1
|
Milos T, Vuic B, Balic N, Farkas V, Nedic Erjavec G, Svob Strac D, Nikolac Perkovic M, Pivac N. Cerebrospinal fluid in the differential diagnosis of Alzheimer's disease: an update of the literature. Expert Rev Neurother 2024; 24:1063-1079. [PMID: 39233323 DOI: 10.1080/14737175.2024.2400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION The importance of cerebrospinal fluid (CSF) biomarkers in Alzheimer's disease (AD) diagnosis is rapidly increasing, and there is a growing interest in the use of CSF biomarkers in monitoring the response to therapy, especially in the light of newly available approaches to the therapy of neurodegenerative diseases. AREAS COVERED In this review we discuss the most relevant measures of neurodegeneration that are being used to distinguish patients with AD from healthy controls and individuals with mild cognitive impairment, in order to provide an overview of the latest information available in the scientific literature. We focus on markers related to amyloid processing, markers associated with neurofibrillary tangles, neuroinflammation, neuroaxonal injury and degeneration, synaptic loss and dysfunction, and markers of α-synuclein pathology. EXPERT OPINION In addition to neuropsychological evaluation, core CSF biomarkers (Aβ42, t-tau, and p-tau181) have been recommended for improvement of timely, accurate and differential diagnosis of AD, as well as to assess the risk and rate of disease progression. In addition to the core CSF biomarkers, various other markers related to synaptic dysfunction, neuroinflammation, and glial activation (neurogranin, SNAP-25, Nfl, YKL-40, TREM2) are now investigated and have yet to be validated for future potential clinical use in AD diagnosis.
Collapse
Affiliation(s)
- Tina Milos
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Barbara Vuic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Nikola Balic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Vladimir Farkas
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | | | | | - Nela Pivac
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia
| |
Collapse
|
2
|
Pucci IM, Aguiar AF, Pucci RM, Casonatto J, Borghi SM. Systematic review and meta-analysis of randomized controlled trials on the effects of exercise interventions on amyloid beta levels in humans. Exp Brain Res 2024; 242:1011-1024. [PMID: 38551691 DOI: 10.1007/s00221-024-06821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/13/2024] [Indexed: 06/05/2024]
Abstract
Alzheimer's disease (AD) represents the most common type of dementia. A crucial mechanism attributed to its development is amyloid beta (Aβ) dynamics dysregulation. The extent to which exercise can modulate this phenomenon is uncertain. The aim of this study was to summarize the existing literature evaluating this issue. A comprehensive systematic search was performed in Pubmed, Scopus, Embase, Web of Science, and SciELO databases and completed in August 2023, aiming to identify randomized controlled trials investigating the effect of exercise upon Aβ-related pathology. The keywords "exercise" and "amyloid beta", as well as all their equivalents and similar terms, were used. For the analysis, the negative or positive dementia status of the subjects was initially considered and then the soluble amyloid precursor protein (sAPP) components and Aβ fragments separately. A meta-analysis was performed and involved eight studies (moderate-to-high quality) and 644 assessments, which were 297 for control and 347 for exercise. No overall effect favoring exercise interventions was observed for both negative (SMD95%=0,286 [-0,131; 0,704]; p = 0,179) or positive AD dementia status (SMD95%=0,110 [-0,155; 0,375]; p = 0,416). The absence of an overall effect favoring exercise interventions was also found for Aβ peptides (SMD95%=0,226 [-0,028; 0,480]; p = 0,081) and for sAPP components (SMD95%=-0,038 50 [-0,472; 0,396]; p = 0,863) levels. Our findings suggest that exercise interventions do not improve Aβ-related pathology in both healthy individuals and individuals with dementia (SMD95%=0,157 [-0,059; 0,373]; p = 0,155), indicating that the beneficial effects of exercise for AD reported in previous studies are related to other mechanistic effects rather than direct amyloid effects (PROSPERO registration number: CRD42023426912).
Collapse
Affiliation(s)
- Isabela Mayer Pucci
- Center for Research in Health Sciences, Universidade Norte do Paraná (Unopar), Paraná, Londrina, 86041-140, Brazil
| | - Andreo F Aguiar
- Center for Research in Health Sciences, Universidade Norte do Paraná (Unopar), Paraná, Londrina, 86041-140, Brazil
| | - Rodrigo M Pucci
- Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Cuiabá, 79070-900, Brazil
| | - Juliano Casonatto
- Center for Research in Health Sciences, Universidade Norte do Paraná (Unopar), Paraná, Londrina, 86041-140, Brazil
| | - Sergio Marques Borghi
- Center for Research in Health Sciences, Universidade Norte do Paraná (Unopar), Paraná, Londrina, 86041-140, Brazil.
- Department of Pathology, Biological Sciences Center, Universidade Estadual de Londrina (UEL), Paraná State, Londrina, 86057-970, Brazil.
| |
Collapse
|
3
|
Ayyubova G. APOE4 is a Risk Factor and Potential Therapeutic Target for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:342-352. [PMID: 36872358 DOI: 10.2174/1871527322666230303114425] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, the main pathological hallmark of which is the loss of neurons, resulting in cognitive and memory impairments. Sporadic late-onset AD is a prevalent form of the disease and the apolipoprotein E4 (APOE4) genotype is the strongest predictor of the disease development. The structural variations of APOE isoforms affect their roles in synaptic maintenance, lipid trafficking, energy metabolism, inflammatory response, and BBB integrity. In the context of AD, APOE isoforms variously control the key pathological elements of the disease, including Aβ plaque formation, tau aggregation, and neuroinflammation. Taking into consideration the limited number of therapy choices that can alleviate symptoms and have little impact on the AD etiology and progression to date, the precise research strategies guided by apolipoprotein E (APOE) polymorphisms are required to assess the potential risk of age-related cognitive decline in people carrying APOE4 genotype. In this review, we summarize the evidence implicating the significance of APOE isoforms on brain functions in health and pathology with the aim to identify the possible targets that should be addressed to prevent AD manifestation in individuals with the APOE4 genotype and to explore proper treatment strategies.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan
| |
Collapse
|
4
|
Kumar S, Mahajan A, Ambatwar R, Khatik GL. Recent Advancements in the Treatment of Alzheimer's Disease: A Multitarget-directed Ligand Approach. Curr Med Chem 2024; 31:6032-6062. [PMID: 37861025 DOI: 10.2174/0109298673264076230921065945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and one of the leading causes of progressive dementia, affecting 50 million people worldwide. Many pathogenic processes, including amyloid β aggregation, tau hyperphosphorylation, oxidative stress, neuronal death, and deterioration of the function of cholinergic neurons, are associated with its progression. The one-compound-one-target treatment paradigm was unsuccessful in treating AD due to the multifaceted nature of Alzheimer's disease. The recent development of multitarget-directed ligand research has been explored to target the complementary pathways associated with the disease. We aimed to find the key role and progress of MTDLs in treating AD; thus, we searched for the past ten years of literature on "Pub- Med", "ScienceDirect", "ACS" and "Bentham Science" using the keywords neurodegenerative diseases, Alzheimer's disease, and multitarget-directed ligands. The literature was further filtered based on the quality of work and relevance to AD. Thus, this review highlights the current advancement and advantages of multitarget-directed ligands over traditional single-targeted drugs and recent progress in their development to treat AD.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Amol Mahajan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Ramesh Ambatwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| |
Collapse
|
5
|
Phukan BC, Roy R, Gahatraj I, Bhattacharya P, Borah A. Therapeutic considerations of bioactive compounds in Alzheimer's disease and Parkinson's disease: Dissecting the molecular pathways. Phytother Res 2023; 37:5657-5699. [PMID: 37823581 DOI: 10.1002/ptr.8012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/13/2023]
Abstract
Leading neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the impairment of memory and motor functions, respectively. Despite several breakthroughs, there exists a lack of disease-modifying treatment strategies for these diseases, as the available drugs provide symptomatic relief and bring along side effects. Bioactive compounds are reported to bear neuroprotective properties with minimal toxicity, however, a detailed elucidation of their modes of neuroprotection is lacking. The review elucidates the neuroprotective mechanism(s) of some of the major phyto-compounds in pre-clinical and clinical studies of AD and PD to understand their potential in combating these diseases. Curcumin, eugenol, resveratrol, baicalein, sesamol and so on have proved efficient in countering the pathological hallmarks of AD and PD. Curcumin, resveratrol, caffeine and so on have reached the clinical phases of these diseases, while aromadendrin, delphinidin, cyanidin and xanthohumol are yet to be extensively explored in pre-clinical phases. The review highlights the need for extensive investigation of these compounds in the clinical stages of these diseases so as to utilize their disease-modifying abilities in the real field of treatment. Moreover, poor pharmacokinetic properties of natural compounds are constraints to their therapeutic yields and this review suggests a plausible contribution of nanotechnology in overcoming these limitations.
Collapse
Affiliation(s)
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
6
|
Tang D, Sun C, Yang J, Fan L, Wang Y. Advances in the Study of the Pathology and Treatment of Alzheimer's Disease and Its Association with Periodontitis. Life (Basel) 2023; 13:2203. [PMID: 38004343 PMCID: PMC10672606 DOI: 10.3390/life13112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) has become one of the leading causes of health problems in the elderly, and studying its causes and treatments remains a serious challenge for researchers worldwide. The two main pathological features of Alzheimer's disease are the extracellular deposition of β-amyloid (Aβ) to form senile plaques and the intracellular aggregation of hyperphosphorylated Tau protein to form neurofibrillary tangles (NFTs). Researchers have proposed several hypotheses to elucidate the pathogenesis of AD, but due to the complexity of the pathophysiologic factors involved in the development of AD, no effective drugs have been found to stop the progression of the disease. Currently, the mainstay drugs used to treat AD can only alleviate the patient's symptoms and do not have a therapeutic effect. As researchers explore interactions among diseases, much evidence suggests that there is a close link between periodontitis and AD, and that periodontal pathogenic bacteria can exacerbate Aβ deposition and Tau protein hyperphosphorylation through neuroinflammatory mechanisms, thereby advancing the pathogenesis of AD. This article reviews recent advances in the pathogenesis of AD, available therapeutic agents, the relevance of periodontitis to AD, and mechanisms of action.
Collapse
Affiliation(s)
- Dan Tang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Chang Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Jumei Yang
- Lanzhou University Second Hospital, Lanzhou 730000, China;
| | - Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| |
Collapse
|
7
|
Mir Najib Ullah SN, Afzal O, Altamimi ASA, Ather H, Sultana S, Almalki WH, Bharti P, Sahoo A, Dwivedi K, Khan G, Sultana S, Alzahrani A, Rahman M. Nanomedicine in the Management of Alzheimer's Disease: State-of-the-Art. Biomedicines 2023; 11:1752. [PMID: 37371847 DOI: 10.3390/biomedicines11061752] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is a deadly, progressive, and irreversible brain condition that impairs cognitive abilities. Globally, it affects 32.6 million individuals, and if no viable therapies are available by 2050, that figure might rise to 139 million. The current course of treatment enhances cognitive abilities and temporarily relieves symptoms, but it does not halt or slow the disease's development. Additionally, treatments are primarily offered in conventional oral dosage forms, and conventional oral treatments lack brain specialization and cause adverse effects, resulting in poor patient compliance. A potential nanotechnology-based strategy can improve the bioavailability and specificity of the drug targeting in the brain. Furthermore, this review extensively summarizes the applications of nanomedicines for the effective delivery of drugs used in the management of AD. In addition, the clinical progress of nanomedicines in AD is also discussed, and the challenges facing the clinical development of nanomedicines are addressed in this article.
Collapse
Affiliation(s)
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | - Hissana Ather
- Department of Pharmaceutical Chemistry, King Khalid University, Abha 62529, Saudi Arabia
| | - Shaheen Sultana
- IIMT College of Pharmacy, Greater Noida 201310, Uttar Pradesh, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Pragya Bharti
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana 133207, Haryana, India
| | - Ankit Sahoo
- Department of Pharmaceutics, Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Sambhunath Institute of Pharmacy Jhalwa, Prayagraj 211015, Uttar Pradesh, India
| | - Gyas Khan
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulaziz Alzahrani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Alaqiq 65779-7738, Saudi Arabia
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India
| |
Collapse
|
8
|
Nguyen TH, Wang SL, Nguyen VB. Microorganism-Derived Molecules as Enzyme Inhibitors to Target Alzheimer's Diseases Pathways. Pharmaceuticals (Basel) 2023; 16:ph16040580. [PMID: 37111337 PMCID: PMC10146315 DOI: 10.3390/ph16040580] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. It increases the risk of other serious diseases and causes a huge impact on individuals, families, and socioeconomics. AD is a complex multifactorial disease, and current pharmacological therapies are largely based on the inhibition of enzymes involved in the pathogenesis of AD. Natural enzyme inhibitors are the potential sources for targeting AD treatment and are mainly collected from plants, marine organisms, or microorganisms. In particular, microbial sources have many advantages compared to other sources. While several reviews on AD have been reported, most of these previous reviews focused on presenting and discussing the general theory of AD or overviewing enzyme inhibitors from various sources, such as chemical synthesis, plants, and marine organisms, while only a few reviews regarding microbial sources of enzyme inhibitors against AD are available. Currently, multi-targeted drug investigation is a new trend for the potential treatment of AD. However, there is no review that has comprehensively discussed the various kinds of enzyme inhibitors from the microbial source. This review extensively addresses the above-mentioned aspect and simultaneously updates and provides a more comprehensive view of the enzyme targets involved in the pathogenesis of AD. The emerging trend of using in silico studies to discover drugs concerning AD inhibitors from microorganisms and perspectives for further experimental studies are also covered here.
Collapse
Affiliation(s)
- Thi Hanh Nguyen
- Doctoral Program in Applied Sciences, Tamkang University, New Taipei City 25137, Taiwan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| |
Collapse
|
9
|
Wu Y, Guo S, Wang K, Kang J. The interaction of peptide inhibitors and Aβ protein: Binding mode analysis, inhibition of the formation of Aβ aggregates, and then exert neuroprotective effects. Front Aging Neurosci 2023; 15:1139418. [PMID: 37113572 PMCID: PMC10126514 DOI: 10.3389/fnagi.2023.1139418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction The misfolding and aggregation of β-amyloid (Aβ) easily form Aβ fibers, which are continuously deposited in the brain, leading to the massive generation of amyloid plaques, severely destroying neuronal connections, and promoting Alzheimer's disease (AD) The occurrence and development of AD is one of the pathogenesis of AD. There is an urgent need to develop inhibitors against Aβ aggregation, which is hopefully a potential way to treat AD. Methods In this study, we first found the crystal structure of the Aβ1-42 receptor protein from the RCSB PDB protein structure database and used the SYBYL X2.0 software for molecular docking, and then used the Peptide Ranker, Innovagen, DPL, and ToxinPred online websites to perform peptides. Predict the activity score, toxicity and water solubility, and then calculate the affinity constant KD value of polypeptide and Aβ through Surface Plasmon Resonance (SPR) experiment. Subsequently, the CCK-8 kit method was used to determine the toxicity of different concentrations of peptides (3.125, 6.25, 12.5, 25, 50, 100, 200 μM) to PC12 cells, and then the peptides and Aβ according to different concentration ratios (1:4, 1:2, 1:1, 1:0.5, 1:0.25, 0:4), this method is also used to detect the effect of peptides on Aβ-induced neurotoxicity. The thioflavin T (ThT) fluorescence method was used to detect the effects of peptides (50 μM) on Aβ (25 μM) aggregation inhibitory effect. Results The results showed that the CScore of YVRHLKYVRHLK peptide molecule docking was 10.0608, the predicted activity score was 0.20, and the KD value was 5.385 × 10-5. The ThT and CCK-8 kit method found that the peptide itself is less toxic to PC12 cells at a concentration of 50 μM, and it has a significant inhibitory effect on the formation of Aβ1-42 aggregates when incubated with Aβ1-42 at a ratio of 1:1 (p < 0.05) and can significantly reduce the PC12 cytotoxicity induced by Aβ1-42 (p < 0.05). Conclusion In conclusion, the polypeptide YVRHLKYVRHLK designed in this study has a neuroprotective effect on PC12 cytotoxicity induced by Aβ1-42. Graphical Abstract.
Collapse
Affiliation(s)
- Yuchen Wu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Shuang Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Kunli Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jingjing Kang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- *Correspondence: Jingjing Kang,
| |
Collapse
|
10
|
A study from structural insight to the antiamyloidogenic and antioxidant activities of flavonoids: scaffold for future therapeutics of Alzheimer’s disease. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Naik SP, Sachin C, Soniya P, Harishchandra N, Venkatesh S, Shilpa T, Shivlingarao MD. Synthesis, Characterisation and Docking Studies of Thioxoquinoline Derivatives as Potential Anti-Alzheimer Agents. Curr Drug Discov Technol 2022; 19:e130522204744. [PMID: 35570516 DOI: 10.2174/1570163819666220513115542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Alzheimer's Disease (AD) is related to the total loss of presynaptic neurotransmitters of the cholinergic system in regions of the brain related to memory. Approximately 15% of the population beyond the age of 65 years are suffering from dementia due to AD and the rate is rising exponentially with age. OBJECTIVE The objective of this research was the synthesis of a series of 1-(4-substituted-2- thioxoquinolin-1(2H)-yl)-2-substituted ethanoneV (a-c(1-4)) by undergoing acetylation at the nitrogen of 4-hydroxyquinolin-2-(1H)-one and replacing its oxygen atom with sulphur moiety via the process of thionation. To carry out-docking studies of the title compounds were carried out using Molegro Virtual Docker (MVD-2013, 6.0) software and in-vitro screening of anti-alzheimer's activity by Ellman assay method. METHODS The synthesis of the title compounds was carried out via the sequential reaction from the initial dianilide to ring closure to the substituted quinoline-2-ones using polyphosphoric acid as a cyclising agent. These substituted quinoline-2-ones on thionation by phosphorous pentasulphide in aluminium trioxide gave quinoline-2-thiones and on further condensation with chloroacetyl chloride, they resulted in compounds with a leaving group. Nucleophilic substitution reaction of chloroacetylquinoline- 2-thiones with secondary amines resulted in the title compounds 1-(4-substituted-2- thioxoquinolin-1(2H)-yl)-2-substituted ethanone V(a-c(1-4)). The pharmacophore mapping of synthesized compounds was performed by using Molegro Virtual Docker (MVD-2013,6.0). The title compounds were tested for their in vitro anti-Alzheimer's activity using the Ellman assay method. RESULTS All the synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and Mass spectral data. Docking studies of all the synthesized compounds were carried out using a structural mechanism for the inhibition of CDK5-p25 by roscovitine, aloisine, and indirubin (PDB ID: 1UNG), showed favourable results, with compound (Vb3) showing a MolDock score of -85.9788 that was comparable to that of the active ligand (ALH_1288 [B]) with MolDock score of - 87.7609. CONCLUSION The synthesized derivatives possessed the potential to bind with some of the amino acid residues of the active site. Compound 2-(6-chloro-4-hydroxy-2-thioxoquinolin-1(2H)-yl-1-piperazin- 1-ethanone (Vb3) was found to be the most active among the synthesized derivatives, with IC50 values of 32 ± 0.1681. All the synthesized compounds showed potent to moderate activity in comparison to the reference standard donepezil.
Collapse
Affiliation(s)
- Shalaka P Naik
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Chandavarkar Sachin
- Department of Pharmacognosy, ASPM College of Pharmacy, Sangulwadi, Tal. Vaibhavwadi, Dist. Sindhudurg, Maharashtra, 416810, India
| | - Phadte Soniya
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Naik Harishchandra
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Sinari Venkatesh
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Tawde Shilpa
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| | - Mamle Desai Shivlingarao
- Department of Pharmaceutical Chemistry, P.E. S's Rajaram, and Tarabai Bandekar, College of Pharmacy, Farmagudi, Ponda, Goa, 403 401, India
| |
Collapse
|
12
|
Wang Y, Zhu J, Jia W, Xiong H, Qiu W, Xu R, Lin Y. BACE1 Aptamer-Modified Tetrahedral Framework Nucleic Acid to Treat Alzheimer's Disease in an APP-PS1 Animal Model. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44228-44238. [PMID: 36149663 DOI: 10.1021/acsami.2c14626] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease is a neurodegenerative disease caused by excessive amyloid β protein-induced neurotoxicity. However, drugs targeting amyloid β protein production face many problems, such as the low utilization rate of drugs by cells and the difficulty of drugs in penetrating the blood-brain barrier. A tetrahedral framework nucleic acid is a new type of nanonucleic acid structure that functions as a therapy and drug carrier. Here, we synthesized a BACE1 aptamer-modified tetrahedral framework nucleic acid and tested its therapeutic effect on Alzheimer's disease in vitro and in vivo. Our results demonstrated that the tetrahedral framework nucleic acid could be used as a carrier to deliver the BACE1 aptamer to the brain to reduce the production of amyloid β proteins. It also played an antiapoptotic role by reducing the production of reactive oxygen species. Thus, this nanomaterial is a potential drug for Alzheimer's disease.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Neurosurgery, Sichuan provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianwei Zhu
- Department of Neurosurgery, Sichuan provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Weiqiang Jia
- Department of neurosurgery, The First People's Hospital in Shuangliu District/West China Airport Hospital, Sichuan University, Chengdu 610041, China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenqiao Qiu
- Department of Neurosurgery, Sichuan provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Islam F, Shohag S, Akhter S, Islam MR, Sultana S, Mitra S, Chandran D, Khandaker MU, Ashraf GM, Idris AM, Emran TB, Cavalu S. Exposure of metal toxicity in Alzheimer’s disease: An extensive review. Front Pharmacol 2022; 13:903099. [PMID: 36105221 PMCID: PMC9465172 DOI: 10.3389/fphar.2022.903099] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Metals serve important roles in the human body, including the maintenance of cell structure and the regulation of gene expression, the antioxidant response, and neurotransmission. High metal uptake in the nervous system is harmful because it can cause oxidative stress, disrupt mitochondrial function, and impair the activity of various enzymes. Metal accumulation can cause lifelong deterioration, including severe neurological problems. There is a strong association between accidental metal exposure and various neurodegenerative disorders, including Alzheimer’s disease (AD), the most common form of dementia that causes degeneration in the aged. Chronic exposure to various metals is a well-known environmental risk factor that has become more widespread due to the rapid pace at which human activities are releasing large amounts of metals into the environment. Consequently, humans are exposed to both biometals and heavy metals, affecting metal homeostasis at molecular and biological levels. This review highlights how these metals affect brain physiology and immunity and their roles in creating harmful proteins such as β-amyloid and tau in AD. In addition, we address findings that confirm the disruption of immune-related pathways as a significant toxicity mechanism through which metals may contribute to AD.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh
| | - Shomaya Akhter
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Subang Jaya, Malaysia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- *Correspondence: Ghulam Md Ashraf, ; Abubakr M. Idris, ; Talha Bin Emran, ; Simona Cavalu,
| |
Collapse
|
14
|
Roy R, Bhattacharya P, Borah A. Targeting the Pathological Hallmarks of Alzheimer's Disease Through Nanovesicleaided Drug Delivery Approach. Curr Drug Metab 2022; 23:693-707. [PMID: 35619248 DOI: 10.2174/1389200223666220526094802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Nanovesicle technology is making a huge contribution to the progress of treatment studies for various diseases, including Alzheimer's disease (AD). AD is the leading neurodegenerative disorder characterized by severe cognitive impairment. Despite the prevalence of several forms of anti-AD drugs, the accelerating pace of AD incidence cannot becurbed, and for rescue, nanovesicle technology has grabbed much attention. METHODOLOGY Comprehensive literature search was carried out using relevant keywords and online database platforms. The main concepts that have been covered included a complex pathomechanism underlying increased acetylcholinesterase (AchE) activity, β-amyloid aggregation, and tau-hyperphosphorylation forming neurofibrillary tangles (NFTs) in the brain, which are amongst the major hallmarks of AD pathology. Therapeutic recommendations exist in the form of AchE inhibitors, along with anti-amyloid and anti-tau therapeutics, which are being explored at a high pace. The degree of the therapeutic outcome, however, gets restricted by the pharmacological limitations. Susceptibility to peripheral metabolism and rapid elimination, inefficiency to cross the blood-brain barrier (BBB) and reach the target brain site are the factors that lower the biostability and bioavailability of anti-AD drugs. The nanovesicle technology has emerged as a route to preserve the therapeutic efficiency of the anti-AD drugs and promote AD treatment. The review hereby aims to summarize the developments made by the nanovesicle technology in aiding the delivery of synthetic and plant-based therapeutics targeting the molecular mechanism of AD pathology. CONCLUSION Nanovesicles appear to efficiently aid in target-specific delivery of anti-AD therapeutics and nullify the drawbacks posed by free drugs, besides reducing the dosage requirement and the adversities associated. In addition, the nanovesicle technology also appears to uplift the therapeutic potential of several phyto-compounds with immense anti-AD properties. Furthermore, the review also sheds light on future perspectives to mend the gaps that prevail in the nanovesicle-mediated drug delivery in AD treatment strategies.
Collapse
Affiliation(s)
- Rubina Roy
- Department of Life Science and Bioinformatics, Cellular and Molecular Neurobiology Laboratory, Assam University, Silchar- 788011, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad - 382355, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Cellular and Molecular Neurobiology Laboratory, Assam University, Silchar- 788011, Assam, India
| |
Collapse
|
15
|
Cho Y, Bae HG, Okun E, Arumugam TV, Jo DG. Physiology and pharmacology of amyloid precursor protein. Pharmacol Ther 2022; 235:108122. [PMID: 35114285 DOI: 10.1016/j.pharmthera.2022.108122] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
Amyloid precursor protein (APP) is an evolutionarily conserved transmembrane protein and a well-characterized precursor protein of amyloid-beta (Aβ) peptides, which accumulate in the brains of individuals with Alzheimer's disease (AD)-related pathologies. Aβ has been extensively investigated since the amyloid hypothesis in AD was proposed. Besides Aβ, previous studies on APP and its proteolytic cleavage products have suggested their diverse pathological and physiological functions. However, their roles still have not been thoroughly understood. In this review, we extensively discuss the evolutionarily-conserved biology of APP, including its structure and processing pathway, as well as recent findings on the physiological roles of APP and its fragments in the central nervous system and peripheral nervous system. We have also elaborated upon the current status of APP-targeted therapeutic approaches for AD treatment by discussing inhibitors of several proteases participating in APP processing, including α-, β-, and γ-secretases. Finally, we have highlighted the future perspectives pertaining to further research and the potential clinical role of APP.
Collapse
Affiliation(s)
- Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Han-Gyu Bae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Pauld Feder Laboratory on Alzheimer's Disease Research, Israel
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
16
|
Microglia in Alzheimer’s Disease: A Favorable Cellular Target to Ameliorate Alzheimer’s Pathogenesis. Mediators Inflamm 2022; 2022:6052932. [PMID: 35693110 PMCID: PMC9184163 DOI: 10.1155/2022/6052932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Microglial cells serve as molecular sensors of the brain that play a role in physiological and pathological conditions. Under normal physiology, microglia are primarily responsible for regulating central nervous system homeostasis through the phagocytic clearance of redundant protein aggregates, apoptotic cells, damaged neurons, and synapses. Furthermore, microglial cells can promote and mitigate amyloid β phagocytosis and tau phosphorylation. Dysregulation of the microglial programming alters cellular morphology, molecular signaling, and secretory inflammatory molecules that contribute to various neurodegenerative disorders especially Alzheimer’s disease (AD). Furthermore, microglia are considered primary sources of inflammatory molecules and can induce or regulate a broad spectrum of cellular responses. Interestingly, in AD, microglia play a double-edged role in disease progression; for instance, the detrimental microglial effects increase in AD while microglial beneficiary mechanisms are jeopardized. Depending on the disease stages, microglial cells are expressed differently, which may open new avenues for AD therapy. However, the disease-related role of microglial cells and their receptors in the AD brain remain unclear. Therefore, this review represents the role of microglial cells and their involvement in AD pathogenesis.
Collapse
|
17
|
Sirin S, Nigdelioglu Dolanbay S, Aslim B. The relationship of early- and late-onset Alzheimer’s disease genes with COVID-19. J Neural Transm (Vienna) 2022; 129:847-859. [PMID: 35429259 PMCID: PMC9012910 DOI: 10.1007/s00702-022-02499-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
Abstract
Individuals with Alzheimer’s disease and other neurodegenerative diseases have been exposed to excess risk by the COVID-19 pandemic. COVID-19’s main manifestations include high body temperature, dry cough, and exhaustion. Nevertheless, some affected individuals may have an atypical presentation at diagnosis but suffer neurological signs and symptoms as the first disease manifestation. These findings collectively show the neurotropic nature of SARS-CoV-2 virus and its ability to involve the central nervous system. In addition, Alzheimer’s disease and COVID-19 has a number of common risk factors and comorbid conditions including age, sex, hypertension, diabetes, and the expression of APOE ε4. Until now, a plethora of studies have examined the COVID-19 disease but only a few studies has yet examined the relationship of COVID-19 and Alzheimer’s disease as risk factors of each other. This review emphasizes the recently published evidence on the role of the genes of early- or late-onset Alzheimer’s disease in the susceptibility of individuals currently suffering or recovered from COVID-19 to Alzheimer’s disease or in the susceptibility of individuals at risk of or with Alzheimer’s disease to COVID-19 or increased COVID-19 severity and mortality. Furthermore, the present review also draws attention to other uninvestigated early- and late-onset Alzheimer’s disease genes to elucidate the relationship between this multifactorial disease and COVID-19.
Collapse
|
18
|
Rahman MM, Rahaman MS, Islam MR, Rahman F, Mithi FM, Alqahtani T, Almikhlafi MA, Alghamdi SQ, Alruwaili AS, Hossain MS, Ahmed M, Das R, Emran TB, Uddin MS. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules 2021; 27:233. [PMID: 35011465 PMCID: PMC8746501 DOI: 10.3390/molecules27010233] [Citation(s) in RCA: 251] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/02/2023] Open
Abstract
Inflammation is a natural protective mechanism that occurs when the body's tissue homeostatic mechanisms are disrupted by biotic, physical, or chemical agents. The immune response generates pro-inflammatory mediators, but excessive output, such as chronic inflammation, contributes to many persistent diseases. Some phenolic compounds work in tandem with nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit pro-inflammatory mediators' activity or gene expression, including cyclooxygenase (COX). Various phenolic compounds can also act on transcription factors, such as nuclear factor-κB (NF-κB) or nuclear factor-erythroid factor 2-related factor 2 (Nrf-2), to up-or downregulate elements within the antioxidant response pathways. Phenolic compounds can inhibit enzymes associated with the development of human diseases and have been used to treat various common human ailments, including hypertension, metabolic problems, incendiary infections, and neurodegenerative diseases. The inhibition of the angiotensin-converting enzyme (ACE) by phenolic compounds has been used to treat hypertension. The inhibition of carbohydrate hydrolyzing enzyme represents a type 2 diabetes mellitus therapy, and cholinesterase inhibition has been applied to treat Alzheimer's disease (AD). Phenolic compounds have also demonstrated anti-inflammatory properties to treat skin diseases, rheumatoid arthritis, and inflammatory bowel disease. Plant extracts and phenolic compounds exert protective effects against oxidative stress and inflammation caused by airborne particulate matter, in addition to a range of anti-inflammatory, anticancer, anti-aging, antibacterial, and antiviral activities. Dietary polyphenols have been used to prevent and treat allergy-related diseases. The chemical and biological contributions of phenolic compounds to cardiovascular disease have also been described. This review summarizes the recent progress delineating the multifunctional roles of phenolic compounds, including their anti-inflammatory properties and the molecular pathways through which they exert anti-inflammatory effects on metabolic disorders. This study also discusses current issues and potential prospects for the therapeutic application of phenolic compounds to various human diseases.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Faria Mannan Mithi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, Taibah University, Madinah 41477, Saudi Arabia;
| | - Samia Qasem Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Albaha 65527, Saudi Arabia;
| | - Abdullah S Alruwaili
- Department of Clinical Laboratory, College of Applied Medical Science, Northern Border University, P.O. Box 1321, Arar 9280, Saudi Arabia;
| | - Md. Sohel Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| |
Collapse
|
19
|
Patel K, Srivastava S, Kushwah S, Mani A. Perspectives on the Role of APOE4 as a Therapeutic Target for Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:899-910. [PMID: 35088039 PMCID: PMC8764632 DOI: 10.3233/adr-210027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/21/2021] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is coupled with chronic cognitive dysfunction. AD cases are mostly late onset, and genetic risk factors like the Apolipoprotein E (APOE) play a key role in this process. APOE ɛ2, APOE ɛ3, and APOE ɛ4 are three key alleles in the human APOE gene. For late onset, APOE ɛ4 has the most potent risk factor while APOE ɛ2 plays a defensive role. Several studies suggests that APOE ɛ4 causes AD via different processes like neurofibrillary tangle formation by amyloid-β accumulation, exacerbated neuroinflammation, cerebrovascular disease, and synaptic loss. But the pathway is still unclear that which actions of APOE ɛ4 lead to AD development. Since APOE was found to contribute to many AD pathways, targeting APOE ɛ4 can lead to a hopeful plan of action in development of new drugs to target AD. In this review, we focus on recent studies and perspectives, focusing on APOE ɛ4 as a key molecule in therapeutic strategies.
Collapse
Affiliation(s)
- Kavita Patel
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Siwangi Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shikha Kushwah
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
20
|
Jabeen K, Rehman K, Akash MSH. Genetic mutations of APOEε4 carriers in cardiovascular patients lead to the development of insulin resistance and risk of Alzheimer's disease. J Biochem Mol Toxicol 2021; 36:e22953. [PMID: 34757642 DOI: 10.1002/jbt.22953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes mellitus and Alzheimer's disease (AD), both are chronic and progressive diseases. Many cardiovascular and genetic risk factors are considered responsible for the development of AD and diabetes mellitus (DM). Genetic risk factor such as apolipoprotein E (APOE) plays a critical role in the progression of AD. Specifically, APOEε4 is genetically the strongest isoform associated with neuronal insulin deficiency, altered lipid homeostasis, and metabolism, decreased glucose uptake, impaired gray matter volume, and cerebrovascular functions. In this article, we have summarized the mechanisms of cardiovascular disturbances associated with AD and DM, impact of amyloid-β aggregation, and neurofibrillary tangles formation in AD. Moreover, cardiovascular risk factors leading to insulin resistance (IR) and amyloid-β aggregation are highlighted along with the effects of APOE risk alleles on cerebral, lipid, and cholesterol metabolism leading to CVD-mediated IR. Correspondingly, the contribution of IR, genetic and cardiovascular risk factors in amyloid-β aggregation, which may lead to the late onset of AD and DM, has been also discussed. In short, IR is related to significantly lower cerebral glucose metabolism, which sequentially forecasts poorer memory performance. Hence, there will be more chances for neural glucose intolerance and impairment of cognitive function in cardiac patients, particularly APOEε4 carriers having IR. Hence, this review provides a better understanding of the corresponding crosstalk among different pathways. This will help to investigate the rational application of preventive measures against IR and cognitive dysfunction, specifically in APOEε4 carriers' cardio-metabolic patients.
Collapse
Affiliation(s)
- Komal Jabeen
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.,Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
21
|
Md S, Alhakamy NA, Alfaleh MA, Afzal O, Altamimi ASA, Iqubal A, Shaik RA. Mechanisms Involved in Microglial-Interceded Alzheimer's Disease and Nanocarrier-Based Treatment Approaches. J Pers Med 2021; 11:1116. [PMID: 34834468 PMCID: PMC8619529 DOI: 10.3390/jpm11111116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder accountable for dementia and cognitive dysfunction. The etiology of AD is complex and multifactorial in origin. The formation and deposition of amyloid-beta (Aβ), hyperphosphorylated tau protein, neuroinflammation, persistent oxidative stress, and alteration in signaling pathways have been extensively explored among the various etiological hallmarks. However, more recently, the immunogenic regulation of AD has been identified, and macroglial activation is considered a limiting factor in its etiological cascade. Macroglial activation causes neuroinflammation via modulation of the NLRP3/NF-kB/p38 MAPKs pathway and is also involved in tau pathology via modulation of the GSK-3β/p38 MAPK pathways. Additionally, microglial activation contributes to the discrete release of neurotransmitters and an altered neuronal synaptic plasticity. Therefore, activated microglial cells appear to be an emerging target for managing and treating AD. This review article discussed the pathology of microglial activation in AD and the role of various nanocarrier-based anti-Alzeihmenr's therapeutic approaches that can either reverse or inhibit this activation. Thus, as a targeted drug delivery system, nanocarrier approaches could emerge as a novel means to overcome existing AD therapy limitations.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Rasheed A. Shaik
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
22
|
Piec PA, Pons V, Rivest S. Triggering Innate Immune Receptors as New Therapies in Alzheimer's Disease and Multiple Sclerosis. Cells 2021; 10:cells10082164. [PMID: 34440933 PMCID: PMC8393987 DOI: 10.3390/cells10082164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis and Alzheimer's disease are two complex neurodegenerative diseases involving the immune system. So far, available treatments provide at best mild improvements to patients' conditions. For decades now, a new set of molecules have been used to modulate and regulate the innate immunity in these pathologies. Most studies have been carried out in rodents and some of them have reported tremendous beneficial effects on the disease course. The modulation of innate immune cells is of great interest since it provides new hope for patients. In this review, we will briefly overview the therapeutic potential of some molecules and receptors in multiple sclerosis and Alzheimer's disease and how they could be used to exploit new therapeutic avenues.
Collapse
|
23
|
Kaduševičius E. Novel Applications of NSAIDs: Insight and Future Perspectives in Cardiovascular, Neurodegenerative, Diabetes and Cancer Disease Therapy. Int J Mol Sci 2021; 22:6637. [PMID: 34205719 PMCID: PMC8235426 DOI: 10.3390/ijms22126637] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Once it became clear that inflammation takes place in the modulation of different degenerative disease including neurodegenerative, cardiovascular, diabetes and cancer the researchers has started intensive programs evaluating potential role of non-steroidal anti-inflammatory drugs (NSAIDs) in the prevention or therapy of these diseases. This review discusses the novel mechanism of action of NSAIDs and its potential use in the pharmacotherapy of neurodegenerative, cardiovascular, diabetes and cancer diseases. Many different molecular and cellular factors which are not yet fully understood play an important role in the pathogenesis of inflammation, axonal damage, demyelination, atherosclerosis, carcinogenesis thus further NSAID studies for a new potential indications based on precise pharmacotherapy model are warranted since NSAIDs are a heterogeneous group of medicines with relative different pharmacokinetics and pharmacodynamics profiles. Hopefully the new data from studies will fill in the gap between experimental and clinical results and translate our knowledge into successful disease therapy.
Collapse
Affiliation(s)
- Edmundas Kaduševičius
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania
| |
Collapse
|
24
|
Kabir MT, Uddin MS, Abdeen A, Ashraf GM, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM. Evidence Linking Protein Misfolding to Quality Control in Progressive Neurodegenerative Diseases. Curr Top Med Chem 2021; 20:2025-2043. [PMID: 32552649 DOI: 10.2174/1568026620666200618114924] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Several proteolytic systems including ubiquitin (Ub)-proteasome system (UPS), chaperonemediated autophagy (CMA), and macroautophagy are used by the mammalian cells to remove misfolded proteins (MPs). UPS mediates degradation of most of the MPs, where Ub-conjugated substrates are deubiquitinated, unfolded, and passed through the proteasome's narrow chamber, and eventually break into smaller peptides. It has been observed that the substrates that show a specific degradation signal, the KFERQ sequence motif, can be delivered to and go through CMA-mediated degradation in lysosomes. Macroautophagy can help in the degradation of substrates that are prone to aggregation and resistant to both the CMA and UPS. In the aforesaid case, cargoes are separated into autophagosomes before lysosomal hydrolase-mediated degradation. Even though the majority of the aggregated and MPs in the human proteome can be removed via cellular protein quality control (PQC), some mutant and native proteins tend to aggregate into β-sheet-rich oligomers that exhibit resistance to all identified proteolytic processes and can, therefore, grow into extracellular plaques or inclusion bodies. Indeed, the buildup of protease-resistant aggregated and MPs is a usual process underlying various protein misfolding disorders, including neurodegenerative diseases (NDs) for example Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion diseases. In this article, we have focused on the contribution of PQC in the degradation of pathogenic proteins in NDs.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.,Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Uddin MS, Al Mamun A, Rahman MA, Behl T, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Emerging Proof of Protein Misfolding and Interactions in Multifactorial Alzheimer's Disease. Curr Top Med Chem 2021; 20:2380-2390. [PMID: 32479244 DOI: 10.2174/1568026620666200601161703] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a devastating neurodegenerative disorder, characterized by the extracellular accumulations of amyloid beta (Aβ) as senile plaques and intracellular aggregations of tau in the form of neurofibrillary tangles (NFTs) in specific brain regions. In this review, we focus on the interaction of Aβ and tau with cytosolic proteins and several cell organelles as well as associated neurotoxicity in AD. SUMMARY Misfolded proteins present in cells accompanied by correctly folded, intermediately folded, as well as unfolded species. Misfolded proteins can be degraded or refolded properly with the aid of chaperone proteins, which are playing a pivotal role in protein folding, trafficking as well as intermediate stabilization in healthy cells. The continuous aggregation of misfolded proteins in the absence of their proper clearance could result in amyloid disease including AD. The neuropathological changes of AD brain include the atypical cellular accumulation of misfolded proteins as well as the loss of neurons and synapses in the cerebral cortex and certain subcortical regions. The mechanism of neurodegeneration in AD that leads to severe neuronal cell death and memory dysfunctions is not completely understood until now. CONCLUSION Examining the impact, as well as the consequences of protein misfolding, could help to uncover the molecular etiologies behind the complicated AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Uddin MS, Rahman MM, Sufian MA, Jeandet P, Ashraf GM, Bin-Jumah MN, Mousa SA, Abdel-Daim MM, Akhtar MF, Saleem A, Amran MS. Exploring the New Horizon of AdipoQ in Obesity-Related Alzheimer's Dementia. Front Physiol 2021; 11:567678. [PMID: 33584324 PMCID: PMC7873563 DOI: 10.3389/fphys.2020.567678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, which causes abnormalities in learning, thinking, memory, as well as behavior. Generally, symptoms of AD develop gradually and aggravate over time, and consequently severely interfere with daily activities. Furthermore, obesity is one of the common risk factors for dementia. Dysregulation of adipokine and adipocyte dysfunction are assumed to be accountable for the high risk of obesity in people that develop many related disorders such as AD. Moreover, it has been observed that the dysfunction of adipose is connected with changes in brain metabolism, brain atrophy, cognitive decline, impaired mood, neuroinflammation, impaired insulin signaling, and neuronal dysfunction in people with obesity. Conversely, the pathological mechanisms, as well as the molecular players which are involved in this association, have been unclear until now. In this article, we discuss the impact of adiponectin (AdipoQ) on obesity-related Alzheimer's dementia.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Motiar Rahman
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Mohammad Abu Sufian
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, Reims Cedex, France
| | - Ghulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY, United States
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
27
|
Kabir MT, Uddin MS, Mathew B, Das PK, Perveen A, Ashraf GM. Emerging Promise of Immunotherapy for Alzheimer's Disease: A New Hope for the Development of Alzheimer's Vaccine. Curr Top Med Chem 2021; 20:1214-1234. [PMID: 32321405 DOI: 10.2174/1568026620666200422105156] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the characteristics of this devastating disorder include the progressive and disabling deficits in the cognitive functions including reasoning, attention, judgment, comprehension, memory, and language. OBJECTIVE In this article, we have focused on the recent progress that has been achieved in the development of an effective AD vaccine. SUMMARY Currently, available treatment options of AD are limited to deliver short-term symptomatic relief only. A number of strategies targeting amyloid-beta (Aβ) have been developed in order to treat or prevent AD. In order to exert an effective immune response, an AD vaccine should contain adjuvants that can induce an effective anti-inflammatory T helper 2 (Th2) immune response. AD vaccines should also possess the immunogens which have the capacity to stimulate a protective immune response against various cytotoxic Aβ conformers. The induction of an effective vaccine's immune response would necessitate the parallel delivery of immunogen to dendritic cells (DCs) and their priming to stimulate a Th2-polarized response. The aforesaid immune response is likely to mediate the generation of neutralizing antibodies against the neurotoxic Aβ oligomers (AβOs) and also anti-inflammatory cytokines, thus preventing the AD-related inflammation. CONCLUSION Since there is an age-related decline in the immune functions, therefore vaccines are more likely to prevent AD instead of providing treatment. AD vaccines might be an effective and convenient approach to avoid the treatment-related huge expense.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | | | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Exercise as Potential Therapeutic Target to Modulate Alzheimer's Disease Pathology in APOE ε4 Carriers: A Systematic Review. Cardiol Ther 2021; 10:67-88. [PMID: 33403644 PMCID: PMC8126521 DOI: 10.1007/s40119-020-00209-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease for which no effective treatment exists at present. Previous research has found that exercise reduces the risk of AD. Since the apolipoprotein E (APOE) ε4 allele increases the risk of AD and is associated with faster disease progression than the other isoforms, we aimed to highlight the impact of exercise on AD pathology in APOE ε4 carriers. This review focuses on the effect of exercise on cognitive function, dementia risk, amyloid-β (Aβ) metabolism, lipid metabolism, neuroinflammation, neurotrophic factors and vascularization in APOE ε4 carriers. We searched the literature in the PubMed electronic database using the following search terms: physical activity, exercise, aerobic fitness, training, sport, APOE4, Alzheimer's disease, AD and dementia. By cross-referencing, additional publications were identified. Selected studies required older adults to take part in an exercise intervention or to make use of self-reported physical activity questionnaires. All included studies were written and published in English between 2000 and 2020. From these studies, we conclude that exercise is a non-pharmacological treatment option for high-risk APOE ε4 carriers to ameliorate the AD pathological processes including reducing Aβ load, protecting against hippocampal atrophy, improving cognitive function, stabilizing cholesterol levels and lowering pro-inflammatory signals. Variation in study design related to age, cognitive outcomes and the type of intervention explained the differences in study outcomes. However, exercise seems to be effective in delaying the onset of AD and may improve the quality of life of AD patients.
Collapse
|
29
|
González-Sanmiguel J, Burgos CF, Bascuñán D, Fernández-Pérez EJ, Riffo-Lepe N, Boopathi S, Fernández-Pérez A, Bobadilla-Azócar C, González W, Figueroa M, Vicente B, Aguayo LG. Gabapentin Inhibits Multiple Steps in the Amyloid Beta Toxicity Cascade. ACS Chem Neurosci 2020; 11:3064-3076. [PMID: 32886489 DOI: 10.1021/acschemneuro.0c00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oligomeric β-amyloid peptide (Aβ) is one of the main neurotoxic agents of Alzheimer's disease (AD). Oligomers associate to neuronal membranes, forming "pore-like" structures that cause intracellular calcium and neurotransmitter dyshomeostasis, leading to synaptic failure and death. Through molecular screening targeting the C terminal region of Aβ, a region involved in the toxic properties of the peptide, we detected an FDA approved compound, gabapentin (GBP), with neuroprotective effects against Aβ toxicity. At micromolar concentrations, GBP antagonized peptide aggregation over time and reduced the Aβ absorbance plateau to 28% of control. In addition, GBP decreased Aβ association to membranes by almost half, and the effects of Aβ on intracellular calcium in hippocampal neurons were antagonized without causing effects on its own. Finally, we found that GBP was able to block the synaptotoxicity induced by Aβ in hippocampal neurons, increasing post-synaptic currents from 1.7 ± 0.9 to 4.2 ± 0.7 fC and mean relative fluorescence intensity values of SV2, a synaptic protein, from 0.7 ± 0.09 to 1.00 ± 0.08. The results show that GBP can interfere with Aβ-induced toxicity by blocking multiple steps, resulting in neuroprotection, which justifies advancing toward additional animal and human studies.
Collapse
Affiliation(s)
- Juliana González-Sanmiguel
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Carlos F. Burgos
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Denisse Bascuñán
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Eduardo J. Fernández-Pérez
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Nicolás Riffo-Lepe
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Subramanian Boopathi
- The Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, Talca 3460000, Chile
| | | | - Catalina Bobadilla-Azócar
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
| | - Wendy González
- The Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, Talca 3460000, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca 3460000, Chile
| | - Maximiliano Figueroa
- Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology, Universidad de Concepción, Concepción 4030000, Chile
| | - Benjamín Vicente
- Department of Psychiatry and Mental Health, Universidad de Concepcion, Concepción 4030000, Chile
- Program on Neuroscience, Psychiatry and Mental Health, Universidad de Concepcion, Concepción 4030000, Chile
| | - Luis G. Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción 4030000, Chile
- Program on Neuroscience, Psychiatry and Mental Health, Universidad de Concepcion, Concepción 4030000, Chile
| |
Collapse
|
30
|
Uddin MS, Al Mamun A, Kabir MT, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM. Multi-Target Drug Candidates for Multifactorial Alzheimer's Disease: AChE and NMDAR as Molecular Targets. Mol Neurobiol 2020; 58:281-303. [PMID: 32935230 DOI: 10.1007/s12035-020-02116-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia among elder people, which is a progressive neurodegenerative disease that results from a chronic loss of cognitive activities. It has been observed that AD is multifactorial, hence diverse pharmacological targets that could be followed for the treatment of AD. The Food and Drug Administration has approved two types of medications for AD treatment such as cholinesterase inhibitors (ChEIs) and N-methyl-D-aspartic acid receptor (NMDAR) antagonists. Rivastigmine, donepezil, and galantamine are the ChEIs that have been approved to treat AD. On the other hand, memantine is the only non-competitive NMDAR antagonist approved in AD treatment. As compared with placebo, it has been revealed through clinical studies that many single-target therapies are unsuccessful to treat multifactorial Alzheimer's symptoms or disease progression. Therefore, due to the complex nature of AD pathophysiology, diverse pharmacological targets can be hunted. In this article, based on the entwined link of acetylcholinesterase (AChE) and NMDAR, we represent several multifunctional compounds in the rational design of new potential AD medications. This review focus on the significance of privileged scaffolds in the generation of the multi-target lead compound for treating AD, investigating the idea and challenges of multi-target drug design. Furthermore, the most auspicious elementary units for designing as well as synthesizing hybrid drugs are demonstrated as pharmacological probes in the rational design of new potential AD therapeutics.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
31
|
Kabir MT, Uddin MS, Zaman S, Begum Y, Ashraf GM, Bin-Jumah MN, Bungau SG, Mousa SA, Abdel-Daim MM. Molecular Mechanisms of Metal Toxicity in the Pathogenesis of Alzheimer’s Disease. Mol Neurobiol 2020; 58:1-20. [DOI: 10.1007/s12035-020-02096-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022]
|
32
|
Uddin MS, Kabir MT, Rahman MS, Behl T, Jeandet P, Ashraf GM, Najda A, Bin-Jumah MN, El-Seedi HR, Abdel-Daim MM. Revisiting the Amyloid Cascade Hypothesis: From Anti-Aβ Therapeutics to Auspicious New Ways for Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21165858. [PMID: 32824102 PMCID: PMC7461598 DOI: 10.3390/ijms21165858] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder related to age, characterized by the cerebral deposition of fibrils, which are made from the amyloid-β (Aβ), a peptide of 40–42 amino acids. The conversion of Aβ into neurotoxic oligomeric, fibrillar, and protofibrillar assemblies is supposed to be the main pathological event in AD. After Aβ accumulation, the clinical symptoms fall out predominantly due to the deficient brain clearance of the peptide. For several years, researchers have attempted to decline the Aβ monomer, oligomer, and aggregate levels, as well as plaques, employing agents that facilitate the reduction of Aβ and antagonize Aβ aggregation, or raise Aβ clearance from brain. Unluckily, broad clinical trials with mild to moderate AD participants have shown that these approaches were unsuccessful. Several clinical trials are running involving patients whose disease is at an early stage, but the preliminary outcomes are not clinically impressive. Many studies have been conducted against oligomers of Aβ which are the utmost neurotoxic molecular species. Trials with monoclonal antibodies directed against Aβ oligomers have exhibited exciting findings. Nevertheless, Aβ oligomers maintain equivalent states in both monomeric and aggregation forms; so, previously administered drugs that precisely decrease Aβ monomer or Aβ plaques ought to have displayed valuable clinical benefits. In this article, Aβ-based therapeutic strategies are discussed and several promising new ways to fight against AD are appraised.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
- Correspondence: ; Tel.: +880-171-022-0110
| | - Md. Tanvir Kabir
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France;
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 23 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
33
|
Uddin MS, Mamun AA, Sumsuzzman DM, Ashraf GM, Perveen A, Bungau SG, Mousa SA, El-Seedi HR, Bin-Jumah MN, Abdel-Daim MM. Emerging Promise of Cannabinoids for the Management of Pain and Associated Neuropathological Alterations in Alzheimer's Disease. Front Pharmacol 2020; 11:1097. [PMID: 32792944 PMCID: PMC7387504 DOI: 10.3389/fphar.2020.01097] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible chronic neurodegenerative disorder that occurs when neurons in the brain degenerate and die. Pain frequently arises in older patients with neurodegenerative diseases including AD. However, the presence of pain in older people is usually overlooked with cognitive dysfunctions. Most of the times dementia patients experience moderate to severe pain but the development of severe cognitive dysfunctions tremendously affects their capability to express the presence of pain. Currently, there are no effective treatments against AD that emphasize the necessity for increasing research to develop novel drugs for treating or preventing the disease process. Furthermore, the prospective therapeutic use of cannabinoids in AD has been studied for the past few years. In this regard, targeting the endocannabinoid system has considered as a probable therapeutic strategy to control several associated pathological pathways, such as mitochondrial dysfunction, excitotoxicity, oxidative stress, and neuroinflammation for the management of AD. In this review, we focus on recent studies about the role of cannabinoids for the treatment of pain and related neuropathological changes in AD.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Simona G. Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY, United States
| | - Hesham R. El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom, Egypt
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
34
|
Kabir MT, Uddin MS, Setu JR, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM. Exploring the Role of PSEN Mutations in the Pathogenesis of Alzheimer's Disease. Neurotox Res 2020; 38:833-849. [PMID: 32556937 DOI: 10.1007/s12640-020-00232-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Mutations of presenilin (PSEN) genes that encode presenilin proteins have been found as the vital causal factors for early-onset familial AD (FAD). AD pathological features such as memory loss, synaptic dysfunction, and formation of plaques have been successfully mimicked in the transgenic mouse models that coexpress FAD-related presenilin and amyloid precursor protein (APP) variants. γ-Secretase (GS) is an enzyme that plays roles in catalyzing intramembranous APP proteolysis to release pathogenic amyloid beta (Aβ). It has been found that presenilins can play a role as the GS's catalytic subunit. FAD-related mutations in presenilins can modify the site of GS cleavage in a way that can elevate the production of longer and highly fibrillogenic Aβ. Presenilins can interact with β-catenin to generate presenilin complexes. Aforesaid interactions have also been studied to observe the mutational and physiological activities in the catenin signal transduction pathway. Along with APP, GS can catalyze intramembrane proteolysis of various substrates that play a vital role in synaptic function. PSEN mutations can cause FAD with autosomal dominant inheritance and early onset of the disease. In this article, we have reviewed the current progress in the analysis of PSENs and the correlation of PSEN mutations and AD pathogenesis.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh. .,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
35
|
Uddin MS, Kabir MT, Tewari D, Mamun AA, Mathew B, Aleya L, Barreto GE, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Revisiting the role of brain and peripheral Aβ in the pathogenesis of Alzheimer's disease. J Neurol Sci 2020; 416:116974. [PMID: 32559516 DOI: 10.1016/j.jns.2020.116974] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Amyloid beta (Aβ) is an intricate molecule that interacts with several biomolecules and/or produces insoluble assemblies and eventually the nonphysiological depositions of its alternate with normal neuronal conditions leading to Alzheimer's disease (AD). Aβ is formed through the proteolytic cleavage of the amyloid precursor protein (APP). Significant efforts are being made to explore the exact role of Aβ in AD pathogenesis. It is believed that the deposition of Aβ in the brain takes place from Aβ components which are derived from the brain itself. However, recent evidence suggests that Aβ derived also from the periphery and hence the Aβ circulating in the blood is capable of penetrating the blood-brain barrier (BBB) and the role of Aβ derived from the periphery is largely unknown so far. Therefore, Aβ origin determination and the underlying mechanisms of its pathological effects are of considerable interest in exploring effective therapeutic strategies. The purpose of this review is to provide a novel insight into AD pathogenesis based on Aβ in both the brain and periphery and highlight new therapeutic avenues to combat AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
36
|
Uddin MS, Rahman MA, Kabir MT, Behl T, Mathew B, Perveen A, Barreto GE, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Multifarious roles of mTOR signaling in cognitive aging and cerebrovascular dysfunction of Alzheimer's disease. IUBMB Life 2020; 72:1843-1855. [PMID: 32472959 DOI: 10.1002/iub.2324] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022]
Abstract
Age-related cognitive failure is a main devastating incident affecting even healthy people. Alzheimer's disease (AD) is the utmost common form of dementia among the geriatric community. In the pathogenesis of AD, cerebrovascular dysfunction is revealed before the beginning of the cognitive decline. Mounting proof shows a precarious impact of cerebrovascular dysregulation in the development of AD pathology. Recent studies document that the mammalian target of rapamycin (mTOR) acts as a crucial effector of cerebrovascular dysregulation in AD. The mTOR contributes to brain vascular dysfunction and subsequence cerebral blood flow deficits as well as cognitive impairment. Furthermore, mTOR causes the blood-brain barrier (BBB) breakdown in AD models. Inhibition of mTOR hyperactivity protects the BBB integrity in AD. Furthermore, mTOR drives cognitive defect and cerebrovascular dysfunction, which are greatly prevalent in AD, but the central molecular mechanisms underlying these alterations are obscure. This review represents the crucial and current research findings regarding the role of mTOR signaling in cognitive aging and cerebrovascular dysfunction in the pathogenesis of AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Patiala, India
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
37
|
Uddin MS, Tewari D, Sharma G, Kabir MT, Barreto GE, Bin-Jumah MN, Perveen A, Abdel-Daim MM, Ashraf GM. Molecular Mechanisms of ER Stress and UPR in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2020; 57:2902-2919. [PMID: 32430843 DOI: 10.1007/s12035-020-01929-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/01/2020] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease involving aggregation of misfolded proteins inside the neuron causing prolonged cellular stress. The neuropathological hallmarks of AD include the formation of senile plaques and neurofibrillary tangles in specific brain regions that lead to synaptic loss and neuronal death. The exact mechanism of neuron dysfunction in AD remains obscure. In recent years, endoplasmic reticulum (ER) dysfunction has been implicated in neuronal degeneration seen in AD. Apart from AD, many other diseases also involve misfolded proteins aggregations in the ER, a condition referred to as ER stress. The response of the cell to ER stress is to activate a group of signaling pathways called unfolded protein response (UPR) that stimulates a particular transcriptional program to restore ER function and ensure cell survival. ER stress also involves the generation of reactive oxygen species (ROS) that, together with mitochondrial ROS and decreased effectiveness of antioxidant mechanisms, producing a condition of chronic oxidative stress. The unfolded proteins may not always produce a response that leads to the restoration of cellular functions, but they may also lead to inflammation by a set of different pathways with deleterious consequences. In this review, we extensively discuss the role of ER stress and how to target it using different pharmacological approaches in AD development and onset.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Sharma
- Department of Physiology, AIIMS Jodhpur, Jodhpur, India
| | | | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
38
|
Mamun AA, Uddin MS, Bin Bashar MF, Zaman S, Begum Y, Bulbul IJ, Islam MS, Sarwar MS, Mathew B, Amran MS, Md Ashraf G, Bin-Jumah MN, Mousa SA, Abdel-Daim MM. Molecular Insight into the Therapeutic Promise of Targeting APOE4 for Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5086250. [PMID: 32509144 PMCID: PMC7245681 DOI: 10.1155/2020/5086250] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that causes chronic cognitive dysfunction. Most of the AD cases are late onset, and the apolipoprotein E (APOE) isoform is a key genetic risk factor. The APOE gene has 3 key alleles in humans including APOE2, APOE3, and APOE4. Among them, APOE4 is the most potent genetic risk factor for late-onset AD (LOAD), while APOE2 has a defensive effect. Research data suggest that APOE4 leads to the pathogenesis of AD through various processes such as accelerated beta-amyloid aggregations that raised neurofibrillary tangle formation, cerebrovascular diseases, aggravated neuroinflammation, and synaptic loss. However, the precise mode of actions regarding in what way APOE4 leads to AD pathology remains unclear. Since APOE contributes to several pathological pathways of AD, targeting APOE4 might serve as a promising strategy for the development of novel drugs to combat AD. In this review, we focus on the recent studies about APOE4-targeted therapeutic strategies that have been advanced in animal models and are being prepared for use in humans for the management of AD.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md. Fahim Bin Bashar
- Department of Pharmacy, University of Development Alternative, Dhaka, Bangladesh
| | - Sonia Zaman
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Yesmin Begum
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | | | - Md. Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY 12144, USA
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|