1
|
Islam P, Hossain MI, Khatun P, Masud RI, Tasnim S, Anjum M, Islam MZ, Nibir SS, Rafiq K, Islam MA. Steroid hormones in fish, caution for present and future: A review. Toxicol Rep 2024; 13:101733. [PMID: 39323426 PMCID: PMC11422134 DOI: 10.1016/j.toxrep.2024.101733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
The misuse and overuse of steroid hormones in fish is an emerging problem worldwide. The data on hormonal residue in fish was less due to a lack of effective monitoring programs on hormonal use in fish production. This review revealed the findings of previously published data on different hormonal use and their residue and impact. Steroid hormones were frequently used in fish production to promote growth and reproduction. It was suggested that hormones should be used carefully to ensure environmental, biological, and food safety. The most commonly used steroid hormones in fish production were testosterone, estrogen, progesterone, and cortisol. However, the indiscriminate use left residue in the fish flesh above the FAO/WHO permissible limits. This residue in fish caused many health hazards in consumers, like early puberty in children, advances in bone age, negative repercussions on growth, modification of sexual characteristics, and cancer development such as breast, ovarian, and prostate cancer. It also harmed fish and the aquatic environment. The most common detection methods for these hormones were GC-MS, LC-MS, and UHPLC-MS. Many countries permitted the use of hormones in fish production upon monitoring, whereas many countries prohibited it. Moreover, many countries did not have any rules and regulations on the use of hormones in fish production. Thus, this review is a wake-up call for researchers, policymakers and consumers on the impacts of hormonal residues in food commodities.
Collapse
Affiliation(s)
- Purba Islam
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Md Imran Hossain
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Popy Khatun
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Rony Ibne Masud
- Department of Microbiology & Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Shadia Tasnim
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Mahir Anjum
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Md Zahorul Islam
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Salman Shahriar Nibir
- Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Bangladesh
| | - Kazi Rafiq
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Md Anwarul Islam
- Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Bangladesh
| |
Collapse
|
2
|
Estrada-Almeida AG, Castrejón-Godínez ML, Mussali-Galante P, Tovar-Sánchez E, Rodríguez A. Pharmaceutical Pollutants: Ecotoxicological Impacts and the Use of Agro-Industrial Waste for Their Removal from Aquatic Environments. J Xenobiot 2024; 14:1465-1518. [PMID: 39449423 PMCID: PMC11503348 DOI: 10.3390/jox14040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Medicines are pharmaceutical substances used to treat, prevent, or relieve symptoms of different diseases in animals and humans. However, their large-scale production and use worldwide cause their release to the environment. Pharmaceutical molecules are currently considered emerging pollutants that enter water bodies due to inadequate management, affecting water quality and generating adverse effects on aquatic organisms. Hence, different alternatives for pharmaceuticals removal from water have been sought; among them, the use of agro-industrial wastes has been proposed, mainly because of its high availability and low cost. This review highlights the adverse ecotoxicological effects related to the presence of different pharmaceuticals on aquatic environments and analyzes 94 investigations, from 2012 to 2024, on the removal of 17 antibiotics, highlighting sulfamethoxazole as the most reported, as well as 6 non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac and ibuprofen, and 27 pharmaceutical drugs with different pharmacological activities. The removal of these drugs was evaluated using agro-industrial wastes such as wheat straw, mung bean husk, bagasse, bamboo, olive stones, rice straw, pinewood, rice husk, among others. On average, 60% of the agro-industrial wastes were transformed into biochar to be used as a biosorbents for pharmaceuticals removal. The diversity in experimental conditions among the removal studies makes it difficult to stablish which agro-industrial waste has the greatest removal capacity; therefore, in this review, the drug mass removal rate (DMRR) was calculated, a parameter used with comparative purposes. Almond shell-activated biochar showed the highest removal rate for antibiotics (1940 mg/g·h), while cork powder (CP) (10,420 mg/g·h) showed the highest for NSAIDs. Therefore, scientific evidence demonstrates that agro-industrial waste is a promising alternative for the removal of emerging pollutants such as pharmaceuticals substances.
Collapse
Affiliation(s)
- Ana Gabriela Estrada-Almeida
- Especialidad en Gestión Integral de Residuos, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| |
Collapse
|
3
|
Soman SS, Samad SA, Venugopalan P, Kumawat N, Kumar S. Microfluidic paper analytic device (μPAD) technology for food safety applications. BIOMICROFLUIDICS 2024; 18:031501. [PMID: 38706979 PMCID: PMC11068414 DOI: 10.1063/5.0192295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Foodborne pathogens, food adulterants, allergens, and toxic chemicals in food can cause major health hazards to humans and animals. Stringent quality control measures at all stages of food processing are required to ensure food safety. There is, therefore, a global need for affordable, reliable, and rapid tests that can be conducted at different process steps and processing sites, spanning the range from the sourcing of food to the end-product acquired by the consumer. Current laboratory-based food quality control tests are well established, but many are not suitable for rapid on-site investigations and are costly. Microfluidic paper analytical devices (μPADs) are a fast-growing field in medical diagnostics that can fill these gaps. In this review, we describe the latest developments in the applications of microfluidic paper analytic device (μPAD) technology in the food safety sector. State-of-the-art μPAD designs and fabrication methods, microfluidic assay principles, and various types of μPAD devices with food-specific applications are discussed. We have identified the prominent research and development trends and future directions for maximizing the value of microfluidic technology in the food sector and have highlighted key areas for improvement. We conclude that the μPAD technology is promising in food safety applications by using novel materials and improved methods to enhance the sensitivity and specificity of the assays, with low cost.
Collapse
Affiliation(s)
- Soja Saghar Soman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | - Shafeek Abdul Samad
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | | | - Nityanand Kumawat
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, UAE
| | | |
Collapse
|
4
|
Kamaly HF, Sharkawy AA. Hormonal residues in chicken and cattle meat: A risk threat the present and future consumer health. Food Chem Toxicol 2023; 182:114172. [PMID: 37956705 DOI: 10.1016/j.fct.2023.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
The study was designated to determine some hormonal residues (estradiol, progesterone, and testosterone) in chicken and cattle meat as well as assess the risk of these residues for adult and child consumer health. A total of 92 chicken meat samples were collected from four different chicken farm sales outlets, and 56 cattle meat samples from two brands were collected from markets through 2022 in Assiut City, Egypt. An enzyme-linked immunosorbant assay (ELISA) was used to measure the hormonal residues. Results showed that the estimated daily intake (EDI) of estradiol exceeded acceptable daily intakes (ADIs) in all analyzed samples except four chicken farm meat samples for adults only, which were below 0.05 μg/kg bw, and the hazard index (HI) of estradiol and testosterone residues for adults and children exceeded 1 in all examined samples of the study. The U.S. Food and Drug Administration (FDA) set safe limits for these anabolic hormones to ensure high food quality and quantity for humans, but in Egypt, monitoring and assessment of hormonal residues in food became very urgent as no safe limits have been set till now.
Collapse
Affiliation(s)
- Heba F Kamaly
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Egypt.
| | - Ahmed A Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Egypt
| |
Collapse
|
5
|
Jenila JS, Issac PK, Lam SS, Oviya JC, Jones S, Munusamy-Ramanujam G, Chang SW, Ravindran B, Mannacharaju M, Ghotekar S, Khoo KS. Deleterious effect of gestagens from wastewater effluent on fish reproduction in aquatic environment: A review. ENVIRONMENTAL RESEARCH 2023; 236:116810. [PMID: 37532209 DOI: 10.1016/j.envres.2023.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Gestagens are common pollutants accumulated in the aquatic ecosystem. Gestagens are comprised of natural gestagens (i.e. progesterone) and synthetic gestagens (i.e. progestins). The major contributors of gestagens in the environment are paper plant mill effluent, wastewater treatment plants, discharge from pharmaceutical manufacturing, and livestock farming. Gestagens present in the aquatic environment interact with progesterone receptors and other steroid hormone receptors, negatively influencing fish reproduction, development, and behavior. In fish, the gonadotropin induces 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) production, an important steroid hormone involved in gametogenesis. DHP interacts with the membrane progestin receptor (mPR), which regulates sperm motility and oocyte maturation. Gestagens also interfere with the hypothalamic-pituitary-gonadal (HPG) axis, which results in altered hormone levels in fish. Moreover, recent studies showed that even at low concentrations exposure to gestagens can have detrimental effects on fish reproduction, including reduced egg production, masculinization, feminization in males, and altered sex ratio, raising concerns about their impact on the fish population. This review highlights the hormonal regulation of sperm motility, oocyte maturation, the concentration of environmental gestagens in the aquatic environment, and their detrimental effects on fish reproduction. However, the long-term and combined impacts of multiple gestagens, including their interactions with other pollutants on fish populations and ecosystems are not well understood. The lack of standardized regulations and monitoring protocols for gestagens pollution in wastewater effluent hampers effective control and management. Nonetheless, advancements in analytical techniques and biomonitoring methods provide potential solutions by enabling better detection and quantification of gestagens in aquatic ecosystems.
Collapse
Affiliation(s)
- J S Jenila
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - J Christina Oviya
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India; Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, BIHER, Chennai, India
| | - Ganesh Munusamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM-IST, Kattankulathur, Tamil Nadu, 603203, India.
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Balasubramani Ravindran
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India; Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Mahesh Mannacharaju
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science (University of Mumbai), Silvassa, 396 230, Dadra and Nagar Haveli (UT), India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
6
|
Ou BR, Hsu MH, Haung LY, Lin CJ, Kuo LL, Tsai YT, Chang YC, Lin WY, Huang TC, Wu YC, Yeh JY, Liang YC. Systematic Myostatin Expression Screening Platform for Identification and Evaluation of Myogenesis-Related Phytogenic in Pigs. Bioengineering (Basel) 2023; 10:1113. [PMID: 37892843 PMCID: PMC10604025 DOI: 10.3390/bioengineering10101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Skeletal muscle growth in livestock impacts meat quantity and quality. Concerns arise because certain feed additives, like beta-agonists, may affect food safety. Skeletal muscle is a specialized tissue consisting of nondividing and multinucleated muscle fibers. Myostatin (MSTN), a protein specific to skeletal muscle, is secreted and functions as a negative regulator of muscle mass by inhibiting the proliferation and differentiation of myoblasts. To enhance livestock muscle growth, phytogenic feed additives could be an alternative as they inhibit MSTN activity. The objective of this study was to establish a systematic screening platform using MSTN activity to evaluate phytogenics, providing scientific evidence of their assessment and potency. In this study, we established a screening platform to monitor myostatin promoter activity in rat L8 myoblasts. Extract of Glycyrrhiza uralensis (GUE), an oriental herbal medicine, was identified through this screening platform, and the active fractions of GUE were identified using a process-scale liquid column chromatography system. For in vivo study, GUE as a feed additive was investigated in growth-finishing pigs. The results showed that GUE significantly increased body weight, carcass weight, and lean content in pigs. Microbiota analysis indicated that GUE did not affect the composition of gut microbiota in pigs. In summary, this established rodent myoblast screening platform was used to identify a myogenesis-related phytogenic, GUE, and further demonstrated that the active fractions and compounds inhibited MSTN expression. These findings suggest a novel application for GUE in growth performance enhancement through modulation of MSTN expression. Moreover, this well-established screening platform holds significant potential for identifying and assessing a diverse range of phytogenics that contribute to the process of myogenesis.
Collapse
Affiliation(s)
- Bor-Rung Ou
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan;
| | - Ling-Ya Haung
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Chuan-Ju Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-J.L.)
| | - Li-Li Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-J.L.)
| | - Yu-Ting Tsai
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Yu-Chia Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-J.L.)
| | - Wen-Yuh Lin
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Tsung-Chien Huang
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Yun-Chu Wu
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan; (B.-R.O.); (L.-Y.H.); (T.-C.H.)
| | - Jan-Ying Yeh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Yu-Chuan Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-J.L.)
- College of Agriculture and Health, Tunghai University, Taichung 407, Taiwan
| |
Collapse
|
7
|
Pratiwi R, Ramadhanti SP, Amatulloh A, Megantara S, Subra L. Recent Advances in the Determination of Veterinary Drug Residues in Food. Foods 2023; 12:3422. [PMID: 37761131 PMCID: PMC10527676 DOI: 10.3390/foods12183422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The presence of drug residues in food products has become a growing concern because of the adverse health risks and regulatory implications. Drug residues in food refer to the presence of pharmaceutical compounds or their metabolites in products such as meat, fish, eggs, poultry and ready-to-eat foods, which are intended for human consumption. These residues can come from the use of drugs in the field of veterinary medicine, such as antibiotics, antiparasitic agents, growth promoters and other veterinary drugs given to livestock and aquaculture with the aim of providing them as prophylaxis, therapy and for promoting growth. Various analytical techniques are used for this purpose to control the maximum residue limit. Compliance with the maximum residue limit is very important for food manufacturers according to the Food and Drug Administration (FDA) or European Union (EU) regulations. Effective monitoring and control of drug residues in food requires continuous advances in analytical techniques. Few studies have been reviewed on sample extraction and preparation techniques as well as challenges and future directions for the determination of veterinary drug residues in food. This current review focuses on the overview of regulations, classifications and types of food, as well as the latest analytical methods that have been used in recent years (2020-2023) for the determination of drug residues in food so that appropriate methods and accurate results can be used. The results show that chromatography is still a widely used technique for the determination of drug residue in food. Other approaches have been developed including immunoassay, biosensors, electrophoresis and molecular-based methods. This review provides a new development method that has been used to control veterinary drug residue limit in food.
Collapse
Affiliation(s)
- Rimadani Pratiwi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Shinta Permata Ramadhanti
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Asyifa Amatulloh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Laila Subra
- Faculty of Bioeconomic, Food and Health Sciences, University of Geomatika Malaysia, Kuala Lumpur 54200, Malaysia;
| |
Collapse
|
8
|
Liu J, Wang M, Guo C, Tao Z, Wang M, He L, Liu B, Zhang Z. Defective porphyrin-based metal-organic framework nanosheets derived from V 2CT x MXene as a robust bioplatform for impedimetric aptasensing 17β-estradiol. Food Chem 2023; 416:135839. [PMID: 36893636 DOI: 10.1016/j.foodchem.2023.135839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
An electrochemical aptasensor was prepared for the efficient, sensitive, and selective detection of 17β-estradiol. The sensor was based on a defective two-dimensional porphyrin-based metal-organic framework derived from V2CTx MXene. The resulting metal-organic framework nanosheets benefited from the advantages of V2CTx MXene nanosheets and porphyrin-based metal-organic framework, two-dimensional porphyrin-based metal-organic framework nanosheets demonstrated amplified electrochemical response and enhanced aptamer-immobilization ability compared with V2CTx MXene nanosheets. The sensor's detection limit was ultralow at 0.81 fg mL-1 (2.97 fM), and the 17β-estradiol concentration range was wide, thereby outperforming most reported aptasensors. The high selectivity, superior stability and reproducibility, and excellent regeneration performance of the constructed aptasensor indicated its remarkable potential application for 17β-estradiol determination in diverse real samples. This aptasensing strategy can be used to analyze other targets by replacing the corresponding aptamer.
Collapse
Affiliation(s)
- Jiameng Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, PR China
| | - Mengfei Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Chuanpan Guo
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Zheng Tao
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Minghua Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Linghao He
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, PR China.
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| |
Collapse
|
9
|
Şeker P, Rişvanlı A, Şeker İ, Çalıcıoğlu M. Determination of the levels of 17-β Estradiol and Progesterone in Cow milk and Baby Follow-on milk by ELISA. REVISTA CIENTÍFICA DE LA FACULTAD DE CIENCIAS VETERINARIAS 2023. [DOI: 10.52973/rcfcv-e33222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The current study was undertaken to determine the 17-β Estradiol (E2) and Progesterone (P4) levels in different milk products and some baby follow-on milk samples collected from retail markets in Türkiye. For this purpose, a total of 50 samples from 8 different product groups with different fat levels, production technologies, and production series were analyzed for natural P4 and E2 levels using a commercial ELISA kit. The highest E2 level was determined in UHT whole milk (3%) (39.20 ± 6.73 pmol·L-1) while the lowest level was found in buttermilk (26.50 ± 1.85 pmol·L-1) samples. For P4 levels, the highest concentration were found in baby follow-on milk (<1 year old) (45.83 ± 2.95 nmol·L-1) and the lowest values were found in pasteurized milk samples (23.00 ± 6.66 nmol·L-1). Also, in this study, differences among the product groups for E2 and P4 were not found statistically (P>0.05). In conclusion, the natural P4 and E2 were detected in all milk and baby follow-on milks at various levels and generally their levels associated with the product fat level.
Collapse
Affiliation(s)
- Pınar Şeker
- Elazig Provincial Directorate of Agriculture and Forestry, Food and Feed Branch, Elazığ, Türkiye
| | - Ali Rişvanlı
- Kyrgyz-Turkish Manas University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology. Bishkek, Kyrgyzstan - Firat University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology. Elazığ, Türkiye
| | - İbrahim Şeker
- Fırat University, Faculty of Veterinary Medicine, Department of Zootechny, Elazığ, Türkiye
| | - Mehmet Çalıcıoğlu
- Firat University, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology. Elazig, Türkiye
| |
Collapse
|
10
|
Determination of oxprenolol, methandienone and testosterone in meat samples by UHPLC-Q-ToF. Heliyon 2023; 9:e13260. [PMID: 36816264 PMCID: PMC9932348 DOI: 10.1016/j.heliyon.2023.e13260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
The presence of some drugs in meat samples can cause threat to human health, therefore, its analysis is highly desirable for food safety purposes. In this work, a solid-phase extraction procedure for the determination of oxprenolol, a non-selective beta-blocker, and such anabolic agents as methandienone and testosterone in beef meat samples has been developed. Extraction conditions were optimized to achieve high sensitivity and accuracy of the results. The procedure was validated using meat samples free from target analytes. As a result, high selectivity and sensitivity were observed with the detection limits between 0.25 and 1.25 ng/g, and the results were not affected by matrix components. The proposed procedure was applied to the analysis of real beef samples purchased in the market, and the results have revealed the presence of contaminated samples. The concentration of oxprenolol in the contaminated sample was 7 ng/g, methandienone content in the sample was 30 ng/g, while testosterone level was 4 ng/g.
Collapse
|
11
|
Anabolic Steroids in Fattening Food-Producing Animals—A Review. Animals (Basel) 2022; 12:ani12162115. [PMID: 36009705 PMCID: PMC9405261 DOI: 10.3390/ani12162115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Anabolic steroids significantly affect animal tissues and cause morphological and histological changes, which are often irreversible. This issue is currently a very hot topic, as the answers to the questions concerning the health of endangered animals and humans vary greatly from country to country. There is a need to further investigate whether the use of anabolic steroids in animal fattening threatens consumer health and to develop new tools for the detection of anabolic steroids in meat. One possibility for detection could be to observe histological changes in the tissues, which form a typical pattern of anabolic abuse. This review gathered information on the anabolic steroids most commonly used in animal fattening, the legislation governing this issue, and the main effects of anabolics on animal tissues. Abstract Anabolic steroids are chemically synthetic derivatives of the male sex hormone testosterone. They are used in medicine for their ability to support muscle growth and healing and by athletes for esthetic purposes and to increase sports performance, but another major use is in fattening animals to increase meat production. The more people there are on Earth, the greater the need for meat production and anabolic steroids accelerate the growth of animals and, most importantly, increase the amount of muscle mass. Anabolic steroids also have proven side effects that affect all organs and tissues, such as liver and kidney parenchymal damage, heart muscle degeneration, organ growth, coagulation disorders, and increased risk of muscle and tendon rupture. Anabolic steroids also have a number of harmful effects on the developing brain, such as brain atrophy and changes in gene expression with consequent changes in the neural circuits involved in cognitive functions. Behavioral changes such as aggression, irritability, anxiety and depression are related to changes in the brain. In terms of long-term toxicity, the greatest impact is on the reproductive system, i.e., testicular shrinkage and infertility. Therefore, their abuse can be considered a public health problem. In many countries around the world, such as the United States, Canada, China, Argentina, Australia, and other large meat producers, the use of steroids is permitted but in all countries of the European Union there is a strict ban on the use of anabolic steroids in fattening animals. Meat from a lot of countries must be carefully inspected and monitored for steroids before export to Europe. Gas or liquid chromatography methods in combination with mass spectrometry detectors and immunochemical methods are most often used for the analysis of these substances. These methods have been considered the most modern for decades, but can be completely ineffective if they face new synthetic steroid derivatives and want to meet meat safety requirements. The problem of last years is the application of “cocktails” of anabolic substances with very low concentrations, which are difficult to detect and are difficult to quantify using conventional detection methods. This is the reason why scientists are trying to find new methods of detection, mainly based on changes in the structure of tissues and cells and their metabolism. This review gathered this knowledge into a coherent form and its findings could help in finding such a combination of changes in tissues that would form a typical picture for evidence of anabolic misuse.
Collapse
|
12
|
Islam R, Sultana N, Ayman U, Islam MR, Hashem MA. Role of steroid growth promoter on growth performance and meat quality traits in broiler. Poult Sci 2022; 101:101904. [PMID: 35523031 PMCID: PMC9079692 DOI: 10.1016/j.psj.2022.101904] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/19/2022] Open
Abstract
Growth promoters are added with broiler feed to boost the overall feed efficiency and growth rate. The current study investigated the effect of dexamethasone (DEX)—a commonly used growth promoter—on the broiler growth rate, meat quality, and muscle biology. Four homogenous groups (20 chicks/group) of broiler one-day-old chicks were fed commercial broiler feed where the treatment groups received 3, 5, and 7 mg/kg of DEX with their diet for 28 d. Feed consumption and body weight were monitored on a daily basis. Muscle samples were collected on 7, 14, 21, and 28 d of the experiment to investigate meat quality and muscular biology. The residue of DEX in meat was detected using thin-layer chromatography. We observed that DEX had substantially decreased (P < 0.05) feed intake, feed efficiency, and overall weight gain in the broiler. While the weight of breast and thigh meat was decreased, the relative meat weight (meat/body weight) was increased significantly in chicks fed DEX. Simultaneously, body fat decreased while the percentage of fat increased significantly (P < 0.05) in the DEX groups. Contrariwise, DEX improved the investigated meat quality parameters with the potential threat of accumulation of DEX residue in the meat at a high dose (7 mg/kg). We also observed that DEX significantly increased the number of myofibers and decreased the cross-sectional area of myofibers. Based on these findings, we conclude that DEX reduces feed intake, feed efficiency, and growth rate, but might improve meat quality with a potential risk of residual DEX accumulation if fed at a high dose.
Collapse
Affiliation(s)
- Rafiqul Islam
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Nasrin Sultana
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Ummay Ayman
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Abul Hashem
- Department of Animal Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
13
|
Effects of Selenium Supplementation on Rumen Microbiota, Rumen Fermentation, and Apparent Nutrient Digestibility of Ruminant Animals: A Review. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation8010004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Enzymes excreted by rumen microbiome facilitate the conversion of ingested plant materials into major nutrients (e.g., volatile fatty acids (VFA) and microbial proteins) required for animal growth. Diet, animal age, and health affect the structure of the rumen microbial community. Pathogenic organisms in the rumen negatively affect fermentation processes in favor of energy loss and animal deprivation of nutrients in ingested feed. Drawing from the ban on antibiotic use during the last decade, the livestock industry has been focused on increasing rumen microbial nutrient supply to ruminants through the use of natural supplements that are capable of promoting the activity of beneficial rumen microflora. Selenium (Se) is a trace mineral commonly used as a supplement to regulate animal metabolism. However, a clear understanding of its effects on rumen microbial composition and rumen fermentation is not available. This review summarized the available literature for the effects of Se on specific rumen microorganisms along with consequences for rumen fermentation and digestibility. Some positive effects on total VFA, the molar proportion of propionate, acetate to propionate ratio, ruminal NH3-N, pH, enzymatic activity, ruminal microbiome composition, and digestibility were recorded. Because Se nanoparticles (SeNPs) were more effective than other forms of Se, more studies are needed to compare the effectiveness of synthetic SeNPs and lactic acid bacteria enriched with sodium selenite as a biological source of SeNPs and probiotics. Future studies also need to evaluate the effect of dietary Se on methane emissions.
Collapse
|
14
|
Huml L, Tauchen J, Rimpelová S, Holubová B, Lapčík O, Jurášek M. Advances in the Determination of Anabolic-Androgenic Steroids: From Standard Practices to Tailor-Designed Multidisciplinary Approaches. SENSORS (BASEL, SWITZERLAND) 2021; 22:4. [PMID: 35009549 PMCID: PMC8747103 DOI: 10.3390/s22010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Anabolic-androgenic steroids (AASs), a group of compounds frequently misused by athletes and, unfortunately, also by the general population, have lately attracted global attention; thus, significant demands for more precise, facile, and rapid AAS detection have arisen. The standard methods ordinarily used for AAS determination include liquid and gas chromatography coupled with mass spectrometry. However, good knowledge of steroid metabolism, pretreatment of samples (such as derivatization), and well-trained operators of the instruments are required, making this procedure expensive, complicated, and not routinely applicable. In the drive to meet current AAS detection demands, the scientific focus has shifted to developing novel, tailor-made approaches leading to time- and cost-effective, routine, and field-portable methods for AAS determination in various matrices, such as biological fluids, food supplements, meat, water, or other environmental components. Therefore, herein, we present a comprehensive review article covering recent advances in AAS determination, with a strong emphasis on the increasingly important role of chemically designed artificial sensors, biosensors, and antibody- and fluorescence-based methods.
Collapse
Affiliation(s)
- Lukáš Huml
- Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (O.L.); (M.J.)
| | - Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic;
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic;
| | - Barbora Holubová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic;
| | - Oldřich Lapčík
- Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (O.L.); (M.J.)
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (O.L.); (M.J.)
| |
Collapse
|
15
|
Li Q, Li G, Fan L, Yu Y, Liu J. Click reaction triggered turn-on fluorescence strategy for highly sensitive and selective determination of steroid hormones in food samples. Food Chem 2021; 374:131565. [PMID: 34875430 DOI: 10.1016/j.foodchem.2021.131565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/18/2021] [Accepted: 11/07/2021] [Indexed: 11/04/2022]
Abstract
The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction has becoming noticeable in the field of analytical chemistry. Mild reaction conditions, simple operation, high efficiency, and good regioselectivity make this classical click reaction a perfect strategy for chemical derivatization. Herein, we proposed a promising click fluorescent labeling method with high selectivity for the determination of five steroid hormones in food samples. The labeling strategy depends on the reaction between 3-Azido-7-hydroxycoumarin and the alkynyl group of steroid hormones, which shows a turn-on fluorescence response in the presence of copper (I). The formed fluorescent products were detected by HPLC-FLD. Under the optimized conditions, the proposed method presented excellent performance with good linearity (R2 ≥ 0.9998) and low detection limit (1.8-7.3 μg L-1). Further, satisfactory recoveries were obtained to be 82-107% in spiked meats with relative standard deviations (RSDs) ≤ 5.7%. Finally, the established method was successfully applied for the determination of steroid hormones in meat, indicating the potential prospect of the click reaction in chemical derivatization.
Collapse
Affiliation(s)
- Qianyu Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Lihua Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanxin Yu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
16
|
Steroid Hormone Exposure as a Potential Hazard in Milk Consumers: A Significant Health Challenge in Iran. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5595555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The presence of steroid hormones in milk is inevitable, and they can be considered as potential carcinogenic agents for consumers. The purpose of this study was to evaluate the level of 17β-estradiol, progesterone, and hydroxyprogesterone in sixty-nine bovine milk samples, collected from April to September 2020, in Hamadan, Iran. The milk samples were analyzed using enzyme-linked immunosorbent assay (ELISA). In this study, the mean contents of 17β-estradiol, progesterone, and hydroxyprogesterone in the milk samples were determined to be 330.5 ± 190.2 pg/ml, 3.57 ± 2.47 ng/ml, and 1.54 ± 0.41 ng/ml, respectively. However, the content of these steroid hormones in milk samples could be considered safe in children and adults, if the milk consumption is assumed to be in the reported range (175–240 ml/daily). Due to the effects of steroid hormones, especially 17β-estradiol, in the etiology of various cancers, regular monitoring of these hormones is recommended in milk and its dairy products in Iran.
Collapse
|
17
|
Bagryantseva O, Skakun V, Sokolov I, Gureu Z. Questions of control of hormone content in fish and other aquatic organisms (metaanalysis). BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213700039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Between 1995 and 2018, the production of fish and fishery products using feed increased from 12 to 54.3 million tons. In the cultivation of such products in many countries, hormones are widely used as growth stimulants to increase the efficiency of feed conversion for the purpose of sex reversal, as well as for artificial reproduction. Hormones, especially their synthetic forms, are poorly metabolized in the marine organisms, which leads to their accumulation in the food matrix. When they enter the human body, they are capable of accumulation in tissues, affect the endocrine system and can cause the development of a number of metabolic disorders. The possibility of a carcinogenic effect of hormones has been proven. The data presented substantiate the need to control the content of hormones in fish and fish products, develop highly sensitive methods for their detection, establish a list of controlled hormones and hormone-like drugs and safety regulations for food products produced with their use. The most sensitive and accurate method in this case is the HPLC-MS/MS method. We believe that for natural (non-synthetic hormones) and synthetic hormones, the criterion for their absence in the sample should be the sensitivity threshold of the used research method (at least 20 ng/kg).
Collapse
|