1
|
Perva IT, Simina IE, Bende R, Motofelea AC, Chirita Emandi A, Andreescu N, Sima A, Vlad A, Sporea I, Zimbru C, Tutac PC, Puiu M, Niculescu MD. Use of a Micronutrient Cocktail to Improve Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Adults with Obesity: A Randomized, Double-Blinded Pilot Clinical Trial. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1366. [PMID: 39202647 PMCID: PMC11356300 DOI: 10.3390/medicina60081366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: The goal of this study was to assess the impact of supplementation with a combination of nutrients on metabolic-dysfunction-associated steatotic liver disease (MASLD)-related liver parameters, and other parameters related to metabolic syndrome in adults with obesity. These measurements included anthropometric and lipid profiling, and FibroScan technology (controlled attenuation parameter (CAP) and transient elastography (TE) values). Materials and Methods: A double-blind, placebo-controlled pilot clinical trial was conducted over a three-month treatment period. Adults with metabolic syndrome and obesity were allocated to receive either a cocktail of nutrients with defined daily dosages (5-MTHF, betaine, alpha-linolenic acid, eicosapentaenoic acid, choline bitartrate, docosahexaenoic acid, and vitamin B12) or a placebo. The participants were evaluated at the start and the end of the three-month treatment period. Results: A total of 155 participants entered the study, comprising 84 in the treatment group and 71 in the placebo group. The administration of the nutritional supplement resulted in a notable reduction in both CAP and TE scores when compared to the placebo group. The treatment group exhibited a mean reduction in CAP of 4% (p < 0.05) and a mean reduction in TE of 7.8% (p < 0.05), indicative of a decline in liver fat content and fibrosis. Conclusions: The supplementation over a period of three months led to a significant amelioration of liver fibrosis and steatosis parameters in adults with metabolic syndrome and obesity. These findings suggest that this supplementation regimen could be a beneficial adjunct therapy for improving liver health in adults with obesity-induced MASLD.
Collapse
Affiliation(s)
- Iulia Teodora Perva
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (I.T.P.); (A.C.E.); (N.A.); (M.P.); (M.D.N.)
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children “Louis Țurcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
- Department of Medical Genetics, Asociatia Oncohelp, 300239 Timișoara, Romania
| | - Iulia Elena Simina
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (I.T.P.); (A.C.E.); (N.A.); (M.P.); (M.D.N.)
- Department of Medical Genetics, Asociatia Oncohelp, 300239 Timișoara, Romania
| | - Renata Bende
- Department of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (R.B.); (I.S.)
- Center of Advanced Research in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Alexandru Cătălin Motofelea
- Department of Internal Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Adela Chirita Emandi
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (I.T.P.); (A.C.E.); (N.A.); (M.P.); (M.D.N.)
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children “Louis Țurcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
| | - Nicoleta Andreescu
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (I.T.P.); (A.C.E.); (N.A.); (M.P.); (M.D.N.)
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children “Louis Țurcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
| | - Alexandra Sima
- Department of Internal Medicine II, Division of Diabetes, Nutrition and Metabolic Diseases, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.S.); (A.V.)
- Center for Research in Preventive Medicine, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Adrian Vlad
- Department of Internal Medicine II, Division of Diabetes, Nutrition and Metabolic Diseases, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.S.); (A.V.)
- Center for Molecular Research in Nephrology and Vascular Disease, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ioan Sporea
- Department of Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (R.B.); (I.S.)
- Center of Advanced Research in Gastroenterology and Hepatology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Cristian Zimbru
- Department of Automation and Applied Informatics, Politehnica University Timișoara, 300223 Timișoara, Romania;
| | - Paul Calin Tutac
- Toxicology and Molecular Biology Department, “Pius Brinzeu” Clinical Emergency County Hospital, 300723 Timisoara, Romania;
| | - Maria Puiu
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (I.T.P.); (A.C.E.); (N.A.); (M.P.); (M.D.N.)
- Regional Center of Medical Genetics Timiș, Clinical Emergency Hospital for Children “Louis Țurcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
| | - Mihai Dinu Niculescu
- Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq., 300041 Timisoara, Romania; (I.T.P.); (A.C.E.); (N.A.); (M.P.); (M.D.N.)
- Advanced Nutrigenomics LLC, Durham, NC 27703, USA
| |
Collapse
|
2
|
Al Hashmi K, Giglio RV, Pantea Stoian A, Patti AM, Al Waili K, Al Rasadi K, Ciaccio M, Rizzo M. Metabolic dysfunction-associated fatty liver disease: current therapeutic strategies. Front Nutr 2024; 11:1355732. [PMID: 38567250 PMCID: PMC10985255 DOI: 10.3389/fnut.2024.1355732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
The definition of "Metabolic Associated Fatty Liver Disease - MAFLD" has replaced the previous definition of Nonalcoholic Fatty Liver Disease (NAFLD), because cardiometabolic criteria have been added for the prevention of cardiological risk in these patients. This definition leads to an in-depth study of the bidirectional relationships between hepatic steatosis, Type 2 Diabetes Mellitus (T2DM), Cardiovascular Disease (CVD) and/or their complications. Lifestyle modification, which includes correct nutrition combined with regular physical activity, represents the therapeutic cornerstone of MAFLD. When therapy is required, there is not clear accord on how to proceed in an optimal way with nutraceutical or pharmacological therapy. Numerous studies have attempted to identify nutraceuticals with a significant benefit on metabolic alterations and which contribute to the improvement of hepatic steatosis. Several evidences are supporting the use of silymarin, berberine, curcumin, Nigella sativa, Ascophyllum nodosum, and Fucus vesiculosus, vitamin E, coenzyme Q10 and Omega-3. However, more evidence regarding the long-term efficacy and safety of these compounds are required. There is numerous evidence that highlights the use of therapies such as incretins or the use of Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) inhibitors or other similar therapies which, by assisting existing therapies for pathologies such as diabetes, hypertension, insulin resistance, have given a breakthrough in prevention and the reduction of cardiometabolic risk. This review gave an overview of the current therapeutic strategies that are expected to aid in the treatment and prevention of MAFLD.
Collapse
Affiliation(s)
- Khamis Al Hashmi
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Angelo Maria Patti
- Internal Medicine Unit, “Vittorio Emanuele II” Hospital, Castelvetrano, Italy
| | - Khalid Al Waili
- Department of Biochemistry, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalid Al Rasadi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Medical Research Center, Sultan Qaboos University, Muscat, Oman
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Department of Laboratory Medicine, University Hospital, Palermo, Italy
| | - Manfredi Rizzo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Aragón-León A, Moreno-Vilet L, González-Ávila M, Mondragón-Cortez PM, Sassaki GL, Martínez-Pérez RB, Camacho-Ruíz RM. Inulin from halophilic archaeon Haloarcula: Production, chemical characterization, biological, and technological properties. Carbohydr Polym 2023; 321:121333. [PMID: 37739546 DOI: 10.1016/j.carbpol.2023.121333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Halophilic archaea are capable of producing fructans, which are fructose-based polysaccharides. However, their biochemical characterization and biological and technological properties have been scarcely studied. The aim of this study was to evaluate the production, chemical characterization, biological and technological properties of a fructan inulin-type biosynthesized by a halophilic archaeon. Fructan extraction was performed through ethanol precipitation and purification by diafiltration. The chemical structure was elucidated using Fourier Transform-Infrared Spectroscopy and Nuclear Magnetic Resonance (NMR). Haloarcula sp. M1 biosynthesizes inulin with an average molecular weight of 8.37 × 106 Da. The maximal production reached 3.9 g of inulin per liter of culture within seven days. The glass transition temperature of inulin was measured at 138.85 °C, and it exhibited an emulsifying index of 36.47 %, which is higher than that of inulin derived from chicory. Inulin from Haloarcula sp. M1 (InuH) demonstrates prebiotic capacity. This study represents the first report on the biological and technological properties of inulin derived from halophilic archaea.
Collapse
Affiliation(s)
- Alejandra Aragón-León
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Lorena Moreno-Vilet
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Marisela González-Ávila
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Pedro Martín Mondragón-Cortez
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico
| | - Guilherme Lanzi Sassaki
- Departamento de Bioquímica e Biologia Molecular, Universidad de Federal do Paraná, CEP 81.531-980, CP 19046 Curitiba, PR, Brazil
| | | | - Rosa María Camacho-Ruíz
- Biotecnología Industrial, Tecnología Alimentaria y Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Zapopan, Jalisco C.P. 45019, Mexico.
| |
Collapse
|
4
|
Gabbia D, De Martin S. Tumor Mutational Burden for Predicting Prognosis and Therapy Outcome of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24043441. [PMID: 36834851 PMCID: PMC9960420 DOI: 10.3390/ijms24043441] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the primary hepatic malignancy, represents the second-highest cause of cancer-related death worldwide. Many efforts have been devoted to finding novel biomarkers for predicting both patients' survival and the outcome of pharmacological treatments, with a particular focus on immunotherapy. In this regard, recent studies have focused on unravelling the role of tumor mutational burden (TMB), i.e., the total number of mutations per coding area of a tumor genome, to ascertain whether it can be considered a reliable biomarker to be used either for the stratification of HCC patients in subgroups with different responsiveness to immunotherapy, or for the prediction of disease progression, particularly in relation to the different HCC etiologies. In this review, we summarize the recent advances on the study of TMB and TMB-related biomarkers in the HCC landscape, focusing on their feasibility as guides for therapy decisions and/or predictors of clinical outcome.
Collapse
|
5
|
Tung YT, Wu CH, Chen WC, Pan CH, Chen YW, Tsao SP, Chen CJ, Huang HY. Ascophyllum nodosum and Fucus vesiculosus Extracts Improved Lipid Metabolism and Inflammation in High-Energy Diet-Induced Hyperlipidemia Rats. Nutrients 2022; 14:4665. [PMID: 36364926 PMCID: PMC9658475 DOI: 10.3390/nu14214665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
Ascophyllum nodosum and Fucus vesiculosus both contain unique polyphenols called phlorotannins. Phlorotannins reportedly possess various pharmacological activities. A previous study reported that the activity of phlorotannin is strongly correlated with the normalization of metabolic function, and phlorotannins are extremely promising nutrients for use in the treatment of metabolic syndrome. To date, no study has explored the antihyperlipidemic effects of phlorotannins from A. nodosum and F. vesiculosus in animal models. Therefore, in the present study, we investigated the effects of phlorotannins using a rat model of high-energy diet (HED)-induced hyperlipidemia. The results showed that the rats that were fed an HED and treated with phlorotannin-rich extract from A. nodosum and F. vesiculosus had significantly lower serum fasting blood sugar (FBS), aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC), triacylglyceride (TG) and free fatty acids (FFAs) levels and hepatic TG level and had higher serum insulin, high-density lipoprotein cholesterol (HDL-C) levels and lipase activity in their fat tissues than in the case with the rats that were fed the HED alone. A histopathological analysis revealed that phlorotannin-rich extract could significantly reduce the size of adipocytes around the epididymis. In addition, the rats treated with phlorotannin-rich extract had significantly lowered interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels and increased superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities than did those in the HED group. These results suggested that the phlorotannin-rich extract stimulated lipid metabolism and may have promoted lipase activity in rats with HED-induced hyperlipidemia. Our results indicated that A. nodosum and F. vesiculosus, marine algae typically used as health foods, have strong antihyperlipidemic effects and may, therefore, be useful for preventing atherosclerosis. These algae may be incorporated into antihyperlipidemia pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chieh-Hsi Wu
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Chao Chen
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Ping Tsao
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Jung Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
- Research Center for Digestive Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
6
|
Gabbia D, Roverso M, Zanotto I, Colognesi M, Sayaf K, Sarcognato S, Arcidiacono D, Zaramella A, Realdon S, Ferri N, Guido M, Russo FP, Bogialli S, Carrara M, De Martin S. A Nutraceutical Formulation Containing Brown Algae Reduces Hepatic Lipid Accumulation by Modulating Lipid Metabolism and Inflammation in Experimental Models of NAFLD and NASH. Mar Drugs 2022; 20:572. [PMID: 36135761 PMCID: PMC9501409 DOI: 10.3390/md20090572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Recently, some preclinical and clinical studies have demonstrated the ability of brown seaweeds in reducing the risk factors for metabolic syndrome. Here, we analyzed the beneficial effect of a nutraceutical formulation containing a phytocomplex extracted from seaweeds and chromium picolinate in animal models of liver steatosis of differing severities (rats with non-alcoholic fatty liver disease (NAFLD) and its complication, non-alcoholic steatohepatitis (NASH)). This treatment led to a significant drop in hepatic fat deposition in both models (p < 0.01 vs. untreated animals), accompanied by a reduction in plasma inflammatory cytokines, such as interleukin 6, tumor necrosis factor α, and C reactive protein, and myeloperoxidase expression in liver tissue. Furthermore, a modulation of the molecular pathways involved in lipid metabolism and storage was demonstrated, since we observed the significant reduction of the mRNA levels of fatty acid synthase, diacylglycerol acyltransferases, the sterol-binding protein SREBP-1, and the lipid transporter perilipin-2, in both treated NAFLD and NASH rats in comparison to untreated ones. In conclusion, this nutraceutical product was effective in reducing liver steatosis and showed further beneficial effects on hepatic inflammation and glycemic control, which were particularly evident in rats characterized by a more severe condition, thus representing a therapeutic option for the treatment of NAFLD and NASH patients.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - Diletta Arcidiacono
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Alice Zaramella
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Stefano Realdon
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
- Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|