1
|
Liang J, Yang F, Li Z, Li Q. Epigenetic regulation of the inflammatory response in stroke. Neural Regen Res 2025; 20:3045-3062. [PMID: 39589183 DOI: 10.4103/nrr.nrr-d-24-00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 11/27/2024] Open
Abstract
Stroke is classified as ischemic or hemorrhagic, and there are few effective treatments for either type. Immunologic mechanisms play a critical role in secondary brain injury following a stroke, which manifests as cytokine release, blood-brain barrier disruption, neuronal cell death, and ultimately behavioral impairment. Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models. However, in clinical trials of anti-inflammatory agents, long-term immunosuppression has not demonstrated significant clinical benefits for patients. This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair, as well as the complex pathophysiologic inflammatory processes in stroke. Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies. Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke. Furthermore, epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management. In this review, we summarize current findings on the epigenetic regulation of the inflammatory response in stroke, focusing on key signaling pathways including nuclear factor-kappa B, Janus kinase/signal transducer and activator of transcription, and mitogen-activated protein kinase as well as inflammasome activation. We also discuss promising molecular targets for stroke treatment. The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke, leading to improved post-stroke outcomes.
Collapse
Affiliation(s)
- Jingyi Liang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Qian Li
- Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Wang C, Cheng F, Han Z, Yan B, Liao P, Yin Z, Ge X, Li D, Zhong R, Liu Q, Chen F, Lei P. Human-induced pluripotent stem cell-derived neural stem cell exosomes improve blood-brain barrier function after intracerebral hemorrhage by activating astrocytes via PI3K/AKT/MCP-1 axis. Neural Regen Res 2025; 20:518-532. [PMID: 38819064 PMCID: PMC11317932 DOI: 10.4103/nrr.nrr-d-23-01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00029/figure1/v/2024-05-28T214302Z/r/image-tiff Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis. Human-induced pluripotent stem cell-derived neural stem cell exosomes (hiPSC-NSC-Exos) have shown potential for brain injury repair in central nervous system diseases. In this study, we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism. Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits, enhanced blood-brain barrier integrity, and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage. Additionally, hiPSC-NSC-Exos decreased immune cell infiltration, activated astrocytes, and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1, macrophage inflammatory protein-1α, and tumor necrosis factor-α post-intracerebral hemorrhage, thereby improving the inflammatory microenvironment. RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion, thereby improving blood-brain barrier integrity. Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects. In summary, our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity, in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.
Collapse
Affiliation(s)
- Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fangyuan Cheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Pan Liao
- School of Medicine, Nankai University, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Ge
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Rongrong Zhong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Tianjin Neurological Institute, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Maridaki Z, Syrros G, Gianna Delichatsiou S, Warsh J, Konstantinou GN. Claudin-5 and occludin levels in patients with psychiatric disorders - A systematic review. Brain Behav Immun 2025; 123:865-875. [PMID: 39500414 DOI: 10.1016/j.bbi.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/14/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Recent research has underscored the critical role of blood-brain barrier (BBB) integrity in psychiatric disorders, highlighting disruptions in tight junction (TJ) proteins, specifically claudin-5 and occludin. These proteins are pivotal in maintaining the BBB's selective permeability, which is essential forbrain homeostasis. Altered levels of the TJ proteins have been observed in various psychiatric conditions, suggesting potential as biomarkers for the pathophysiology of these disorders. This systematic review synthesizes existing research on the alterations of claudin-5 and occludin levels in the serum of individuals with psychiatric disorders, evaluating their correlation with BBB dysfunction and psychiatric pathophysiology. METHODS In adherence to the PRISMA guidelines, a comprehensive search strategy was employed, utilizing databases such as PubMed, Google Scholar, Web of Science, and Scopus. The review encompassed studies published between 2000 and 2024 that measured serum claudin-5 and occludin levels of psychiatric patients. Thorough data extraction and synthesis were conducted. RESULTS Seventeen studies met the inclusion criteria. Key findings include indications for increased claudin-5 levels in Schizophrenia, Bipolar Disorder, Depression, and Specific learning disorder, and increased occludin levels in ADHD and Autism Spectrum Disorder patients. No significant differences were found in studies of patients with Alcohol Use and Insomnia Disorder. CONCLUSIONS The review underscores the potential association between altered serum levels of claudin-5 and occludin and psychiatric disorders, supporting their utility as biomarkers for BBB integrity and psychiatric pathophysiology. Further research is essential to elucidate the mechanisms linking TJ protein alterations with pathophysiology and, potentially, neuroprogression in psychiatric disorders, which could lead to novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zinovia Maridaki
- 1(st) Department of Psychiatry, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Georgios Syrros
- 2(nd) Department of Psychiatry, Attikon Hospital, National and Kapodistrian University of Athens, Greece
| | | | - Jerry Warsh
- Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada
| | - Gerasimos N Konstantinou
- Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada; Poul Hansen Family Centre for Depression, Centre of Mental Health, University Health Network, Toronto, Canada.
| |
Collapse
|
4
|
Helgudóttir SS, Johnsen KB, Routhe LG, Rasmussen CLM, Thomsen MS, Moos T. Upregulation of Transferrin Receptor 1 (TfR1) but Not Glucose Transporter 1 (GLUT1) or CD98hc at the Blood-Brain Barrier in Response to Valproic Acid. Cells 2024; 13:1181. [PMID: 39056763 PMCID: PMC11275047 DOI: 10.3390/cells13141181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Transferrin receptor 1 (TfR1), glucose transporter 1 (GLUT1), and CD98hc are candidates for targeted therapy at the blood-brain barrier (BBB). Our objective was to challenge the expression of TfR1, GLUT1, and CD98hc in brain capillaries using the histone deacetylase inhibitor (HDACi) valproic acid (VPA). METHODS Primary mouse brain capillary endothelial cells (BCECs) and brain capillaries isolated from mice injected intraperitoneally with VPA were examined using RT-qPCR and ELISA. Targeting to the BBB was performed by injecting monoclonal anti-TfR1 (Ri7217)-conjugated gold nanoparticles measured using ICP-MS. RESULTS In BCECs co-cultured with glial cells, Tfrc mRNA expression was significantly higher after 6 h VPA, returning to baseline after 24 h. In vivo Glut1 mRNA expression was significantly higher in males, but not females, receiving VPA, whereas Cd98hc mRNA expression was unaffected by VPA. TfR1 increased significantly in vivo after VPA, whereas GLUT1 and CD98hc were unchanged. The uptake of anti-TfR1-conjugated nanoparticles was unaltered by VPA despite upregulated TfR expression. CONCLUSIONS VPA upregulates TfR1 in brain endothelium in vivo and in vitro. VPA does not increase GLUT1 and CD98hc proteins. The increase in TfR1 does not result in higher anti-TfR1 antibody targetability, suggesting targeting sufficiently occurs with available transferrin receptors without further contribution from accessory VPA-induced TfR1.
Collapse
Affiliation(s)
- Steinunn Sara Helgudóttir
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark
| | - Kasper Bendix Johnsen
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Lisa Greve Routhe
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark
| | | | - Maj Schneider Thomsen
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark
| | - Torben Moos
- Neurobiology Research and Drug Delivery (NRD), Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark
| |
Collapse
|
5
|
Jia P, Peng Q, Fan X, Zhang Y, Xu H, Li J, Sonita H, Liu S, Le A, Hu Q, Zhao T, Zhang S, Wang J, Zille M, Jiang C, Chen X, Wang J. Immune-mediated disruption of the blood-brain barrier after intracerebral hemorrhage: Insights and potential therapeutic targets. CNS Neurosci Ther 2024; 30:e14853. [PMID: 39034473 PMCID: PMC11260770 DOI: 10.1111/cns.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
AIMS Intracerebral hemorrhage (ICH) is a condition that arises due to the rupture of cerebral blood vessels, leading to the flow of blood into the brain tissue. One of the pathological alterations that occurs during an acute ICH is an impairment of the blood-brain barrier (BBB), which leads to severe perihematomal edema and an immune response. DISCUSSION A complex interplay between the cells of the BBB, for example, pericytes, astrocytes, and brain endothelial cells, with resident and infiltrating immune cells, such as microglia, monocytes, neutrophils, T lymphocytes, and others accounts for both damaging and protective mechanisms at the BBB following ICH. However, the precise immunological influence of BBB disruption has yet to be richly ascertained, especially at various stages of ICH. CONCLUSION This review summarizes the changes in different cell types and molecular components of the BBB associated with immune-inflammatory responses during ICH. Furthermore, it highlights promising immunoregulatory therapies to protect the integrity of the BBB after ICH. By offering a comprehensive understanding of the mechanisms behind BBB damage linked to cellular and molecular immunoinflammatory responses after ICH, this article aimed to accelerate the identification of potential therapeutic targets and expedite further translational research.
Collapse
Affiliation(s)
- Peijun Jia
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Qinfeng Peng
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Xiaochong Fan
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yumeng Zhang
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Hanxiao Xu
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Jiaxin Li
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Houn Sonita
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Simon Liu
- David Geffen School of MedicineUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Anh Le
- George Washington School of Medicine and Health SciencesWashingtonDCUSA
| | - Qiongqiong Hu
- Department of NeurologyZhengzhou Central Hospital Affiliated to Zhengzhou UniversityZhengzhouHenanChina
| | - Ting Zhao
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shijie Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Junmin Wang
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Marietta Zille
- Division of Pharmacology and Toxicology, Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Chao Jiang
- Department of NeurologyPeople's Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xuemei Chen
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| | - Jian Wang
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human AnatomySchool of Basic Medical Sciences of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
6
|
Hummel R, Dorochow E, Zander S, Ritter K, Hahnefeld L, Gurke R, Tegeder I, Schäfer MKE. Valproic Acid Treatment after Traumatic Brain Injury in Mice Alleviates Neuronal Death and Inflammation in Association with Increased Plasma Lysophosphatidylcholines. Cells 2024; 13:734. [PMID: 38727269 PMCID: PMC11083124 DOI: 10.3390/cells13090734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
The histone deacetylase inhibitor (HDACi) valproic acid (VPA) has neuroprotective and anti-inflammatory effects in experimental traumatic brain injury (TBI), which have been partially attributed to the epigenetic disinhibition of the transcription repressor RE1-Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF). Additionally, VPA changes post-traumatic brain injury (TBI) brain metabolism to create a neuroprotective environment. To address the interconnection of neuroprotection, metabolism, inflammation and REST/NRSF after TBI, we subjected C57BL/6N mice to experimental TBI and intraperitoneal VPA administration or vehicle solution at 15 min, 1, 2, and 3 days post-injury (dpi). At 7 dpi, TBI-induced an up-regulation of REST/NRSF gene expression and HDACi function of VPA on histone H3 acetylation were confirmed. Neurological deficits, brain lesion size, blood-brain barrier permeability, or astrogliosis were not affected, and REST/NRSF target genes were only marginally influenced by VPA. However, VPA attenuated structural damage in the hippocampus, microgliosis and expression of the pro-inflammatory marker genes. Analyses of plasma lipidomic and polar metabolomic patterns revealed that VPA treatment increased lysophosphatidylcholines (LPCs), which were inversely associated with interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) gene expression in the brain. The results show that VPA has mild neuroprotective and anti-inflammatory effects likely originating from favorable systemic metabolic changes resulting in increased plasma LPCs that are known to be actively taken up by the brain and function as carriers for neuroprotective polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Regina Hummel
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Erika Dorochow
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
| | - Sonja Zander
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Katharina Ritter
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
- Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
7
|
Xu CX, Qiu XY, Guo Y, Xu TM, Traub RJ, Feng HN, Cao DY. Valproate attenuates somatic hyperalgesia induced by orofacial inflammation combined with stress through inhibiting spinal IL-6 and STAT1 phosphorylation. Brain Res Bull 2024; 208:110889. [PMID: 38290590 PMCID: PMC10926348 DOI: 10.1016/j.brainresbull.2024.110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/01/2024]
Abstract
Temporomandibular disorder (TMD) and fibromyalgia syndrome (FMS) may present as comorbid conditions, but treatment options are ineffective. The purpose of this study was to investigate whether valproate (VPA) attenuates somatic hyperalgesia induced by orofacial inflammation combined with stress, which represents a model of pain associated with TMD and FMS comorbidity, and to explore the potential mechanisms. The results showed that VPA inhibited somatic hyperalgesia induced by orofacial inflammation combined with stress, and down-regulated the interleukin-6 (IL-6) expression in the L4-L5 spinal dorsal horn of female rats. The anti-nociceptive effect of VPA was blocked by single or 5 consecutive day intrathecal administration of recombinant rat IL-6. Orofacial inflammation combined with stress up-regulated the ratio of phosphorylated signal transducer and activator of transcription 1 (p-STAT1) to STAT1 (p-STAT1/STAT1) in the spinal cord. VPA did not affect the STAT1 expression, while it down-regulated the ratio of p-STAT1/STAT1. The expression of STAT3 and the ratio of p-STAT3/STAT3 were not affected by orofacial inflammation combined with stress and VPA treatment. Intrathecal administration of exogenous IL-6 up-regulated the ratio of p-STAT1/STAT1. These data indicate that VPA attenuated somatic hyperalgesia induced by orofacial inflammation combined with stress via inhibiting spinal IL-6 in female rats, and the mechanism may involve the alteration of activation status of spinal STAT1. Thus, VPA may be a new candidate analgesic that targets IL-6 and STAT1 for the treatment of pain associated with the comorbidity of TMD and FMS.
Collapse
Affiliation(s)
- Chen-Xi Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, China
| | - Xin-Yi Qiu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, China
| | - Tian-Ming Xu
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Richard J Traub
- Department of Neural and Pain Sciences, School of Dentistry, The UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Hai-Nan Feng
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi 710061, China.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, China; Department of Neural and Pain Sciences, School of Dentistry, The UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD 21201, USA.
| |
Collapse
|
8
|
Fock E, Parnova R. Mechanisms of Blood-Brain Barrier Protection by Microbiota-Derived Short-Chain Fatty Acids. Cells 2023; 12:cells12040657. [PMID: 36831324 PMCID: PMC9954192 DOI: 10.3390/cells12040657] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Impairment of the blood-brain barrier (BBB) integrity is implicated in the numerous neurological disorders associated with neuroinflammation, neurodegeneration and aging. It is now evident that short-chain fatty acids (SCFAs), mainly acetate, butyrate and propionate, produced by anaerobic bacterial fermentation of the dietary fiber in the intestine, have a key role in the communication between the gastrointestinal tract and nervous system and are critically important for the preservation of the BBB integrity under different pathological conditions. The effect of SCFAs on the improvement of the compromised BBB is mainly based on the decrease in paracellular permeability via restoration of junctional complex proteins affecting their transcription, intercellular localization or proteolytic degradation. This review is focused on the revealed and putative underlying mechanisms of the direct and indirect effects of SCFAs on the improvement of the barrier function of brain endothelial cells. We consider G-protein-coupled receptor-mediated effects of SCFAs, SCFAs-stimulated acetylation of histone and non-histone proteins via inhibition of histone deacetylases, and crosstalk of these signaling pathways with transcriptional factors NF-κB and Nrf2 as mainstream mechanisms of SCFA's effect on the preservation of the BBB integrity.
Collapse
Affiliation(s)
| | - Rimma Parnova
- Correspondence: ; Tel.: +7-812-552-79-01; Fax: +7-812-552-30-12
| |
Collapse
|
9
|
Guo H, Zhang W, Wang Z, Li Z, Zhou J, Yang Z. Dexmedetomidine post-conditioning protects blood-brain barrier integrity by modulating microglia/macrophage polarization via inhibiting NF-κB signaling pathway in intracerebral hemorrhage. Front Mol Neurosci 2022; 15:977941. [PMID: 36172260 PMCID: PMC9512049 DOI: 10.3389/fnmol.2022.977941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is one of the most devastating forms of stroke. Dexmedetomidine (DEX) has shown certain neuroprotective roles in ICH. Nevertheless, the details concerning the underlying molecular mechanism of DEX’s protective effects still need further elucidation. Herein, a model of ICH was established. The rats were randomly divided into the sham group, the ICH group, and the ICH + DEX group. Neurological outcomes, neuronal injury, and apoptosis were evaluated. Brain water content, Evans blue extravasation, and the expression of tight junction-associated proteins were also detected to assess the blood-brain barrier (BBB) integrity. Subsequently, the microglia/macrophage polarization state and inflammatory cytokine levels were observed. To further explore the underlying mechanism, NF-κB signaling pathway-associated proteins were detected. The results showed that DEX exerted neuroprotective effects against ICH-induced neurological deficits. DEX significantly increased the numbers of the surviving neurons and ameliorated neuronal cell loss and apoptosis in ICH. The rats that received the DEX displayed a lower level of brain water content and EB extravasation, moreover, ZO-1, occludin, and claudin-5 were markedly increased by DEX. Additionally, DEX facilitated M2 microglia/macrophage polarization, the M1-associated markers were reduced by DEX, while the M2-associated identification significantly increased. We found that DEX dramatically diminished pro-inflammatory cytokines expression, simultaneously promoting anti-inflammatory cytokines expression. DEX inhibited nuclear translocation of NF-κB in ICH rats. Our data suggest that DEX post-conditioning protects BBB integrity by modulating microglia/macrophage polarization via inhibiting the NF-κB signaling pathway in ICH.
Collapse
Affiliation(s)
- Hao Guo
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China.,The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Weiwei Zhang
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Zhi Wang
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Zhishan Li
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Jing Zhou
- Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China
| | - Zhaoyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Institute of Integrative Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Zhou MY, Zhang YJ, Ding HM, Wu WF, Cai WW, Wang YQ, Geng DQ. Diprotin A TFA Exerts Neurovascular Protection in Ischemic Cerebral Stroke. Front Neurosci 2022; 16:861059. [PMID: 35615279 PMCID: PMC9125038 DOI: 10.3389/fnins.2022.861059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIt has been established that the dipeptidyl peptidase-4 (DPP-4) inhibitor Diprotin A TFA can reduce vascular endothelial (VE)-cadherin disruption by inhibiting the increase in cleaved β-catenin in response to hypoxia, thereby protecting the vascular barrier of human umbilical vein endothelial cells. In this study, we sought to investigate the possible effect of Diprotin A TFA on the VE barrier after cerebral ischemic stroke in mice.MethodsC57BL/6J mice were divided into five groups, namely, (1) sham, (2) stroke, (3) stroke + dimethyl sulfoxide (DMSO), (4) stroke + Diprotin A TFA, and (5) stroke + Diprotin A TFA + XAV-939. First, the cerebral ischemia model was established by photothrombotic ischemia, followed by intraperitoneal injection with Diprotin A TFA and XAV-939 at doses of 70 μg/kg and 40 mg/kg 30 min once in the morning and once in the evening for 3 days. Immunofluorescence staining and Western blot methods were used to analyze the expression of vascular and blood-brain barrier (BBB)-associated molecular markers in the peri-infarct area.ResultsCompared with the vehicle control group, we found that mice injected with Diprotin A TFA exhibited reduced cerebral infarction volume, increased vascular area and length around the brain injury, increased pericyte and basement membrane coverage, upregulated expression of BBB tight junction proteins, and improved their BBB permeability, whereas the group injected with both drug and inhibitor exhibited significantly aggravated vascular injury and BBB permeability.ConclusionDiprotin A TFA can reduce VE-cadherin disruption by inhibiting ischemia-hypoxia-induced β-catenin cleavage to protect blood vessels.
Collapse
Affiliation(s)
- Ming-Yue Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ya-Jie Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hong-Mei Ding
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, Nanjing Medical University, Nanjing, China
| | - Wei-Feng Wu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wei-Wei Cai
- Department of Neurology, The Third Hospital of Huai'an, Huai'an, China
| | - Yan-Qiang Wang
- Department of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Yan-Qiang Wang
| | - De-Qin Geng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Neurology, Nanjing Medical University, Nanjing, China
- De-Qin Geng
| |
Collapse
|
11
|
Zhao NO, Topolski N, Tusconi M, Salarda EM, Busby CW, Lima CN, Pillai A, Quevedo J, Barichello T, Fries GR. Blood-brain barrier dysfunction in bipolar disorder: Molecular mechanisms and clinical implications. Brain Behav Immun Health 2022; 21:100441. [PMID: 35308081 PMCID: PMC8924633 DOI: 10.1016/j.bbih.2022.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/02/2022] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric disorder affecting approximately 1-3% of the population and characterized by a chronic and recurrent course of debilitating symptoms. An increasing focus has been directed to discover and explain the function of Blood-Brain Barrier (BBB) integrity and its association with a number of psychiatric disorders; however, there has been limited research in the role of BBB integrity in BD. Multiple pathways may play crucial roles in modulating BBB integrity in BD, such as inflammation, insulin resistance, and alterations of neuronal plasticity. In turn, BBB impairment is hypothesized to have a significant clinical impact in BD patients. Based on the high prevalence of medical and psychiatric comorbidities in BD and a growing body of evidence linking inflammatory and neuroinflammatory mechanisms to the disorder, recent studies have suggested that BBB dysfunction may play a key role in BD's pathophysiology. In this comprehensive narrative review, we aim to discuss studies investigating biological markers of BBB in patients with BD, mechanisms that modulate BBB integrity, their clinical implications on patients, and key targets for future development of novel therapies.
Collapse
Affiliation(s)
- Ning O. Zhao
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Natasha Topolski
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX. 6767 Bertner Ave, 77030, Houston, TX, USA
| | - Massimo Tusconi
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - Erika M. Salarda
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Christopher W. Busby
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Camila N.N.C. Lima
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Anilkumar Pillai
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX. 6767 Bertner Ave, 77030, Houston, TX, USA
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX. 6767 Bertner Ave, 77030, Houston, TX, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX. 6767 Bertner Ave, 77030, Houston, TX, USA
| | - Gabriel R. Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX. 6767 Bertner Ave, 77030, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA. 7000 Fannin, 77030, Houston, TX, USA
| |
Collapse
|