1
|
Idriss H, Kutová A, Rimpelová S, Elashnikov R, Kolská Z, Lyutakov O, Švorčík V, Slepičková Kasálková N, Slepička P. Polymer-Metal Bilayer with Alkoxy Groups for Antibacterial Improvement. Polymers (Basel) 2024; 16:508. [PMID: 38399886 PMCID: PMC10892951 DOI: 10.3390/polym16040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Many bio-applicable materials, medical devices, and prosthetics combine both polymer and metal components to benefit from their complementary properties. This goal is normally achieved by their mechanical bonding or casting only. Here, we report an alternative easy method for the chemical grafting of a polymer on the surfaces of a metal or metal alloys using alkoxy amine salt as a coupling agent. The surface morphology of the created composites was studied by various microscopy methods, and their surface area and porosity were determined by adsorption/desorption nitrogen isotherms. The surface chemical composition was also examined by various spectroscopy techniques and electrokinetic analysis. The distribution of elements on the surface was determined, and the successful bonding of the metal/alloys on one side with the polymer on the other by alkoxy amine was confirmed. The composites show significantly increased hydrophilicity, reliable chemical stability of the bonding, even interaction with solvent for thirty cycles, and up to 95% less bacterial adhesion for the modified samples in comparison with pristine samples, i.e., characteristics that are promising for their application in the biomedical field, such as for implants, prosthetics, etc. All this uses universal, two-step procedures with minimal use of energy and the possibility of production on a mass scale.
Collapse
Affiliation(s)
- Hazem Idriss
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Anna Kutová
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Roman Elashnikov
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Zdeňka Kolská
- Faculty of Science, J. E. Purkyně University, 400 96 Usti nad Labem, Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Václav Švorčík
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Nikola Slepičková Kasálková
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Petr Slepička
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic
| |
Collapse
|
2
|
Zhai Y, Tian W, Chen K, Lan L, Kan J, Shi H. Flagella-mediated adhesion of Escherichia coli O157:H7 to surface of stainless steel, glass and fresh produces during sublethal injury and recovery. Food Microbiol 2024; 117:104383. [PMID: 37918998 DOI: 10.1016/j.fm.2023.104383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 11/04/2023]
Abstract
E. coli O157:H7 can be induced into sublethally injured (SI) state by lactic acid (LA) and regain activity in nutrient environments. This research clarified the role of flagella-related genes (fliD, fliS, cheA and motA) in adhesion of E. coli O157:H7 onto stainless steel, glass, lettuce, spinach, red cabbage and cucumber during LA-induced SI and recovery by plate counting. Results of adhesion showed improper flagellar rotation caused by the deletion of motA resulting in the decreased adhesion. Motility of wildtype determined by diameter of motility halo decreased in SI state and repaired with recovery time increasing, lagging behind changes in expression of flagella-related genes. Flagellar function-impaired strains all exhibited non-motile property. Thus, we speculated that flagella-mediated motility is critical in early stage of adhesion. We also found the effects of Fe2+, Ca2+ and Mn2+ on adhesion or motility of wildtype was independent of bacterial states. However, the addition of Ca2+ and Mn2+ did not affect motility of flagellar function-impaired strains as they did on wildtype. This research provides new insights to understand the role of flagella and cations in bacterial adhesion, which will aid in development of anti-adhesion agents to reduce bio-contamination in food processing.
Collapse
Affiliation(s)
- Yujun Zhai
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Weina Tian
- College of Bioengineering, Beijing Polytechnic, Beijing, 100176, China
| | - Kewei Chen
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Linshu Lan
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Hui Shi
- College of Food Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Zhang H, Zhai Y, Chen K, Shi H. Adhesion of Escherichia coli O157:H7 during sublethal injury and resuscitation: Importance of pili and surface properties. Food Microbiol 2023; 115:104329. [PMID: 37567635 DOI: 10.1016/j.fm.2023.104329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 08/13/2023]
Abstract
Escherichia coli O157:H7 can recover from sublethally injured (SI) state, which causes threat of foodborne illness. Adhesion plays a key role in the carriage of pathogens in food. In this study, we investigated the adhesion ability of SI and recovered E. coli O157:H7 wildtype and its three pili-deficient mutants (curli, type 1 fimbriae, and type IV pili) on six food-related surfaces. Plate counting was used to determine adhesion population after washing and oscillating the surfaces. Spinach exhibited the stronger adhesion population of E. coli O157:H7 than the other fresh produces (p < 0.05). In addition, at least one key pili dominated adhesion on these surfaces, and curli was always included. The adhesion population and contribution of different types of pili were jointly affected by surface and physiological state. This can be attributed to high hydrophobicity and positive charge density on surface and different expression levels of csgB, fimA, fimC and ppdD in SI and recovered cells. Among glucose, mannose, maltose, fructose, lactose, and sucrose, addition of 0.5% mannose could reduce adhesion of cells at all physiological states on stainless steel. Overall, this research will provide support for controlling adhesion of SI and recovered E. coli O157:H7.
Collapse
Affiliation(s)
- Hongchen Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Yujun Zhai
- College of Food Science, Southwest University, Chongqing, China
| | - Kewei Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Hui Shi
- College of Food Science, Southwest University, Chongqing, China.
| |
Collapse
|
4
|
Sadiki M, Balouiri M, Elabed S, Bennouna F, Lachkar M, Ibnsouda Koraichi S. The combined effect of essential oils on wood physico-chemical properties and their antiadhesive activity against mold fungi: application of mixture design methodology. BIOFOULING 2023; 39:537-554. [PMID: 37477240 DOI: 10.1080/08927014.2023.2236029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
In the heritage field, the microbial adhesion on wood, and consequently the formation of biofilm led to inestimable losses of historical and cultural monuments. Thereby, this study aimed to examine the combined effect of Thymus vulgaris, Myrtus communis, and Mentha pulegium essential oils on wood surface physico-chemical properties, and to elaborate the optimal mixture using the mixture design approach coupled to the contact angle method. It was found that both wood hydrophobicity and electron donor character increased significantly after treatment using an optimal mixture containing 57% and 43% of M. pulegium and M. communis essential oils, respectively. The theoretical and experimental fungal adhesion on untreated and treated wood were also investigated. The results showed that the adhesion was favorable on untreated wood and reduced using the optimal mixture. Moreover, the experimental data demonstrated that the same mixture exhibited an antiadhesive efficacy effect with a reduction of 36-75% in adhesion.
Collapse
Affiliation(s)
- Moulay Sadiki
- Laboratory of Geo-Bio-Environment and Innovation Engineering, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LB2MB), Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | - Mounyr Balouiri
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LB2MB), Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | - Soumya Elabed
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LB2MB), Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
- City of Innovation-Regional University Centre of Interface, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Fadoua Bennouna
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LB2MB), Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | - Mohammed Lachkar
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Science, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LB2MB), Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco
- City of Innovation-Regional University Centre of Interface, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
5
|
Öztürk FY, Darcan C, Kariptaş E. The Determination, Monitoring, Molecular Mechanisms and Formation of Biofilm in E. coli. Braz J Microbiol 2023; 54:259-277. [PMID: 36577889 PMCID: PMC9943865 DOI: 10.1007/s42770-022-00895-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Biofilms are cell assemblies embedded in an exopolysaccharide matrix formed by microorganisms of a single or many different species. This matrix in which they are embedded protects the bacteria from external influences and antimicrobial effects. The biofilm structure that microorganisms form to protect themselves from harsh environmental conditions and survive is found in nature in many different environments. These environments where biofilm formation occurs have in common that they are in contact with fluids. The gene expression of bacteria in complex biofilm differs from that of bacteria in the planktonic state. The differences in biofilm cell expression are one of the effects of community life. Means of quorum sensing, bacteria can act in coordination with each other. At the same time, while biofilm formation provides many benefits to bacteria, it has positive and negative effects in many different areas. Depending on where they occur, biofilms can cause serious health problems, contamination risks, corrosion, and heat and efficiency losses. However, they can also be used in water treatment plants, bioremediation, and energy production with microbial fuel cells. In this review, the basic steps of biofilm formation and biofilm regulation in the model organism Escherichia coli were discussed. Finally, the methods by which biofilm formation can be detected and monitored were briefly discussed.
Collapse
Affiliation(s)
- Fırat Yavuz Öztürk
- Department of Molecular Biology and Genetic, Faculty of Arts and Science, Bilecik Seyh Edebali University, Bilecik, Turkey.
| | - Cihan Darcan
- Department of Molecular Biology and Genetic, Faculty of Arts and Science, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Ergin Kariptaş
- Department of Medical Microbiology, Faculty of Medicine, Samsun University, Samsun, Turkey
| |
Collapse
|
6
|
Adhesion and Anti-Adhesion Abilities of Potentially Probiotic Lactic Acid Bacteria and Biofilm Eradication of Honeybee ( Apis mellifera L.) Pathogens. Molecules 2022; 27:molecules27248945. [PMID: 36558073 PMCID: PMC9786635 DOI: 10.3390/molecules27248945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Lactic acid bacteria (LAB) naturally inhabits the organisms of honeybees and can exhibit adhesive properties that protect these insects against various pathogenic microorganisms. Thus, cell surface (auto-aggregation, co-aggregation, hydrophobicity) and adhesive properties of LAB to two abiotic (polystyrene and glass) and four biotic (collagen, gelatin, mucus, and intestinal Caco-2 cells) surfaces were investigated. Additionally, anti-adhesion activity and the eradication of honeybee pathogen biofilms by LAB metabolites (culture supernatants) were determined. The highest hydrophobicity was demonstrated by Pediococcus pentosaceus 19/1 (63.16%) and auto-aggregation by Lactiplantibacillus plantarum 18/1 (71.91%). All LAB showed a broad spectrum of adhesion to the tested surfaces. The strongest adhesion was noted for glass. The ability to co-aggregate with pathogens was tested for the three most potently adherent LAB strains. All showed various levels of co-aggregation depending on the pathogen. The eradication of mature pathogen biofilms by LAB metabolites appeared to be weaker than their anti-adhesive properties against pathogens. The most potent anti-adhesion activity was observed for L. plantarum 18/1 (98.80%) against Paenibacillus apiarius DSM 5582, while the strongest biofilm eradication was demonstrated by the same LAB strain against Melissococcus plutonius DSM 29964 (19.87%). The adhesive and anti-adhesive activity demonstrated by LAB can contribute to increasing the viability of honeybee colonies and improving the conditions in apiaries.
Collapse
|
7
|
Wang Q, Lavoine N, Salvi D. Cold atmospheric pressure plasma for the sanitation of conveyor belt materials: Decontamination efficacy against adherent bacteria and biofilms of Escherichia coli and effect on surface properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
The interaction between nanocellulose and microorganisms for new degradable packaging: A review. Carbohydr Polym 2022; 295:119899. [DOI: 10.1016/j.carbpol.2022.119899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/19/2022]
|