhou City Hospital, Zhuozhou
| | - Jian Dou
- Department of Neurology, Zhuozhou City Hospital, Zhuozhou
| | - Tianliang Bai
- Department of Gastrointestinal Surgery, Affiliated Hospital of Hebei University, Baoding
| | - Bindan Cai
- Department of Neurology, Zhuozhou City Hospital, Zhuozhou
| | - Yabin Liu
- Department of General Surgery, Fourth Hospital of Hebei Medical University (Tumor Hospital of Hebei Province), Shijiiazhuang, Hebei, P.R. China
| |
Collapse
|
10
|
The Effect of Berberine on Metabolic Profiles in Type 2 Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2074610. [PMID: 34956436 PMCID: PMC8696197 DOI: 10.1155/2021/2074610] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023]
Abstract
Objective Rhizoma Coptidis is an herb that has been frequently used in many traditional formulas for the treatment of diabetic mellitus (DM) over thousands of years. Berberine, the main active component of Rhizoma Coptidis, has been demonstrated to have the potential effect of hypoglycemia. To determine the potential advantages of berberine for diabetic care, we conducted this systematic review and meta-analysis to examine the efficacy and safety of berberine in the treatment of patients with type 2 DM. Methods Eight databases including PubMed, Embase, Web of Science, the Cochrane library, China National Knowledge Infrastructure (CNKI), Chinese Biomedical Database (SinoMed), Wanfang Database, and Chinese VIP Information was searched for randomized controlled trials (RCTs) reporting clinical data regarding the use of berberine for the treatment of DM. Publication qualities were also considered to augment the credibility of the evidence. Glycemic metabolisms were the main factors studied, including glycosylated hemoglobin (HbA1c), fasting plasm glucose (FPG), and 2-hour postprandial blood glucose (2hPG). Insulin resistance was estimated by fasting blood insulin (FINS), homeostasis model assessment-insulin resistance (HOMA-IR), and body mass index (BMI). Lipid profiles were also assessed, including triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), along with inflammation factors such as C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Serum creatinine (Scr), blood urea nitrogen (BUN), and adverse events were applied to evaluate the safety of berberine. Results Forty-six trials were assessed. Analysis of berberine applied alone or with standard diabetic therapies versus the control group revealed significant reductions in HbA1c (MD = −0.73; 95% CI (−0.97, −0.51)), FPG (MD = −0.86, 95% CI (−1.10, −0.62)), and 2hPG (MD = −1.26, 95% CI (−1.64, −0.89)). Improved insulin resistance was assessed by lowering FINS (MD = −2.05, 95% CI (−2.62, −1.48)), HOMA-IR (MD = −0.71, 95% CI (−1.03, −0.39)), and BMI (MD = −1.07, 95% CI (−1.76, −0.37)). Lipid metabolisms were also ameliorated via the reduction of TG (MD = −0.5, 95% CI (−0.61, −0.39)), TC (MD = 0.64, 95% CI (−0.78, −0.49)), and LDL (MD = 0.86, 95% CI (−1.06, −0.65)) and the upregulation of HDL (MD = 0.17, 95% CI (0.09, 0.25)). Additionally, berberine improved the inflammation factor. Conclusion There is strong evidence supporting the clinical efficacy and safety of berberine in the treatment of DM, especially as an adjunctive therapy. In the future, this may be used to guide targeted clinical use of berberine and the development of medications seeking to treat patients with T2DM and dyslipidemia.
Collapse
|
11
|
Sun Y, Wang Y, Zhao Y, Zou M, Peng X. Exosomal miR-181a-5p reduce Mycoplasma gallisepticum (HS strain) infection in chicken by targeting PPM1B and activating the TLR2-mediated MyD88/NF-κB signaling pathway. Mol Immunol 2021; 140:144-157. [PMID: 34715577 DOI: 10.1016/j.molimm.2021.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 01/13/2023]
Abstract
Mycoplasma gallisepticum (MG) is one of the most important pathogens that causes chronic respiratory disease (CRD) in chickens. Exosomes secreted from cells have been well demonstrated to deliver miRNAs to recipient cells to modulate cellular functions. The purpose of this study is to explore the underlying functions and mechanisms of exosomal miR-181a-5p in MG-HS infection. In this study, we found that miR-181a-5p expression in vivo and in vitro was significantly up-regulated after MG-HS infection. It was also upregulated in exosomes, which were derived from MG-HS-infected type-II pneumocytes cells (CP-II). In addition, exosomes secreted by MG-HS-infected CP-II were able to transfer miR-181a-5p to recipient chicken embryo fibroblast cells (DF-1), resulting in a significant upregulation of miR-181a-5p expression in recipient DF-1 cells. We further identified that Mg2+/Mn2+-dependent protein phosphatase 1B (PPM1B) was the target gene of miR-181a-5p. Overexpression of miR-181a-5p or knockdown of PPM1B activated the nuclear factor-κB (NF-κB) signaling pathway, whereas inhibition of miR-181a-5p and overexpression of PPM1B led to the opposite results. Besides, up-regulation of miR-181a-5p significantly increased the expression of toll-like receptor 2 (TLR2), myeloid differentiation factor 88 (MyD88), tumor necrosis factors alpha (TNF-α) and interleukin-1β (IL-1β), whereas inhibition of miR-181a-5p showed a contrary result. Up-regulation of miR-181a-5p promoted cell proliferation, cell cycle progression and inhibited apoptosis to resist MG-HS infection. Moreover, overexpression of miR-181a-5p significantly negative regulated the expression of Mycoplasma gallisepticum adhesin protein (pMGA1.2) by directly inhibiting PPM1B. Thus, we concluded that exosomal miR-181a-5p from CP-II cells activated the TLR2-mediated MyD88/NF-κB signaling pathways by directly targeting PPM1B to promote the expression of pro-inflammatory cytokines for defending against MG-HS infection in recipient DF-1 cells.
Collapse
Affiliation(s)
- Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Yabo Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
12
|
Pharmacokinetics and Pharmacological Activities of Berberine in Diabetes Mellitus Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9987097. [PMID: 34471420 PMCID: PMC8405293 DOI: 10.1155/2021/9987097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) has good clinical application prospects in diabetes treatment. In addition, TCM is less toxic and/or has fewer side effects and provides various therapeutic effects. Berberine (BBR) is isolated as the main component in many TCM kinds (e.g., Rhizoma Coptidis and Berberidis Cortex). Furthermore, BBR can reduce blood sugar and blood fat, alleviate inflammation, and improve the state of patients. Based on the recent study results of BBR in diabetes treatment, the BBR pharmacokinetics and mechanism on diabetes are mainly studied, and the specific molecular mechanism of related experimental BBR is systematically summarized and analyzed. Clinical studies have proved that BBR has a good therapeutic effect on diabetes, suggesting that BBR may be a promising drug candidate for diabetes. More detailed BBR mechanisms and pathways of BBR need to be studied further in depth, which will help understand the BBR pharmacology in diabetes treatment.
Collapse
|
13
|
Diabetes Mellitus and Cardiovascular Diseases: Nutraceutical Interventions Related to Caloric Restriction. Int J Mol Sci 2021; 22:ijms22157772. [PMID: 34360538 PMCID: PMC8345941 DOI: 10.3390/ijms22157772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2DM) and cardiovascular disease (CVD) are closely associated and represent a key public health problem worldwide. An excess of adipose tissue, NAFLD, and gut dysbiosis establish a vicious circle that leads to chronic inflammation and oxidative stress. Caloric restriction (CR) is the most promising nutritional approach capable of improving cardiometabolic health. However, adherence to CR represents a barrier to patients and is the primary cause of therapeutic failure. To overcome this problem, many different nutraceutical strategies have been designed. Based on several data that have shown that CR action is mediated by AMPK/SIRT1 activation, several nutraceutical compounds capable of activating AMPK/SIRT1 signaling have been identified. In this review, we summarize recent data on the possible role of berberine, resveratrol, quercetin, and L-carnitine as CR-related nutrients. Additionally, we discuss the limitations related to the use of these nutrients in the management of T2DM and CVD.
Collapse
|
14
|
Hu Z, Yang M, Liu Y, Yang Q, Xie H, Peng S, Gao J, Xie C. Effect of Huang-Lian Jie-Du Decoction on Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:648861. [PMID: 33995064 PMCID: PMC8117159 DOI: 10.3389/fphar.2021.648861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a heterogeneous disease characterized by persistent hyperglycemia. Huang-Lian Jie-Du decoction (HLJDD) is a traditional Chinese medicine formula which is widely used in treating T2DM in China. A thorough understanding of current body of evidence is needed. Objective: this study aims to summarize the clinical evidence of HLJDD for T2DM to provide an up-to-date and accurate understanding of this issue for research and clinical practice. Methods: Six databases were searched from inception to June 27, 2020 without language and publication status restrictions and randomized controlled trials about HLJDD on T2DM were included. Two evaluators searched and screened citations independently. Risk of bias was assessed by 2019 version 2 of the Cochrane risk-of-bias tool for randomized trials (RoB2). Risk ratio (RR) with 95% confidence interval (CI) was used as an effect measure for dichotomous outcomes and mean difference (MD) with 95% CI was used for continuous outcomes. Subgroup analyses and sensitivity analyses were carried out. Results: Nine studies including 811 participants were included in this study. The overall risk of bias was high risk. Compared with metformin alone, combination treatment of HLJDD and metformin may result in a reduction in HbA1c, FBG, 2hPG, HOMA-IR and an improved lipid metabolism. Evidence comparing HLJDD and metformin or no intervention or placebo was insufficient. The quality of evidence was low. Conclusions: Current evidence about HLJDD on T2DM is still uncertain and more high-quality studies are needed to firmly establish the clinical efficacy and safety of HLJJD.
Collapse
Affiliation(s)
- Zhipeng Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sihan Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Sui M, Jiang X, Sun H, Liu C, Fan Y. Berberine Ameliorates Hepatic Insulin Resistance by Regulating microRNA-146b/SIRT1 Pathway. Diabetes Metab Syndr Obes 2021; 14:2525-2537. [PMID: 34113144 PMCID: PMC8187038 DOI: 10.2147/dmso.s313068] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Hepatic insulin resistance is a major initiating factor for type 2 diabetes mellitus. In previous study, Gegen Qinlian Decoction containing berberine could enhance hepatic insulin sensitivity by SIRT1-dependent deacetylation of FOXO1. However, it is not clear whether berberine also can improve hepatic insulin sensitivity by SIRT1/FOXO1 pathway. This study aimed to evaluate the efficacy of berberine for improving hepatic insulin resistance and the possible molecular mechanisms involved. METHODS In vitro, HepG2 cells were induced with palmitic acid, and glycogen synthesis was examined. In vivo, a high-fat diet (HFD)-fed mouse model was established, and metabolic parameters were assessed. The expressions of miR-146b and sirtuin 1 (SIRT1) in liver were also examined. The relationship between miR-146b and SIRT1 was examined by the dual-luciferase reporter gene assay. RESULTS Serum biochemical parameters, such as glucose and HOMA-IR index, were increased in HFD mice; miR-146b and SIRT1 were abnormally expressed in HFD mice and palmitic acid-treated HepG2 cells. Interestingly, berberine reduced body weight and caused a significant improvement in glucose tolerance and HOMA-IR index without altering food intake in mice. Overexpression of miR-146b abolished the protective effect of berberine on palmitic acid-induced impaired glycogen synthesis in HepG2 cells. Luciferase assay showed that miR-146b directly targeted SIRT1. CONCLUSION The present findings suggest that berberine could attenuate hepatic insulin resistance through the miR-146b/SIRT1 pathway, which may represent a potential therapeutic target for the prevention and treatment of metabolic diseases, particularly diabetes.
Collapse
Affiliation(s)
- Miao Sui
- Department of Endocrinology, Xuzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, People’s Republic of China
| | - Xiaofei Jiang
- Department of Endocrinology, Xuzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, People’s Republic of China
| | - Hongping Sun
- Endocrine and Diabetes Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Chao Liu
- Endocrine and Diabetes Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yaofu Fan
- Endocrine and Diabetes Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Correspondence: Yaofu Fan; Chao Liu Endocrine and Diabetes Center, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, No. 100 Shizi Street, Hongshan Road, Nanjing, Jiangsu, 210008, People’s Republic of ChinaTel +86-25-8560 8733 Email ;
| |
Collapse
|