1
|
Yildiz M, Romano A, Xanthoulea S. Murine Xenograft Models as Preclinical Tools in Endometrial Cancer Research. Cancers (Basel) 2024; 16:3994. [PMID: 39682182 DOI: 10.3390/cancers16233994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Murine xenograft models are valuable and increasingly used preclinical tools in cancer research to understand disease pathogenesis and guide treatment options. The aim of this narrative review is to summarize the studies that employed mouse xenograft models, using cell lines, patient-derived tumors, or organoids, in endometrial cancer (EC) research, detailing their methodology and main findings. We identified 27 articles reporting on heterotopic EC xenografts, including subcutaneous, subrenal capsule, intraperitoneal, and retro-orbital models, and 18 articles using orthotopic xenografts. Subcutaneous xenografts generated using either cell lines or patient tumors have been widely used; however, their low engraftment rates and the inability to recapitulate main clinical features such as metastases limit their translational value. Subrenal capsule models showed improved engraftment rates compared to subcutaneous models, but tumors exhibited slower and constrained tumor growth. Orthotopic models are technically more challenging to generate and monitor, but tumor growth occurs in a relevant microenvironment and EC ortho-xenografts exhibit high engraftment rates and metastases to clinically relevant sites. Cell line-based xenograft (CDX) models are attractive tools because they are convenient, easy to use, and amenable to genetic modifications, making them suitable for proof-of-concept approaches and large-scale studies. EC xenografts developed from patient tumors (PDTXs) are more labor/cost-intensive for their establishment but can capture the genetic and molecular heterogeneity within and across histologic subtypes and can inform personalized patient treatment. EC organoid-based xenograft (PDOX) models combine the advantages of both CDXs and PDTXs since they are more time- and cost-effective, faithfully maintain tumor characteristics and therapeutic responses, and can be genetically modified. Despite substantial progress in EC management, there are still several unmet needs. Efficient targeted treatments are currently indicated only for a small subgroup of patients, while women with recurrent or advanced-stage EC have very few therapeutic options and their prognosis remains unfavorable. Novel (targeted) drugs, combinational regimens and tools to predict the real drug response in patients are urgently needed. Xenograft models are expected to inform about disease mechanisms and to help identify novel therapeutic options and suitable target patients.
Collapse
Affiliation(s)
- Merve Yildiz
- GROW-Research Institute for Oncology & Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Andrea Romano
- GROW-Research Institute for Oncology & Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Sofia Xanthoulea
- GROW-Research Institute for Oncology & Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
2
|
Li XH, Guo D, Chen LQ, Chang ZH, Shi JX, Hu N, Chen C, Zhang XW, Bao SQ, Chen MM, Ming D. Low-intensity ultrasound ameliorates brain organoid integration and rescues microcephaly deficits. Brain 2024; 147:3817-3833. [PMID: 38739753 DOI: 10.1093/brain/awae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Human brain organoids represent a remarkable platform for modelling neurological disorders and a promising brain repair approach. However, the effects of physical stimulation on their development and integration remain unclear. Here, we report that low-intensity ultrasound significantly increases neural progenitor cell proliferation and neuronal maturation in cortical organoids. Histological assays and single-cell gene expression analyses revealed that low-intensity ultrasound improves the neural development in cortical organoids. Following organoid grafts transplantation into the injured somatosensory cortices of adult mice, longitudinal electrophysiological recordings and histological assays revealed that ultrasound-treated organoid grafts undergo advanced maturation. They also exhibit enhanced pain-related gamma-band activity and more disseminated projections into the host brain than the untreated groups. Finally, low-intensity ultrasound ameliorates neuropathological deficits in a microcephaly brain organoid model. Hence, low-intensity ultrasound stimulation advances the development and integration of brain organoids, providing a strategy for treating neurodevelopmental disorders and repairing cortical damage.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Di Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Li-Qun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang-Qing Bao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Meng-Meng Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Dill-Macky AS, Lee EN, Wertheim JA, Koss KM. Glia in tissue engineering: From biomaterial tools to transplantation. Acta Biomater 2024:S1742-7061(24)00600-7. [PMID: 39396630 DOI: 10.1016/j.actbio.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Glia are imperative in nearly every function of the nervous system, including neurotransmission, neuronal repair, development, immunity, and myelination. Recently, the reparative roles of glia in the central and peripheral nervous systems have been elucidated, suggesting a tremendous potential for these cells as novel treatments to central nervous system disorders. Glial cells often behave as 'double-edged swords' in neuroinflammation, ultimately deciding the life or death of resident cells. Compared to glia, neuronal cells have limited mobility, lack the ability to divide and self-renew, and are generally more delicate. Glia have been candidates for therapeutic use in many successful grafting studies, which have been largely focused on restoring myelin with Schwann cells, olfactory ensheathing glia, and oligodendrocytes with support from astrocytes. However, few therapeutics of this class have succeeded past clinical trials. Several tools and materials are being developed to understand and re-engineer these grafting concepts for greater success, such as extra cellular matrix-based scaffolds, bioactive peptides, biomolecular delivery systems, biomolecular discovery for neuroinflammatory mediation, composite microstructures such as artificial channels for cell trafficking, and graft enhanced electrical stimulation. Furthermore, advances in stem cell-derived cortical/cerebral organoid differentiation protocols have allowed for the generation of patient-derived glia comparable to those acquired from tissues requiring highly invasive procedures or are otherwise inaccessible. However, research on bioengineered tools that manipulate glial cells is nowhere near as comprehensive as that for systems of neurons and neural stem cells. This article explores the therapeutic potential of glia in transplantation with an emphasis on novel bioengineered tools for enhancement of their reparative properties. STATEMENT OF SIGNIFICANCE: Neural glia are responsible for a host of developmental, homeostatic, and reparative roles in the central nervous system but are often a major cause of tissue damage and cellular loss in insults and degenerative pathologies. Most glial grafts have employed Schwann cells for remyelination, but other glial with novel biomaterials have been employed, emphasizing their diverse functionality. Promising strategies have emerged, including neuroimmune mediation of glial scar tissues and facilitated migration and differentiation of stem cells for neural replacement. Herein, a comprehensive review of biomaterial tools for glia in transplantation is presented, highlighting Schwann cells, astrocytes, olfactory ensheating glia, oligodendrocytes, microglia, and ependymal cells.
Collapse
Affiliation(s)
- A S Dill-Macky
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - E N Lee
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - J A Wertheim
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - K M Koss
- Department of Neurobiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, United States; Sealy Institute for Drug Discovery, University of Texas Medical Branch, 105 11th Street Galveston, TX 77555-1110, United States.
| |
Collapse
|
4
|
Li XH, Hu N, Chang ZH, Shi JX, Fan X, Chen MM, Bao SQ, Chen C, Zuo JC, Zhang XW, Wang JJ, Ming D. Brain organoid maturation and implantation integration based on electrical signals input. J Adv Res 2024:S2090-1232(24)00378-3. [PMID: 39243942 DOI: 10.1016/j.jare.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
INTRODUCTION Brain organoids are believed to be able to regenerate impaired neural circuits and reinstate brain functionality. The neuronal activity of organoids is considered a crucial factor for restoring host function after implantation. However, the optimal stage of brain organoid post-transplantation has not yet been established. External electrical signal plays a crucial role in the physiology and development of a majority of human tissues. However, whether electrical input modulates the development of brain organoids, making them ideal transplant donors, is elusive. METHODS Bioelectricity was input into cortical organoids by electrical stimulation (ES) with a multi-electrode array (MEA) to obtain a better-transplanted candidate with better viability and maturity, realizing structural-functional integration with the host brain. RESULTS We found that electrical stimulation facilitated the differentiation and maturation of organoids, displaying well-defined cortical plates and robust functional electrophysiology, which was probably mediated via the pathway of calcium-calmodulin (CaM) dependent protein kinase II (CAMK II)-protein kinase A (PKA)-cyclic-AMP response binding protein (pCREB). The ES-pretreated D40 organoids displayed superior cell viability and higher cell maturity, and were selected to transplant into the damaged primary sensory cortex (S1) of host. The enhanced maturation was exhibited within grafts after transplantation, including synapses and complex functional activities. Moreover, structural-functional integration between grafts and host was observed, conducive to strengthening functional connectivity and restoring the function of the host injury. CONCLUSION Our findings supported that electrical stimulation could promote the development of cortical organoids. ES-pretreated organoids were better-transplanted donors for strengthening connectivity between grafts and host. Our work presented a new physical approach to regulating organoids, potentially providing a novel translational strategy for functional recovery after brain injury. In the future, the development of 3D flexible electrodes is anticipated to overcome the drawbacks of 2D planar MEA, promisingly achieving multimodal stimulation and long-term recordings of brain organoids.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiu Fan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Meng-Meng Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang-Qing Bao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jia-Chen Zuo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jing-Jing Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Bellotti C, Samudyata S, Thams S, Sellgren CM, Rostami E. Organoids and chimeras: the hopeful fusion transforming traumatic brain injury research. Acta Neuropathol Commun 2024; 12:141. [PMID: 39215375 PMCID: PMC11363608 DOI: 10.1186/s40478-024-01845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Research in the field of traumatic brain injury has until now heavily relied on the use of animal models to identify potential therapeutic approaches. However, a long series of failed clinical trials has brought many scientists to question the translational reliability of pre-clinical results obtained in animals. The search for an alternative to conventional models that better replicate human pathology in traumatic brain injury is thus of the utmost importance for the field. Recently, orthotopic xenotransplantation of human brain organoids into living animal models has been achieved. This review summarizes the existing literature on this new method, focusing on its potential applications in preclinical research, both in the context of cell replacement therapy and disease modelling. Given the obvious advantages of this approach to study human pathologies in an in vivo context, we here critically review its current limitations while considering its possible applications in traumatic brain injury research.
Collapse
Affiliation(s)
- Cristina Bellotti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Samudyata Samudyata
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Thams
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Stockholm Health Care Services, Karolinska Institutet, and Stockholm Health Care Services, Stockholm, Sweden
| | - Elham Rostami
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Hong SJ, Bock M, Zhang S, An SB, Han I. Therapeutic Transplantation of Human Central Nervous System Organoids for Neural Reconstruction. Int J Mol Sci 2024; 25:8540. [PMID: 39126108 PMCID: PMC11313261 DOI: 10.3390/ijms25158540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/03/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Damage to the central nervous system (CNS) often leads to irreversible neurological deficits, and there are currently few effective treatments available. However, recent advancements in regenerative medicine have identified CNS organoids as promising therapeutic options for addressing CNS injuries. These organoids, composed of various neurons and supporting cells, have shown potential for direct repair at injury sites. CNS organoids resemble the structure and function of actual brain tissue, which allows them to adapt and function well within the physiological environment when transplanted into injury sites. Research findings suggest that CNS organoids can replace damaged neurons, form new neural connections, and promote neural recovery. This review highlights the emerging benefits, evaluates preclinical transplantation outcomes, and explores future strategies for optimizing neuroregeneration using CNS organoids. With continued research and technological advancements, these organoids could provide new hope for patients suffering from neurological deficits.
Collapse
Affiliation(s)
- Sung Jun Hong
- Research Competency Milestones Program (RECOMP), School of Medicine, CHA University, Seongnam-si 13488, Republic of Korea;
- Department of Medicine, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea
| | - Minsung Bock
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| | - Songzi Zhang
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| | - Seong Bae An
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| |
Collapse
|
7
|
Xiao QX, Geng MJ, Sun YF, Pi Y, Xiong LL. Stem Cell Therapy in Neonatal Hypoxic-Ischemic Encephalopathy and Cerebral Palsy: a Bibliometric Analysis and New Strategy. Mol Neurobiol 2024; 61:4538-4564. [PMID: 38102517 DOI: 10.1007/s12035-023-03848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The aim of this study was to identify related scientific outputs and emerging topics of stem cells in neonatal hypoxic-ischemic encephalopathy (NHIE) and cerebral palsy (CP) through bibliometrics and literature review. All relevant publications on stem cell therapy for NHIE and CP were screened from websites and analyzed research trends. VOSviewer and CiteSpace were applied to visualize and quantitatively analyze the published literature to provide objective presentation and prediction. In addition, the clinical trials, published articles, and projects of the National Natural Science Foundation of China associated with stem cell therapy for NHIE and CP were summarized. A total of 294 publications were associated with stem cell therapy for NHIE and CP. Most publications and citations came from the USA and China. Monash University and University Medical Center Utrecht produced the most publications. Pediatric research published the most studies on stem cell therapy for NHIE and CP. Heijnen C and Kavelaars A published the most articles. Cluster analyses show that current research trend is more inclined toward the repair mechanism and clinical translation of stem cell therapy for NHIE and CP. By summarizing various studies of stem cells in NHIE and CP, it is indicated that this research direction is a hot topic at present. Furthermore, organoid transplantation, as an emerging and new therapeutic approach, brings new hope for the treatment of NHIE and CP. This study comprehensively summarized and analyzed the research trend of global stem cell therapy for NHIE and CP. It has shown a marked increase in stem cell therapy for NHIE and CP research. In the future, more efforts will be made on exploring stem cell or organoid therapy for NHIE and CP and more valuable related mechanisms of action to achieve clinical translation as soon as possible.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Min-Jian Geng
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, 637000, Sichuan, China
| | - Yi-Fei Sun
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Pi
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
8
|
Xu S, Li X, Fan P, Li X, Hong Y, Han X, Wu S, Chu C, Chen Y, Xu M, Lin M, Guo X, Liu Y. Single-Cell Transcriptome Landscape and Cell Fate Decoding in Human Brain Organoids after Transplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402287. [PMID: 38711218 PMCID: PMC11267311 DOI: 10.1002/advs.202402287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Human stem cells and derivatives transplantation are widely used to treat nervous system diseases, while the fate determination of transplanted cells is not well elucidated. To explore cell fate changes of human brain organoids before and after transplantation, human brain organoids are transplanted into prefrontal cortex (PFC) and hippocampus (HIP), respectively. Single-cell sequencing is then performed. According to time-series sample comparison, transplanted cells mainly undergo neural development at 2 months post-transplantation (MPT) and then glial development at 4MPT, respectively. A different brain region sample comparison shows that organoids grafted to PFC have obtained cell fate close to those of host cells in PFC, other than HIP, which may be regulated by the abundant expression of dopamine (DA) and acetylcholine (Ach) in PFC. Meanwhile, morphological complexity of human astrocyte grafts is greater in PFC than in HIP. DA and Ach both activate the calcium activity and increase morphological complexity of astrocytes in vitro. This study demonstrates that human brain organoids receive host niche factor regulation after transplantation, resulting in the alignment of grafted cell fate with implanted brain regions, which may contribute to a better understanding of cell transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Shi‐Bo Xu
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
- State Key Laboratory of Reproductive MedicineDepartment of NeurobiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166P. R. China
| | - Xin‐Rui Li
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Pan Fan
- State Key Laboratory of Reproductive MedicineDepartment of NeurobiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166P. R. China
| | - Xiyang Li
- State Key Laboratory of Reproductive MedicineDepartment of NeurobiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166P. R. China
| | - Yuan Hong
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Xiao Han
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Shanshan Wu
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Chu Chu
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Yuejun Chen
- Institute of NeuroscienceKey Laboratory of Primate NeurobiologyCAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Min Xu
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
| | - Mingyan Lin
- State Key Laboratory of Reproductive MedicineDepartment of NeurobiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166P. R. China
| | - Xing Guo
- State Key Laboratory of Reproductive MedicineDepartment of NeurobiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166P. R. China
- Co‐innovation Center of NeuroregenerationNantong UniversityJiangsu226019China
| | - Yan Liu
- State Key Laboratory of Reproductive MedicineInstitute for Stem Cell and Neural RegenerationSchool of PharmacyKey Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineNanjing Medical UniversityNanjing211166P. R. China
| |
Collapse
|
9
|
Kim JT, Song K, Han SW, Youn DH, Jung H, Kim KS, Lee HJ, Hong JY, Cho YJ, Kang SM, Jeon JP. Modeling of the brain-lung axis using organoids in traumatic brain injury: an updated review. Cell Biosci 2024; 14:83. [PMID: 38909262 PMCID: PMC11193205 DOI: 10.1186/s13578-024-01252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Clinical outcome after traumatic brain injury (TBI) is closely associated conditions of other organs, especially lungs as well as degree of brain injury. Even if there is no direct lung damage, severe brain injury can enhance sympathetic tones on blood vessels and vascular resistance, resulting in neurogenic pulmonary edema. Conversely, lung damage can worsen brain damage by dysregulating immunity. These findings suggest the importance of brain-lung axis interactions in TBI. However, little research has been conducted on the topic. An advanced disease model using stem cell technology may be an alternative for investigating the brain and lungs simultaneously but separately, as they can be potential candidates for improving the clinical outcomes of TBI.In this review, we describe the importance of brain-lung axis interactions in TBI by focusing on the concepts and reproducibility of brain and lung organoids in vitro. We also summarize recent research using pluripotent stem cell-derived brain organoids and their preclinical applications in various brain disease conditions and explore how they mimic the brain-lung axis. Reviewing the current status and discussing the limitations and potential perspectives in organoid research may offer a better understanding of pathophysiological interactions between the brain and lung after TBI.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Kang Song
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Keun-Suh Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Ji Young Hong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea.
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
10
|
Wang M, Zhang L, Novak SW, Yu J, Gallina IS, Xu LL, Lim CK, Fernandes S, Shokhirev MN, Williams AE, Saxena MD, Coorapati S, Parylak SL, Quintero C, Molina E, Andrade LR, Manor U, Gage FH. Morphological diversification and functional maturation of human astrocytes in glia-enriched cortical organoid transplanted in mouse brain. Nat Biotechnol 2024:10.1038/s41587-024-02157-8. [PMID: 38418648 PMCID: PMC11349933 DOI: 10.1038/s41587-024-02157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Astrocytes, the most abundant glial cell type in the brain, are underrepresented in traditional cortical organoid models due to the delayed onset of cortical gliogenesis. Here we introduce a new glia-enriched cortical organoid model that exhibits accelerated astrogliogenesis. We demonstrated that induction of a gliogenic switch in a subset of progenitors enabled the rapid derivation of astroglial cells, which account for 25-31% of the cell population within 8-10 weeks of differentiation. Intracerebral transplantation of these organoids reliably generated a diverse repertoire of cortical neurons and anatomical subclasses of human astrocytes. Spatial transcriptome profiling identified layer-specific expression patterns among distinct subclasses of astrocytes within organoid transplants. Using an in vivo acute neuroinflammation model, we identified a subpopulation of astrocytes that rapidly activates pro-inflammatory pathways upon cytokine stimulation. Additionally, we demonstrated that CD38 signaling has a crucial role in mediating metabolic and mitochondrial stress in reactive astrocytes. This model provides a robust platform for investigating human astrocyte function.
Collapse
Affiliation(s)
- Meiyan Wang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lei Zhang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Iryna S Gallina
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lynne L Xu
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Christina K Lim
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maxim N Shokhirev
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - April E Williams
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Monisha D Saxena
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shashank Coorapati
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sarah L Parylak
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cristian Quintero
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elsa Molina
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Leonardo R Andrade
- Waitt Advanced Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
11
|
Kumar A, Stertz L, Teixeira AL. Induce Pluripotent Stem Cells (iPSC) Technology in Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:85-91. [PMID: 39261425 DOI: 10.1007/978-981-97-4402-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Induced pluripotent stem cells (iPSCs) are a promising in vitro model for drug-screening and precision-based psychiatry for the treatment of major depressive disorders (MDD). In this chapter, we explore different uses for iPSC technology, three-dimensional (3D) organoids models, and mesenchymal stem cells therapy in MDD, as well their potential and limitations.
Collapse
Affiliation(s)
- Apurva Kumar
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura Stertz
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonio L Teixeira
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Biggs Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
12
|
Mao W, Bui HTD, Cho W, Yoo HS. Spectroscopic techniques for monitoring stem cell and organoid proliferation in 3D environments for therapeutic development. Adv Drug Deliv Rev 2023; 201:115074. [PMID: 37619771 DOI: 10.1016/j.addr.2023.115074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Spectroscopic techniques for monitoring stem cell and organoid proliferation have gained significant attention in therapeutic development. Spectroscopic techniques such as fluorescence, Raman spectroscopy, and infrared spectroscopy offer noninvasive and real-time monitoring of biochemical and biophysical changes that occur during stem cell and organoid proliferation. These techniques provide valuable insight into the underlying mechanisms of action of potential therapeutic agents, allowing for improved drug discovery and screening. This review highlights the importance of spectroscopic monitoring of stem cell and organoid proliferation and its potential impact on therapeutic development. Furthermore, this review discusses recent advances in spectroscopic techniques and their applications in stem cell and organoid research. Overall, this review emphasizes the importance of spectroscopic techniques as valuable tools for studying stem cell and organoid proliferation and their potential to revolutionize therapeutic development in the future.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hoai-Thuong Duc Bui
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wanho Cho
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Institue of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
13
|
Rocchi A, Sariyer IK, Berger JR. Revisiting JC virus and progressive multifocal leukoencephalopathy. J Neurovirol 2023; 29:524-537. [PMID: 37659983 DOI: 10.1007/s13365-023-01164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 09/04/2023]
Abstract
Since its definition 65 years ago, progressive multifocal leukoencephalopathy (PML) has continued to devastate a growing population of immunosuppressed patients despite major advances in our understanding of the causative JC virus (JCV). Unless contained by the immune system, JCV lyses host oligodendrocytes collateral to its life cycle, leading to demyelination, neurodegeneration, and death. Novel treatments have stagnated in the absence of an animal model while current antiviral agents fail to address the now ubiquitous polyomavirus. In this review, we highlight the established pathogenesis by which JCV infection progresses to PML, highlighting major challenges that must be overcome to eliminate the underlying virus and, therefore, the debilitating disease.
Collapse
Affiliation(s)
- Angela Rocchi
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ilker K Sariyer
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| | - Joseph R Berger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Convention Avenue, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Villanueva R. Advances in the knowledge and therapeutics of schizophrenia, major depression disorder, and bipolar disorder from human brain organoid research. Front Psychiatry 2023; 14:1178494. [PMID: 37502814 PMCID: PMC10368988 DOI: 10.3389/fpsyt.2023.1178494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Tridimensional cultures of human induced pluripotent cells (iPSCs) experimentally directed to neural differentiation, termed "brain organoids" are now employed as an in vitro assay that recapitulates early developmental stages of nervous tissue differentiation. Technical progress in culture methodology enabled the generation of regionally specialized organoids with structural and neurochemical characters of distinct encephalic regions. The technical process of organoid elaboration is undergoing progressively implementation, but current robustness of the assay has attracted the attention of psychiatric research to substitute/complement animal experimentation for analyzing the pathophysiology of psychiatric disorders. Numerous morphological, structural, molecular and functional insights of psychiatric disorders have been uncovered by comparing brain organoids made with iPSCs obtained from control healthy subjects and psychiatric patients. Brain organoids were also employed for analyzing the response to conventional treatments, to search for new drugs, and to anticipate the therapeutic response of individual patients in a personalized manner. In this review, we gather data obtained by studying cerebral organoids made from iPSCs of patients of the three most frequent serious psychiatric disorders: schizophrenia, major depression disorder, and bipolar disorder. Among the data obtained in these studies, we emphasize: (i) that the origin of these pathologies takes place in the stages of embryonic development; (ii) the existence of shared molecular pathogenic aspects among patients of the three distinct disorders; (iii) the occurrence of molecular differences between patients bearing the same disorder, and (iv) that functional alterations can be activated or aggravated by environmental signals in patients bearing genetic risk for these disorders.
Collapse
Affiliation(s)
- Rosa Villanueva
- Departamento de Psiquiatría y Salud Mental, Hospital Universitario La Paz, La Paz, Madrid, Spain
| |
Collapse
|
15
|
Wang M, Gage FH, Schafer ST. Transplantation Strategies to Enhance Maturity and Cellular Complexity in Brain Organoids. Biol Psychiatry 2023; 93:616-621. [PMID: 36739209 PMCID: PMC10662460 DOI: 10.1016/j.biopsych.2023.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
Human brain organoids are 3-dimensional cell aggregates that are generated from pluripotent stem cells and recapitulate features of the early developing human brain. Brain organoids mainly consist of cells from the neural lineage, such as neural progenitor cells, neurons, and astrocytes. However, current brain organoid systems lack functional vasculature as well as other non-neuronal cells that are indispensable for oxygen and nutrient supply to the organoids, causing cell stress and formation of a necrotic center. Attempts to utilize intracerebral transplantation approaches have demonstrated successful vascularization of brain organoids and robust neurodifferentiation. In this review, we summarize recent progress and discuss ethical considerations in the field of brain organoid transplantation.
Collapse
Affiliation(s)
- Meiyan Wang
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California.
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Simon T Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California; Department of Psychiatry and Psychotherapy, Medical School, Technical University of Munich, Munich, Germany; Center for Organoid Systems and Tissue Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
16
|
Whitehouse C, Corbett N, Brownlees J. 3D models of neurodegeneration: implementation in drug discovery. Trends Pharmacol Sci 2023; 44:208-221. [PMID: 36822950 DOI: 10.1016/j.tips.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
A lack of in vitro models that robustly represent the complex cellular pathologies underlying neurodegeneration has resulted in a translational gap between in vitro and in vivo results, creating a bottleneck in the development of new therapeutics. In the past decade, new and complex 3D models of the brain have been published at an exponential rate. However, many novel 3D models of neurodegeneration overlook the validation and throughput requirements for implementation in drug discovery. This therefore represents a knowledge gap that could hinder the translation of these models to drug discovery efforts. We review the recent progress in the development of 3D models of neurodegeneration, examining model design benefits and validation techniques, and discuss opportunities and standards for 3D models of neurodegeneration to be implemented in drug discovery and development.
Collapse
Affiliation(s)
| | - Nicola Corbett
- MSD R&D Innovation Centre, 120 Moorgate, London EC2M 6UR, UK
| | - Janet Brownlees
- MSD R&D Innovation Centre, 120 Moorgate, London EC2M 6UR, UK
| |
Collapse
|
17
|
Altinisik N, Rathinam D, Tran M, Gopalakrishnan J. Brain organoids restore cortical damage. Cell Stem Cell 2023; 30:241-242. [PMID: 36764295 DOI: 10.1016/j.stem.2023.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Cortical damage is irreparable and poses a challenge to regenerative medicine. Whether brain organoids can compensate for injured brain regions remains unclear. In this issue of Cell Stem Cell, Jgamadze et al. report that human forebrain organoids transplanted into the rat visual system show long-term structural connectivity and the restoration of visual function following lesions.
Collapse
Affiliation(s)
- Nazlican Altinisik
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Dhanasekaran Rathinam
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Minh Tran
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany.
| |
Collapse
|
18
|
Wang L, Wang B, Wu C, Wang J, Sun M. Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. Int J Mol Sci 2023; 24:ijms24031819. [PMID: 36768153 PMCID: PMC9915249 DOI: 10.3390/ijms24031819] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous, behaviorally defined neurodevelopmental disorder. Over the past two decades, the prevalence of autism spectrum disorders has progressively increased, however, no clear diagnostic markers and specifically targeted medications for autism have emerged. As a result, neurobehavioral abnormalities, neurobiological alterations in ASD, and the development of novel ASD pharmacological therapy necessitate multidisciplinary collaboration. In this review, we discuss the development of multiple animal models of ASD to contribute to the disease mechanisms of ASD, as well as new studies from multiple disciplines to assess the behavioral pathology of ASD. In addition, we summarize and highlight the mechanistic advances regarding gene transcription, RNA and non-coding RNA translation, abnormal synaptic signaling pathways, epigenetic post-translational modifications, brain-gut axis, immune inflammation and neural loop abnormalities in autism to provide a theoretical basis for the next step of precision therapy. Furthermore, we review existing autism therapy tactics and limits and present challenges and opportunities for translating multidisciplinary knowledge of ASD into clinical practice.
Collapse
|
19
|
Kim JT, Kim TY, Youn DH, Han SW, Park CH, Lee Y, Jung H, Rhim JK, Park JJ, Ahn JH, Kim HC, Cho SM, Jeon JP. Human embryonic stem cell-derived cerebral organoids for treatment of mild traumatic brain injury in a mouse model. Biochem Biophys Res Commun 2022; 635:169-178. [PMID: 36274367 DOI: 10.1016/j.bbrc.2022.10.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE There are no effective treatments for relieving neuronal dysfunction after mild traumatic brain injury (TBI). Here, we evaluated therapeutic efficacy of human embryonic stem cell-derived cerebral organoids (hCOs) in a mild TBI model, in terms of repair of damaged cortical regions, neurogenesis, and improved cognitive function. METHODS Male C57BL/6 J mice were randomly divided into sham-operated, mild TBI, and mild TBI with hCO groups. hCOs cultured at 8 weeks were used for transplantation. Mice were sacrificed at 7 and 14 days after transplantation followed by immunofluorescence staining, cytokine profile microarray, and novel object recognition test. RESULTS 8W-hCOs transplantation significantly reduced neuronal cell death, recovered microvessel density, and promoted neurogenesis in the ipsilateral subventricular zone and dentate gyrus of hippocampus after mild TBI. In addition, increased angiogenesis into the engrafted hCOs was observed. Microarray results of hCOs revealed neuronal differentiation potential and higher expression of early brain development proteins associated with neurogenesis, angiogenesis and extracellular matrix remodeling. Ultimately, 8W-hCO transplantation resulted in reconstruction of damaged cortex and improvement in cognitive function after mild TBI. CONCLUSION hCO transplantation may be feasible for treating mild TBI-related neuronal dysfunction via reconstruction of damaged cortex and neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Tae Yeon Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Chan Hum Park
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Younghyurk Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, South Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul, South Korea
| | - Jun Hyong Ahn
- Department of Neurosurgery, Kangwon National University Hospital, Chuncheon, South Korea
| | - Heung Cheol Kim
- Department of Radiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sung Min Cho
- Department of Neurosurgery, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea.
| |
Collapse
|
20
|
A Comprehensive Update of Cerebral Organoids between Applications and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7264649. [DOI: 10.1155/2022/7264649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
The basic technology of stem cells has been developed and created organoids, which have established a strong interest in regenerative medicine. Different cell types have been used to generate cerebral organoids, which include interneurons and oligodendrocytes (OLs). OLs are fundamental for brain development. Abundant studies have displayed that brain organoids can recapitulate fundamental and vital features of the human brain, such as cellular regulation and distribution, neuronal networks, electrical activities, and physiological structure. The organoids contain essential ventral brain domains and functional cortical interneurons, which are similar to the developing cortex and medial ganglionic eminence (MGE). So, brain organoids have provided a singular model to study and investigate neurological disorder mechanisms and therapeutics. Furthermore, the blood brain barrier (BBB) organoids modeling contributes to accelerate therapeutic discovery for the treatment of several neuropathologies. In this review, we summarized the advances of the brain organoids applications to investigate neurological disorder mechanisms such as neurodevelopmental and neurodegenerative disorders, mental disorders, brain cancer, and cerebral viral infections. We discussed brain organoids’ therapeutic application as a potential therapeutic unique method and highlighted in detail the challenges and hurdles of organoid models.
Collapse
|
21
|
LaMontagne E, Muotri AR, Engler AJ. Recent advancements and future requirements in vascularization of cortical organoids. Front Bioeng Biotechnol 2022; 10:1048731. [PMID: 36406234 PMCID: PMC9669755 DOI: 10.3389/fbioe.2022.1048731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 07/23/2023] Open
Abstract
The fields of tissue engineering and disease modeling have become increasingly cognizant of the need to create complex and mature structures in vitro to adequately mimic the in vivo niche. Specifically for neural applications, human brain cortical organoids (COs) require highly stratified neurons and glial cells to generate synaptic functions, and to date, most efforts achieve only fetal functionality at best. Moreover, COs are usually avascular, inducing the development of necrotic cores, which can limit growth, development, and maturation. Recent efforts have attempted to vascularize cortical and other organoid types. In this review, we will outline the components of a fully vascularized CO as they relate to neocortical development in vivo. These components address challenges in recapitulating neurovascular tissue patterning, biomechanical properties, and functionality with the goal of mirroring the quality of organoid vascularization only achieved with an in vivo host. We will provide a comprehensive summary of the current progress made in each one of these categories, highlighting advances in vascularization technologies and areas still under investigation.
Collapse
Affiliation(s)
- Erin LaMontagne
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Alysson R. Muotri
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| |
Collapse
|
22
|
Kofman S, Mohan N, Sun X, Ibric L, Piermarini E, Qiang L. Human mini brains and spinal cords in a dish: Modeling strategies, current challenges, and prospective advances. J Tissue Eng 2022; 13:20417314221113391. [PMID: 35898331 PMCID: PMC9310295 DOI: 10.1177/20417314221113391] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Engineered three-dimensional (3D) in vitro and ex vivo neural tissues, also known as "mini brains and spinal cords in a dish," can be derived from different types of human stem cells via several differentiation protocols. In general, human mini brains are micro-scale physiological systems consisting of mixed populations of neural progenitor cells, glial cells, and neurons that may represent key features of human brain anatomy and function. To date, these specialized 3D tissue structures can be characterized into spheroids, organoids, assembloids, organ-on-a-chip and their various combinations based on generation procedures and cellular components. These 3D CNS models incorporate complex cell-cell interactions and play an essential role in bridging the gap between two-dimensional human neuroglial cultures and animal models. Indeed, they provide an innovative platform for disease modeling and therapeutic cell replacement, especially shedding light on the potential to realize personalized medicine for neurological disorders when combined with the revolutionary human induced pluripotent stem cell technology. In this review, we highlight human 3D CNS models developed from a variety of experimental strategies, emphasize their advances and remaining challenges, evaluate their state-of-the-art applications in recapitulating crucial phenotypic aspects of many CNS diseases, and discuss the role of contemporary technologies in the prospective improvement of their composition, consistency, complexity, and maturation.
Collapse
Affiliation(s)
- Simeon Kofman
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Neha Mohan
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Xiaohuan Sun
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Larisa Ibric
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Emanuela Piermarini
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|