1
|
Li X, Wu Y, Xie B, Xu M, Xie T, Yue W, Lin M, Lin Y, Chen Y. SPP1 Promotes NSCLC Brain Metastasis Via Sequestration of Ubiquitin Ligase RNF114 to Facilitate P85α Ubiquitination. Mol Carcinog 2025; 64:829-841. [PMID: 39918025 DOI: 10.1002/mc.23866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 04/12/2025]
Abstract
Brain metastasis (BM) is a significant factor contributing to the poor prognosis of patients with non-small cell lung cancer (NSCLC). Secreted phosphoprotein 1 (SPP1) is implicated in the progression and metastasis of several cancers. The role of SPP1 in NSCLC remains unclear, especially in NSCLC BM. This study aimed to identify genes associated with NSCLC BM and to investigate the involvement of SPP1 in NSCLC BM. Integrated genomic analysis was utilized to identify candidate genes in NSCLC. The expression levels of SPP1 were evaluated in NSCLC tissues and cell lines. In vitro and in vivo experiments were conducted to assess the effect of SPP1 on NSCLC cell behavior and BM. The potential mechanisms of SPP1 were demonstrated by CO-IP and liquid chromatography-mass spectrometry (LC-MS). The underlying mechanism involving the PI3K/AKT/mTOR pathway was explored. The results showed that SPP1 expression was upregulated in NSCLC tissues and cell lines. Depletion of SPP1 using shRNA inhibited cell proliferation, migration, and invasion in vitro and suppressed BM in vivo. Mechanistically, SPP1 facilitates the ubiquitination of P85α by interacting with the ubiquitin ligase RNF114, thus playing a role in regulating NSCLC BM through the PI3K/AKT/mTOR signaling pathway. Moreover, immunohistochemistry staining confirmed higher expression of SPP1 in NSCLC tissues with BM compared to those without BM. In summary, elevated SPP1 expression was associated with poor clinical outcomes in NSCLC patients. This study highlights the role of SPP1 as a regulator of cell metastasis and suggests its potential as a novel therapeutic target for BM in NSCLC.
Collapse
Affiliation(s)
- Xiaoqin Li
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Researching Laboratory of Respiratory Diseases, Fuzhou, China
| | - Yun Wu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Baosong Xie
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Researching Laboratory of Respiratory Diseases, Fuzhou, China
| | - Mingxiao Xu
- Department of Infection Diseases, First Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Tianjian Xie
- Xiapu County Hospital of Fujian Province, Ningde, China
| | - Wenxiang Yue
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Ming Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Ying Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Yusheng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Respiratory Medicine and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Researching Laboratory of Respiratory Diseases, Fuzhou, China
| |
Collapse
|
2
|
Moraitis I, Taelman J, Arozamena B, Mularoni L, Wienskowska O, Sanjuan Garriga X, Arregui L, Stefanovic M, Modolell Farré I, Guedea F, Diaz M, Guiu J. Mucosal Macrophages Govern Intestinal Regeneration in Response to Injury. Gastroenterology 2025:S0016-5085(25)00465-2. [PMID: 40086603 DOI: 10.1053/j.gastro.2025.01.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND & AIMS Radiation-induced enteritis develops in cancer patients treated with radiotherapy in the abdominal and pelvic cavity, a condition that impairs their quality of life. Radiation injury depletes proliferative intestinal stem cells; in response to this, the epithelium activates a regenerative program that facilitates the healing of the intestine. However, the mechanisms that induce the activation of the intestinal regenerative program are poorly characterized. METHODS In this study, we induced radiation-induced enteritis in mice through abdominal irradiation, mimicking clinical scenarios. Through imaging and flow cytometric analysis, we investigated the recruitment of macrophages to the small intestine during injury and healing. Additionally, we developed a coculture system for mouse and human intestinal organoids and macrophages to explore the cross talk between these cells. Then by combining in vivo ablation of macrophages, fluorescent lineage tracing, imaging, bulk RNA-sequencing (RNA-seq), single-cell RNA-seq, human intestinal organoids, and cell trajectory analysis, we studied the macrophage induction of intestinal regeneration at the cellular and molecular level. RESULTS Our findings revealed that macrophages are recruited around the intestinal stem cell compartment upon radiation injury, promoting a fetal-like reprogramming and proliferation of epithelial cells that drives the regeneration process. In contrast, macrophage ablation led to compromised regeneration. Moreover, our single-cell RNA-seq analysis identified key secreted molecules, neuregulin 1 and osteopontin, as pivotal players in regulating this process. Additionally, characterization of human macrophage/organoid cocultures and cell trajectory inference confirmed the conservation of macrophages' role in triggering the regenerative program in primary human cells. CONCLUSIONS This study identifies macrophages as essential contributors to intestinal regeneration beyond their innate immune response. Targeting macrophages therapeutically may hold promise in enhancing regeneration and improving the quality of life for cancer survivors.
Collapse
Affiliation(s)
- Ilias Moraitis
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jasin Taelman
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Borja Arozamena
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Loris Mularoni
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Olga Wienskowska
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Sanjuan Garriga
- Department of Pathology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Arregui
- Hospital Universitari de Bellvitge - Duran i Reynals Hospital-IDIBELL Biobank, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Milica Stefanovic
- Department of Radiobiology and Cancer, ONCOBELL-IDIBELL, Barcelona, Spain; Department of Radiation Oncology, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ignasi Modolell Farré
- Servei de Física Mèdica i Protecció Radiològica, Institut Català d'Oncologia. l'Hospitalet del Llobregat, Barcelona, Spain
| | - Ferran Guedea
- Department of Radiobiology and Cancer, ONCOBELL-IDIBELL, Barcelona, Spain; Department of Radiation Oncology, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mònica Diaz
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Guiu
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L'Hospitalet de Llobregat, Barcelona, Spain; Centre for Networked Biomedical Research on Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
3
|
Wang K, Wan J, Zheng R, Xiao Y, Lv F, Ge H, Yang G, Cheng Y. SPP1 as a Prognostic and Immunotherapeutic Biomarker in Gliomas and Other Cancer Types: A Pan-Cancer Study. J Inflamm Res 2025; 18:2247-2265. [PMID: 39963684 PMCID: PMC11832131 DOI: 10.2147/jir.s505237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Background Gliomas, including glioblastoma (GBM), present significant treatment challenges due to their poor prognosis and complex tumor microenvironment. This study investigates the role of Secreted Phosphoprotein 1 (SPP1) as a prognostic and immunotherapeutic biomarker in gliomas and other cancers through pan-cancer analysis. Methods A comprehensive pan-cancer analysis was conducted using datasets from UCSC TCGA Pan-Cancer, TCGA-GBM, UALCAN, and single-cell sequencing data from GEO and TISCH. The correlation of SPP1 expression with overall survival (OS), progression-free survival (PFS), immune cell infiltration, and immune checkpoint markers was analyzed. Functional validation was performed via SPP1 knockdown in glioma cell lines to evaluate effects on proliferation, invasion, and immune interactions. Results SPP1 was found to be overexpressed in 27 tumor types, with high expression correlating with poor OS, PFS, and increased immune cell infiltration, particularly with CD8+ T cells and macrophages. Single-cell analysis indicated SPP1 enrichment in macrophages interacting with malignant GBM cells. Knockdown of SPP1 significantly inhibited glioma cell proliferation, invasion, and promoted apoptosis. Conclusion The findings suggest that SPP1 is a promising target for immunotherapy, potentially improving outcomes for patients with gliomas and other cancers. Further research is warranted to explore SPP1-targeted therapies and their efficacy in clinical settings.
Collapse
Affiliation(s)
- Kan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| | - Jinxin Wan
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai City, Guangdong Province, 519090, People’s Republic of China
| | - Ruipeng Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| | - Yifei Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| | - Fengjun Lv
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| | - Haitao Ge
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| | - Guang Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, People’s Republic of China
| | - Yu Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| |
Collapse
|
4
|
Huang Z, Li Y, Liu Q, Chen X, Lin W, Wu W, Chen Z, Chen X, Pan Y, Qiu S. SPP1-mediated M2 macrophage polarization shapes the tumor microenvironment and enhances prognosis and immunotherapy guidance in nasopharyngeal carcinoma. Int Immunopharmacol 2025; 147:113944. [PMID: 39742726 DOI: 10.1016/j.intimp.2024.113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Secreted phosphoprotein 1 (SPP1) shows carcinogenic potential in multiple cancers, yet its role in nasopharyngeal carcinoma (NPC) remains elusive. Leveraging transcriptomic data sourced from an NPC cohort at Fujian Cancer Hospital, alongside datasets from the Gene Expression Omnibus cohort and a single-cell RNA sequencing dataset, this investigation explored the role of SPP1 in tumor progression and the tumor microenvironment of NPC. A co-culture system involving tumor cells and macrophages was established to elucidate the relationship between SPP1 and tumor-associated macrophages in NPC. Subsequently, we established an SPP1-driven M2 macrophage signature using a machine-learning-based framework to predict patient prognosis. The results of our analysis indicated that SPP1 is associated with an elevated risk of disease progression and poor prognosis in NPC. Single-cell analysis demonstrated that SPP1 is a pivotal gene in the polarization of M2 macrophages within the tumor microenvironment. In vitro experiments demonstrated that NPC-derived SPP1 has the potential to activate the CD44/JAK2/STAT3 signaling pathway, promoting macrophage recruitment and polarization of the M2 subtype. Furthermore, we established a comprehensive SPP1-related M2 macrophage signature that can predict the prognosis and immune characteristics of patients with NPC. Our findings offer new insights into the role of SPP1 in the tumor microenvironment of NPC, and provide a novel SPP1-driven M2 macrophage signature with the potential to serve as a valuable tool for prognosis prediction and personalized therapy in NPC.
Collapse
Affiliation(s)
- Zongwei Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Ying Li
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xiaochuan Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Wanzun Lin
- Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Wenxi Wu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Zihan Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Xin Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Yuhui Pan
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China.
| | - Sufang Qiu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China.
| |
Collapse
|
5
|
Liu C, Wu K, Li C, Zhang Z, Zhai P, Guo H, Zhang J. SPP1+ macrophages promote head and neck squamous cell carcinoma progression by secreting TNF-α and IL-1β. J Exp Clin Cancer Res 2024; 43:332. [PMID: 39726047 DOI: 10.1186/s13046-024-03255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a very aggressive disease characterized by a heterogeneous tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs) constitute the major innate immune population in the TIME where they facilitate crucial regulatory processes that participate in malignant tumor progression. SPP1 + macrophages (SPP1 + Macs) are found in many cancers, but their effects on HNSCC remain unknown. This study aimed to identify and validate the role and function of SPP1 + Macs in the malignant progression of HNSCC. METHODS In this study, we applied single-cell RNA sequencing (scRNA-seq) analyses of paired tumor and normal tissues from 5 HNSCC patients to identify tumor-specific SPP1 + Macs. RT-qPCR and multiplex immunohistochemical and multiplex immunofluorescence staining were used to verify the presence of SPP1 + Macs in the clinical samples. Gene set variation analysis suggested that SPP1 + Macs were actively involved in cytokine production. Thus, we constructed SPP1-OE macrophages and SPP1-KD macrophages (both differentiated from THP-1 cells), performed a Luminex liquid suspension chip detection assay to detect differential cytokines, and further assessed their biological functions and mechanisms in several HNSCC cell lines and adjacent macrophages. An in vivo experiment was used to verify the function of SPP1 + Macs in HNSCC progression. RESULTS The scRNA-seq results revealed that myeloid cells were heterogeneous and strongly correlated with tumor cells in the TIME in HNSCC and identified tumor-specific SPP1 + Macs, which were positively correlated with poor prognosis of HNSCC patients. Gene set variation analysis (GSVA) suggested that SPP1 + Macs were actively involved in cytokine production. Luminex liquid suspension chip detection assay indicated that SPP1 + Mac-derived TNF-α and IL-1β played important roles. Both in vitro and in vivo experiments and the use of VGX-1027, an inhibitor of macrophage-derived TNF-α and IL-1β, confirmed that SPP1 + Mac-derived TNF-α and IL-1β promoted HNSCC progression by supporting tumor cell proliferation and migration. Mechanistically, we found that TNF-α and IL-1β were upregulated due to NF-kappa B signaling pathway activation in SPP1 + Macs. Moreover, SPP1 + Mac-derived TNF-α and IL-1β promoted the expression of OPN in both tumor cells and other adjacent macrophages through different signaling pathways. CONCLUSIONS SPP1 + Macs increase the secretion of TNF-α and IL-1β via the NF-kappa B pathway to promote HNSCC cell proliferation, and TNF-α and IL-1β in turn upregulate the expression of OPN in tumor cells and macrophages; thus, SPP1 + Macs may be a candidate target through which antitumor efficacy can be enhanced.
Collapse
Affiliation(s)
- Chun Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Wu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral and Maxillofacial Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Chuwen Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai Jiao Tong University, Shanghai, China
| | - Peisong Zhai
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Guo
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, China.
- Shanghai Research Institute of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Zhang Z, Chen X, Li Y, Zhang F, Quan Z, Wang Z, Yang Y, Si W, Xiong Y, Ju J, Bian Y, Sun S. The resistance to anoikis, mediated by Spp1, and the evasion of immune surveillance facilitate the invasion and metastasis of hepatocellular carcinoma. Apoptosis 2024; 29:1564-1583. [PMID: 39066845 PMCID: PMC11416391 DOI: 10.1007/s10495-024-01994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Anoikis-Related Genes (ARGs) lead to the organism manifesting resistance to anoikis and are associated with unfavorable prognostic outcomes across various malignancies.Therefore, it is crucial to identify the pivotal target genes related to anoikis in HCC .We found that ARGs were significantly correlated with prognosis and immune responses in HCC. The core gene, SPP1, notably promoted anoikis resistance and metastasis in HCC through both in vivo and in vitro studies. The PI3K-Akt-mTOR pathway played a critical role in anoikis suppression within HCC contexts. Our research unveiled SPP1's role in enhancing PKCα phosphorylation, which in turn activated the PI3K-Akt-mTOR cascade. Additionally, SPP1 was identified as a key regulator of MDSCs and Tregs migration, directly affecting their immunosuppressive capabilities.These findings indicate that in HCC, SPP1 promoted anoikis resistance and facilitated immune evasion by modulating MDSCs and Tregs.
Collapse
Affiliation(s)
- Zhengwei Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaoning Chen
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yapeng Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Feng Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China
| | - Zhen Quan
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Zhuo Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China
| | - Yang Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China
| | - Wei Si
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China
| | - Yuting Xiong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China
| | - Jiaming Ju
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China.
| | - Yu Bian
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China.
| | - Shibo Sun
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
7
|
Li E, Cheung HCZ, Ma S. CTHRC1 + fibroblasts and SPP1 + macrophages synergistically contribute to pro-tumorigenic tumor microenvironment in pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:17412. [PMID: 39075108 PMCID: PMC11286765 DOI: 10.1038/s41598-024-68109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal cancer that accounts for over 90% of all pancreatic cancer cases. With a 5-year survival rate of only 13%, PDAC has proven to be extremely desmoplastic and immunosuppressive to most current therapies, including chemotherapy and surgical resection. In recent years, focus has shifted to understanding the tumor microenvironment (TME) around PDAC, enabling a greater understanding of biological pathways and intercellular interactions that can ultimately lead to potential for future drug targets. In this study, we leverage a combination of single-cell and spatial transcriptomics to further identify cellular populations and interactions within the highly heterogeneous TME. We demonstrate that SPP1+APOE+ tumor-associated macrophages (TAM) and CTHRC1+GREM1+ cancer-associated myofibroblasts (myCAF) not only act synergistically to promote an immune-suppressive TME through active extracellular matrix (ECM) deposition and epithelial mesenchymal transition (EMT), but are spatially colocalized and correlated, leading to worse prognosis. Our results highlight the crosstalk between stromal and myeloid cells as a significant area of study for future therapeutic targets to treat cancer.
Collapse
Affiliation(s)
- Evan Li
- Worcester Academy, Worcester, MA, USA.
| | | | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Wang J, Yang K, Yang X, Jin T, Tian Y, Dai C, Xu F. HHLA2 promotes hepatoma cell proliferation, migration, and invasion via SPP1/PI3K/AKT signaling pathway. Mol Carcinog 2024; 63:1275-1287. [PMID: 38578157 DOI: 10.1002/mc.23723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as one of the most malignant tumors characterized by poor prognosis and high mortality rates. Emerging evidence underscores the crucial role of the B7 protein family in various cancers, including HCC. However, the involvement of the human endogenous retrovirus H long-terminal repeat-associated protein 2 (HHLA2, or B7-H5) in HCC remains unclear. Immunohistochemistry was employed to assess the differential expression of HHLA2 between HCC and normal liver tissues. A battery of assays, including CCK8, EdU, tablet clone-forming, Transwell, and wound healing assays, were conducted to elucidate the function and potential mechanisms of HHLA2 in the malignant biological behaviors of HCC. Additionally, a xenograft mouse model was established to evaluate the tumorigenicity of hepatoma cell lines exhibiting different HHLA2 expression levels in vivo. Western blot analysis was used to analyze HHLA2, secretory phosphoprotein 1 (SPP1), and PI3K/AKT/mTOR levels. HHLA2 exhibited elevated expression in HCC tissues, correlating with poor tumor differentiation and shortened overall survival in HCC patients. In vitro experiments demonstrated that HHLA2 overexpression (OE) promoted the proliferation, migration, and invasion of hepatoma cells, while in vivo experiments revealed that HHLA2 OE enhanced HCC tumor growth. Conversely, inhibition of HHLA2 expression yielded the opposite effect. Downregulation of SPP1 inhibited the proliferation, migration, and invasion induced by HHLA2 OE, and this effect was linked to the PI3K/AKT/mTOR signaling pathway. Our findings indicate that HHLA2 promotes the proliferation, migration, and invasion of hepatoma cells via the SPP1/PI3K/AKT signaling pathway, establishing it as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Junqi Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ke Yang
- Department of Tradition Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Song H, Yao X, Zheng Y, Zhou L. Helicobacter pylori infection induces POU5F1 upregulation and SPP1 activation to promote chemoresistance and T cell inactivation in gastric cancer cells. Biochem Pharmacol 2024; 225:116253. [PMID: 38701869 DOI: 10.1016/j.bcp.2024.116253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Infection with Helicobacter pylori (H. pylori or Hp) is associated with an increased susceptibility to gastric diseases, notably gastric cancer (GC). This study investigates the impact of Hp infection on chemoresistance and immune activity in GC cells. Hp infection in AGS and MKN-74 cells promoted proliferation, migration and invasion, apoptosis resistance, and tumorigenic activity of cells under cisplatin (DDP) plus gemcitabine (GEM) treatment. Additionally, it dampened activity of the co-cultured CD8+ T cells. Hp infection increased POU class 5 homeobox 1 (POU5F1) level, which further activated secreted phosphoprotein 1 (SPP1) transcription to increase its expression. Silencing of either SPP1 or POU5F1 enhanced the GEM sensitivity in GC cells, and it increased the populations of CD8+ T cells and the secretion of immune-active cytokines both in vitro and in xenograft tumors in immunocompetent mice. However, the effects of POU5F1 silencing were counteracted by SPP1 overexpression. Furthermore, the POU5F1/SPP1 axis activated the PI3K/AKT signaling pathway. This study demonstrates that Hp infection induces POU5F1 upregulation and SPP1 activation, leading to increased DDP/GEM resistance and T cell inactivation in GC cells.
Collapse
Affiliation(s)
- Hanyi Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Xinjie Yao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Yuqi Zheng
- Department of Gastroenterology, Panjin Central Hospital, Panjin 124010, Liaoning, PR China
| | - Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China.
| |
Collapse
|
10
|
Lee SC, Huang CH, Oyang YJ, Huang HC, Juan HF. Macrophages as determinants and regulators of systemic sclerosis-related interstitial lung disease. J Transl Med 2024; 22:600. [PMID: 38937794 PMCID: PMC11212242 DOI: 10.1186/s12967-024-05403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Interstitial lung disease (ILD) is the primary cause of mortality in systemic sclerosis (SSc), an autoimmune disease characterized by tissue fibrosis. SSc-related ILD (SSc-ILD) occurs more frequently in females aged 30-55 years, whereas idiopathic pulmonary fibrosis (IPF) is more prevalent in males aged 60-75 years. SSc-ILD occurs earlier than IPF and progresses rapidly. FCN1, FABP4, and SPP1 macrophages are involved in the pathogenesis of lung fibrosis; SPP1 macrophages demonstrate upregulated expression in both SSc-ILD and IPF. To identify the differences between SSc-ILD and IPF using single-cell analysis, clarify their distinct pathogeneses, and propose directions for prevention and treatment. METHODS We performed single-cell RNA sequencing on NCBI Gene Expression Omnibus (GEO) databases GSE159354 and GSE212109, and analyzed lung tissue samples across healthy controls, IPF, and SSc-ILD. The primary measures were the filtered genes integrated with batch correction and annotated cell types for distinguishing patients with SSc-ILD from healthy controls. We proposed an SSc-ILD pathogenesis using cell-cell interaction inferences, and predicted transcription factors regulating target genes using SCENIC. Drug target prediction of the TF gene was performed using Drug Bank Online. RESULTS A subset of macrophages activates the MAPK signaling pathway under oxidative stress. Owing to the lack of inhibitory feedback from ANNEXIN and the autoimmune characteristics, this leads to an earlier onset of lung fibrosis compared to IPF. During initial lung injury, fibroblasts begin to activate the IL6 pathway under the influence of SPP1 alveolar macrophages, but IL6 appears unrelated to other inflammatory and immune cells. This may explain why tocilizumab (an anti-IL6-receptor antibody) only preserves lung function in patients with early SSc-ILD. Finally, we identified BCLAF1 and NFE2L2 as influencers of MAPK activation in macrophages. Metformin downregulates NFE2L2 and could serve as a repurposed drug candidate. CONCLUSIONS SPP1 alveolar macrophages play a role in the profibrotic activity of IPF and SSc-ILD. However, SSc-ILD is influenced by autoimmunity and oxidative stress, leading to the continuous activation of MAPK in macrophages. This may result in an earlier onset of lung fibrosis than in IPF. Such differences could serve as potential research directions for early prevention and treatment.
Collapse
Affiliation(s)
- Shih-Ching Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Chen-Hao Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
| | - Yen-Jen Oyang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Hsueh-Fen Juan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan.
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Center for Computational and Systems Biology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
11
|
Hong S, Kim J, Jung K, Ahn M, Moon C, Nomura Y, Matsuda H, Tanaka A, Jeong H, Shin T. Histopathological evaluation of the lungs in experimental autoimmune encephalomyelitis. J Vet Sci 2024; 25:e35. [PMID: 38834505 PMCID: PMC11156594 DOI: 10.4142/jvs.23302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 06/06/2024] Open
Abstract
IMPORTANCE Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis characterized by inflammation within the central nervous system. However, inflammation in non-neuronal tissues, including the lungs, has not been fully evaluated. OBJECTIVE This study evaluated the inflammatory response in lungs of EAE mice by immunohistochemistry and histochemistry. METHODS Eight adult C57BL/6 mice were injected with myelin oligodendrocyte glycoprotein35-55 to induce the EAE. Lungs and spinal cords were sampled from the experimental mice at the time of sacrifice and used for the western blotting, histochemistry, and immunohistochemistry. RESULTS Histopathological examination revealed inflammatory lesions in the lungs of EAE mice, characterized by infiltration of myeloperoxidase (MPO)- and galectin-3-positive cells, as determined by immunohistochemistry. Increased numbers of collagen fibers in the lungs of EAE mice were confirmed by histopathological analysis. Western blotting revealed significantly elevated level of osteopontin (OPN), cluster of differentiation 44 (CD44), MPO and galectin-3 in the lungs of EAE mice compared with normal controls (p < 0.05). Immunohistochemical analysis revealed both OPN and CD44 in ionized calcium-binding adapter molecule 1-positive macrophages within the lungs of EAE mice. CONCLUSIONS AND RELEVANCE Taken together, these findings suggest that the increased OPN level in lungs of EAE mice led to inflammation; concurrent increases in proinflammatory factors (OPN and galectin-3) caused pulmonary impairment.
Collapse
Affiliation(s)
- Sungmoo Hong
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan 49267, Korea
| | - Kyungsook Jung
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea
| | - Yoshihiro Nomura
- Scleroprotein and Leather Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Hiroshi Matsuda
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Akane Tanaka
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Hyohoon Jeong
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea.
| | - Taekyun Shin
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
12
|
Wang R, Min Q, Guo Y, Zhou Y, Zhang X, Wang D, Gao Y, Wei L. GL-V9 inhibits the activation of AR-AKT-HK2 signaling networks and induces prostate cancer cell apoptosis through mitochondria-mediated mechanism. iScience 2024; 27:109246. [PMID: 38439974 PMCID: PMC10909900 DOI: 10.1016/j.isci.2024.109246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/14/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Prostate cancer (PCa) is a serious health concern for men due to its high incidence and mortality rate. The first therapy typically adopted is androgen deprivation therapy (ADT). However, patient response to ADT varies, and 20-30% of PCa cases develop into castration-resistant prostate cancer (CRPC). This article investigates the anti-PCa effect of a drug candidate named GL-V9 and highlights the significant mechanism involving the AKT-hexokinase II (HKII) pathway. In both androgen receptor (AR)-expressing 22RV1 cells and AR-negative PC3 cells, GL-V9 suppressed phosphorylated AKT and mitochondrial location of HKII. This led to glycolytic inhibition and mitochondrial pathway-mediated apoptosis. Additionally, GL-V9 inhibited AR activity in 22RV1 cells and disrupted the feedback activation of AKT signaling in condition of AR inhibition. This disruption greatly increased the anti-PCa efficacy of the AR antagonist bicalutamide. In conclusion, we present a novel anti-PCa candidate and combination drug strategies to combat CRPC by intervening in the AR-AKT-HKII signaling network.
Collapse
Affiliation(s)
- Rui Wang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, the People's Republic of China
| | - Qi Min
- Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, the People's Republic of China
- Department of Oncology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, the People's Republic of China
| | - Yongjian Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, the People's Republic of China
| | - Yuxin Zhou
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, the People's Republic of China
| | - Xin Zhang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, the People's Republic of China
| | - Dechao Wang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, the People's Republic of China
| | - Yuan Gao
- Pharmaceutical Animal Experiment Center, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, the People's Republic of China
| | - Libin Wei
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, the People's Republic of China
| |
Collapse
|
13
|
Ashrafizadeh M, Zhang W, Tian Y, Sethi G, Zhang X, Qiu A. Molecular panorama of therapy resistance in prostate cancer: a pre-clinical and bioinformatics analysis for clinical translation. Cancer Metastasis Rev 2024; 43:229-260. [PMID: 38374496 DOI: 10.1007/s10555-024-10168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024]
Abstract
Prostate cancer (PCa) is a malignant disorder of prostate gland being asymptomatic in early stages and high metastatic potential in advanced stages. The chemotherapy and surgical resection have provided favourable prognosis of PCa patients, but advanced and aggressive forms of PCa including CRPC and AVPC lack response to therapy properly, and therefore, prognosis of patients is deteriorated. At the advanced stages, PCa cells do not respond to chemotherapy and radiotherapy in a satisfactory level, and therefore, therapy resistance is emerged. Molecular profile analysis of PCa cells reveals the apoptosis suppression, pro-survival autophagy induction, and EMT induction as factors in escalating malignant of cancer cells and development of therapy resistance. The dysregulation in molecular profile of PCa including upregulation of STAT3 and PI3K/Akt, downregulation of STAT3, and aberrant expression of non-coding RNAs are determining factor for response of cancer cells to chemotherapy. Because of prevalence of drug resistance in PCa, combination therapy including co-utilization of anti-cancer drugs and nanotherapeutic approaches has been suggested in PCa therapy. As a result of increase in DNA damage repair, PCa cells induce radioresistance and RelB overexpression prevents irradiation-mediated cell death. Similar to chemotherapy, nanomaterials are promising for promoting radiosensitivity through delivery of cargo, improving accumulation in PCa cells, and targeting survival-related pathways. In respect to emergence of immunotherapy as a new tool in PCa suppression, tumour cells are able to increase PD-L1 expression and inactivate NK cells in mediating immune evasion. The bioinformatics analysis for evaluation of drug resistance-related genes has been performed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Yu Tian
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Aiming Qiu
- Department of Geriatrics, the Fifth People's Hospital of Wujiang District, Suzhou, China.
| |
Collapse
|
14
|
Li B, Li X, Yang Q, Jiang Y, Zhang Q, Zhang J, Cui W, Xu F. Overexpression of SPP1 is a prognostic indicator of immune infiltration in lung adenocarcinoma. Aging (Albany NY) 2024; 16:2953-2977. [PMID: 38329443 PMCID: PMC10911343 DOI: 10.18632/aging.205526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE The extracellular phosphoprotein, secreted phosphoprotein 1 (SPP1), plays a crucial role in various tumors and regulating the immune system. This study aimed to evaluate its prognostic value and relationship to immune infiltration in lung adenocarcinoma (LUAD). METHODS In the TCGA and GEO datasets, the information on clinic and transcriptome analysis of SPP1 in non-small-cell lung cancer (NSCLC) was examined accordingly. The association of SPP1 expression with overall survival and clinicopathologic characteristics was investigated by univariate and multivariate analysis. CancerSEA database was utilized to investigate the role of SPP1 at the cellular level by single-cell analysis. Additionally, the CIBERSORT algorithm was utilized to assess the correlation among the immune cells that infiltrated. RESULTS NSCLC tissues exhibited a notable rise in SPP1 expression compared with that of normal tissues. Furthermore, the overexpression of SPP1 was substantially associated with clinicopathological features and unfavorable survival outcomes in individuals with LUAD, whereas no such correlation was observed in lung squamous cell carcinoma. Immune cells that infiltrate tumors and their corresponding genes were associated with SPP1 expression levels in LUAD. CONCLUSIONS SPP1 is a reliable indicator for assessing LUAD immune infiltration status and prognosis. With this approach, SPP1 can help earlier LUAD diagnosis and act as a possible immunotherapy target.
Collapse
Affiliation(s)
- Binbin Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xue Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Qingfeng Yang
- Department of Pneumology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yiyang Jiang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Qianwen Zhang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jingtao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Fei Xu
- Department of Pneumology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
15
|
Xie H, Lu F, Li X, Wang E, Mo J, Liang W. Silencing of secreted phosphoprotein 1 attenuates sciatic nerve injury-induced neuropathic pain: Regulating extracellular signal-regulated kinase and neuroinflammatory signaling pathways. Immun Inflamm Dis 2024; 12:e1132. [PMID: 38415922 PMCID: PMC10836034 DOI: 10.1002/iid3.1132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/23/2023] [Accepted: 12/17/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Neuropathic pain (NP) is a chronic pathological pain that affects the quality of life and is a huge medical burden for affected patients. In this study, we aimed to explore the effects of secreted phosphoprotein 1 (SPP1) on NP. METHODS We established a chronic constriction injury (CCI) rat model, knocked down SPP1 via an intrathecal injection, and/or activated the extracellular signal-regulated kinase (ERK) pathway with insulin-like growth factor 1 (IGF-1) treatment. Pain behaviors, including paw withdrawal threshold (PWT), paw withdrawal latency (PWL), lifting number, and frequency, were assessed. After sacrificing rats, the L4-L5 dorsal root ganglion was collected. Then, SPP1 levels were determined using quantitative polymerase chain reaction (qPCR) and western blot analysis. The levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, IL-10, epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-β were determined using qPCR and enzyme-linked immunosorbent assay. The levels of ERK pathway factors were determined via western blot analysis. RESULTS We found that CCI decreased PWT and PWL, increased the lifting number and frequency, and upregulated SPP1 levels. The loss of SPP1 reversed these CCI-induced effects. Additionally, CCI upregulated IL-1β, TNF-α, IL-6, EGF, and VEGF levels, downregulated TGF-β levels, and activated the ERK pathway, while silencing of SPP1 abrogated these CCI-induced effects. Moreover, IGF-1 treatment reversed the effects of SPP1 loss. CONCLUSIONS The data indicate that silencing SPP1 attenuates NP via inactivation of the ERK pathway, suggesting that SPP1 may be a promising target for NP treatment.
Collapse
Affiliation(s)
- Haiyu Xie
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| | - Feng Lu
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| | - Xiaoling Li
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| | - Enfu Wang
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| | - Jiao Mo
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| | - Weidong Liang
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhou CityJiangxi ProvinceChina
| |
Collapse
|
16
|
Li Y, Ma S, Wang Z, Shi M, Zeng R, Yao Y. Gclc as a Marker for Injured Distal Nephron in Ischemia-Reperfusion Induced Acute Kidney Injury. J Inflamm Res 2024; 17:527-540. [PMID: 38313210 PMCID: PMC10838515 DOI: 10.2147/jir.s451402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Purpose The distal nephron of kidney plays a pivotal role in advancing acute kidney injury (AKI). Understanding the role of distal nephrons in AKI and identifying markers of injured distal nephrons are critical to comprehending the mechanism of renal injury and identifying novel therapeutic targets. Methods We analyzed single-cell RNA sequencing (scRNA-seq) data from mice with AKI induced by ischemia-reperfusion (IR), unilateral ureteral obstruction (UUO), cisplatin (CP), sodium oxalate (SO) and lipopolysaccharide (LPS). Additionally, we analyzed renal transcriptomics samples for AKI. Subsequently, we validated the effectiveness of targeting the biomarker Gclc in vitro and in vivo through metabolomics and immunofluorescence. Results The LOH-Inj and DCT-Inj subtypes were identified through scRNA-seq. Compared to normal distal nephrons, the injured distal nephrons exhibited higher levels of ferroptosis, pro-inflammation, and fibrosis. The expression of ferroptosis-related gene Gclc were high in various AKI models. Furthermore, Gclc was exclusively expressed in the distal nephron and upregulated in the injury subtype. To confirm our findings, we suppressed GCLC expression in the kidneys, resulting to aggravated IR-induced AKI. Inhibition of Gclc promoted damage to primarily renal tubular epithelial cells by promoting inflammatory infiltration, inhibiting glutathione metabolism and exacerbating oxidative stress. Conclusion Our research findings suggest that Gclc is a potential marker for injured distal nephron.
Collapse
Affiliation(s)
- Yinzheng Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shulin Ma
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zheng Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Mengxia Shi
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Rui Zeng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, People's Republic of China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, People's Republic of China
| | - Ying Yao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
17
|
Meng L, Si Y, Zhang B, Qi J. Prognostic biomarker SPP1 in head and neck squamous cell carcinoma. Asian J Surg 2023; 46:5865-5867. [PMID: 37659924 DOI: 10.1016/j.asjsur.2023.08.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Affiliation(s)
- Linghan Meng
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Yishimei Si
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Bingwen Zhang
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Jianwei Qi
- Department of Otolaryngology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
18
|
Zhang X, Hong B, Sun Z, Zhao J, Li M, Wei D, Wang Y, Zhang N. Development and validation of a circulating tumor cells-related signature focusing on biochemical recurrence and immunotherapy response in prostate cancer. Heliyon 2023; 9:e22648. [PMID: 38107322 PMCID: PMC10724679 DOI: 10.1016/j.heliyon.2023.e22648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Background Studies have shown that the circulating tumor cells (CTCs) play a key role for invasion and formation of distant metastases in prostate cancer (PCa). However, few CTCs-related genes (CRGs) have been developed for biochemical recurrence (BCR) prediction and clinical applications of PCa patients. Materials and methods Bioinformatics analysis with public PCa datasets were used to investigate the relationship between the differentially expressed CRGs and BCR. Lasso-COX regression analysis was used to constructed and validated a CRGs-based BCR prediction signature for PCa. Single-cell data were used to validate the expression levels of signature genes in different cell types and then explored the cell-cell communication relationships. Finally, the expression levels of signature genes were verified and the CRGs involved in immunotherapy response were further identified. Results Thirteen CRGs were differentially expressed and closely associated with BCR in PCa. Then we constructed and validated a BCR prediction signature for PCa patients based on 3 differentially expressed CRGs (EMID1, SPP1 and UBE2C), and the signature was an independent factor to predict BCR for PCa. Single-cell data showed the specific expression patterns of the signature genes, while the SPP1 pathway plays an important role in cell-cell communication. Further analyses suggested UBE2C was highly expressed in BCR group and high expression of UBE2C had a better response for patients who received immunotherapy. Moreover, the expression levels of UBE2C in CTCs were higher than other cells and tissues, indicated that UBE2C may affect the BCR event of PCa patients through CTCs. Conclusion Our findings demonstrated that CRGs were significantly associated with BCR and immunotherapy efficacy in PCa and CRGs may influence the BCR event through CTCs.
Collapse
Affiliation(s)
| | | | - Zhipeng Sun
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jiahui Zhao
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mingchuan Li
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Dechao Wei
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongxing Wang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Huang ZG, Chen Y, Wu T, Yin BT, Feng X, Li SH, Li DM, Chen G, Cheng JW, He J. What should be the future direction of development in the field of prostate cancer with lung metastasis? World J Clin Oncol 2023; 14:420-439. [PMID: 37970109 PMCID: PMC10631347 DOI: 10.5306/wjco.v14.i10.420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Since the start of the 21st century, prostate cancer with lung metastasis (PCLM) has accumulated significant scientific research output. However, a systematic knowledge framework for PCLM is still lacking. AIM To reconstruct the global knowledge system in the field of PCLM, sort out hot research directions, and provide reference for the clinical and mechanism research of PCLM. METHODS We retrieved 280 high-quality papers from the Web of Science Core Collection and conducted a bibliometric analysis of keywords, publication volume, and citation frequency. Additionally, we selected differentially expressed genes from global high-throughput datasets and performed enrichment analysis and protein-protein interaction analysis to further summarize and explore the mechanisms of PCLM. RESULTS PCLM has received extensive attention over the past 22 years, but there is an uneven spatial distribution in PCLM research. In the clinical aspect, the treatment of PCLM is mainly based on chemotherapy and immunotherapy, while diagnosis relies on methods such as prostate-specific membrane antigen positron emission tomography/computed tomography. In the basic research aspect, the focus is on cell adhesion molecules and signal transducer and activator of transcription 3, among others. Traditional treatments, such as chemotherapy, remain the mainstay of PCLM treatment, while novel approaches such as immunotherapy have limited effectiveness in PCLM. This study reveals for the first time that pathways related to coronavirus disease 2019, cytokine-cytokine receptor interaction, and ribosome are closely associated with PCLM. CONCLUSION Future research should focus on exploring and enhancing mechanisms such as cytokine-cytokine receptor interaction and ribosome and improve existing mechanisms like cadherin binding and cell adhesion molecules.
Collapse
Affiliation(s)
- Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Tong Wu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Bin-Tong Yin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao Feng
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Hua Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dong-Ming Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ji-Wen Cheng
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Juan He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
20
|
Jiang N, Jin L, Li S. Role of SPP1 in the diagnosis of gastrointestinal cancer. Oncol Lett 2023; 26:411. [PMID: 37614657 PMCID: PMC10442757 DOI: 10.3892/ol.2023.13997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/06/2023] [Indexed: 08/25/2023] Open
Abstract
Recently, the incidence rate of digestive system tumors has increased in China and these tumors occur in a younger population. The present study aimed to determine the expression levels and potential clinical value of secreted phosphoprotein 1 (SPP1) in gastrointestinal cancer. The microarray datasets GSE104836, GSE189830 and GSE103236, obtained from the gene expression omnibus database, were analyzed to determine differentially expressed genes in patients with colorectal cancer (CRC), gastric cancer (GC) and esophageal cancer (EC). A total of 42 patients with CRC, GC or EC and 21 healthy controls were recruited to obtain blood and tissues samples. SPP1 expression levels were detected using reverse transcription-quantitative PCR. Moreover, levels of significance of SPP1 in patients with CRC, GC and EC were analyzed using receiver operating characteristic analysis. Potential correlations between SPP1 and carcinoembryonic antigen (CEA) were assessed using Pearson's correlation coefficient. SPP1 was significantly upregulated in the serum, plasma and tissue of patients with CRC, GC or EC. In addition, the area under the curve of SPP1 was >0.5 in the plasma, serum and cancer tissue of patients with early and late CRC, GC or EC. The present study further demonstrated that the specificity and sensitivity of SPP1 was higher in patients with late CRC, GC or EC compared with patients with early CRC, GC or EC. Moreover, SPP1 and CEA were significantly positively correlated in serum of patients with CRC, GC or EC. In conclusion, the current study demonstrated that SPP1 exhibited significant diagnostic value for gastrointestinal tumors, which suggested that SPP1 may exhibit potential as a diagnostic marker of CRC, GC and EC. The present study provided a novel theoretical basis for the role of SPP1 as a diagnostic marker of digestive system tumors.
Collapse
Affiliation(s)
- Nanfang Jiang
- Department of Gastroenterology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, Hubei 430030, P.R. China
| | - Lei Jin
- Department of Gastroenterology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, Hubei 430030, P.R. China
| | - Shuyu Li
- Department of Gastroenterology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
21
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
22
|
Urquiza M, Benavides-Rubio D, Jimenez-Camacho S. Structural analysis of peptide binding to integrins for cancer detection and treatment. Biophys Rev 2023; 15:699-708. [PMID: 37681100 PMCID: PMC10480133 DOI: 10.1007/s12551-023-01084-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/20/2023] [Indexed: 09/09/2023] Open
Abstract
Integrins are cell receptors involved in several metabolic pathways often associated with cell proliferation. Some of these integrins are downregulated during human physical development, but when these integrins are overexpressed in adult humans, they can be associated with several diseases, such as cancer. Molecules that specifically bind to these integrins are useful for cancer detection, diagnosis, and treatment. This review focuses on the structures of integrin-peptidic ligand complexes to dissect how the binding occurs and the molecular basis of the specificity and affinity of these peptidic ligands. Understanding these interactions at the molecular level is fundamental to be able to design new peptides that are more specific and more sensitive to a particular integrin. The integrin complexes covered in this review are α5β1, αIIbβ3, αvβ3, αvβ6, and αvβ8, because the molecular structures of the complex have been experimentally determined and their presence on tumor cancer cells are associated with a poor prognosis, making them targets for cancer detection and treatment.
Collapse
Affiliation(s)
- Mauricio Urquiza
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30# 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Daniela Benavides-Rubio
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30# 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Silvia Jimenez-Camacho
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30# 45-03, Ciudad Universitaria, Bogotá, Colombia
| |
Collapse
|
23
|
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. ENVIRONMENTAL RESEARCH 2023; 229:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
A high number of cancer-related deaths (up to 90) are due to metastasis and simple definition of metastasis is new colony formation of tumor cells in a secondary site. In tumor cells, epithelial-mesenchymal transition (EMT) stimulates metastasis and invasion, and it is a common characteristic of malignant tumors. Prostate cancer, bladder cancer and renal cancer are three main types of urological tumors that their malignant and aggressive behaviors are due to abnormal proliferation and metastasis. EMT has been well-documented as a mechanism for promoting invasion of tumor cells and in the current review, a special attention is directed towards understanding role of EMT in malignancy, metastasis and therapy response of urological cancers. The invasion and metastatic characteristics of urological tumors enhance due to EMT induction and this is essential for ensuring survival and ability in developing new colonies in neighboring and distant tissues and organs. When EMT induction occurs, malignant behavior of tumor cells enhances and their tend in developing therapy resistance especially chemoresistance promotes that is one of the underlying reasons for therapy failure and patient death. The lncRNAs, microRNAs, eIF5A2, Notch-4 and hypoxia are among common modulators of EMT mechanism in urological tumors. Moreover, anti-tumor compounds such as metformin can be utilized in suppressing malignancy of urological tumors. Besides, genes and epigenetic factors modulating EMT mechanism can be therapeutically targeted for interfering malignancy of urological tumors. Nanomaterials are new emerging agents in urological cancer therapy that they can improve potential of current therapeutics by their targeted delivery to tumor site. The important hallmarks of urological cancers including growth, invasion and angiogenesis can be suppressed by cargo-loaded nanomaterials. Moreover, nanomaterials can improve chemotherapy potential in urological cancer elimination and by providing phototherapy, they mediate synergistic tumor suppression. The clinical application depends on development of biocompatible nanomaterials.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
24
|
Wang T, Guo K, Zhang D, Wang H, Yin J, Cui H, Wu W. Disulfidptosis classification of hepatocellular carcinoma reveals correlation with clinical prognosis and immune profile. Int Immunopharmacol 2023; 120:110368. [PMID: 37247499 DOI: 10.1016/j.intimp.2023.110368] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
A new mode of cell death, disulfidptosis, has been discovered. Clinical prognostic significance of disulfidptosis related pattern in hepatocellular carcinoma(HCC). In this study, a risk score model was established based on disulfidptosis model to analyze the role of risk score in clinical prognosis, immune cell infiltration, drug sensitivity and immunotherapy response. Disulfidptosis subtype were constructed based on the transcriptional profiles of 15 disulfidptosis-related genes(DRGs). All 601 samples were defined as high risk group(HRG) and low risk group(LRG) based on the disulfidptosis risk score. Drug sensitivity and response to immunotherapy were calculated by immunophenotypic score(IPS), tumor prediction, tumor immune dysfunction and rejection(TIDE). RT-qPCR was used to determine the mRNA level of disulfidptosis prognostic gene. Risk groups was identified as potential predictors of immune cell infiltration, drug sensitivity, and immunotherapy responsiveness. HRG may benefit from immunotherapy. Classification is very effective in predicting the prognosis and therapeutic effect of patients, and provides a reference for accurate individualized treatment. This study suggests that new biomarkers related to Disulfidptosis can be used in clinical diagnosis of liver cancer to predict prognosis and treatment targets.
Collapse
Affiliation(s)
- Tianbing Wang
- Department of General Surgery, Anhui No.2 Provincial People's Hospital, Hefei 230000, China
- Anhui Medical University, Hefei 230000, China
- Anhui No.2 Provincial People's Hospital affiliated to Anhui Medical University, Hefei 230000, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, China
| | - Kai Guo
- Department of General Surgery, Anhui No.2 Provincial People's Hospital, Hefei 230000, China
- Anhui Medical University, Hefei 230000, China
- Anhui No.2 Provincial People's Hospital affiliated to Anhui Medical University, Hefei 230000, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, China
| | - Di Zhang
- Department of General Surgery, Anhui No.2 Provincial People's Hospital, Hefei 230000, China
| | - Haibo Wang
- Anhui Medical University, Hefei 230000, China
- Department of General Surgery, First affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Jimin Yin
- Anhui No.2 Provincial People's Hospital affiliated to Anhui Medical University, Hefei 230000, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, China
| | - Haodong Cui
- Anhui No.2 Provincial People's Hospital affiliated to Anhui Medical University, Hefei 230000, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, China
| | - Wenyong Wu
- Department of General Surgery, Anhui No.2 Provincial People's Hospital, Hefei 230000, China
- Anhui No.2 Provincial People's Hospital affiliated to Anhui Medical University, Hefei 230000, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, China
| |
Collapse
|
25
|
Wang H, Li N, Liu Q, Guo J, Pan Q, Cheng B, Xu J, Dong B, Yang G, Yang B, Wang X, Gu Y, Zhang G, Lian Y, Zhang W, Zhang M, Li T, Zang Y, Tan M, Li Q, Wang X, Yu Z, Jiang J, Huang H, Qin J. Antiandrogen treatment induces stromal cell reprogramming to promote castration resistance in prostate cancer. Cancer Cell 2023:S1535-6108(23)00183-6. [PMID: 37352863 DOI: 10.1016/j.ccell.2023.05.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Lineage plasticity causes therapeutic resistance; however, it remains unclear how the fate conversion and phenotype switching of cancer-associated fibroblasts (CAFs) are implicated in disease relapse. Here, we show that androgen deprivation therapy (ADT)-induced SPP1+ myofibroblastic CAFs (myCAFs) are critical stromal constituents that drive the development of castration-resistant prostate cancer (CRPC). Our results reveal that SPP1+ myCAFs arise from the inflammatory CAFs in hormone-sensitive PCa; therefore, they represent two functional states of an otherwise ontogenically identical cell type. Antiandrogen treatment unleashes TGF-β signaling, resulting in SOX4-SWI/SNF-dependent CAF phenotype switching. SPP1+ myCAFs in turn render PCa refractory to ADT via an SPP1-ERK paracrine mechanism. Importantly, these sub-myCAFs are associated with inferior therapeutic outcomes, providing the rationale for inhibiting polarization or paracrine mechanisms to circumvent castration resistance. Collectively, our results highlight that therapy-induced phenotypic switching of CAFs is coupled with disease progression and that targeting this stromal component may restrain CRPC.
Collapse
Affiliation(s)
- Hanling Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiang Pan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Bisheng Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Junyu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Guanjie Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai 200072, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai 200072, China
| | - Xuege Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yongqiang Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Guoying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yannan Lian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wei Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Mingyu Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Tianyi Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yi Zang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qintong Li
- Department of Obstetrics, Gynecology and Pediatrics, West China Second University Hospital, Sichuan University, 20 Renmin South Road, Chengdu 610041, China
| | - Xiaoming Wang
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
26
|
Zhu H, Lin Q, Gao X, Huang X. Identification of the hub genes associated with prostate cancer tumorigenesis. Front Oncol 2023; 13:1168772. [PMID: 37251946 PMCID: PMC10213256 DOI: 10.3389/fonc.2023.1168772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Prostate cancer (PCa) is one of the most common malignant tumors of the male urogenital system; however, the underlying mechanisms remain largely unclear. This study integrated two cohort profile datasets to elucidate the potential hub genes and mechanisms in PCa. Methods and Results Gene expression profiles GSE55945 and GSE6919 were filtered from the Gene Expression Omnibus (GEO) database to obtain 134 differentially expressed genes (DEGs) (14 upregulated and 120 downregulated) in PCa. Gene Ontology and pathway enrichment were performed using the Database for Annotation, Visualization, and Integrated Discovery, showing that these DEGs were mainly involved in biological functions such as cell adhesion, extracellular matrix, migration, focal adhesion, and vascular smooth muscle contraction. The STRING database and Cytoscape tools were used to analyze protein-protein interactions and identify 15 hub candidate genes. Violin plot, boxplot, and prognostic curve analyses were performed using Gene Expression Profiling Interactive Analysis, which identified seven hub genes, including upregulated expressed SPP1 and downregulated expressed MYLK, MYL9, MYH11, CALD1, ACTA2, and CNN1 in PCa compared with normal tissue. Correlation analysis was performed using the OmicStudio tools, which showed that these hub genes were moderately to strongly correlated with each other. Finally, quantitative reverse transcription PCR and western blotting were performed to validate the hub genes, showing that the abnormal expression of the seven hub genes in PCa was consistent with the analysis results of the GEO database. Discussion Taken together, MYLK, MYL9, MYH11, CALD1, ACTA2, SPP1, and CNN1 are hub genes significantly associated with PCa occurrence. These genes are abnormally expressed, leading to the formation, proliferation, invasion, and migration of PCa cells and promoting tumor neovascularization. These genes may serve as potential biomarkers and therapeutic targets in patients with PCa.
Collapse
|
27
|
Yin J, Xie X, Quan Y, Wang Z, Liu S, Su Q, Che F, Wang L. RNA-seq analysis reveals candidate genes associated with proliferation, invasion, and migration in BCL11A knockdown B-NHL cell lines. Ann Hematol 2023:10.1007/s00277-023-05247-w. [PMID: 37148312 DOI: 10.1007/s00277-023-05247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
B-cell lymphoma/leukemia 11A (BCL11A) is highly expressed in B-cell non-Hodgkin lymphoma (B-NHL), blocks cell differentiation, and inhibits cell apoptosis. However, little is known about BCL11A in the proliferation, invasion, and migration of B-NHL cells. Here, we found increased expression of BCL11A in B-NHL patients and cell lines. Knockdown of BCL11A suppressed the proliferation, invasion, and migration of B-NHL cells in vitro and reduced tumor growth in vivo. RNA sequencing (RNA-seq) and KEGG pathway analysis demonstrated that BCL11A-targeted genes were significantly enriched in the PI3K/AKT signaling pathway, focal adhesion, and extracellular matrix (ECM)-receptor interaction (including COL4A1, COL4A2, FN1, SPP1), and SPP1 was the most significantly downregulated gene. qRT‒PCR, western blotting, and immunohistochemistry revealed that silencing BCL11A reduced the expression level of SPP1 in Raji cells. Our study suggested that high level of BCL11A may promote B-NHL proliferation, invasion, and migration, and the BCL11A-SPP1 regulatory axis may play an important role in Burkitt's lymphoma.
Collapse
Affiliation(s)
- Jiawei Yin
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Key Laboratory of Tumor Biology, Linyi, Shandong, People's Republic of China
- Key Laboratory for Translational Oncolgoy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Xiaoli Xie
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Key Laboratory of Tumor Biology, Linyi, Shandong, People's Republic of China
- Key Laboratory for Translational Oncolgoy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yanchun Quan
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Key Laboratory of Tumor Biology, Linyi, Shandong, People's Republic of China
- Key Laboratory for Translational Oncolgoy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Zhiqiang Wang
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Key Laboratory of Tumor Biology, Linyi, Shandong, People's Republic of China
- Key Laboratory for Translational Oncolgoy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Shu Liu
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong, People's Republic of China
- Key Laboratory of Neurophysiology, Linyi, Shandong, People's Republic of China
| | - Quanping Su
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China
- Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong, People's Republic of China
- Key Laboratory of Neurophysiology, Linyi, Shandong, People's Republic of China
| | - Fengyuan Che
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China.
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China.
- Key Laboratory of Neurophysiology, Health Commission of Shandong Province, Linyi, Shandong, People's Republic of China.
- Key Laboratory of Neurophysiology, Linyi, Shandong, People's Republic of China.
| | - Lijuan Wang
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China.
- Key Laboratory of Tumor Biology, Linyi, Shandong, People's Republic of China.
- Key Laboratory for Translational Oncolgoy, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, Shandong, People's Republic of China.
| |
Collapse
|
28
|
Qu Y, Wang Y, Wang S, Yu X, He Y, Lu R, Chen S, Meng C, Xu H, Pei W, Ni B, Zhang R, Huang X, You H. A comprehensive analysis of single-cell RNA transcriptome reveals unique SPP1+ chondrocytes in human osteoarthritis. Comput Biol Med 2023; 160:106926. [PMID: 37141654 DOI: 10.1016/j.compbiomed.2023.106926] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Osteoarthritis (OA) has become the most common degenerative disease in the world, which brings a serious economic burden to society and the country. Although epidemiological studies have shown that the occurrence of osteoarthritis is associated with obesity, sex, and trauma, the biomolecular mechanisms for the development and progression of osteoarthritis remain ambiguous. Several studies have drawn a connection between SPP1 and osteoarthritis. SPP1 was first found to be highly expressed in osteoarthritic cartilage, and later more studies have shown that SPP1 is also highly expressed in subchondral bone and synovial in OA patients. However, the biological function of SPP1 remains unclear. Single-cell RNA sequencing (scRNA-seq) is a novel technique that reflects gene expression at the cellular level, making it better depict the state of different cells than ordinary transcriptome data. However, most of the existing chondrocyte scRNA-seq studies focus on the occurrence and development of OA chondrocytes and lack analysis of normal chondrocyte development. Therefore, to better understand the mechanism of OA, scRNA-seq analysis of a larger cell volume containing normal and osteoarthritic cartilage is of great importance. Our study identifies a unique cluster of chondrocytes characterized by high SPP1 expression. The metabolic and biological characteristics of these clusters were further investigated. Besides, in animal models, we found that the expression of SPP1 is spatially heterogeneous in cartilage. Overall, our work provides novel insight into the potential role of SPP1 in OA, which sheds light on understanding the role of SPP1 in OA, promoting the progress of the treatment and prevention in the field of OA.
Collapse
Affiliation(s)
- Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yingguang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shanxi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaojun Yu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Sheng Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Cheng Meng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hanqing Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenbin Pei
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bowei Ni
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rui Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
29
|
Alfahed A, Ebili HO, Almoammar NE, Alasiri G, AlKhamees OA, Aldali JA, Al Othaim A, Hakami ZH, Abdulwahed AM, Waggiallah HA. Prognostic Values of Gene Copy Number Alterations in Prostate Cancer. Genes (Basel) 2023; 14:genes14050956. [PMID: 37239316 DOI: 10.3390/genes14050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Whilst risk prediction for individual prostate cancer (PCa) cases is of a high priority, the current risk stratification indices for PCa management have severe limitations. This study aimed to identify gene copy number alterations (CNAs) with prognostic values and to determine if any combination of gene CNAs could have risk stratification potentials. Clinical and genomic data of 500 PCa cases from the Cancer Genome Atlas stable were retrieved from the Genomic Data Commons and cBioPortal databases. The CNA statuses of a total of 52 genetic markers, including 21 novel markers and 31 previously identified potential prognostic markers, were tested for prognostic significance. The CNA statuses of a total of 51/52 genetic markers were significantly associated with advanced disease at an odds ratio threshold of ≥1.5 or ≤0.667. Moreover, a Kaplan-Meier test identified 27/52 marker CNAs which correlated with disease progression. A Cox Regression analysis showed that the amplification of MIR602 and deletions of MIR602, ZNF267, MROH1, PARP8, and HCN1 correlated with a progression-free survival independent of the disease stage and Gleason prognostic group grade. Furthermore, a binary logistic regression analysis identified twenty-two panels of markers with risk stratification potentials. The best model of 7/52 genetic CNAs, which included the SPOP alteration, SPP1 alteration, CCND1 amplification, PTEN deletion, CDKN1B deletion, PARP8 deletion, and NKX3.1 deletion, stratified the PCa cases into a localised and advanced disease with an accuracy of 70.0%, sensitivity of 85.4%, specificity of 44.9%, positive predictive value of 71.67%, and negative predictive value of 65.35%. This study validated prognostic gene level CNAs identified in previous studies, as well as identified new genetic markers with CNAs that could potentially impact risk stratification in PCa.
Collapse
Affiliation(s)
- Abdulaziz Alfahed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Henry Okuchukwu Ebili
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Ago-Iwoye P.M.B. 2002, Nigeria
| | - Nasser Eissa Almoammar
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Glowi Alasiri
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud University, Riyadh 13317, Saudi Arabia
| | - Osama A AlKhamees
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Jehad A Aldali
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Zaki H Hakami
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Abdulhadi M Abdulwahed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
30
|
Identification of Anoikis-Related Subgroups and Prognosis Model in Liver Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24032862. [PMID: 36769187 PMCID: PMC9918018 DOI: 10.3390/ijms24032862] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 02/05/2023] Open
Abstract
Resistance to anoikis is a key characteristic of many cancer cells, promoting cell survival. However, the mechanism of anoikis in hepatocellular carcinoma (HCC) remains unknown. In this study, we applied differentially expressed overlapping anoikis-related genes to classify The Cancer Genome Atlas (TCGA) samples using an unsupervised cluster algorithm. Then, we employed weighted gene coexpression network analysis (WGCNA) to identify highly correlated genes and constructed a prognostic risk model based on univariate Cox proportional hazards regression. This model was validated using external datasets from the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO). Finally, we used a CIBERSORT algorithm to investigate the correlation between risk score and immune infiltration. Our results showed that the TCGA cohorts could be divided into two subgroups, with subgroup A having a lower survival probability. Five genes (BAK1, SPP1, BSG, PBK and DAP3) were identified as anoikis-related prognostic genes. Moreover, the prognostic risk model effectively predicted overall survival, which was validated using ICGC and GEO datasets. In addition, there was a strong correlation between infiltrating immune cells and prognostic genes and risk score. In conclusion, we identified anoikis-related subgroups and prognostic genes in HCC, which could be significant for understanding the molecular mechanisms and treatment of HCC.
Collapse
|
31
|
Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother 2023; 158:114204. [PMID: 36916430 DOI: 10.1016/j.biopha.2022.114204] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is one of the most malignant cancers of central nervous system and due to its sensitive location, surgical resection has high risk and therefore, chemotherapy and radiotherapy are utilized for its treatment. However, chemoresistance and radio-resistance are other problems in GBM treatment. Hence, new therapies based on genes are recommended for treatment of GBM. PTEN is a tumor-suppressor operator in cancer that inhibits PI3K/Akt/mTOR axis in diminishing growth, metastasis and drug resistance. In the current review, the function of PTEN/PI3K/Akt axis in GBM progression is evaluated. Mutation or depletion of PTEN leads to increase in GBM progression. Low expression level of PTEN mediates poor prognosis in GBM and by increasing proliferation and invasion, promotes malignancy of tumor cells. Moreover, loss of PTEN signaling can result in therapy resistance in GBM. Activation of PTEN signaling impairs GBM metabolism via glycolysis inhibition. In contrast to PTEN, PI3K/Akt signaling has oncogenic function and during tumor progression, expression level of PI3K/Akt enhances. PI3K/Akt signaling shows positive association with oncogenic pathways and its expression similar to PTEN signaling, is regulated by non-coding RNAs. PTEN upregulation and PI3K/Akt signaling inhibition by anti-cancer agents can be beneficial in interfering GBM progression. This review emphasizes on the signaling networks related to PTEN/PI3K/Akt and provides new insights for targeting this axis in effective GBM treatment.
Collapse
|
32
|
Yu L, Liang X, Wang J, Ding G, Tang J, Xue J, He X, Ge J, Jin X, Yang Z, Li X, Yao H, Yin H, Liu W, Yin S, Sun B, Sheng J. Identification of Key Biomarkers and Candidate Molecules in Non-Small-Cell Lung Cancer by Integrated Bioinformatics Analysis. Genet Res (Camb) 2023; 2023:6782732. [PMID: 36688087 PMCID: PMC9831708 DOI: 10.1155/2023/6782732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most prevalent malignant tumor of the lung cancer, for which the molecular mechanisms remain unknown. In this study, we identified novel biomarkers associated with the pathogenesis of NSCLC aiming to provide new diagnostic and therapeutic approaches for NSCLC by bioinformatics analysis. Methods From the Gene Expression Omnibus database, GSE118370 and GSE10072 microarray datasets were obtained. Identifying the differentially expressed genes (DEGs) between lung adenocarcinoma and normal samples was done. By using bioinformatics tools, a protein-protein interaction (PPI) network was constructed, modules were analyzed, and enrichment analyses were performed. The expression and prognostic values of 14 hub genes were validated by the GEPIA database, and the correlation between hub genes and survival in lung adenocarcinoma was assessed by UALCAN, cBioPortal, String and Cytoscape, and Timer tools. Results We found three genes (PIK3R1, SPP1, and PECAM1) that have a clear correlation with OS in the lung adenocarcinoma patient. It has been found that lung adenocarcinoma exhibits high expression of SPP1 and that this has been associated with poor prognosis, while low expression of PECAM1 and PIK3R1 is associated with poor prognosis (P < 0.05). We also found that the expression of SPP1 was associated with miR-146a-5p, while the high expression of miR-146a-5p was related to good prognosis (P < 0.05). On the contrary, the lower miR-21-5p on upstream of PIK3R1 is associated with a higher surviving rate in cancer patients (P < 0.05). Finally, we found that the immune checkpoint genes CD274(PD-L1) and PDCD1LG2(PD-1) were also related to SPP1 in lung adenocarcinoma. Conclusions The results indicated that SPP1 is a cancer promoter (oncogene), while PECAM1 and PIK3R1 are cancer suppressor genes. These genes take part in the regulation of biological activities in lung adenocarcinoma, which provides a basis for improving detection and immunotherapeutic targets for lung adenocarcinoma.
Collapse
Affiliation(s)
- Liyan Yu
- Department of Respiratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xuemei Liang
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Jianwei Wang
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Guangxiang Ding
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Jinhai Tang
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Juan Xue
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xin He
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Jingxuan Ge
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xianzhang Jin
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Zhiyi Yang
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xianwei Li
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Hehuan Yao
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Hongtao Yin
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Wu Liu
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Shengchen Yin
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Bing Sun
- Department of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Junxiu Sheng
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
33
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 365] [Impact Index Per Article: 182.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
34
|
Jia X, Zhang T, Lv X, Du H, Sun Y, Guan Y. Identification of the six-hormone secretion-related gene signature as a prognostic biomarker for colon adenocarcinoma. Cancer Biomark 2023; 38:523-535. [PMID: 38143338 DOI: 10.3233/cbm-230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a globally prevalent cancer, with hormone secretion playing a crucial role in its progression. Despite this, there is limited understanding of the impact of hormone secretion on COAD prognosis. This study aimed to establish a prognostic signature based on hormone secretion-related genes and to elucidate the potential functional mechanisms of these genes in COAD. METHODS Using data from The Cancer Genome Atlas COAD cohort (TCGA-COAD), six hormone secretion-related genes were identified (CYP19A1, FOXD1, GRP, INHBB, SPP1, and UCN). These genes were used to develop a Hormone secretion score (HSS), which was then evaluated using the Kaplan-Meier curve and multivariable Cox analysis. The HSS model was further validated with external GEO cohorts (GSE41258, GSE39582, and GSE87211). Functional enrichment analyses were performed, and the CIBERSORT and TIDE algorithms were used to assess tumor infiltration. RESULTS The study developed a prognostic signature, dividing patients into HSS-high and HSS-low groups. The HSS-high group showed a notably worse prognosis within the TCGA-COAD dataset and in three independent datasets: GSE41258, GSE39582, and GSE87211. Moreover, the HSS-high group predicted a shorter overall survival rate in patients maintaining microsatellite stability (MSS). The functional analysis associated HSS-high with the hypoxic, epithelial-mesenchymal transition (EMT), and TGF-β signaling pathways and correlated with distant and lymph node metastases. The tumor immune microenvironment analysis revealed an elevated CIBERSORT score in the HSS-high group, suggesting an association with tumor metastasis. Further, the HSS-high group showed a higher TIDE score, indicating that patients with high HSS scores are less likely to benefit from Immune Checkpoint Inhibitor (ICI) therapy. CONCLUSIONS This study demonstrated the prognostic significance of a HSS signature based on six hormone secretion-related genes in COAD. The findings suggest that this gene signature may serve as a reliable biomarker for predicting survival outcomes in COAD patients.
Collapse
Affiliation(s)
- Xiongjie Jia
- Department of Gastrointestinal Surgery, Affiliated Hospital of Hebei University, Baoding, Heibei, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Hebei University, Baoding, Heibei, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Hebei University, Baoding, Heibei, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Hebei University, Baoding, Heibei, China
| | - Xinze Lv
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Haiwei Du
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Yongkun Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yin Guan
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Nobiletin protects enteric nerves and ameliorates disordered bowel motility in diet-induced obese mice via increasing Trem2 expression. Biochem Biophys Res Commun 2022; 635:19-29. [DOI: 10.1016/j.bbrc.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/23/2022]
|
36
|
Chang J, Jiang Z, Ma T, Li J, Chen J, Ye P, Feng L. Integrating transcriptomics and network analysis-based multiplexed drug repurposing to screen drug candidates for M2 macrophage-associated castration-resistant prostate cancer bone metastases. Front Immunol 2022; 13:989972. [PMID: 36389722 PMCID: PMC9643318 DOI: 10.3389/fimmu.2022.989972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Metastatic castration-resistant prostate cancer (CRPC) has long been considered to be associated with patient mortality. Among metastatic organs, bone is the most common metastatic site, with more than 90% of advanced patients developing bone metastases (BMs) before 24 months of death. Although patients were recommended to use bone-targeted drugs represented by bisphosphonates to treat BMs of CRPC, there was no significant improvement in patient survival. In addition, the use of immunotherapy and androgen deprivation therapy is limited due to the immunosuppressed state and resistance to antiandrogen agents in patients with bone metastases. Therefore, it is still essential to develop a safe and effective therapeutic schedule for CRPC patients with BMs. To this end, we propose a multiplex drug repurposing scheme targeting differences in patient immune cell composition. The identified drug candidates were ranked from the perspective of M2 macrophages by integrating transcriptome and network-based analysis. Meanwhile, computational chemistry and clinical trials were used to generate a comprehensive drug candidate list for the BMs of CRPC by drug redundancy structure filtering. In addition to docetaxel, which has been approved for clinical trials, the list includes norethindrone, testosterone, menthol and foretinib. This study provides a new scheme for BMs of CRPC from the perspective of M2 macrophages. It is undeniable that this multiplex drug repurposing scheme specifically for immune cell-related bone metastases can be used for drug screening of any immune-related disease, helping clinicians find promising therapeutic schedules more quickly, and providing reference information for drug R&D and clinical trials.
Collapse
|
37
|
Tu W, Zheng H, Li L, Zhou C, Feng M, Chen L, Li D, Chen X, Hao B, Sun H, Cao Y, Gao Y. Secreted phosphoprotein 1 promotes angiogenesis of glioblastoma through upregulating PSMA expression via transcription factor HIF-1α. Acta Biochim Biophys Sin (Shanghai) 2022; 55:417-425. [PMID: 36305723 PMCID: PMC10160226 DOI: 10.3724/abbs.2022157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly vascularized malignant brain tumor. Our previous study showed that prostate-specific membrane antigen (PSMA) promotes angiogenesis of GBM. However, the specific mechanism underlying GBM-induced PSMA upregulation remains unclear. In this study, we demonstrate that the GBM-secreted cytokine phosphoprotein 1 (SPP1) can regulate the expression of PSMA in human umbilical vein endothelial cells (HUVECs). Our mechanistic study further reveals that SPP1 regulates the expression of PSMA through the transcription factor HIF1α. Moreover, SPP1 promotes HUVEC migration and tube formation. In addition, HIF1α knockdown reduces the expression of PSMA in HUVECs and blocks the ability of SPP1 to promote HUVEC migration and tube formation. We further confirm that SPP1 is abundantly expressed in GBM, is associated with poor prognosis, and has high clinical diagnostic value with considerable sensitivity and specificity. Collectively, our findings identify that the GBM-secreted cytokine SPP1 upregulates PSMA expression in endothelial cells via the transcription factor HIF1α, providing insight into the angiogenic process and promising candidates for targeted GBM therapy.
Collapse
|
38
|
Wu X, Yao F, Xu JY, Chen J, Lu Y, Li W, Deng J, Mou L, Zhang Q, Pu Z. The transcriptome profile of RPE cells by the fullerenol against hydrogen peroxide stress. Front Med (Lausanne) 2022; 9:996280. [PMID: 36186803 PMCID: PMC9515647 DOI: 10.3389/fmed.2022.996280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related macular degeneration (AMD) causes central vision impairment with increased incidence. In the pathogenesis of AMD, reactive oxygen species (ROS) are associated with RPE cell apoptosis. H2O2 is an oxidative toxicant and is used to establish the AMD in vitro model. However, the mechanisms of ROS in H2O2-induced AMD are still unclear. Fullerenol, a promising antioxidant of nanomaterials, protects RPE cells from ROS attack. In addition to working as a scavenger, little is known about the antioxidant mechanism of fullerenol in RPE cells. In this study, transcriptome sequencing was performed to examine the global changes in mRNA transcripts induced by H2O2 in human ARPE-19 cells. Moreover, we comprehensively investigated the protective effects of fullerenol against H2O2-induced oxidative injury by RNA sequencing. Gene Ontology enrichment analysis showed that those pathways related to the release of positive regulation of DNA-templated transcription and negative regulation of apoptotic process were affected. Finally, we found that 12 hub genes were related to the oxidative-protection function of fullerenol. In summary, H2O2 affected these hub genes and signaling pathways to regulate the senescence of RPE cells. Moreover, fullerenol is a potent nanomaterial that protects the RPE and would be a promising approach for AMD prevention.
Collapse
Affiliation(s)
- Xiaojun Wu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Ophthalmology, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Fuwen Yao
- Department of Hepatopancreatobiliary Surgery, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jing-Ying Xu
- Department of Pathology and Pathophysiology School of Medicine, Tongji University, China
| | - Jiao Chen
- Department of Hepatopancreatobiliary Surgery, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ying Lu
- Department of Hepatopancreatobiliary Surgery, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei Li
- Department of Biochemistry, College of Science, Northeastern University, Boston, MA, United States
| | - Jing Deng
- Department of Hepatopancreatobiliary Surgery, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lisha Mou
- Department of Hepatopancreatobiliary Surgery, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- *Correspondence: Lisha Mou
| | - Qingling Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Qingling Zhang
| | - Zuihui Pu
- Imaging Department, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Zuihui Pu
| |
Collapse
|
39
|
Yehya A, Ghamlouche F, Zahwe A, Zeid Y, Wakimian K, Mukherji D, Abou-Kheir W. Drug resistance in metastatic castration-resistant prostate cancer: an update on the status quo. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:667-690. [PMID: 36176747 PMCID: PMC9511807 DOI: 10.20517/cdr.2022.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related morbidity and mortality in men globally. Despite improvements in the diagnosis and treatment of PCa, a significant proportion of patients with high-risk localized disease and all patients with advanced disease at diagnosis will experience progression to metastatic castration-resistant prostate cancer (mCRPC). Multiple drugs are now approved as the standard of care treatments for patients with mCRPC that have been shown to prolong survival. Although the majority of patients will respond initially, primary and secondary resistance to these therapies make mCRPC an incurable disease. Several molecular mechanisms underlie the development of mCRPC, with the androgen receptor (AR) axis being the main driver as well as the key drug target. Understanding resistance mechanisms is crucial for discovering novel therapeutic strategies to delay or reverse the progression of the disease. In this review, we address the diverse mechanisms of drug resistance in mCRPC. In addition, we shed light on emerging targeted therapies currently being tested in clinical trials with promising potential to overcome mCRPC-drug resistance.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Equally contributing authors
| | - Fatima Ghamlouche
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Equally contributing authors
| | - Amin Zahwe
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Equally contributing authors
| | - Yousef Zeid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Kevork Wakimian
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Deborah Mukherji
- Division of Hematology/Oncology, Faculty of Medicine, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
40
|
Qu M, Han T, Chen X, Sun Q, Li Q, Zhao M. Exploring potential targets of Actinidia chinensis Planch root against hepatocellular carcinoma based on network pharmacology and molecular docking and development and verification of immune-associated prognosis features for hepatocellular carcinoma. J Gastrointest Oncol 2022; 13:1289-1307. [PMID: 35837167 DOI: 10.21037/jgo-22-398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the malignant tumors with the highest morbidity and mortality worldwide, and its prognosis remains a challenge. Actinidia chinensis Planch (ACP) root has good efficacy against HCC. This study aimed to explore the link between ACP and potential targets of HCC, and to develop a novel immune-based gene signature to predict HCC patient survival. Methods Transcriptome data and clinical information on HCC were obtained from The Cancer Genome Atlas (TCGA; HCC: 374, normal: 50) and International Cancer Genome Consortium (ICGC) database (HCC: 243, normal: 202). Combined with the 2,483 immune-related genes from the Immport database, we used the least absolute shrinkage and selection operator (LASSO) to construct a prognostic model. Patients were divided into high-risk and low-risk groups by the median of the risk scores of the TCGA cohort. Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves were used to estimate the predictability of the model in HCC prognosis, and carried out external validation based on ICGC cohort. We analyzed the correlation of this model with immune cells and immune checkpoint genes. Finally, molecular docking of these genes and the corresponding ACP components. Results We constructed a prognostic model composed of 3 immune-related genes [epidermal growth factor (EGF), baculoviral inhibitor of apoptosis repeat-containing protein 5 (BIRC5), and secreted phosphoprotein 1 (SPP1)]. And the high-risk group had a lower overall survival (OS) rate compared to the low-risk group (TCGA cohort: P=1.761e-05, ICGC cohort: P=8.716e-04). The outcomes of the AUC of ROC of prognostic risk model to predict for 1-, 2-, and 3-year OS: TCGA cohort: 0.749, 0.710, and 0.653 and ICGC cohort: 0.698, 0.736, and 0.753. Molecular docking results showed that quercetin had good binding activities with SPP1, BIRC5, and EGF, and ursolic acid (UA) and BIRC5 also had this feature. Conclusions Our study speculates that ACP root anti-HCC may be involved in the immune regulation of the body by targeting EGF, BIRC5 and SPP1, which possess great potential and value as early warning molecules for HCC. This model may provide a reference for individualized diagnosis and treatment for HCC patients.
Collapse
Affiliation(s)
- Meilin Qu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Tao Han
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Xiaoquan Chen
- Department of Integrated Traditional Chinese and Western Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Qingqing Sun
- Three Departments of Convalescence, Lintong Rehabilitation and Recuperation Center, Lintong, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingfang Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
41
|
Feng D, Shi X, Xiong Q, Zhang F, Li D, Yang L. A Gene Prognostic Index Associated With Epithelial-Mesenchymal Transition Predicting Biochemical Recurrence and Tumor Chemoresistance for Prostate Cancer. Front Oncol 2022; 11:805571. [PMID: 35096608 PMCID: PMC8790245 DOI: 10.3389/fonc.2021.805571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND We aimed to establish a novel epithelial-mesenchymal transition (EMT)-related gene prognostic index (EMTGPI) associated with biochemical recurrence (BCR) and drug resistance for prostate cancer (PCa). METHODS We used Lasso and Cox regression analysis to establish the EMTGPI. All analyses were conducted with R version 3.6.3 and its suitable packages. RESULTS We established the EMTGPI based on SFRP4 and SPP1. Patients in high-risk group had 2.23 times of BCR risk than those in low-risk group (p = 0.003), as well as 2.36 times of metastasis risk (p = 0.053). In external validation, we detected similar diagnostic efficacy and prognostic value in terms of BCR free survival. For drug resistance, we observe moderately diagnostic accuracy of EMTGPI score (AUC: 0.804). We found that PDCD1LG2 (p = 0.04) and CD96 (p = 0.01) expressed higher in BCR patients compared with their counterpart. For TME analysis, we detected that CD8+ T cells and M1 macrophages expressed higher in BCR group. Moreover, stromal score (p = 0.003), immune score (p = 0.01), and estimate score (p = 0.003) were higher in BCR patients. We found that EMTGPI was significantly related to HAVCR2 (r: 0.34), CD96 (r: 0.26), CD47 (r: 0.22), KIR3DL1 (r: -0.21), KLRD1 (r: -0.21), and CD2 (r: 0.21). In addition, we observed that EMTGPI was significantly associated with M1 macrophages (r: 0.6), M2 macrophages (r: -0.33), monocytes (r: -0.18), neutrophils (r: -0.43), CD8+ T cells (r: 0.13), and dendritic cells (r: 0.37). PHA-793887 was the common drug sensitive to SPP1 and SFRP4, and PC3 and DU145 were the common PCa-related cell lines of SPP1, SFRP4, and PHA-793887. CONCLUSIONS We concluded that the EMTGPI score based on SFRP4 and SPP1 could be used to predict BCR for PCa patients. We confirmed the impact of immune evasion on the BCR process of PCa.
Collapse
Affiliation(s)
| | | | | | | | | | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Niu Y, Wang G, Li Y, Guo W, Guo Y, Dong Z. LncRNA FOXP4-AS1 Promotes the Progression of Esophageal Squamous Cell Carcinoma by Interacting With MLL2/H3K4me3 to Upregulate FOXP4. Front Oncol 2022; 11:773864. [PMID: 34970490 PMCID: PMC8712759 DOI: 10.3389/fonc.2021.773864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 01/16/2023] Open
Abstract
Malignant tumors are a grave threat to human health. Esophageal squamous cell carcinoma (ESCC) is a common gastrointestinal malignant tumor. China has a high incidence of ESCC, and its morbidity and mortality are higher than the global average. Increasingly, studies have shown that long noncoding RNAs (lncRNAs) play a vital function in the occurrence and development of tumors. Although the biological function of FOXP4-AS1 has been demonstrated in various tumors, the potential molecular mechanism of FOXP4-AS1 in ESCC is still poorly understood. The expression of FOXP4 and FOXP4-AS1 was detected in ESCC by quantitative real-time PCR (qRT–PCR) or SP immunohistochemistry (IHC). shRNA was used to silence gene expression. Apoptosis, cell cycle, MTS, colony formation, invasion and migration assays were employed to explore the biological functions of FOXP4 and FOXP4-AS1. The potential molecular mechanism of FOXP4-AS1 in ESCC was determined by dual-luciferase reporter, RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP). Here, we demonstrated that FOXP4-AS1 was significantly increased in ESCC tissues and cell lines, associated with lymph node metastasis and TNM staging. Cell function experiments showed that FOXP4-AS1 promoted the proliferation, invasion and migration ability of ESCC cells. The expression of FOXP4-AS1 and FOXP4 in ESCC tissues was positively correlated. Further research found that FOXP4-AS1, upregulated in ESCC, promotes FOXP4 expression by enriching MLL2 and H3K4me3 in the FOXP4 promoter through a “molecular scaffold”. Moreover, FOXP4, a transcription factor of β-catenin, promotes the transcription of β-catenin and ultimately leads to the malignant progression of ESCC. Finally, FOXP4-AS1 may be a new therapeutic target for ESCC.
Collapse
Affiliation(s)
- Yunfeng Niu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gaoyan Wang
- Experimental Center, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yan Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanli Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiming Dong
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|