1
|
Nunes GP, de Oliveira Alves R, Ragghianti MHF, Dos Reis-Prado AH, de Toledo PTA, Martins TP, Vieira APM, Peres GR, Duque C. Effects of quercetin on mineralized dental tissues: A scoping review. Arch Oral Biol 2025; 169:106119. [PMID: 39486275 DOI: 10.1016/j.archoralbio.2024.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE This scoping review (SR) aimed to investigate the impact of quercetin on mineralized dental tissues intended to be used in preventive and restorative dentistry. METHODS This SR was conducted following the PRISMA-ScR statement. A comprehensive search was performed across databases for articles published up to March 2024. Eligible studies included in vitro and in situ studies and evaluating the potential therapeutic effects of quercetin on dental enamel and dentin. Data were extracted, and synthesis of study findings was conducted. RESULTS Out of the 2322 records screened, 22 studies were included in the review. Quercetin, in solution or into dental materials increased the bond strength to enamel and dentin. Additionally, quercetin also enhanced the bond strength of enamel after bleaching. Co-administration of quercetin with fluoride prevented erosive wear and inhibited the proteolytic activity in dentin more effectively than either agent alone. Hardness and modulus of elasticity was higher in dentin treated with quercetin compared to placebo. Reduction of nanoleakage at the composite-dentin interface was reduced in the presence of quercetin as a solution or incorporated into dental adhesives. CONCLUSIONS Quercetin exhibits promising therapeutic effects on mineralized dental tissues, including remineralization and enhancement of bond strength. It shows potential as a multifunctional agent for improving the longevity and effectiveness of dental biomaterials, as well as in preventing erosion and dental caries. However, as these conclusions are largely drawn from lab-based (in vitro) studies, further research, including clinical trials, is needed to fully explore its therapeutic potential and applications in dentistry.
Collapse
Affiliation(s)
- Gabriel Pereira Nunes
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil; Laboratory for Bone Metabolism and Regeneration, University of Porto, Faculty of Dental Medicine, Porto, Portugal
| | - Renata de Oliveira Alves
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | | | - Alexandre Henrique Dos Reis-Prado
- Department of Restorative Dentistry, School of Dentistry, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil; Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Priscila Toninatto Alves de Toledo
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil; Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Tamires Passadori Martins
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil; Department of Preventive Dentistry, Periodontology and Cariology, University Medical Center Göttingen, Göttingen, Germany
| | - Ana Paula Miranda Vieira
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil
| | - Geórgia Rondó Peres
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil; Laboratory for Bone Metabolism and Regeneration, University of Porto, Faculty of Dental Medicine, Porto, Portugal
| | - Cristiane Duque
- Department of Preventive and Restorative Dentistry, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil; Faculty of Dental Medicine, Centre for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, Viseu, Portugal.
| |
Collapse
|
2
|
Faruk EM, Ibrahim F, Hassan MM, Kamal KM, Hassan DAA, Awwad AAE, Taha NM, Hablas MGA, Zaazaa AM, Ibrahim MH. Protective effects of quercetin against tongue injury and oxidative stress triggered by irinotecan: a histopathological, biochemical and molecular study. Toxicol Res (Camb) 2024; 13:tfae214. [PMID: 39703341 PMCID: PMC11652611 DOI: 10.1093/toxres/tfae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction About 80% of patients receiving chemotherapeutics suffer from side effects related to the gastrointestinal tract. Irinotecan (CPT-11) is a chemotherapeutic agent usually used in treating solid tumors. Quercetin (QRT), a bioflavonoid, is an antioxidant and scavenger reactive oxygen species scavenger. Objective The current study explored the possible protective effects of QRT against mucosal tongue injury caused by CPT-11. Methods The study included four equal groups: group 1/control, group 2/QRT, group 3/CPT-11, and group 4/CPT-11 + QRT. Results CPT-11-induced tongue injury in the form of non-healed ulcers, absent lingual papillae, mononuclear cells infiltration, marked deposition of collagen fibers, and overexpression of CD86 and tumor necrosis factor- α (TNF-α). The increased malondialdehyde levels, decreased superoxide dismutase and total antioxidant capacity revealed that there was an oxidative stress. Also, there was a decreased countenance of Ki-67 and Bcl-2 and an increased countenance of NF-κB. The QRT-treated group showed complete ulcer healing, with histological features almost like the control group, along with minimal collagen fiber deposition, decreased reactivity to CD86 and TNF-α and improvement of oxidative stress status and the molecular study results as well. Conclusion QRT possess protective properties against CPT-11-triggered tongue injury.
Collapse
Affiliation(s)
- Eman Mohamed Faruk
- Anatomy Department, College of Medicine, Umm Al-Qura University, Al Abidiyah, Makkah, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha 13518, Benha, Al-Qalyubia Governorate, Egypt
| | - Fatma Ibrahim
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig Rd inside Zagazig University, Shaibet an Nakareyah, Zagazig 44519, Al-Sharqia Governorate,Egypt
| | - Mahmoud M Hassan
- Department of Physiology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Benha, Egypt
| | - Kamal M Kamal
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Benha, Egypt
| | | | - Ayat Abu-elnasr Awwad
- Department of Otorhinolaryngology, Faculty of Medicine, Al-Azhar University, Cairo 11751, Cairo, Egypt
| | - Neama Mahmoud Taha
- Department of Physiology, Umm Al-Qura University, Al Abidiyah, Makkah, Saudi Arabia
| | | | - Ahmed Mohammed Zaazaa
- Student at Faculty of Medicine, Benha National University, Benha Colleges in Cairo, Main Axis of El-Obour City, Egypt
| | - Mai Hassan Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Benha, Egypt
| |
Collapse
|
3
|
Xu D, Yuan L, Meng F, Lu D, Che M, Yang Y, Liu W, Nan Y. Research progress on antitumor effects of sea buckthorn, a traditional Chinese medicine homologous to food and medicine. Front Nutr 2024; 11:1430768. [PMID: 39045282 PMCID: PMC11263281 DOI: 10.3389/fnut.2024.1430768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Sea buckthorn (Hippophae Fructus), as a homologous species of medicine and food, is widely used by Mongolians and Tibetans for its anti-tumor, antioxidant and liver-protecting properties. In this review, the excellent anti-tumor effect of sea buckthorn was first found through network pharmacology, and its active components such as isorhamnetin, quercetin, gallic acid and protocatechuic acid were found to have significant anti-tumor effects. The research progress and application prospect of sea buckthorn and its active components in anti-tumor types, mechanism of action, liver protection, anti-radiation and toxicology were reviewed, providing theoretical basis for the development of sea buckthorn products in the field of anti-tumor research and clinical application.
Collapse
Affiliation(s)
- Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Mengying Che
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenjing Liu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
4
|
Scapin E, Sarri DRA, Augusco MAC, Rodrigues MAM, Fernandes RMN, Silva JFM, Cardoso CAL, Rambo MKD. Phytochemical analysis, toxicity and evaluation of antioxidant and antimicrobial activities of leaves of Dipteryx alata Vogel. BRAZ J BIOL 2024; 84:e278004. [PMID: 38511776 DOI: 10.1590/1519-6984.278004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
In this study, our objective was to conduct a comprehensive phytochemical analysis, determine toxicity levels, and assess the antioxidant and antimicrobial properties of extracts derived from the leaves of Dipteryx alata Vogel, a native species of the Brazilian cerrado flora. Three distinct extracts were prepared utilizing assisted ultrasound and the Soxhlet apparatus, namely, Ultrasound Crude Extract (UCE), Soxhlet Crude Extract (SCE), and the Soxhlet Ethanol Extract (SEE). The phytochemical analysis revealed the presence of flavonoids, tannins, phytosterols, and saponins in all extracts. Additionally, alkaloids were specifically identified in the SCE and SEE extracts. In the analysis using LC-DAD, the compounds gallic acid, rutin, quercetin, luteolin and kampefrol were determined in higher concentrations in the SCE, followed by the SEE and UCE, respectively. The GC-MS analysis revealed the presence of campesterol, stigmasterol and β-sitosterol in all extracts, with UCE and SCE showing a higher concentration of β-sitosterol. SCE showed the highest concentration of all identified compounds. In the analysis of antioxidant activity by DPPH• and ABTS•+, SEE showed greater efficiency (IC50 = 2.98 ± 2.92 and 6.57 ± 0.89 μg/mL, respectively). In the toxicity test with Allium cepa, all extracts stimulated root growth at 50 g/mL; UCE and SEE stimulated root growth at 250 g/mL; and SEE inhibited root growth at 750 g/mL. In the Artemia salina toxicity, all extracts were non-toxic. Antibacterial activity was identified in the microorganisms S. aureus and S. mutans; however, the extracts did not show antifungal action against the strain of C. albicans. The extracts of D. alata have therapeutic potential for applicability in dentistry.
Collapse
Affiliation(s)
- E Scapin
- Universidade Federal do Tocantins - UFT, Programa de Pós-graduação em Ciências do Ambiente - CIAMB, Palmas, TO, Brasil
- Universidade Federal do Tocantins - UFT, Curso de Engenharia Ambiental, Laboratório de Química, Palmas, TO, Brasil
- Universidade Federal do Tocantins - UFT, Programa de Pós-graduação em Biodiversidade e Biotecnologia - BIONORTE, Palmas, TO, Brasil
| | - D R A Sarri
- Universidade Federal do Tocantins - UFT, Programa de Pós-graduação em Ciências do Ambiente - CIAMB, Palmas, TO, Brasil
| | - M A C Augusco
- Universidade Federal do Tocantins - UFT, Programa de Pós-graduação em Ciências do Ambiente - CIAMB, Palmas, TO, Brasil
| | - M A M Rodrigues
- Universidade Federal do Tocantins - UFT, Curso de Engenharia Ambiental, Laboratório de Química, Palmas, TO, Brasil
| | - R M N Fernandes
- Universidade Federal do Tocantins - UFT, Programa de Pós-graduação em Biodiversidade e Biotecnologia - BIONORTE, Palmas, TO, Brasil
| | - J F M Silva
- Universidade Federal do Tocantins - UFT, Programa de Pós-graduação em Ciência e Tecnologia de Alimentos e Ciências da Saúde, Palmas, TO, Brasil
| | - C A L Cardoso
- Universidade Estadual do Mato Grosso do Sul - UEMS, Centro de Estudos em Recursos Naturais, Dourados, MS, Brasil
| | - M K D Rambo
- Universidade Federal do Tocantins - UFT, Programa de Pós-graduação em Ciências do Ambiente - CIAMB, Palmas, TO, Brasil
| |
Collapse
|
5
|
Guan L, Eisenmenger A, Crasta KC, Sandalova E, Maier AB. Therapeutic effect of dietary ingredients on cellular senescence in animals and humans: A systematic review. Ageing Res Rev 2024; 95:102238. [PMID: 38382678 DOI: 10.1016/j.arr.2024.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Cellular senescence has been regarded as a therapeutic target for ageing and age-related diseases. Several senotherapeutic agents have been proposed, including compounds derived from natural products which hold the translational potential to promote healthy ageing. This systematic review examined the association of dietary ingredients with cellular senescence in animals and humans, with an intent to identify dietary ingredients with senotherapeutic potential. METHODS This systematic review was registered at PROSPERO International prospective register of systematic reviews (Reg #: CRD42022338885). The databases PubMed and Embase were systematically searched for key terms related to cellular senescence, senescence markers, diets, nutrients and bioactive compounds. Intervention and observational studies on human and animals investigating the effects of dietary ingredients via oral administration on cellular senescence load were included. The SYRCLE's risk of bias tool and Cochrane risk of bias tool v2.0 were used to assess the risk of bias for animal and human studies respectively. RESULTS Out of 5707 identified articles, 83 articles consisting of 78 animal studies and 5 human studies aimed to reduce cellular senescence load using dietary ingredients. In animal studies, the most-frequently used senescence model was normative ageing (26 studies), followed by D-galactose-induced models (17 studies). Resveratrol (8 studies), vitamin E (4 studies) and soy protein isolate (3 studies) showed positive effects on reducing the level of senescence markers such as p53, p21, p16 and senescence-associated ß-galactosidase in various tissues of physiological systems. In three out of five human studies, ginsenoside Rg1 had no positive effect on reducing senescence in muscle tissues after exercise. The risk of bias for both animal and human studies was largely unclear. CONCLUSION Resveratrol, vitamin E and soy protein isolate are promising senotherapeutics studied in animal models. Studies testing dietary ingredients with senotherapeutic potential in humans are limited and translation is highly warranted.
Collapse
Affiliation(s)
- Lihuan Guan
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Anna Eisenmenger
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Karen C Crasta
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Physiology, National University of Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Agency for Science, Technology & Research (A⁎STAR), Institute of Molecular and Cell Biology (IMCB), Singapore
| | - Elena Sandalova
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, the Netherlands.
| |
Collapse
|
6
|
Ahmed SF, Bakr MA, Rasmy AH. The efficacy of using metformin and/or quercetin for amelioration of gamma-irradiation induced tongue toxicity in diabetic rats. BMC Oral Health 2024; 24:110. [PMID: 38238729 PMCID: PMC10797788 DOI: 10.1186/s12903-024-03871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Diabetes is a common disease that cancer patients may suffer from and may aggravate side effects of radiotherapy. This study aimed to detect whether metformin and/or quercetin will improve gamma-irradiation induced tongue toxicity in diabetic rats. METHODS 35 male albino rats were divided into five groups; NOR no streptozotocin, no radiation and no treatment was given, DR rats were subjected to streptozotocin then gamma-irradiation, DRM rats were subjected to streptozotocin then gamma-irradiation then metformin, DRQ rats were subjected to streptozotocin then gamma-irradiation then quercetin, DRMQ rats were subjected to streptozotocin then gamma-irradiation then metformin and quercetin. Rats were euthanized 24 h after last treatment dose. Mean blood glucose level was recorded. Tongue specimens were stained with H&E and CD68. Histomorphometric analysis of length, diameter and taste buds of lingual papillae and epithelial, keratin and lamina propria thickness and CD68 positive cells were calculated. RESULTS Blood glucose level of DRMQ was significantly lower than DR, DRM and DRQ, whereas higher than NOR. Metformin or quercetin partially restored tongue structure, papillae length and diameter and tongue layers thickness. The ameliorative effect was superior when metformin and quercetin were used together. Diabetes and irradiation significantly increased number of CD68 positive macrophages in submucosa and muscles. Metformin or quercetin significantly reduced number of lingual macrophages with more noticeable effect for quercetin. Treatment with metformin and quercetin significantly decreased number of macrophages. CONCLUSIONS Combined use of metformin and quercetin might help mitigate the harmful effects of radiotherapy and diabetes on lingual tissues.
Collapse
Affiliation(s)
- Salwa Farid Ahmed
- Health Radiation Research Dept, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mostafa A Bakr
- Health Radiation Research Dept, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Amr H Rasmy
- Health Radiation Research Dept, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
7
|
Longevity OMAC. Retracted: Quercetin Prevents Radiation-Induced Oral Mucositis by Upregulating BMI-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:9790182. [PMID: 38234516 PMCID: PMC10791264 DOI: 10.1155/2024/9790182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
[This retracts the article DOI: 10.1155/2021/2231680.].
Collapse
|
8
|
Belfiore E, Di Prima G, Angellotti G, Panzarella V, De Caro V. Plant-Derived Polyphenols to Prevent and Treat Oral Mucositis Induced by Chemo- and Radiotherapy in Head and Neck Cancers Management. Cancers (Basel) 2024; 16:260. [PMID: 38254751 PMCID: PMC10813700 DOI: 10.3390/cancers16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Oral Mucositis (OM) is the most common side effect due to chemotherapy and radiotherapy, which are the conventional treatment options for head and neck cancers. OM is a severe inflammatory condition characterized by multifactorial etiopathogenesis. It further negatively affects patients' quality of life by severe impairment of normal oral functions. Consequently, it is mandatory to identify new effective therapeutic approaches to both prevent and treat OM while also avoiding any recurrence. Polyphenols recently attracted the interest of the scientific community due to their low toxicity and wide range of biological activities making them ideal candidates for several applications in the odontostomatological field, particularly against OM. This review collects the in vivo studies and the clinical trials conducted over the past 13 years evaluating the preventive and curative effects of several polyphenolic compounds towards chemo- and radiotherapy-induced OM, both when administered alone or as a plant-extracted phytocomplex. The literature fully confirms the usefulness of these molecules, thus opening the possibility of their clinical application. However, polyphenol limitations (e.g., unfavourable physicochemical properties and susceptibility to degradation) have emerged. Consequently, the interest of the scientific community should be focused on developing innovative delivery systems able to stabilize polyphenols, thus facilitating topical administration and maximizing their efficacy.
Collapse
Affiliation(s)
- Elena Belfiore
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy; (E.B.); (V.P.)
| | - Giulia Di Prima
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| | - Giuseppe Angellotti
- Institute of Nanostructured Materials, National Research Council, Via U. La Malfa 153, 90146 Palermo, Italy;
| | - Vera Panzarella
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy; (E.B.); (V.P.)
| | - Viviana De Caro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| |
Collapse
|
9
|
Chen X, Wu Y, Li J, Jiang S, Sun Q, Xiao L, Jiang X, Xiao X, Li X, Mu Y. Lycium barbarum Ameliorates Oral Mucositis via HIF and TNF Pathways: A Network Pharmacology Approach. Curr Pharm Des 2024; 30:2718-2735. [PMID: 39076092 DOI: 10.2174/0113816128312694240712072959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Oral mucositis is the most common and troublesome complication for cancer patients receiving radiotherapy or chemotherapy. Recent research has shown that Lycium barbarum, an important economic crop widely grown in China, has epithelial protective effects in several other organs. However, it is unknown whether or not Lycium barbarum can exert a beneficial effect on oral mucositis. Network pharmacology has been suggested to be applied in "multi-component-multi-target" functional food studies. The purpose of this study is to evaluate the effect of Lycium barbarum on oral mucositis through network pharmacology, molecular docking and experimental validation. AIMS To explore the biological effects and molecular mechanisms of Lycium barbarum in the treatment of oral mucositis through network pharmacology and molecular docking combined with experimental validation. METHODS Based on network pharmacology methods, we collected the active components and related targets of Lycium barbarum from public databases, as well as the targets related to oral mucositis. We mapped protein- protein interaction (PPI) networks, performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment, and constructed a 'components-disease-targets' network and 'components-pathways-targets' network using Cytoscape to further analyse the intrinsic molecular mechanisms of Lycium barbarum against oral mucositis. The affinity and stability predictions were performed using molecular docking strategies, and experiments were conducted to demonstrate the biological effects and possible mechanisms of Lycium barbarum against oral mucositis. RESULTS A network was established between 49 components and 61 OM targets. The main active compounds were quercetin, beta-carotene, palmatine, and cyanin. The predicted core targets were IL-6, RELA, TP53, TNF, IL10, CTNNB1, AKT1, CDKN1A, HIF1A and MYC. The enrichment analysis predicted that the therapeutic effect was mainly through the regulation of inflammation, apoptosis, and hypoxia response with the involvement of TNF and HIF pathways. Molecular docking results showed that key components bind well to the core targets. In both chemically and radiation-induced OM models, Lycium barbarum significantly promoted healing and reduced inflammation. The experimental verification showed Lycium barbarum targeted the key genes (IL-6, RELA, TP53, TNF, IL10, CTNNB1, AKT1, CDKN1A, HIF1A, and MYC) through regulating the HIF and TNF signaling pathways, which were validated using the RT-qPCR, immunofluorescence staining and western blotting assays. CONCLUSION In conclusion, the present study systematically demonstrated the possible therapeutic effects and mechanisms of Lycium barbarum on oral mucositis through network pharmacology analysis and experimental validation. The results showed that Lycium barbarum could promote healing and reduce the inflammatory response through TNF and HIF signaling pathways.
Collapse
Affiliation(s)
- Xun Chen
- School of Stomatology, Southwest Medical University, Luzhou 646699, China
| | - Yanhui Wu
- School of Stomatology, Southwest Medical University, Luzhou 646699, China
| | - Jing Li
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Sijing Jiang
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qiang Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Li Xiao
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xiliang Jiang
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xun Xiao
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xianxian Li
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yandong Mu
- School of Stomatology, Southwest Medical University, Luzhou 646699, China
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
10
|
Hassan HM, Abdeen AM, Abdelrahman IY, Abdo W, Mohammed SS, Abdeen A, Abdelkader A, Olga R, Fericean L, Ibrahim SF, Ghamry HI, Elgendy FS, Sorour SM, Eldeeb AA, Ahmed O, Rashed F, Bikheet MM. Radioprotective potential of whey protein against gamma irradiation-induced lingual damage. Front Pharmacol 2023; 14:1293230. [PMID: 38155907 PMCID: PMC10753789 DOI: 10.3389/fphar.2023.1293230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction: Ionizing radiation (IR) is effectively used in the treatment of oral malignancies; however, it might also significantly harm the surrounding tissues. Whey protein isolate (WP) is a protein derived from milk that exhibits a wide range of bioactivities. Therefore, the present research aimed to delineate the mitigating impact of WP against gamma irradiation-induced lingual damage. Methods: Rats were randomized into 5 groups: Control (saline, orally, 14 days), WP (WP; 0.5 g/kg b. w., orally, 14 days), IR (saline, orally, 14 days, exposed to 6 and 3 Gy on days 4 and 6, respectively), WP+IR (WP was given orally for 14 days before and after IR exposure; exposed to 6 and 3 Gy on days 4 and 6, respectively), and IR+WP (WP, orally, started 24 h after 1st IR exposure till the end of the experiment) groups. Samples were collected at two-time intervals (on the 7th and 14th days). Results and Discussion: Oxidative stress was stimulated upon IR exposure in tongue, indicated by boosted malondialdehyde (MDA) level, along with a decrease in the total antioxidant capacity (TAC) level, superoxide dismutase (SOD), and catalase (CAT) activities. Additionally, IR exposure depicted an increase of serum IgE, inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-6, along with overexpression mRNA levels of nuclear factor kappa-B transcription factor/p65 (NF-κB/p65), and down-regulation of nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase (HO-1) mRNA levels in tongue tissue. Moreover, IR triggered alterations in lingual histological architecture. The antioxidant and anti-inflammatory properties of WP mitigated oxidative damage, inflammation, and desquamation that were brought on following IR exposure. The protective administration of WP markedly decreases IR-induced lingual harm compared to the mitigation protocol. Our findings recommend WP supplements to the diets of cancer patients undergoing IR that might aid radioprotective effects.
Collapse
Affiliation(s)
- Hanaa M. Hassan
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Asmaa M. Abdeen
- Department of Oral Biology, Faculty of Dentistry, Minia University, Minia, Egypt
| | - Ibrahim Y. Abdelrahman
- Department of Radiation Biology, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Saher S. Mohammed
- Department of Oral Biology, Faculty of Dentistry, Minia University, Minia, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Rada Olga
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences, Timișoara, Romania
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences, Timișoara, Romania
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Heba I. Ghamry
- Nutrition and Food Sciences, Department of Home Economics, Faculty of Home Economics, King Khalid University, Abha, Saudi Arabia
| | - Farouk S. Elgendy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Safwa M. Sorour
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Abeer A. Eldeeb
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Osama Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Fatema Rashed
- Department of Basic Medical and Dental Science, Faculty of Dentistry, Zarqaa University, Zarqaa, Jordan
| | - Maha M. Bikheet
- Dairy Science Department, Faculty of Agriculture, Minia University, Minia, Egypt
| |
Collapse
|
11
|
Ahmed SF, Bakr MA, Rasmy AH. Vitamin E ameliorates oral mucositis in gamma-irradiated rats (an in vivo study). BMC Oral Health 2023; 23:697. [PMID: 37759230 PMCID: PMC10537122 DOI: 10.1186/s12903-023-03408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Radiation therapy is the primary treatment for neck and head cancer patients; however, it causes the development of oral mucositis accompanied by tissue structure destruction and functional alteration. This study was conducted to evaluate the effect of different doses of vitamin E as a treatment for radiationinduced oral mucositis in rat model. METHODS 35 male albino rats were randomly divided into five groups: control, untreated radiation mucositis (single dose of 20 Gy), treated radiation mucositis; radiation (single dose of 20 Gy) then vitamin E at doses of 300, 360 and 500 mg/Kg for seven days started 24 h after irradiation. Body weight and food intake were evaluated for each rat. The mucositis score was assessed every day. Rats were sacrificed once at the end of the experiment, and tongue specimens were stained with hematoxylin and eosin, anti P53 and anti Ki67 antibodies. RESULTS Results indicated more food intake and less weight reduction in vitamin E treated groups and the contrary for gamma-irradiated group. Additionally, vitamin E delayed the onset and decreased the severity and duration of mucositis. It also restored the histological structure of lingual tongue papillae. Vitamin E treated groups showed a significant higher Ki67 and lower P53 expression as compared to untreated radiation group. The overall improvement increased as vitamin E dose increased. Finally, the amelioration can be attributed to the decreased apoptosis and increased proliferation of cells. CONCLUSIONS Vitamin E especially at dose of 500 mg/Kg could be an effective treatment for radiation-induced oral mucositis.
Collapse
Affiliation(s)
- Salwa Farid Ahmed
- Health Radiation Research Dept, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mostafa A Bakr
- Health Radiation Research Dept, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Amr H Rasmy
- Health Radiation Research Dept, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
12
|
The role of BMI1 in endometrial cancer and other cancers. Gene 2023; 856:147129. [PMID: 36563713 DOI: 10.1016/j.gene.2022.147129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Endometrial cancer (EC) is the third leading gynecological malignancy, and its treatment remains challenging. B cell-specific Moloney murine leukemia virus integration site-1 (BMI1) is one of the core members of the polycomb group (PcG) family, which plays a promoting role in the occurrence and development of various tumors. Notably, BMI1 has been found to be frequently upregulated in endometrial cancer (EC) and promote the occurrence of EC through promoting epithelial-mesenchymal transition (EMT) and AKT/PI3K pathways. This review summarizes the structure and upstream regulatory mechanisms of BMI1 and its role in EC. In addition, we focused on the role of BMI1 in chemoradiotherapy resistance and summarized the current drugs that target BMI1.
Collapse
|
13
|
Liu Y, Ye Y, Xie G, Xu Y, Cheng M, Li C, Qu M, Zhu F. Pharmacological Mechanism of Sancao Yuyang Decoction in the Treatment of Oral Mucositis Based on Network Pharmacology and Experimental Validation. Drug Des Devel Ther 2023; 17:55-74. [PMID: 36660249 PMCID: PMC9844144 DOI: 10.2147/dddt.s391978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Purpose The network pharmacology analysis, molecular docking and experimental verification were performed to explore the pharmacological mechanisms of Sancao Yuyang Decoction (SCYYD) in the treatment of oral mucositis (OM). Methods Active ingredients in SCYYD and their potential targets, as well as OM-related targets were screened from public databases. The core targets and signaling pathways of SCYYD against OM were determined by protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The ingredient-target-disease network and target-pathway network were constructed. Subsequently, molecular docking was carried out to predict the binding activity between active ingredients and key targets. Moreover, in vivo experiment was conducted to further verify the core targets predicted by network pharmacology analysis. Results A total of 119 bioactive ingredients were screened from the corresponding databases. One hundred and eighty-six putative targets were retrieved and bioinformatics analysis was performed to reveal the top 5 potential candidate agents and 10 core targets. GO and KEGG enrichment analysis showed that SCYYD exerted excellent therapeutic effects on OM through several pathways, such as HIF-1 and Ras signaling pathway. Subsequently, molecular docking showed that main ingredients in SCYYD had optimal binding activities to the key protein targets. Moreover, the result of in vivo experiment indicated that SCYYD not only inhibited inflammation response and promoted wound healing of oral mucosa in OM rats, but also reversed high expressions of SRC, HSP90AA1, STAT3, HIF1α, mTOR, TLR4, MMP9, and low expression of ESR1. Conclusion This study preliminarily uncovered the multiple compounds and multiple targets of SCYYD against OM using network pharmacology, molecular docking and in vivo verification, which provided a new insight of the pharmacological mechanisms of SCYYD in treatment of OM.
Collapse
Affiliation(s)
- Yunxia Liu
- Oncology Department, Hangzhou Third People’s Hospital, Hangzhou, People’s Republic of China,Correspondence: Yunxia Liu, Oncology Department, Hangzhou Third People’s Hospital, Hangzhou, People’s Republic of China, Email
| | - Yun Ye
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Guanqun Xie
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yefeng Xu
- Oncology Department, Hangzhou Third People’s Hospital, Hangzhou, People’s Republic of China
| | - Miao Cheng
- Oncology Department, Hangzhou Third People’s Hospital, Hangzhou, People’s Republic of China
| | - Chunling Li
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Mengqi Qu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Feiye Zhu
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China,Feiye Zhu, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China, Email
| |
Collapse
|
14
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
15
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|