1
|
Hostrup PE, Schmidt T, Hellsten SB, Gerwig RH, Størling J, Johannesen J, Sulek K, Hostrup M, Andersen HU, Buschard K, Hamid Y, Pociot F. Effect of fenofibrate on residual beta cell function in adults and adolescents with newly diagnosed type 1 diabetes: a randomised clinical trial. Diabetologia 2025; 68:29-40. [PMID: 39477880 DOI: 10.1007/s00125-024-06290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/22/2024] [Indexed: 12/22/2024]
Abstract
AIMS/HYPOTHESIS Fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, shows some promise in alleviating beta cell stress and preserving beta cell function in preclinical studies of type 1 diabetes. The aim of this phase 2, placebo-controlled, double-blinded, randomised clinical trial was to investigate the efficacy and safety of fenofibrate in adults and adolescents with newly diagnosed type 1 diabetes. METHODS We enrolled 58 individuals (aged 16 to 40 years old) with newly diagnosed type 1 diabetes and randomised them to daily oral treatment with fenofibrate 160 mg or placebo for 52 weeks (in a block design with a block size of 4, assigned in a 1:1 ratio). Our primary outcome was change in beta cell function after 52 weeks of treatment, assessed by AUC for C-peptide levels following a 2 h mixed-meal tolerance test. Secondary outcomes included glycaemic control (assessed by HbA1c and continuous glucose monitoring), daily insulin use, and proinsulin/C-peptide (PI/C) ratio as a marker of beta cell stress. We assessed outcome measures before and after 4, 12, 26 and 52 weeks of treatment. Blinding was maintained for participants, their healthcare providers and all staff involved in handling outcome samples and assessment. RESULTS The statistical analyses for the primary outcome included 56 participants (n=27 in the fenofibrate group, after two withdrawals, and n=29 in the placebo group). We found no significant differences between the groups in either 2 h C-peptide levels (mean difference of 0.08 nmol/l [95% CI -0.05, 0.23]), insulin use or glycaemic control after 52 weeks of treatment. On the contrary, the fenofibrate group showed a higher PI/C ratio at week 52 compared with placebo (mean difference of 0.024 [95% CI 0.000, 0.048], p<0.05). Blood lipidome analysis revealed that fenofibrate repressed pathways involved in sphingolipid metabolism and signalling at week 52 compared with placebo. The 52 week intervention evoked few adverse events and no serious adverse events. Follow-up in vitro experiments in human pancreatic islets demonstrated a stress-inducing effect of fenofibrate. CONCLUSIONS/INTERPRETATION Contrary to the beneficial effects of fenofibrate found in preclinical studies, this longitudinal, randomised, placebo-controlled trial does not support the use of fenofibrate for preserving beta cell function in individuals with newly diagnosed type 1 diabetes. TRIAL REGISTRATION EudraCT number: 2019-004434-41 FUNDING: This study was funded by the Sehested Hansens Foundation.
Collapse
Affiliation(s)
- Pernille E Hostrup
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark.
| | - Tobias Schmidt
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
| | - Simon B Hellsten
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
| | - Rebekka H Gerwig
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
| | - Joachim Størling
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
| | - Jesper Johannesen
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
- Department of Paediatrics, Copenhagen University Hospital, Herlev and Gentofte, Denmark
| | - Karolina Sulek
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Hostrup
- The August Krogh Section, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Henrik U Andersen
- Department of Patient Care, Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
| | - Karsten Buschard
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Yasmin Hamid
- Department of Patient Care, Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
| | - Flemming Pociot
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
2
|
Groele L, Dżygało K, Kowalska A, Szypowska A. Prolonged Remission Induced by FENofibrate in children with newly diagnosed type 1 diabetes (PRIFEN): protocol of a randomised controlled trial. BMJ Open 2024; 14:e076882. [PMID: 38341215 PMCID: PMC10862295 DOI: 10.1136/bmjopen-2023-076882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/03/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Sphingolipids regulate proinsulin folding, insulin secretion and control beta cells apoptosis. Recent evidence has demonstrated that, among other factors, reduced amounts of sulfatide may be relevant in the development of type 1 diabetes (T1D). Thus, fenofibrate, which activates sulfatide biosynthesis, may prolong remission in subjects with T1D. The aim of the study is to evaluate clinical efficacy of fenofibrate on the maintenance of residual beta-cell function in children with newly diagnosed T1D. METHODS AND ANALYSIS A total of 102 children aged 10-17 years with newly diagnosed T1D will be enrolled in a double-blind, two-centre randomised, non-commercial, placebo-controlled trial. Subjects who will meet all inclusion criteria will be randomly assigned to receive fenofibrate at a dose of 160 mg or an identically appearing placebo, orally, once daily, for 12 months. The primary endpoint will be the area under the curve of the C-peptide level during 2-hour responses to a mixed-meal tolerance test (MMTT). Secondary endpoints include fasting and maximum C-peptide concentration in the MMTT, parameters of diabetes control and glucose fluctuations, daily insulin requirement, inflammation markers, genetic analysis, safety and tolerance of the fenofibrate ETHICS AND DISSEMINATION: The study protocol was approved by the Bioethics Committee. The results of this study will be submitted to a peer-reviewed diabetic journal. Abstracts will be submitted to international and national conferences. TRIAL REGISTRATION NUMBER EnduraCT 2020-003916-28.
Collapse
Affiliation(s)
- Lidia Groele
- Department of Paediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Dżygało
- J.P. Brudziński Children's Clinical Hospital, University Clinical Centre of Warsaw Medical University, Warsaw, Poland
| | - Agnieszka Kowalska
- J.P. Brudziński Children's Clinical Hospital, University Clinical Centre of Warsaw Medical University, Warsaw, Poland
| | - Agnieszka Szypowska
- Department of Paediatrics, Medical University of Warsaw, Warsaw, Poland
- J.P. Brudziński Children's Clinical Hospital, University Clinical Centre of Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
3
|
Riaz F, Wei P, Pan F. PPARs at the crossroads of T cell differentiation and type 1 diabetes. Front Immunol 2023; 14:1292238. [PMID: 37928539 PMCID: PMC10623333 DOI: 10.3389/fimmu.2023.1292238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
T-cell-mediated autoimmune type 1 diabetes (T1D) is characterized by the immune-mediated destruction of pancreatic beta cells (β-cells). The increasing prevalence of T1D poses significant challenges to the healthcare system, particularly in countries with struggling economies. This review paper highlights the multifaceted roles of Peroxisome Proliferator-Activated Receptors (PPARs) in the context of T1D, shedding light on their potential as regulators of immune responses and β-cell biology. Recent research has elucidated the intricate interplay between CD4+ T cell subsets, such as Tregs and Th17, in developing autoimmune diseases like T1D. Th17 cells drive inflammation, while Tregs exert immunosuppressive functions, highlighting the delicate balance crucial for immune homeostasis. Immunotherapy has shown promise in reinstating self-tolerance and restricting the destruction of autoimmune responses, but further investigations are required to refine these therapeutic strategies. Intriguingly, PPARs, initially recognized for their role in lipid metabolism, have emerged as potent modulators of inflammation in autoimmune diseases, particularly in T1D. Although evidence suggests that PPARs affect the β-cell function, their influence on T-cell responses and their potential impact on T1D remains largely unexplored. It was noted that PPARα is involved in restricting the transcription of IL17A and enhancing the expression of Foxp3 by minimizing its proteasomal degradation. Thus, antagonizing PPARs may exert beneficial effects in regulating the differentiation of CD4+ T cells and preventing T1D. Therefore, this review advocates for comprehensive investigations to delineate the precise roles of PPARs in T1D pathogenesis, offering innovative therapeutic avenues that target both the immune system and pancreatic function. This review paper seeks to bridge the knowledge gap between PPARs, immune responses, and T1D, providing insights that may revolutionize the treatment landscape for this autoimmune disorder. Moreover, further studies involving PPAR agonists in non-obese diabetic (NOD) mice hold promise for developing novel T1D therapies.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Ping Wei
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
4
|
Groele L, Szypowska A. Type 1 diabetes mellitus prevention. Pediatr Endocrinol Diabetes Metab 2023; 29:209-213. [PMID: 38282489 PMCID: PMC10826692 DOI: 10.5114/pedm.2023.134130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Affiliation(s)
- Lidia Groele
- Department of Paediatrics, Medical University of Warsaw, Poland
- Department of Paediatric Diabetology and Paediatrics, University Clinical Centre of Warsaw Medical University, Poland
| | - Agnieszka Szypowska
- Department of Paediatrics, Medical University of Warsaw, Poland
- Department of Paediatric Diabetology and Paediatrics, University Clinical Centre of Warsaw Medical University, Poland
| |
Collapse
|
5
|
Corkey BE, Kilpatrick LE, Evans-Molina C. Hypothesis: Induction of Autoimmunity in Type 1 Diabetes-A Lipid Focus. Diabetes 2022; 71:2067-2074. [PMID: 36126206 PMCID: PMC10477405 DOI: 10.2337/db22-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/10/2022] [Indexed: 11/13/2022]
Abstract
Several unrelated findings led us to hypothesize that induction of autoimmunity is a consequence of a prior major inflammatory event in individuals with susceptible HLA phenotypes and elevated sensitivity to cytokines and free fatty acids (FFA). We observed provocative enhanced responsiveness of cultured human fibroblasts from individuals with type 1 diabetes (T1D), but not control subjects, to FFA and the inflammatory cytokines TNFα and IL1-β. Major infections increase inflammatory cytokines as well as circulating FFA. Endotoxin-treated animal models of sepsis also exhibit elevated inflammatory cytokines that inhibit FFA oxidation and elevate FFA. The pancreatic β-cell possesses low reactive oxygen species (ROS) scavenging capacity and responds to both elevated FFA and cytokines with increased ROS production, a combination that increases exocytosis and trafficking of secretory vesicles to the plasma membrane. Increased trafficking is accompanied by increased cycling of secretory granule proteins and may be linked with increased surface presentation of granule proteins to the immune system. We propose that this ultimately targets β-cell granular proteins at the cell surface and is consistent with the preponderance of autoantibodies to granule proteins. Our hypothesis encourages testing of potential early therapeutic interventions to prevent progression of β-cell destruction.
Collapse
Affiliation(s)
- Barbara E. Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Laurie E. Kilpatrick
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Carmella Evans-Molina
- Departments of Pediatrics and Medicine, Center for Diabetes and Metabolic Diseases, and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
6
|
Buschard K, Josefsen K, Råstam L, Lindblad U, Daka B. Sulfatide and longevity. J Gerontol A Biol Sci Med Sci 2022; 77:1715-1716. [PMID: 35666628 DOI: 10.1093/gerona/glac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | - Knud Josefsen
- Bartholin Instituttet, Rigshospitalet, Copenhagen, Denmark
| | - Lennart Råstam
- Department of Clinical Sciences, Lund University, Clinical Research Center, Malmö, Sweden
| | - Ulf Lindblad
- School of Public Health and Community Medicine/Primary Care, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bledar Daka
- School of Public Health and Community Medicine/Primary Care, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Varghese R, Krishnamoorthy SG, Abdalla HEH, Baiju A, Borra SS. A systematic review of preclinical animal studies on fenofibrate’s potential role in type 1 diabetic micro-vascular complications. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e21332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
8
|
Buschard K. The etiology and pathogenesis of type 1 diabetes - A personal, non-systematic review of possible causes, and interventions. Front Endocrinol (Lausanne) 2022; 13:876470. [PMID: 36093076 PMCID: PMC9452747 DOI: 10.3389/fendo.2022.876470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
In this review after a lifelong research career, my personal opinion on the development of type 1 diabetes (T1D) from its very start to clinical manifestation will be described. T1D is a disease of an increased intestinal permeability and a reduced pancreas volume. I am convinced that virus might be the initiator and that this virus could persist on strategically significant locations. Furthermore, intake of gluten is important both in foetal life and at later ages. Disturbances in sphingolipid metabolism may also be of crucial importance. During certain stages of T1D, T cells take over resulting in the ultimate destruction of beta cells, which manifests T1D as an autoimmune disease. Several preventive and early treatment strategies are mentioned. All together this review has more new theories than usually, and it might also be more speculative than ordinarily. But without new ideas and theories advancement is difficult, even though everything might not hold true during the continuous discovery of the etiology and pathogenesis of T1D.
Collapse
|
9
|
Erdem N, Montero E, Roep BO. Breaking and restoring immune tolerance to pancreatic beta-cells in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2021; 28:397-403. [PMID: 34183540 DOI: 10.1097/med.0000000000000646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) results from the loss of immune tolerance to pancreatic beta-cells leading to their destruction. Immune intervention therapies tested in T1D so far delayed progression but failed to restore tolerance, which partly explains their lack of durable clinical efficacy. RECENT FINDINGS The role of beta-cells and islets themselves in dialogue with their micro- and macro-environment including the immune system and the intestinal microbiome is increasingly evident. Indeed, islets can both maintain and break immune tolerance. Some recent immune therapies in cancer that block immune regulation also break tolerance. Induction of immune tolerance requires activating immune activation too, whereas immune suppression precludes this process. Immunotherapy alone my not suffice without engaging islets to restore tolerance and preserve beta-cell function. SUMMARY New insight into the role of islet tissue and its interaction with its environment in preserving or breaking tolerance has contributed to understand the development of islet autoimmunity and T1D. Knowing which factors in islets and the immune system contribute to maintaining, breaking, and restoring the balance in the immune system is critical to prevent initiation and reverse disease progression, and guides the design of novel tolerogenic strategies for durable therapeutic intervention and remission that target both the immune system and distressed islets.
Collapse
Affiliation(s)
- Neslihan Erdem
- The Arthur Riggs Diabetes & Metabolism Research Institute at the Beckman Research Institute
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Enrique Montero
- The Arthur Riggs Diabetes & Metabolism Research Institute at the Beckman Research Institute
| | - Bart O Roep
- The Arthur Riggs Diabetes & Metabolism Research Institute at the Beckman Research Institute
- Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Sphingolipids in Type 1 Diabetes: Focus on Beta-Cells. Cells 2020; 9:cells9081835. [PMID: 32759843 PMCID: PMC7465050 DOI: 10.3390/cells9081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes (T1DM) is a chronic autoimmune disease, with a strong genetic background, leading to a gradual loss of pancreatic beta-cells, which secrete insulin and control glucose homeostasis. Patients with T1DM require life-long substitution with insulin and are at high risk for development of severe secondary complications. The incidence of T1DM has been continuously growing in the last decades, indicating an important contribution of environmental factors. Accumulating data indicates that sphingolipids may be crucially involved in T1DM development. The serum lipidome of T1DM patients is characterized by significantly altered sphingolipid composition compared to nondiabetic, healthy probands. Recently, several polymorphisms in the genes encoding the enzymatic machinery for sphingolipid production have been identified in T1DM individuals. Evidence gained from studies in rodent islets and beta-cells exposed to cytokines indicates dysregulation of the sphingolipid biosynthetic pathway and impaired function of several sphingolipids. Moreover, a number of glycosphingolipids have been suggested to act as beta-cell autoantigens. Studies in animal models of autoimmune diabetes, such as the Non Obese Diabetic (NOD) mouse and the LEW.1AR1-iddm (IDDM) rat, indicate a crucial role of sphingolipids in immune cell trafficking, islet infiltration and diabetes development. In this review, the up-to-date status on the findings about sphingolipids in T1DM will be provided, the under-investigated research areas will be identified and perspectives for future studies will be given.
Collapse
|