1
|
Zhou J, Wang W, Zhang Z, Zhu G, Qiao J, Guo S, Bai Y, Zhao C, Teng C, Qin P, Zhang L, Ren G. An underutilized bean: hyacinth bean [Lablab purpureus (L.) sweet]: bioactive compounds, functional activity, and future food prospect and applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:701-720. [PMID: 38961686 DOI: 10.1002/jsfa.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Hyacinth bean [Lablab purpureus (L.) Sweet], a plant belonging to the leguminous family and traditionally used for medicinal purposes in China, is a valuable resource with a wide range of health benefits. This review examines the bioactive compounds, health-promoting properties and functional food potential of hyacinth bean, highlighting its role in protecting against metabolic diseases and the underlying molecular mechanisms. According to existing research, hyacinth bean contains a diverse array of bioactive compounds, Consumption of hyacinth beans and hyacinth bean-related processed food products, as well as their use in medicines, is associated with a variety of health benefits that are increasingly favoured by the scientific community. In light of these findings, we posit that hyacinth bean holds great promise for further research and food application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiankang Zhou
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenting Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gege Zhu
- Wuhan No. 23 Middle School in Hanyang District, Wuhan, China
| | - Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Shengyuan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yu Bai
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Chaofan Zhao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Cong Teng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peiyou Qin
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Sun J, Lun YZ, Liu B, Dong W. Hespintor Negative Regulation of PI3K/Akt Pathway Induces Cell Cycle Arrest of Hepatocellular Carcinoma. Bull Exp Biol Med 2024; 178:237-243. [PMID: 39762705 DOI: 10.1007/s10517-025-06314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 01/15/2025]
Abstract
The mechanism of Hespintor (a protein of serpin family) inhibitory action on the growth of inoculated hepatocellular carcinoma was studied in a model of human hepatoma in nude mice by using on long-noncoding RNA (lncRNA) sequencing. Two days after tumor transplantation, Hespintor or normal saline was injected into the caudal vein at a dose of 15 μg/kg (2 times a week over 4 weeks). The tumors were isolated in 4 weeks after subcutaneous injection of human hepatoma MHCC97-H cells. In Hespintor and control groups, the complementary DNA libraries of tumor tissues were established, and transcriptome sequencing was performed. Based on RNA-sequencing data, the differentially expressing lncRNA genes (DEGs lncRNA) were obtained, and functional enrichment and interaction analyses were performed to find the regulatory gene sets. Then, the network module division method was employed to identify the key genes of the Hespintor action, as well as to build the regulatory network and critical pathways associated with the key genes with validation of the results by Western blotting. The target gene sets regulated by DEGs lncRNA were mainly enriched in cell behavior, transcriptional regulation, and cell cycle. The PI3K/Akt signaling pathway related to the revealed gene sets plays a leading role in the antitumor action of Hespintor, targeted by this serpin to down-regulate expression levels of the cell cycle regulatory proteins Cyclin D1, P-Rb, CDK4, and CDK6, thereby arresting the cell cycle in G1/S phase.
Collapse
Affiliation(s)
- J Sun
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, China
| | - Y Z Lun
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, China.
| | - B Liu
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, China
| | - W Dong
- Department of Laboratory Medicine, Putian University, Putian, China
| |
Collapse
|
3
|
Lun Y, Sun J, Wei L, Liu B, Li Z, Dong W, Zhao W. SPINK13 acts as a tumor suppressor in hepatocellular carcinoma by inhibiting Akt phosphorylation. Cell Death Dis 2024; 15:822. [PMID: 39537605 PMCID: PMC11561306 DOI: 10.1038/s41419-024-07214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The PI3K/Akt pathway is overexpressed in nearly 50% of hepatocellular carcinomas and inhibits apoptosis by promoting the expression of antiapoptotic genes. Serine protease inhibitors have been shown to induce apoptosis in hepatoma cells by downregulating SPINK13 in the PI3K/Akt pathway. In this study, SPINK13 was expressed in lentiviral vectors. Changes in signaling pathway adapter proteins, apoptosis regulatory proteins, cell cycle regulatory proteins, and the biological behavior of hepatocellular carcinoma were observed in cell and nude mouse xenograft models. The underlying mechanism of endogenous SPINK13-induced apoptosis in hepatocellular carcinoma cells was explored via transcriptomics. As a result, endogenous SPINK13 might inhibit the activity of Furin protease, downregulate the Notch1/Hes1 pathway in a binding manner, activate the direct effector PTEN, inhibit Akt phosphorylation, inactivate the downstream PI3K/Akt pathway, and ultimately lead to mitochondrial apoptosis and cell cycle arrest in hepatoma cells. Therefore, the Notch1/Hes1/PTEN pathway may act upstream of SPINK13 to downregulate the PI3K/Akt signaling pathway. Our study helps elucidate the underlying mechanism of SPINK13 in anti-hepatocellular carcinoma and lays a theoretical foundation for the development of novel therapeutic serine protease inhibitors.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Humans
- Proto-Oncogene Proteins c-akt/metabolism
- Animals
- Mice, Nude
- Phosphorylation
- Apoptosis/genetics
- Mice
- Signal Transduction
- Cell Line, Tumor
- Phosphatidylinositol 3-Kinases/metabolism
- PTEN Phosphohydrolase/metabolism
- PTEN Phosphohydrolase/genetics
- Serine Peptidase Inhibitors, Kazal Type/metabolism
- Serine Peptidase Inhibitors, Kazal Type/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Trypsin Inhibitor, Kazal Pancreatic/metabolism
- Trypsin Inhibitor, Kazal Pancreatic/genetics
- Transcription Factor HES-1/metabolism
- Transcription Factor HES-1/genetics
- Hep G2 Cells
- Mice, Inbred BALB C
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Yongzhi Lun
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China.
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China.
| | - Jie Sun
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China
| | - Ling Wei
- Beijing Centre for Physical and Chemical Analysis, 100089, Beijing, China
| | - Ben Liu
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China
| | - Zhixue Li
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Wen Dong
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China
| | - Wenqi Zhao
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
| |
Collapse
|
4
|
Zheng Y, Wei W, Wang Y, Li T, Wei Y, Gao S. Gypenosides exert cardioprotective effects by promoting mitophagy and activating PI3K/Akt/GSK-3 β/Mcl-1 signaling. PeerJ 2024; 12:e17538. [PMID: 38912051 PMCID: PMC11193969 DOI: 10.7717/peerj.17538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/19/2024] [Indexed: 06/25/2024] Open
Abstract
Background Gynostemma pentaphyllum (Thunb.) Makino, a well-known edible and medicinal plant, has anti-aging properties and is used to treataging-associated conditions such as diabetes, metabolic syndrome, and cardiovascular diseases. Gypenosides (GYPs) are the primary constituents of G. pentaphyllum. Increasing evidence indicates that GYPs are effective at preserving mitochondrial homeostasis and preventing heart failure (HF). This study aimed to uncover the cardioprotective mechanisms of GYPs related to mitochondrial regulation. Methods The bioactive components in GYPs and the potential targets in treating HF were obtained and screened using the network pharmacology approach, followed by drug-disease target prediction and enrichment analyses. The pharmacological effects of GYPs in cardioprotection, mitochondrial function, mitochondrial quality control, and underlying mechanisms were further investigated in Doxorubicin (Dox)-stimulated H9c2 cardiomyocytes. Results A total of 88 bioactive compounds of GYPs and their respective 71 drug-disease targets were identified. The hub targets covered MAPK, EGFR, PI3KCA, and Mcl-1. Enrichment analysis revealed that the pathways primarily contained PI3K/Akt, MAPK, and FoxO signalings, as well as calcium regulation, protein phosphorylation, apoptosis, and mitophagy process. In Dox-stimulated H9c2 rat cardiomyocytes, pretreatment with GYPs increased cell viability, enhanced cellular ATP content, restored basal oxygen consumption rate (OCR), and improved mitochondrial membrane potential (MMP). Furthermore, GYPs improved PINK1/parkin-mediated mitophagy without influencing mitochondrial fission/fusion proteins and the autophagic LC3 levels. Mechanistically, the phosphorylation of PI3K, Akt, GSK-3β, and the protein level of Mcl-1 was upregulated by GYP treatment. Conclusion Our findings reveal that GYPs exert cardioprotective effects by rescuing the defective mitophagy, and PI3K/Akt/GSK-3β/Mcl-1 signaling is potentially involved in this process.
Collapse
Affiliation(s)
- Yizhe Zheng
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
- Department of Pharmacy, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Wei Wei
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
- School of Science, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Yukun Wang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
- School of Science, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Tingting Li
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Yundong Wei
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Si Gao
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| |
Collapse
|
5
|
Lv N, Wang L, Zeng M, Wang Y, Yu B, Zeng W, Jiang X, Suo Y. Saponins as therapeutic candidates for atherosclerosis. Phytother Res 2024; 38:1651-1680. [PMID: 38299680 DOI: 10.1002/ptr.8128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
Drug development for atherosclerosis, the underlying pathological state of ischemic cardiovascular diseases, has posed a longstanding challenge. Saponins, classified as steroid or triterpenoid glycosides, have shown promising therapeutic potential in the treatment of atherosclerosis. Through an exhaustive examination of scientific literature spanning from May 2013 to May 2023, we identified 82 references evaluating 37 types of saponins in terms of their prospective impacts on atherosclerosis. These studies suggest that saponins have the potential to ameliorate atherosclerosis by regulating lipid metabolism, inhibiting inflammation, suppressing apoptosis, reducing oxidative stress, and modulating smooth muscle cell proliferation and migration, as well as regulating gut microbiota, autophagy, endothelial senescence, and angiogenesis. Notably, ginsenosides exhibit significant potential and manifest essential pharmacological attributes, including lipid-lowering, anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects. This review provides a comprehensive examination of the pharmacological attributes of saponins in atherosclerosis, with particular emphasis on their role in the regulation of lipid metabolism regulation and anti-inflammatory effects. Thus, saponins may warrant further investigation as a potential therapy for atherosclerosis. However, due to various reasons such as low oral bioavailability, the clinical application of saponins in the treatment of atherosclerosis still needs further exploration.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijing Wang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou people's hospital, Ganzhou, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou people's hospital, Ganzhou, China
| |
Collapse
|
6
|
Hou H, Qin X, Li G, Cui Z, Zhang J, Dong B, Wang Z, Zhao H. Nrf2-mediated redox balance alleviates LPS-induced vascular endothelial cell inflammation by inhibiting endothelial cell ferroptosis. Sci Rep 2024; 14:3335. [PMID: 38336964 PMCID: PMC10858270 DOI: 10.1038/s41598-024-53976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Ferroptosis plays an important role in inflammation and oxidative stress. Whether ferroptosis is involved in the inflammation of vascular endothelial cells and its regulation mechanism remains unclear. We estimated the correlation between serum iron ion levels and the inflammation index of 33 patients with arteriosclerosis. In vitro, HUVECs with or without ferrostatin-1 were exposed to Lipopolysaccharide. Corresponding cell models to verify the target signaling pathway. The results showed that serum iron ion levels had a significant positive correlation with N ratio, N/L, LDL level, and LDL/HDL (P < 0.05), and a negative correlation with L ratio (P < 0.05) in the arteriosclerosis patients. In vitro, ferroptosis is involved in HUVECs inflammation. Ferrostatin-1 can rescue LPS-induced HUVECs inflammation by decreasing HMGB1/IL-6/TNF-α expression. Nrf2 high expression could protect HUVECs against ferroptosis by activating the GPX4/GSH system, inhibiting ferritinophagy, and alleviating inflammation in HUVECs by inhibiting HMGB1/IL-6/TNF-α expression. It also found that Nrf2 is a key adaptive regulatory factor in the oxidative damage of HUVECs induced by NOX4 activation. These findings indicated that ferroptosis contributed to the pathogenesis of vascular endothelial cell damage by mediating endothelial cell inflammation. Nrf2-mediated redox balance in vascular inflammation may be a therapeutic strategy in vascular diseases.
Collapse
Affiliation(s)
- Huimin Hou
- Department of Geriatrics, First Hospital of Jilin University, Changchun, 130021, China
- Department of Critical Care Medicine, Shandong First Medical University Affiliated Province Hospital, Jinan, 250023, China
| | - Xiujiao Qin
- Department of Geriatrics, First Hospital of Jilin University, Changchun, 130021, China
| | - Gaokai Li
- School of Life and Health Science, Huzhou College, Huzhou, 313000, China
| | - Zhitao Cui
- Department of Geriatrics, First Hospital of Jilin University, Changchun, 130021, China
| | - Jin Zhang
- Department of Geriatrics, First Hospital of Jilin University, Changchun, 130021, China
| | - Bin Dong
- Department of Geriatrics, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Huiying Zhao
- Department of Geriatrics, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Wang W, Li H, Shi Y, Zhou J, Khan GJ, Zhu J, Liu F, Duan H, Li L, Zhai K. Targeted intervention of natural medicinal active ingredients and traditional Chinese medicine on epigenetic modification: Possible strategies for prevention and treatment of atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155139. [PMID: 37863003 DOI: 10.1016/j.phymed.2023.155139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Atherosclerosis is a deadly consequence of cardiovascular disease and has very high mortality rate worldwide. The epigenetic modifications can regulate the pervasiveness and progression of atherosclerosis through its involvement in regulation of inflammation, oxidative stress, lipid metabolism and several other factors. Specific non-coding RNAs, DNA methylation, and histone modifications are key regulatory factors of atherosclerosis. Natural products from traditional Chinese medicine have shown promising therapeutic potential against atherosclerosis by means of regulating the expression of specific genes, stabilizing arterial plaques and protecting vascular endothelial cells. OBJECTIVE Our study is focusing to explore the pathophysiology and probability of traditional Chinese medicine and natural medicinal active ingredients to treat atherosclerosis. METHODS Comprehensive literature review was conducted using PubMed, Web of Science, Google Scholar and China National Knowledge Infrastructure with a core focus on natural medicinal active ingredients and traditional Chinese medicine prying in epigenetic modification related to atherosclerosis. RESULTS Accumulated evidence demonstrated that natural medicinal active ingredients and traditional Chinese medicine have been widely studied as substances that can regulate epigenetic modification. They can participate in the occurrence and development of atherosclerosis through inflammation, oxidative stress, lipid metabolism, cell proliferation and migration, macrophage polarization and autophagy respectively. CONCLUSION The function of natural medicinal active ingredients and traditional Chinese medicine in regulating epigenetic modification may provide a new potential strategy for the prevention and treatment of atherosclerosis. However, more extensive research is essential to determine the potential of these natural medicinal active ingredients to treat atherosclerosis because of least clinical data.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Han Li
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ying Shi
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jing Zhou
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Juan Zhu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fawang Liu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China.
| |
Collapse
|
8
|
Wang F, An Y, Hao H. MicroRNA-361-5p acts as a biomarker for carotid artery stenosis and promotes vascular smooth muscle cell proliferation and migration. BMC Med Genomics 2023; 16:134. [PMID: 37328892 PMCID: PMC10273542 DOI: 10.1186/s12920-023-01563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Vascular smooth muscle cells (VSMCs) dysfunction participates in carotid artery stenosis (CAS). The study aimed to examine the expression pattern of miR-361-5p in CAS patients, and explore its role in VSMCs proliferation and migration. METHODS qRT-PCR was performed for the detection of miR-361-5p in serum samples of 150 CAS cases and 150 healthy people. Multiple logistic regression analysis and receiver operating characteristic (ROC) curve was accomplished to detect diagnostic value via SPSS 21.0 statistical software. Cell function of VSMCs was evaluated. Target association was predicted through bioinformatic analysis and confirmed via luciferase activity. RESULTS Serum miR-361-5p was enhanced in CAS cases and was positively correlated with CAS degree. Logistic regression analysis determined the independent influence of miR-361-5p in CAS, and ROC curve demonstrated its diagnostic value with AUC of 0.892. miR-361-5p promoted VSMCs proliferation and migration, but the influence was counteracted by TIMP4. CONCLUSIONS MiR-361-5p is a promising biomarker for CAS, and can be used as a potential target for early diagnosis and treatment of CAS. MiR-361-5p can promote VSMCs proliferation and migration via targeting TIMP4.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, No. 2428 Yuhe Road, Kuiwen District, 261035, Weifang, Shandong, China.
| | - Yumei An
- Department of Image Center, Affiliated Hospital of Weifang Medical University, 261035, Weifang, China
| | - Huihui Hao
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, 261035, Weifang, China
| |
Collapse
|
9
|
Gou T, Hu M, Xu M, Chen Y, Chen R, Zhou T, Liu J, Guo L, Ao H, Ye Q. Novel wine in an old bottle: Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases. J Pharm Anal 2023; 13:563-589. [PMID: 37440909 PMCID: PMC10334359 DOI: 10.1016/j.jpha.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) frequently results in sudden death and poses a serious threat to public health worldwide. The drugs approved for the prevention and treatment of ASCVD are usually used in combination but are inefficient owing to their side effects and single therapeutic targets. Therefore, the use of natural products in developing drugs for the prevention and treatment of ASCVD has received great scholarly attention. Andrographolide (AG) is a diterpenoid lactone compound extracted from Andrographis paniculata. In addition to its use in conditions such as sore throat, AG can be used to prevent and treat ASCVD. It is different from drugs that are commonly used in the prevention and treatment of ASCVD and can not only treat obesity, diabetes, hyperlipidaemia and ASCVD but also inhibit the pathological process of atherosclerosis (AS) including lipid accumulation, inflammation, oxidative stress and cellular abnormalities by regulating various targets and pathways. However, the pharmacological mechanisms of AG underlying the prevention and treatment of ASCVD have not been corroborated, which may hinder its clinical development and application. Therefore, this review summarizes the physiological and pathological mechanisms underlying the development of ASCVD and the in vivo and in vitro pharmacological effects of AG on the relative risk factors of AS and ASCVD. The findings support the use of the old pharmacological compound ('old bottle') as a novel drug ('novel wine') for the prevention and treatment of ASCVD. Additionally, this review summarizes studies on the availability as well as pharmaceutical and pharmacokinetic properties of AG, aiming to provide more information regarding the clinical application and further research and development of AG.
Collapse
Affiliation(s)
- Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junjing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
10
|
Zhou T, Cao L, Du Y, Qin L, Lu Y, Zhang Q, He Y, Tan D. Gypenosides ameliorate high-fat diet-induced nonalcoholic fatty liver disease in mice by regulating lipid metabolism. PeerJ 2023; 11:e15225. [PMID: 37065701 PMCID: PMC10103699 DOI: 10.7717/peerj.15225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/23/2023] [Indexed: 04/18/2023] Open
Abstract
Gypenosides (GP), extracted from the traditional Chinese herb Gynostemma pentaphyllum (Thunb.) Makino, have been used to treat metabolic disorders, including lipid metabolism disorders and diabetes. Although recent studies have confirmed their beneficial effects in nonalcoholic fatty liver disease (NAFLD), the underlying therapeutic mechanism remains unclear. In this study, we explored the protective mechanism of GP against NAFLD in mice and provided new insights into the prevention and treatment of NAFLD. Male C57BL6/J mice were divided into three experimental groups: normal diet, high-fat diet (HFD), and GP groups. The mice were fed an HFD for 16 weeks to establish an NAFLD model and then treated with GP for 22 weeks. The transcriptome and proteome of the mice livers were profiled using RNA sequencing and high-resolution mass spectrometry, respectively. The results showed that GP decreased serum lipid levels, liver index, and liver fat accumulation in mice. Principal component and heatmap analyses indicated that GP significantly modulated the changes in the expression of genes associated with HFD-induced NAFLD. The 164 differentially expressed genes recovered using GP were enriched in fatty acid and steroid metabolism pathways. Further results showed that GP reduced fatty acid synthesis by downregulating the expression of Srebf1, Fasn, Acss2, Acly, Acaca, Fads1, and Elovl6; modulated glycerolipid metabolism by inducing the expression of Mgll; promoted fatty acid transportation and degradation by inducing the expression of Slc27a1, Cpt1a, and Ehhadh; and reduced hepatic cholesterol synthesis by downregulating the expression of Tm7sf2, Ebp, Sc5d, Lss, Fdft1, Cyp51, Nsdhl, Pmvk, Mvd, Fdps, and Dhcr7. The proteomic data further indicated that GP decreased the protein expression levels of ACACA, ACLY, ACSS2, TM7SF2, EBP, FDFT1, NSDHL, PMVK, MVD, FDPS, and DHCR7 and increased those of MGLL, SLC27A1, and EHHADH. In conclusion, GP can regulate the key genes involved in hepatic lipid metabolism in NAFLD mice, providing initial evidence for the mechanisms underlying the therapeutic effect of GP in NAFLD.
Collapse
Affiliation(s)
- Tingting Zhou
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ligang Cao
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yimei Du
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yanliu Lu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qianru Zhang
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
11
|
Xiao J, Xie Y, Duan Q, Liu T, Ye R, Duan X, Le Z, Deng N, Liu F. LIM Homeobox 2 Increases Adhesion-Regulating Molecule 1 Transcription to Facilitate the Pathological Progression of Oxidized Low-Density Lipoprotein-Stimulated Atherosclerotic Cell Models. Int Heart J 2023; 64:750-758. [PMID: 37518356 DOI: 10.1536/ihj.22-669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Endothelial-mesenchymal transition (EndMT) and endothelial cell apoptosis have been documented to have a role in atherosclerosis (AS) progression. To deepen knowledge in this aspect, our study investigated the effect of LIM homeobox 2 (LHX2) and adhesion-regulating molecule 1 (ADRM1) on EndMT and endothelial cell apoptosis in the oxidized low-density lipoprotein (ox-LDL) -stimulated AS cell model.Ox-LDL was utilized to treat human umbilical vein endothelial cells (HUVECs) for constructing an AS model in vitro, followed by measurement of LHX2 and ADRM1 expressions. Afterward, gain- and loss-of-function assays were performed in HUVECs, followed by detection of cell viability, invasion, migration, and apoptosis and the expression of inflammatory factors [tumor necrosis factor (TNF) -α, interleukin (IL) -1β, and IL-6], EndMT-related proteins [CD31, vascular epithelium (VE) -cadherin, vimentin, α-smooth muscle actin (SMA), Snai1, Snai2, and Twist1], and the apoptotic protein cleaved caspase-3. Interactions between LHX2 and ADRM1 were analyzed with dual-luciferase reporter gene and chromatin immunoprecipitation assays.High levels of LHX2 and ADRM1 were observed in ox-LDL-induced HUVECs. In ox-LDL-treated HUVECs, LHX2, or ADRM1 knockdown promoted CD31 and VE-cadherin levels, viability, invasion, and migration and reduced apoptosis and the expressions of TNF-α, IL-1β, IL-6, vimentin, α-SMA, Snai1, Snai2, Twist1, and cleaved caspase-3. Mechanistically, LHX2 bound to the ADRM1 promoter to promote ADRM1 transcription. Overexpression of ADRM1 annulled the aforementioned effects of LHX2 knockdown on ox-LDL-induced HUVECs.LHX2 facilitates the pathological progression of ox-LDL-stimulated AS cell models by increasing ADRM1 transcription.
Collapse
Affiliation(s)
- Junqi Xiao
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University
| | - Yang Xie
- Department of Thyroid Surgery, The First Affiliated Hospital of Gannan Medical University
| | - Qing Duan
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University
| | - Tao Liu
- Medical Big Data Center, The First Affiliated Hospital of Gannan Medical University
| | - Rong Ye
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University
| | - Xunhong Duan
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University
| | - Zhibiao Le
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University
| | - Nan Deng
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University
| | - Fengen Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University
| |
Collapse
|
12
|
Liu F, Wei Q, Liang Y, Yang Q, Huang C, Huang Q, Qin J, Pang L, Xu L, Zhong J. Effects of Gypenoside XLIX on fatty liver cell gene expression in vitro: a genome-wide analysis. Am J Transl Res 2023; 15:834-846. [PMID: 36915770 PMCID: PMC10006792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/11/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE To perform Genome-wide analysis of Gypenoside XLIX (Gyp-XLIX) in the treatment of fatty liver cells. METHODS The gene profiles of 3 normal liver cells, 3 fatty liver cells, and 3 fatty liver cells treated with Gyp-XLIX were detected by high-throughput sequencing to identify the differentially expressed genes (DEGs) in fatty liver treated by Gyp-XLIX. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to explore the biological functions of DEGs. By constructing lncRNA-mRNA co-expression network of DEGs, network node genes were mined. Possible target genes of differentially expressed lncRNA were predicted by cis regulation. RESULTS 782 DEGs were screened out; that is, 172 genes were highly expressed in fatty liver cells, and the expression decreased to the level of normal liver cells after Gyp-XLIX treatment; 610 genes were under expressed in fatty liver cells, and the expression increased to the level of normal liver cells after Gyp-XLIX treatment. Functional analysis of KEGG and GO showed that DEGs process DNA-binding transcription factor activity and ion transmembrane transporter activity in the plasma membrane region. This mediates glycerophospholipid metabolism, bile secretion, fatty acid degradation and other signaling pathways. lncRNA analysis showed that the expression of 16 lncRNAs was low in fatty liver cells, and the expression was increased to the level of normal liver cells after Gyp-XLIX treatment. Target gene prediction showed that 16 differentially expressed lncRNAs had cis potential to regulate target genes, among which lncRNA RPARP-AS1 had a high degree of relationship with other genes. lncRNA-mRNA co-expression network results showed that lncRNA RPARP-AS1 may acted on NFKB2. CONCLUSION LncRNA was differentially expressed in fatty liver cells and Gyp-XLIX treated fatty liver cells, and lncRNA RPARP-AS1 may be a regulatory gene in Gyp-XLIX treated fatty liver.
Collapse
Affiliation(s)
- Fengming Liu
- Department of Critical Care Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Qiu Wei
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Yidan Liang
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Qingmei Yang
- Department of Critical Care Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Chunxi Huang
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Qiuju Huang
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Jiankang Qin
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Lili Pang
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Liuyan Xu
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| | - Juan Zhong
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning Nanning 530022, Guangxi, China
| |
Collapse
|
13
|
Qu K, Yan F, Qin X, Zhang K, He W, Dong M, Wu G. Mitochondrial dysfunction in vascular endothelial cells and its role in atherosclerosis. Front Physiol 2022; 13:1084604. [PMID: 36605901 PMCID: PMC9807884 DOI: 10.3389/fphys.2022.1084604] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The mitochondria are essential organelles that generate large amounts of ATP via the electron transport chain (ECT). Mitochondrial dysfunction causes reactive oxygen species accumulation, energy stress, and cell death. Endothelial mitochondrial dysfunction is an important factor causing abnormal function of the endothelium, which plays a central role during atherosclerosis development. Atherosclerosis-related risk factors, including high glucose levels, hypertension, ischemia, hypoxia, and diabetes, promote mitochondrial dysfunction in endothelial cells. This review summarizes the physiological and pathophysiological roles of endothelial mitochondria in endothelial function and atherosclerosis.
Collapse
Affiliation(s)
- Kai Qu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,College of Bioengineering Chongqing University, Chongqing, China
| | - Fang Yan
- Department of Geriatrics, Geriatric Diseases Institute of Chengdu, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China,Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Xian Qin
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,College of Bioengineering Chongqing University, Chongqing, China
| | - Kun Zhang
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,College of Bioengineering Chongqing University, Chongqing, China
| | - Wen He
- Department of Geriatrics, Clinical trial center, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China,*Correspondence: Mingqing Dong, ; Guicheng Wu,
| | - Guicheng Wu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,*Correspondence: Mingqing Dong, ; Guicheng Wu,
| |
Collapse
|
14
|
Advances in the Bioactivities of Phytochemical Saponins in the Prevention and Treatment of Atherosclerosis. Nutrients 2022; 14:nu14234998. [PMID: 36501028 PMCID: PMC9735883 DOI: 10.3390/nu14234998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by hardening and narrowing of arteries. AS leads to a number of arteriosclerotic vascular diseases including cardiovascular diseases, cerebrovascular disease and peripheral artery disease, which pose a big threat to human health. Phytochemicals are a variety of intermediate or terminal low molecular weight secondary metabolites produced during plant energy metabolism. Phytochemicals from plant foods (vegetables, fruits, whole grains) and traditional herb plants have been shown to exhibit multiple bioactivities which are beneficial for prevention and treatment against AS. Many types of phytochemicals including polyphenols, saponins, carotenoids, terpenoids, organic sulfur compounds, phytoestrogens, phytic acids and plant sterols have already been identified, among which saponins are a family of glycosidic compounds consisting of a hydrophobic aglycone (sapogenin) linked to hydrophilic sugar moieties. In recent years, studies have shown that saponins exhibit a number of biological activities such as anti-inflammation, anti-oxidation, cholesterol-lowering, immunomodulation, anti-platelet aggregation, etc., which are helpful in the prevention and treatment of AS. This review aims to summarize the recent advances in the anti-atherosclerotic bioactivities of saponins such as ginsenoside, soyasaponin, astra-galoside, glycyrrhizin, gypenoside, dioscin, saikosaponin, etc.
Collapse
|
15
|
CHENG X, ZHAO C, JIN Z, HU J, ZHANG Z, ZHANG C. Natural products: potential therapeutic agents for atherosclerosis. Chin J Nat Med 2022; 20:830-845. [DOI: 10.1016/s1875-5364(22)60219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/24/2022]
|
16
|
Jiang XL, Tai H, Kuang JS, Zhang JY, Cui SC, Lu YX, Qi SB, Zhang SY, Li SM, Chen JP, Meng XS. Jian-Pi-Yi-Shen decoction inhibits mitochondria-dependent granulosa cell apoptosis in a rat model of POF. Aging (Albany NY) 2022; 14:8321-8345. [PMID: 36309912 PMCID: PMC9648799 DOI: 10.18632/aging.204320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
As a widely applied traditional Chinese medicine (TCM), Jian-Pi-Yi-Shen (JPYS) decoction maybe applied in curing premature ovarian failure (POF) besides chronic kidney disease (CKD). In vivo experiments, 40 female SD (8-week-old) rats were randomized into four groups, namely, control group (negative control), POF model group, JPYS treatment group, and triptorelin treatment group (positive control). JPYS group was treated with JPYS decoction (oral, 11 g/kg) for 60 days, and the triptorelin group was treated with triptorelin (injection, 1.5 mg/kg) for 10 days before the administration of cyclophosphamide (CTX) (50 mg/kg body weight) to establish POF model. We examined apoptosis, mitochondrial function, and target gene (ASK1/JNK pathway and mitochondrial fusion/fission) expression. In vitro experiments, the KGN human granulosa cell line was used. Cells were pretreated with CTX (20, 40, and 60 μg/mL) for 24 h, followed by JPYS-containing serum (2, 4, and 8 %) for 24 h. Thereafter, these cells were employed to assess apoptosis, mitochondrial function, and target gene levels of protein and mRNA. In vivo, JPYS alleviated injury and suppressed apoptosis in POF rats. In addition, JPYS improved ovarian function. JPYS inhibit apoptosis of granulosa cells through improving mitochondrial function by activating ASK1/JNK pathway. In vitro, JPYS inhibited KGN cell apoptosis through inhibited ASK1/JNK pathway and improved mitochondrial function. The effects of GS-49977 were similar to those of JPYS. During POF, mitochondrial dysfunction occurs in the ovary and leads to granulosa cell apoptosis. JPYS decoction improves mitochondrial function and alleviates apoptosis through ASK1/JNK pathway.
Collapse
Affiliation(s)
- Xiao-Lin Jiang
- Department of Nephrology, The Fourth of Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - He Tai
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Department of Internal Medicine, Liaoning Provincial Corps Hospital of Chinese People’s Armed Police Forces, Shenyang, China
| | - Jin-Song Kuang
- Department of Endocrinology and Metabolism, The Fourth People’s Hospital of Shenyang, Shenyang, China
| | - Jing-Yi Zhang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Shi-Chao Cui
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Yu-Xuan Lu
- College of Basic Medical Science, Chinese Capital Medical University, Beijing, China
| | - Shu-Bo Qi
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shi-Yu Zhang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shun-Min Li
- Department of Nephrology, The Fourth of Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Jian-Ping Chen
- Department of Internal Medicine, Liaoning Provincial Corps Hospital of Chinese People’s Armed Police Forces, Shenyang, China
| | - Xian-Sheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
17
|
Meng T, Li X, Li C, Liu J, Chang H, Jiang N, Li J, Zhou Y, Liu Z. Natural products of traditional Chinese medicine treat atherosclerosis by regulating inflammatory and oxidative stress pathways. Front Pharmacol 2022; 13:997598. [PMID: 36249778 PMCID: PMC9563010 DOI: 10.3389/fphar.2022.997598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis (AS) is a prevalent arteriosclerotic vascular disease that forms a pathological basis for coronary heart disease, stroke, and other diseases. Inflammatory and oxidative stress responses occur throughout the development of AS. Treatment for AS over the past few decades has focused on administering high-intensity statins to reduce blood lipid levels, but these inevitably damage liver and kidney function over the long term. Natural medicines are widely used to prevent and treat AS in China because of their wide range of beneficial effects, low toxicity, and minimal side effects. We searched for relevant literature over the past 5 years in databases such as PubMed using the keywords, “atherosclerosis,” “traditional Chinese medicine,” “natural medicines,” “inflammation,” and “oxidative stress.” We found that the PI3K/AKT, TLR4, JAK/STAT, Nrf2, MAPK, and NF-κB are the most relevant inflammatory and oxidative stress pathways in AS. This review summarizes studies of the natural alkaloid, flavonoid, polyphenol, saponin, and quinone pathways through which natural medicines used to treat AS. This study aimed to update and summarize progress in understanding how natural medicines treat AS via inflammatory and oxidative stress-related signaling pathways. We also planned to create an information base for the development of novel drugs for future AS treatment.
Collapse
Affiliation(s)
- Tianwei Meng
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xinghua Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chengjia Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiawen Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Nan Jiang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiarui Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yabin Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- *Correspondence: Yabin Zhou, ; Zhiping Liu,
| | - Zhiping Liu
- Respiratoy Disease Department, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- *Correspondence: Yabin Zhou, ; Zhiping Liu,
| |
Collapse
|
18
|
Huang YP, Wang YS, Liu YY, Jiang CH, Wang J, Jiang XY, Liu BW, Wang L, Ye WC, Zhang J, Yin ZQ, Pan K. Chemical Characterization and Atherosclerosis Alleviation Effects of Gypenosides from Gynostemma pentaphyllum through Ameliorating Endothelial Dysfunction via the PCSK9/LOX-1 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11944-11957. [PMID: 36120893 DOI: 10.1021/acs.jafc.2c02681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dietary saponins have the potential to ameliorate atherosclerosis (AS). Gypenosides of Gynostemma pentaphyllum (GPs) have been used as functional foods to exhibit antiatherosclerotic activity. The present study aimed to explore the protective effect, underlying mechanism and active substances of GPs on AS in vivo and in vitro. Results demonstrated GPs administration reduced the serum concentrations of TC and LDL-C, upregulated the plasma HDL-C content, inhibited the secretion of ICAM-1, VCAM-1, and MCP-1, and alleviated vascular lesions in VitD3 plus high cholesterol diet-induced AS rats as well as reduced adhesion factors levels in ox-LDL-stimulated HUVECs, which was potentially associated with suppressing PCSK9/LOX-1 pathway. Further activity-guided phytochemical investigation of GPs led to the identification of five new dammarane-type glycosides (1-5) and ten known analogs (6-15). Bioassay evaluation showed compounds 1, 6, 7, 12, 13, and 14 observably reduced the expressions of PCSK9 and LOX-1, as well as the secretion of adhesion factors in injured HUVECs. Molecular docking experiments suggested that the active saponins of GPs might bind to the allosteric pocket of PCSK9 located at the catalytic and C-terminal domains, and 2α-OH-protopanaxadiol-type gypenosides might exert a higher affinity for an allosteric binding site on PCSK9 by hydrogen-bond interaction with ARG-458. These findings provide new insights into the potential nutraceutical application of GPs and their bioactive compounds in the prevention and discovery of novel therapeutic strategies for AS.
Collapse
Affiliation(s)
- Ya-Ping Huang
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yun-Shan Wang
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Nephrology Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yuan-Yuan Liu
- Nephrology Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Cui-Hua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jie Wang
- Instrumental Analysis Center of CPU, China Pharmaceutical University, Nanjing 210009, China
| | - Xin-Yu Jiang
- Hunan Huabaotong Pharmaceutical Co., Ltd., Changsha 410331, China
| | - Bi-Wen Liu
- Nephrology Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, China
| | - Lei Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jian Zhang
- Nephrology Department, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Zhi-Qi Yin
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ke Pan
- Department of TCMs Pharmaceuticals & Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
19
|
Lin J, Duan J, Wang Q, Xu S, Zhou S, Yao K. Mitochondrial Dynamics and Mitophagy in Cardiometabolic Disease. Front Cardiovasc Med 2022; 9:917135. [PMID: 35783853 PMCID: PMC9247260 DOI: 10.3389/fcvm.2022.917135] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/20/2022] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a key role in cellular metabolism. Mitochondrial dynamics (fusion and fission) and mitophagy, are critical to mitochondrial function. Fusion allows organelles to share metabolites, proteins, and mitochondrial DNA, promoting complementarity between damaged mitochondria. Fission increases the number of mitochondria to ensure that they are passed on to their offspring during mitosis. Mitophagy is a process of selective removal of excess or damaged mitochondria that helps improve energy metabolism. Cardiometabolic disease is characterized by mitochondrial dysfunction, high production of reactive oxygen species, increased inflammatory response, and low levels of ATP. Cardiometabolic disease is closely related to mitochondrial dynamics and mitophagy. This paper reviewed the mechanisms of mitochondrial dynamics and mitophagy (focus on MFN1, MFN2, OPA1, DRP1, and PINK1 proteins) and their roles in diabetic cardiomyopathy, myocardial infarction, cardiac hypertrophy, heart failure, atherosclerosis, and obesity.
Collapse
Affiliation(s)
- Jianguo Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinlong Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingqing Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyu Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Simin Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kuiwu Yao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Kuiwu Yao
| |
Collapse
|
20
|
Tai H, Tong YJ, Yu R, Yu Y, Yao SC, Li LB, Liu Y, Cui XZ, Kuang JS, Meng XS, Jiang XL. A possible new activator of PI3K-Huayu Qutan Recipe alleviates mitochondrial apoptosis in obesity rats with acute myocardial infarction. J Cell Mol Med 2022; 26:3423-3445. [PMID: 35567290 PMCID: PMC9189350 DOI: 10.1111/jcmm.17353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 01/20/2023] Open
Abstract
Obesity, which has unknown pathogenesis, can increase the frequency and seriousness of acute myocardial infarction (AMI). This study evaluated effect of Huayu Qutan Recipe (HQR) pretreatment on myocardial apoptosis induced by AMI by regulating mitochondrial function via PI3K/Akt/Bad pathway in rats with obesity. For in vivo experiments, 60 male rats were randomly divided into 6 groups: sham group, AMI group, AMI (obese) group, 4.5, 9.0 and 18.0 g/kg/d HQR groups. The models fed on HQR with different concentrations for 2 weeks before AMI. For in vitro experiments, the cardiomyocytes line (H9c2) was used. Cells were pretreated with palmitic acid (PA) for 24 h, then to build hypoxia model followed by HQR‐containing serum for 24 h. Related indicators were also detected. In vivo, HQR can lessen pathohistological damage and apoptosis after AMI. In addition, HQR improves blood fat levels, cardiac function, inflammatory factor, the balance of oxidation and antioxidation, as well as lessen infarction in rats with obesity after AMI. Meanwhile, HQR can diminish myocardial cell death by improving mitochondrial function via PI3K/Akt/Bad pathway activation. In vitro, HQR inhibited H9c2 cells apoptosis, improved mitochondrial function and activated the PI3K/Akt/Bad pathway, but effects can be peripeteiad by LY294002. Myocardial mitochondrial dysfunction occurs following AMI and can lead to myocardial apoptosis, which can be aggravated by obesity. HQR can relieve myocardial apoptosis by improving mitochondrial function via the PI3K/Akt/Bad pathway in rats with obesity.
Collapse
Affiliation(s)
- He Tai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China.,Department of Internal Medicine, Liaoning Provincial Corps Hospital of Chinese People's Armed Police Forces, Shenyang, China
| | - Yu-Jing Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Yu
- Science and Technology Branch, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - You Yu
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Si-Cheng Yao
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ling-Bing Li
- Department of Graduate School, China PLA General Hospital, Beijing, China
| | - Ye Liu
- Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Zheng Cui
- Cardiovascular Surgery, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jin-Song Kuang
- Department of Endocrinology and Metabolism, The Fourth People's Hospital of Shenyang, Shenyang, China
| | - Xian-Sheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiao-Lin Jiang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China.,Nephrology Laboratory, The fourth of Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
21
|
Targeting Reactive Oxygen Species in Atherosclerosis via Chinese Herbal Medicines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1852330. [PMID: 35047104 PMCID: PMC8763505 DOI: 10.1155/2022/1852330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Cardio-cerebrovascular disease (CCVD) has become the leading cause of human mortality with the coming acceleration of global population aging. Atherosclerosis is among the most common pathological changes in CCVDs. It is also a multifactorial disorder; oxidative stress caused by excessive production of reactive oxygen species (ROS) has become an important mechanism of atherosclerosis. Chinese herbal medicine (CHM) is a major type of natural medicine that has made great contributions to human health. CHMs are increasingly used in the auxiliary clinical treatment of atherosclerosis. Although their mechanism of action is unclear, CHMs can exert a variety of antiatherosclerosis effects by regulating intracellular ROS. In this review, we discussed the mechanism of ROS regulation in atherosclerosis and analyzed the role of CHMs in the treatment of atherosclerosis via ROS.
Collapse
|
22
|
Jiang XL, Tai H, Xiao XS, Zhang SY, Cui SC, Qi SB, Hu DD, Zhang LN, Kuang JS, Meng XS, Li SM. Cangfudaotan decoction inhibits mitochondria-dependent apoptosis of granulosa cells in rats with polycystic ovarian syndrome. Front Endocrinol (Lausanne) 2022; 13:962154. [PMID: 36465612 PMCID: PMC9716878 DOI: 10.3389/fendo.2022.962154] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a universal endocrine and metabolic disorder prevalent in reproductive aged women. PCOS is often accompanied with insulin resistance (IR) which is an essential pathological factor. Although there is no known cure for PCOS, cangfudaotan (CFDT) decoction is widely used for the treatment of PCOS; nevertheless, the underlying mechanism is not clear. In this study, 40 Sprague-Dawley (SD) rats (female) were randomized to 4 groups, namely the control group, PCOS group, PCOS+CFDT group, and PCOS+metformin group. The rats in the control group were fed a normal-fat diet, intraperitoneally injected with 0.5% carboxymethyl cellulose (CMC, 1 mL/kg/d) for 21 days and orally given saline (1 mL/kg/d) for the next 4 weeks. The rats in the PCOS group, PCOS+CFDT group, and PCOS+Metformin group were fed a high-fat diet (HFD) and intraperitoneally injected with letrozole (1.0 mg/kg) for 21 days. During this period, we recorded the body weight, estrous cycles, and rate of pregnancy in all rats. We also observed the ovarian ultrastructure. Blood glucose indices, serum hormones, and inflammatory factors were also recorded. Then, we detected apoptotic and mitochondrial function, and observed mitochondria in ovarian granular cells by transmission electron microscopy. We also detected genes of ASK1/JNK pathway at mRNA and protein levels. The results showed that CFDT alleviated pathohistological damnification and apoptosis in PCOS rat model. In addition, CFDT improved ovarian function, reduced inflammatory response, inhibited apoptosis of granular cells, and inhibited the operation of ASK1/JNK pathway. These findings demonstrate the occurrence of ovary mitochondrial dysfunction and granular cell apoptosis in PCOS. CFDT can relieve mitochondria-dependent apoptosis by inhibiting the ASK1/JNK pathway in PCOS rats.
Collapse
Affiliation(s)
- Xiao-lin Jiang
- Department of Nephrology, The Fourth of Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - He Tai
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Department of Internal Medicine, Liaoning Provincial Corps Hospital of Chinese People’s Armed Police Forces, Shenyang, China
| | - Xuan-si Xiao
- Science and Technology Branch, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shi-yu Zhang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Shi-chao Cui
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Shu-bo Qi
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Dan-dan Hu
- Department of Internal Medicine, Fujian Provincial Corps Hospital of Chinese People’s Armed Police Forces, Fuzhou, China
| | - Li-na Zhang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jin-song Kuang
- Department of Endocrinology and Metabolism, The Fourth People’s Hospital of Shenyang, Shenyang, China
- *Correspondence: Shun-min Li, ; Xian-sheng Meng, ; Jin-song Kuang,
| | - Xian-sheng Meng
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- *Correspondence: Shun-min Li, ; Xian-sheng Meng, ; Jin-song Kuang,
| | - Shun-min Li
- Department of Nephrology, The Fourth of Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- *Correspondence: Shun-min Li, ; Xian-sheng Meng, ; Jin-song Kuang,
| |
Collapse
|
23
|
Liu J, Xu P, Liu D, Wang R, Cui S, Zhang Q, Li Y, Yang W, Zhang D. TCM Regulates PI3K/Akt Signal Pathway to Intervene Atherosclerotic Cardiovascular Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4854755. [PMID: 34956379 PMCID: PMC8702326 DOI: 10.1155/2021/4854755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
Vascular endothelial injury is the initial stage of atherosclerosis (AS). Stimulating and activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway can regulate the expression of vascular endothelial cytokines, thus affecting the occurrence and development of AS. In addition, the PI3K/Akt signaling pathway can regulate the polarization and survival of macrophages and the expression of inflammatory factors and platelet function, thus influencing the progression of AS. In recent years, traditional Chinese medicine (TCM) has been widely recognized for its advantages of fewer side effects, multiple pathways, and multiple targets. Also, the research of TCM regulation of AS via the PI3K/Akt signaling pathway has achieved certain results. This study aimed to analyze the characteristics of the PI3K/Akt signaling pathway and its role in the pathogenesis of AS, as well as the role of Chinese medicine in regulating the PI3K/Akt signaling pathway. The findings are expected to provide a theoretical basis for the clinical treatment and pathological mechanism research of AS.
Collapse
Affiliation(s)
- Jiali Liu
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pangao Xu
- First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine Shandong, Jinan, Shandong, China
| | - Dekun Liu
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ruiqing Wang
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengnan Cui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qiuyan Zhang
- Pharmacy School, Shandong University of Traditional Chinese Medicine Shandong, Jinan, Shandong, China
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Engineering Research Center of Traditional Chinese Medicine Precise Treatment of Cardiovascular Disease, Zibo, Shandong, China
| | - Wenqing Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Engineering Research Center of Traditional Chinese Medicine Precise Treatment of Cardiovascular Disease, Zibo, Shandong, China
| | - Dan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
24
|
Su C, Li N, Ren R, Wang Y, Su X, Lu F, Zong R, Yang L, Ma X. Progress in the Medicinal Value, Bioactive Compounds, and Pharmacological Activities of Gynostemma pentaphyllum. Molecules 2021; 26:6249. [PMID: 34684830 PMCID: PMC8540791 DOI: 10.3390/molecules26206249] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Gynostemma pentaphyllum (Thunb.) Makino (GP), also named Jiaogulan in Chinese, was known to people for its function in both health care and disease treatment. Initially and traditionally, GP was a kind of tea consumed by people for its pleasant taste and weight loss efficacy. With the passing of the centuries, GP became well known as more than just a tea. Until now, numbers of bioactive compounds, including saponins (also named gypenosides, GPS), polysaccharides (GPP), flavonoids, and phytosterols were isolated and identified in GP, which implied the great medicinal worth of this unusual tea. Both in vivo and in vitro tests, ranging from different cell lines to animals, indicated that GP possessed various biological activities including anti-cancer, anti-atherogenic, anti-dementia, and anti-Parkinson's diseases, and it also had lipid-regulating effects as well as neuroprotection, hepatoprotective, and hypoglycemic properties. With the further development and utilization of GP, the research on the chemical constituents and pharmacological properties of GP were deepening day by day and had made great progress. In this review, the recent research progress in the bioactive compounds, especially gypenosides, and the pharmacological activities of GP were summarized, which will be quite useful for practical applications of GP in the treatment of human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China; (C.S.); (N.L.); (R.R.); (Y.W.); (X.S.); (F.L.); (R.Z.)
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China; (C.S.); (N.L.); (R.R.); (Y.W.); (X.S.); (F.L.); (R.Z.)
| |
Collapse
|
25
|
Zhang J, Zhang C, Miao L, Meng Z, Gu N, Song G. Abnormal TPM2 expression is involved in regulation of atherosclerosis progression via mediating RhoA signaling in vitro. Arch Med Sci 2021; 20:1197-1208. [PMID: 39439675 PMCID: PMC11493070 DOI: 10.5114/aoms/139235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/21/2021] [Indexed: 10/25/2024] Open
Abstract
Introduction Ox-LDL (oxidized low-density lipoprotein)-induced endothelial cell injury and dysfunction of vascular smooth muscle cells play critical roles in the development of atherosclerosis (AS). Tropomyosin 2 (TPM2) has been implicated in cardiac diseases, but its critical role and regulatory mechanism in AS progression have not yet been elucidated. Material and methods The expression of TPM2 was investigated in AS tissues. Ox-LDL was used to construct an AS in vitro model based on endothelial and vascular smooth muscle cells (HAECs and VSMCs). An overexpression assay was performed to evaluate the role of TPM2 in AS. Meanwhile, the involvement of the RhoA pathway in TPM2-mediated AS progression was evaluated using narciclasine. Results Tropomyosin 2 was dramatically upregulated in both AS tissues and ox-LDL-induced HAECs. Overexpression of TPM2 attenuated ox-LDL-stimulated cell growth depression, inflammatory and adhesive responses in HAECs, as well as oxidative stress and mitochondrial dysfunction. Additionally, VSMCs, impacted by TPM2-overexpressed HAECs, showed alleviated cellular processes which were abnormally activated by ox-LDL. Furthermore, depressed activation of the RhoA pathway was found in TPM2-overexpressed HAECs and activating the signaling rescued these effects of TPM2 exerted on ox-LDL-stimulated HAECs and VSMCs. Conclusions TPM2 had an advantageous impact on ox-LDL-induced AS progression in vitro by mediating the RhoA pathway. This evidence might contribute to the therapy of AS.
Collapse
Affiliation(s)
- Jimei Zhang
- Department of Material Supply, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Chonghong Zhang
- Department of Material Purchasing, Yantai Yeda Hospital, China
| | - Li Miao
- Department of Cardiology Second Ward, Shandong Weihai Central Hospital, Weihai, Shandong, China
| | - Zimin Meng
- Department of Cardiovascular Medicine, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Ning Gu
- Department of Cardiovascular Medicine, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Guifang Song
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
26
|
Chang X, Tian M, Zhang Q, Liu F, Gao J, Li S, Liu H, Hou X, Li L, Li C, Sun Y. Grape seed proanthocyanidin extract ameliorates cisplatin-induced testicular apoptosis via PI3K/Akt/mTOR and endoplasmic reticulum stress pathways in rats. J Food Biochem 2021; 45:e13825. [PMID: 34152018 DOI: 10.1111/jfbc.13825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022]
Abstract
Testicular toxicity is an adverse reaction of the effective chemotherapy drug cisplatin (CIS). Our previous study found that grape seed proanthocyanidin extract (GSPE) had a protective effect on CIS-induced testicular toxicity. However, the protective mechanism of GSPE against CIS-induced testicular toxicity remains unknown. In this study, we aimed to investigate whether GSPE can reduce CIS-induced testicular toxicity and its potential mechanism in rats. The results showed that GSPE ameliorated CIS-induced the apoptosis of testicular cells and inhibited the protein levels of Bad, Cyt c, caspase-9, caspase-3, caspase-12, GRP78, CHOP, IRE1α, p-IRE1α, XBP-1S, PERK, p-PERK, eIF2α, and p-eIF2α. Besides, GSPE reversed the downregulation of PI3K, p-PI3K, Akt, p-Akt, mTOR, and p-mTOR protein expression induced by CIS. These results indicated that GSPE can improve CIS-induced testicular cells apoptosis via activating PI3K/Akt/mTOR and inhibiting Bad/Cyt c/caspase-9/caspase-3 pathways. And GSPE relieved endoplasmic reticulum stress-mediated apoptosis via inhibiting PREK/eIF2α and IRE1α/XBP-1S/caspase-12 pathways. In conclusion, the evidence suggested that GSPE can act as a protective agent against testicular toxicity induced by CIS. PRACTICAL APPLICATIONS: Testicular toxicity was a well-known adverse effect of cisplatin (CIS) in cancer treatment. Grape seed proanthocyanidin extract (GSPE) has been reported to serve as one of the most therapeutic potentials agents. In present study, we explored the regulatory effects of GSPE on the apoptosis induced by CIS, which involved testicular apoptosis mechanisms in rats. Our results indicated that CIS caused testicular toxicity via PI3K/AKT/mTOR and ERS mediated apoptosis pathway in rats. This toxicity was attenuated by GSPE treatment via activated PI3K/Akt/mTOR pathway, and inhibiting Bad/CytC/caspase-9/caspase-3 as well as PREK/eIF2α, IRE1α/XBP-1S/caspase-12 pathways. Our findings suggest that GSPE may be a novel protective agent against testicular toxicity induced by CIS.
Collapse
Affiliation(s)
- Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minmin Tian
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Fangfang Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jinxia Gao
- Department of Occupational Diseases, Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Sheng Li
- Department of Public Health, The First People's Hospital of Lanzhou City, Lanzhou, China
| | - Han Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiangbo Hou
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Lei Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
27
|
Shemiakova T, Ivanova E, Wu WK, Kirichenko TV, Starodubova AV, Orekhov AN. Atherosclerosis as Mitochondriopathy: Repositioning the Disease to Help Finding New Therapies. Front Cardiovasc Med 2021; 8:660473. [PMID: 34017868 PMCID: PMC8129197 DOI: 10.3389/fcvm.2021.660473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is a complex pathology that involves both metabolic dysfunction and chronic inflammatory process. During the last decade, a considerable progress was achieved in describing the pathophysiological features of atherosclerosis and developing approaches that target the abnormal lipid metabolism and chronic inflammation. However, early events in the arterial wall that initiate the disease development still remain obscure. Finding effective therapeutic targets in these early processes would allow developing methods for disease prevention and, possibly, atherosclerotic plaque regression. Currently, these early events are being actively studied by several research groups. One of the processes that are being investigated is the development of mitochondrial dysfunction, which was demonstrated to be present in the affected areas of the arterial wall. Detection and characterization of mitochondrial dysfunction associated with several chronic human disorders was made possible by the improved methods of studying mitochondrial biology and detecting mitochondrial DNA (mtDNA) mutations. It was found to be involved in several key atherogenic processes, such as oxidative stress, chronic inflammation, and intracellular lipid accumulation. Mitochondrial dysfunction can occur in all types of cells involved in the pathogenesis of atherosclerosis: monocytes and macrophages, smooth muscle cells, lymphocytes, and the endothelial cells. However, therapies that would specifically target the mitochondria to correct mitochondrial dysfunction and neutralize the defective organelles are still remain to be developed and characterized. The aim of this review is to outline the prospects for mitochondrial therapy for atherosclerosis. We discuss mechanisms of mitochondria-mediated atherogenic processes, known mitochondria-targeting therapy strategies, and novel mitochondria-targeting drugs in the context of atherosclerosis.
Collapse
Affiliation(s)
- Taisiia Shemiakova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Wei-Kai Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Tatiana V Kirichenko
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Antonina V Starodubova
- Federal Research Center for Nutrition, Biotechnology and Food Safety, Moscow, Russia.,Faculty of Therapy, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
28
|
Zhao Y, Qian Y, Sun Z, Shen X, Cai Y, Li L, Wang Z. Role of PI3K in the Progression and Regression of Atherosclerosis. Front Pharmacol 2021; 12:632378. [PMID: 33767629 PMCID: PMC7985550 DOI: 10.3389/fphar.2021.632378] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol 3 kinase (PI3K) is a key molecule in the initiation of signal transduction pathways after the binding of extracellular signals to cell surface receptors. An intracellular kinase, PI3K activates multiple intracellular signaling pathways that affect cell growth, proliferation, migration, secretion, differentiation, transcription and translation. Dysregulation of PI3K activity, and as aberrant PI3K signaling, lead to a broad range of human diseases, such as cancer, immune disorders, diabetes, and cardiovascular diseases. A growing number of studies have shown that PI3K and its signaling pathways play key roles in the pathophysiological process of atherosclerosis. Furthermore, drugs targeting PI3K and its related signaling pathways are promising treatments for atherosclerosis. Therefore, we have reviewed how PI3K, an important regulatory factor, mediates the development of atherosclerosis and how targeting PI3K can be used to prevent and treat atherosclerosis.
Collapse
Affiliation(s)
- Yunyun Zhao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xinyi Shen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yaoyao Cai
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
29
|
Chang X, Zhang T, Liu D, Meng Q, Yan P, Luo D, Wang X, Zhou X. Puerarin Attenuates LPS-Induced Inflammatory Responses and Oxidative Stress Injury in Human Umbilical Vein Endothelial Cells through Mitochondrial Quality Control. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6659240. [PMID: 33728025 PMCID: PMC7937474 DOI: 10.1155/2021/6659240] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is closely associated with the inflammatory reaction of vascular endothelial cells. Puerarin (Pue), the main active component isolated from the rhizome of Pueraria lobata, is an isoflavone compound with potent antioxidant properties. Although Pue exhibits promising antiatherosclerotic pharmacological effects, only a few studies have reported its protective effect on endothelial cells. This study found that Pue could partly regulate mitochondrial function in human umbilical vein endothelial cells (HUVECs) and reduce or inhibit lipopolysaccharide-induced inflammatory reactions and oxidative stress injury in HUVECs, likely via mitochondrial quality control. Furthermore, the protective effect of Pue on HUVECs was closely related to the SIRT-1 signaling pathway. Pue increased autophagy and mitochondrial antioxidant potential via increased SIRT-1 expression, reducing excessive production of ROS and inhibiting the expression of inflammatory factors and oxidative stress injury. Therefore, Pue may improve mitochondrial respiratory function and energy metabolism, increasing the vulnerability of HUVECs to an inflammatory state.
Collapse
Affiliation(s)
- Xing Chang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Tian Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dong Liu
- Institute of the History of Chinese Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyan Meng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peizheng Yan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Duosheng Luo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xue Wang
- School of Business Macau University of Science and Technology, Taipa, Macau, China
| | - XiuTeng Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
30
|
Huang L, Wang J, Xu R, Liu Y, Liu Z. Regulatory effect of traditional Chinese medicine on gut microbiota in patients with atherosclerosis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23730. [PMID: 33327364 PMCID: PMC7738117 DOI: 10.1097/md.0000000000023730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Atherosclerosis is the pathological basis of many cardiovascular and cerebrovascular diseases, and its pathogenesis is complex. Recent studies revealed a significant role of gut microbiota in the onset and development of atherosclerosis. Traditional Chinese medicine has rich clinical experience and unique advantages in the treatment of atherosclerosis. A large number of studies have proved that traditional Chinese medicine has the functions of reducing blood lipid, regulating gut microbiota, and resisting inflammation. The aim of this systematic review is to observe the randomized controlled trial of traditional Chinese medicine in treating gut microbiota, so as to evaluate the effectiveness and safety of traditional Chinese medicine in treating atherosclerosis patients. METHODS The English database (PubMed, Web of Science, Embase, the Cochrane Library) and Chinese database (China National Knowledge Infrastructure, the Chongqing VIP Chinese Science, and Technology Periodic Database, Wanfang Database, and China Biomedical Literature Database) will be searched up to October 2020. We will also manually search the Chinese clinical trial register, conference papers, and unpublished studies or references. Randomized control trials of traditional Chinese medicine treatment of atherosclerosis were collected comprehensively, and 2 researchers will independently screen literature, data extraction, and evaluation the quality of literature methodology. The primary outcomes are lipid metabolism and gut microbiota and their metabolites. The secondary outcomes are the change of inflammatory markers. Meta-analysis was performed by RevMan 5.3.5 software. The Grades of Recommendation, Assessment, Development, and Evaluation will be used to evaluate the outcome quality of evidence. RESULTS This study will comprehensively review the existing evidence of traditional Chinese medicine in treating atherosclerosis from the perspective of gut microbiota. CONCLUSION This study will provide information on the effectiveness and safety of traditional Chinese medicine in treating atherosclerosis from the perspective of gut microbiota. UNIQUE INPLASY NUMBER INPLASY2020110056.
Collapse
Affiliation(s)
| | - Jianan Wang
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, PR China
| | - Ri Xu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, PR China
| | - Yanwei Liu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, PR China
| | - Zhongyong Liu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, PR China
| |
Collapse
|