1
|
Jia Y, Yu H, Liang J, Zhang Q, Sun J, Yang H, Yan H, Zhang S, Li Y, Jin Y, Yang M. Increased FGF-21 Improves Ectopic Lipid Deposition in the Liver and Skeletal Muscle. Nutrients 2024; 16:1254. [PMID: 38732501 PMCID: PMC11085859 DOI: 10.3390/nu16091254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Obesity can lead to excessive lipid accumulation in non-adipose tissues, such as the liver and skeletal muscles, leading to ectopic lipid deposition and damaging target organ function through lipotoxicity. FGF-21 is a key factor in regulating lipid metabolism, so we aim to explore whether FGF-21 is involved in improving ectopic lipid deposition. We observed the characteristics of ectopic lipid deposition in the liver and skeletal muscles of obesity-resistant mice, detected the expression of FGF-21 and perilipin, and found that obesity-resistant mice showed a decrease in ectopic lipid deposition in the liver and skeletal muscles and increased expression of FGF-21. After inhibiting the expression of FGF-21, a more severe lipid deposition in liver cells and skeletal muscle cells was found. The results indicate that inhibiting FGF-21 can exacerbate ectopic lipid deposition via regulating lipid droplet synthesis and decomposition, as well as free fatty acid translocation and oxidation. In conclusion, FGF-21 is involved in improving ectopic lipid deposition caused by obesity in the liver and skeletal muscles.
Collapse
Affiliation(s)
- Ying Jia
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China; (Y.J.); (H.Y.); (J.L.); (Q.Z.); (H.Y.); (S.Z.)
| | - Huixin Yu
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China; (Y.J.); (H.Y.); (J.L.); (Q.Z.); (H.Y.); (S.Z.)
| | - Jia Liang
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China; (Y.J.); (H.Y.); (J.L.); (Q.Z.); (H.Y.); (S.Z.)
| | - Qiang Zhang
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China; (Y.J.); (H.Y.); (J.L.); (Q.Z.); (H.Y.); (S.Z.)
| | - Jiawei Sun
- College of Basic Medicine, Binzhou Medical University, Yantai 264003, China; (J.S.); (H.Y.)
| | - Hongqing Yang
- College of Basic Medicine, Binzhou Medical University, Yantai 264003, China; (J.S.); (H.Y.)
| | - Haijing Yan
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China; (Y.J.); (H.Y.); (J.L.); (Q.Z.); (H.Y.); (S.Z.)
| | - Shuping Zhang
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China; (Y.J.); (H.Y.); (J.L.); (Q.Z.); (H.Y.); (S.Z.)
| | - Yana Li
- Department of Pathophysiology, Binzhou Medical University, Yantai 264003, China;
| | - Yongjun Jin
- Department of Endocrinology, Binzhou Medical University, Yantai 264003, China;
| | - Meizi Yang
- Department of Pharmacology, Binzhou Medical University, Yantai 264003, China; (Y.J.); (H.Y.); (J.L.); (Q.Z.); (H.Y.); (S.Z.)
| |
Collapse
|
2
|
Han LL, Zhang X, Zhang H, Li T, Zhao YC, Tian MH, Sun FL, Feng B. Alisol B 23-acetate promotes white adipose tissue browning to mitigate high-fat diet-induced obesity by regulating mTOR-SREBP1 signaling. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:83-92. [PMID: 38311542 DOI: 10.1016/j.joim.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
OBJECTIVE Obesity is a global health concern with management strategies encompassing bariatric surgery and anti-obesity drugs; however, concerns regarding complexities and side effects persist, driving research for more effective, low-risk strategies. The promotion of white adipose tissue (WAT) browning has emerged as a promising approach. Moreover, alisol B 23-acetate (AB23A) has demonstrated efficacy in addressing metabolic disorders, suggesting its potential as a therapeutic agent in obesity management. Therefore, in this study, we aimed to investigate the therapeutic potential of AB23A for mitigating obesity by regulating metabolic phenotypes and lipid distribution in mice fed a high-fat diet (HFD). METHODS An obesity mouse model was established by administration of an HFD. Glucose and insulin metabolism were assessed via glucose and insulin tolerance tests. Adipocyte size was determined using hematoxylin and eosin staining. The expression of browning markers in WAT was evaluated using Western blotting and quantitative real-time polymerase chain reaction. Metabolic cage monitoring involved the assessment of various parameters, including food and water intake, energy metabolism, respiratory exchange rates, and physical activity. Moreover, oil red O staining was used to evaluate intracellular lipid accumulation. A bioinformatic analysis tool for identifying the molecular mechanisms of traditional Chinese medicine was used to examine AB23A targets and associated signaling pathways. RESULTS AB23A administration significantly reduced the weight of obese mice, decreased the mass of inguinal WAT, epididymal WAT, and perirenal adipose tissue, improved glucose and insulin metabolism, and reduced adipocyte size. Moreover, treatment with AB23A promoted the expression of browning markers in WAT, enhanced overall energy metabolism in mice, and had no discernible effect on food intake, water consumption, or physical activity. In 3T3-L1 cells, AB23A inhibited lipid accumulation, and both AB23A and rapamycin inhibited the mammalian target of rapamycin-sterol regulatory element-binding protein-1 (mTOR-SREBP1) signaling pathway. Furthermore, 3-isobutyl-1-methylxanthine, dexamethasone and insulin, at concentrations of 0.25 mmol/L, 0.25 μmol/L and 1 μg/mL, respectively, induced activation of the mTOR-SREBP1 signaling pathway, which was further strengthened by an mTOR activator MHY1485. Notably, MHY1485 reversed the beneficial effects of AB23A in 3T3-L1 cells. CONCLUSION AB23A promoted WAT browning by inhibiting the mTOR-SREBP1 signaling pathway, offering a potential strategy to prevent obesity. Please cite this article as: Han LL, Zhang X, Zhang H, Li T, Zhao YC, Tian MH, Sun FL, Feng B. Alisol B 23-acetate promotes white adipose tissue browning to mitigate high-fat diet-induced obesity by regulating mTOR-SREBP1 signaling. J Integr Med. 2024; 22(1): 83-92.
Collapse
Affiliation(s)
- Lu-Lu Han
- Department of Neurology Three, The Fifth People's Hospital of Jinan, Jinan 250013, Shandong Province, China
| | - Xin Zhang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Hui Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Ting Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Yi-Chen Zhao
- Department of Geriatrics, the First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan 250014, Shandong Province, China
| | - Ming-Hui Tian
- Chinese Medicine Culture and Literature Research Institute, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Feng-Lei Sun
- Department of General Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong Province, China
| | - Bo Feng
- Department of Geriatrics, the First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan 250014, Shandong Province, China; Department of Traditional Chinese Medicine, the Second People's Hospital of Haibei Prefecture, Zangzu Autonomous Prefecture of Haibei, 810300, Qinghai Province, China.
| |
Collapse
|
3
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Cao Y, Han S, Lu H, Luo Y, Guo T, Wu Q, Luo F. Targeting mTOR Signaling by Dietary Polyphenols in Obesity Prevention. Nutrients 2022; 14:nu14235171. [PMID: 36501200 PMCID: PMC9735788 DOI: 10.3390/nu14235171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Dietary polyphenols can be utilized to treat obesity and chronic disorders linked to it. Dietary polyphenols can inhibit pre-adipocyte proliferation, adipocyte differentiation, and triglyceride accumulation; meanwhile, polyphenols can also stimulate lipolysis and fatty acid β-oxidation, but the molecular mechanisms of anti-obesity are still unclear. The mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cell growth, survival, metabolism, and immunity. mTOR signaling is also thought to play a key role in the development of metabolic diseases such as obesity. Recent studies showed that dietary polyphenols could target mTOR to reduce obesity. In this review, we systematically summarized the research progress of polyphenols in preventing obesity through the mTOR signaling pathway. Mechanistically, polyphenols can target multiple signaling pathways and gut microbiota to regulate the mTOR signaling pathway to exert anti-obesity effects. The main mechanisms include: modulating lipid metabolism, adipogenesis, inflammation, etc. Dietary polyphenols exerting an anti-obesity effect by targeting mTOR signaling will broaden our understanding of the anti-obesity mechanisms of polyphenols and provide valuable insights for researchers in this novel field.
Collapse
Affiliation(s)
- Yunyun Cao
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuai Han
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Han Lu
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Tianyi Guo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Wu
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feijun Luo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence:
| |
Collapse
|
5
|
Yao J, Yan X, Xiao X, You X, Li Y, Yang Y, Zhang W, Li Y. Electroacupuncture induces weight loss by regulating tuberous sclerosis complex 1-mammalian target of rapamycin methylation and hypothalamic autophagy in high-fat diet-induced obese rats. Front Pharmacol 2022; 13:1015784. [PMID: 36313328 PMCID: PMC9596966 DOI: 10.3389/fphar.2022.1015784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Obesity can be caused by abnormalities of hypothalamic autophagy, which is closely regulated by the epigenetic modification of TSC1-mTOR. However, whether the weight-reducing effect of EA may relate to the modification of TSC1-mTOR methylation and hypothalamic autophagy remain unclear. This study was conducted to reveal the possible mechanism by which EA reduces BW by measuring the levels of TSC1-mTOR methylation and hypothalamic autophagy-related components.Methods: The weight-reducing effect of EA was investigated in high-fat diet (HFD)-induced obese (DIO) rats by monitoring the BW, food consumption, and epididymal white adipose tissue (eWAT)/BW ratio. Hematoxylin and eosin staining was performed for morphological evaluation of eWAT. Immunofluorescence was utilized to observe the localization of LC3 in the hypothalamus. The expressions of autophagy components (Beclin-1, LC3, and p62) and mTOR signaling (mTOR, p-mTOR, p70S6K, and p-p70S6K) were assessed by western blot. The methylation rate of the TSC1 promoter was detected by bisulfite genomic sequencing.Results: Treatment with EA significantly reduced the BW, food consumption, and eWAT/BW ratio; attenuated the morphological alternations in the adipocytes of DIO rats. While HFD downregulated the expression levels of Beclin-1 and LC3 and upregulated those of p62, these changes were normalized by EA treatment. EA markedly decreased the methylation rate of the TSC1 gene promoter and suppressed the protein expressions of mTOR, p-mTOR, p70S6K, and p-p70S6K in the hypothalamus.Conclusion: EA could reduce BW and fat accumulation in DIO rats. This ameliorative effect of EA may be associated with its demethylation effect on TSC1-mTOR and regulation of autophagy in the hypothalamus.
Collapse
Affiliation(s)
- Junpeng Yao
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiangyun Yan
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianjun Xiao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi You
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanqiu Li
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqing Yang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Zhang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Li
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Ying Li,
| |
Collapse
|
6
|
Yan X, Yang C, Yang M, Ma Y, Zhang Y, Zhang Y, Liu C, Xu Q, Tu K, Zhang M. All-in-one theranostic nano-platform based on polymer nanoparticles for BRET/FRET-initiated bioluminescence imaging and synergistically anti-inflammatory therapy for ulcerative colitis. J Nanobiotechnology 2022; 20:99. [PMID: 35236359 PMCID: PMC8889649 DOI: 10.1186/s12951-022-01299-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 12/19/2022] Open
Abstract
Background Ulcerative colitis (UC), a subtype of inflammatory bowel disease (IBD), has evolved into a global burden given its high incidence. There is a clinical need to create better diagnostic and therapeutic approaches to UC. Results We fabricated P-selectin binding peptide-decorated poly lactic-co-glycolic acid (PBP-PLGA-NP) doped with two lipophilic dyes, DiL and DiD. Meanwhile, two low-toxic anti-inflammatory natural products (betulinic acid [BA] and resveratrol [Res]) were co-loaded in the PBP-PLGA-NP system. The BA/Res-loaded NPs had an average size of around 164.18 nm with a negative zeta potential (− 25.46 mV). Entrapment efficiencies of BA and Res were 74.54% and 52.33%, respectively, and presented a sustained drug release profile. Further, the resulting PBP-PLGA-NP could be internalized by RAW 264.7 cells and Colon-26 cells efficiently in vitro and preferentially localized to the inflamed colon. When intravenously injected with luminol, MPO-dependent bioluminescence imaging to visualize tissue inflammation was activated by the bioluminescence and fluorescence resonance energy transfer (BRET-FRET) effect. Importantly, injected NPs could remarkably alleviate UC symptoms yet maintain intestinal microbiota homeostasis without inducing organ injuries in the mice models of colitis. Conclusions This theranostic nano-platform not only serves as a therapeutic system for UC but also as a non-invasive and highly-sensitive approach for accurately visualizing inflammation. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01299-8.
Collapse
Affiliation(s)
- Xiangji Yan
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Chunhua Yang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta, 30302, GA, USA
| | - Mei Yang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yana Ma
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Cui Liu
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
7
|
Song X, Han L, Lin X, Tian M, Sun F, Feng B. Jian Pi Tiao Gan Yin alleviates obesity phenotypes through mTORC1/SREBP1 signaling in vitro and in vivo. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:291. [PMID: 35433951 PMCID: PMC9011225 DOI: 10.21037/atm-22-685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
Background Obesity has been considered as a leading cause of multiple metabolic syndromes, such as type 2 diabetes and hypertension cardiovascular diseases. Jian Pi Tiao Gan Yin (JPTGY), a Chinese herb preparation, is used to treat obesity of liver qi stagnation and spleen deficiency. The mechanism of action of JPTGY in obesity remains unclear. This study evaluated the effect of JPTGY on obesity. Methods The mechanism of action of JPTGY on obesity was investigated in high-fat diet (HFD)-induced obese mice and palmitic acid-treated 3T3-L1 cells. Lipid droplet accumulation was detected using oil red O staining. Factors associated with lipid accumulation were detected by western blotting. Results Treatment with JPTGY reduced HFD-induced adiposity and body weight gain. JPTGY increased the levels of brown adipose tissue biomarkers in obese mice and palmitic acid-treated 3T3-L1 cells, including peroxisome proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α) and uncoupling protein-1 (UCP-1). Meanwhile, the protein expression of white adipose tissue biomarkers, such as AGT, primary subtalar arthrodesis (PSTA), and endothelin receptor type A (EDNRA), was decreased in obese mice and palmitic acid-treated 3T3-L1 cells. JPTGY affects browning of 3T3-L1 cells through mechanistic target of rapamycin complex 1 (mTORC1) signaling. JPTGY decreased the expression levels of key adipogenic-specific proteins and lipogenic enzymes, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), sterol regulatory element binding protein (SREBP), and FAS. Treatment with the mTOR activator MHY reversed JPTGY-mediated protein expression. Conclusions We concluded that JPTGY relieved obesity phenotypes through mTORC1/SREBP1 signaling in vitro and in vivo. JPTGY may benefit the attenuation of obesity.
Collapse
Affiliation(s)
- Xiaoming Song
- Department of Geriatrics, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Lulu Han
- Neurology Ward 3, the Fifth People's Hospital of Jinan, Jinan, China
| | - Xiaowan Lin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghui Tian
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fenglei Sun
- General Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bo Feng
- Department of Geriatrics, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
8
|
Jaberi R, Mirsadeghi S, Kiani S. In vitro characterization of subventricular zone isolated neural stem cells, from adult monkey and rat brain. Mol Biol Rep 2021; 48:1311-1321. [PMID: 33566222 DOI: 10.1007/s11033-021-06201-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/28/2021] [Indexed: 11/27/2022]
Abstract
Neural stem cells (NSCs) are multipotent, self-renewable cells who are capable of differentiating into neurons, astrocytes, and oligodendrocytes. NSCs reside at the subventricular zone (SVZ) of the adult brain permanently to guarantee a lifelong neurogenesis during neural network plasticity or undesirable injuries. Although the specious inaccessibility of adult NSCs niche hampers their in vivo identification, researchers have been seeking ways to optimize adult NSCs isolation, expansion, and differentiation, in vitro. NSCs were isolated from rhesus monkey SVZ, expanded in vitro and then characterized for NSCs-specific markers expression by immunostaining, real-time PCR, flow cytometry, and cell differentiation assessments. Moreover, cell survival as well as self-renewal capacity were evaluated by TUNEL, Live/Dead and colony assays, respectively. In the next step, to validate SVZ-NSCs identity in other species, a similar protocol was applied to isolate NSCs from adult rat's SVZ as well. Our findings revealed that isolated SVZ-NSCs from both monkey and rat preserve proliferation capacity in at least nine passages as confirmed by Ki67 expression. Additionally, both SVZ-NSCs sources are capable of self-renewal in addition to NESTIN, SOX2, and GFAP expression. The mortality was measured meager with over 95% viability according to TUNEL and Live/Dead assay results. Eventually, the multipotency of SVZ-NSCs appraised authentic after their differentiation into neurons, astrocytes, and oligodendrocytes. In this study, we proposed a reliable method for SVZ-NSCs in vitro maintenance and identification, which, we believe is a promising cell source for therapeutic approach to recover neurological disorders and injuries condition.
Collapse
Affiliation(s)
- Razieh Jaberi
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Sara Mirsadeghi
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sahar Kiani
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
9
|
Liang J, Jia Y, Yan H, Shen Q, Bian W, Zhao D, Xu Y, Jin Y, Yang M. Prdm16-Mediated Browning is Involved in Resistance to Diet-Induced and Monosodium Glutamate-Induced Obesity. Diabetes Metab Syndr Obes 2021; 14:4351-4360. [PMID: 34737591 PMCID: PMC8558318 DOI: 10.2147/dmso.s335526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate resistance to diet-induced obesity (DIO) and monosodium glutamate (MSG)-induced obesity as well as the underlying mechanisms. METHODS Newborn mice were used to construct DIO and MSG-induced obesity models. Obesity indices, such as body weight, body length, Lee index, body temperature, food intake, fat weight, and leptin level, were examined. Mice that did not exhibit obesity were defined as the obesity-resistant group. The morphological changes of white adipose tissue were observed by hematoxylin and eosin staining, and expression levels of PR domain containing 16 (Prdm16) and uncoupling protein-1 (Ucp-1) in white adipose tissue were measured by Western blot. RESULTS Obesity-resistant mice fed a high-fat diet showed resistance beginning at week 5 along with lower weights and lengths than those in the obesity group from weeks 5 to 12. MSG-induced obesity-resistant mice showed features consistent with resistance to obesity from week 1 along with higher body lengths relative to the obesity group; however, the weight difference was not significant until week 10, when body weights decreased significantly in obesity-resistant mice. The Lee index was lower in obesity-resistant mice than in the obesity group and the normal group, further suggesting obesity resistance. Additionally, obesity-resistant mice showed higher levels of leptin, whereas obese mice induced by a high-fat diet showed leptin resistance. Furthermore, Prdm16 and Ucp-1 levels were both downregulated in the obesity group and upregulated in obesity-resistant mice, showing that white fat browning was highest in obesity-resistant mice. CONCLUSION The phenotypes of mice with DIO and MSG-induced obesity differed. Obesity resistance might be related to Prdm16 and Ucp-1-mediated white adipocyte browning.
Collapse
Affiliation(s)
- Jia Liang
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Ying Jia
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Haijing Yan
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Qingyu Shen
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Weihua Bian
- Department of Cell Biology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Dongmei Zhao
- Department of Anatomy, Binzhou Medical University, Yantai, People’s Republic of China
| | - Yong Xu
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Yongjun Jin
- Department of Endocrinology, Binzhou Medical University, Yantai, People’s Republic of China
| | - Meizi Yang
- Department of Pharmacology, Binzhou Medical University, Yantai, People’s Republic of China
- Correspondence: Meizi Yang; Yongjun Jin Department of Pharmacology, Binzhou Medical University, Yantai, 264003, People’s Republic of ChinaTel +86 535 691 9507Fax +86 535 691 3163 Email ;
| |
Collapse
|