1
|
Sharma V, Chaudhary AA, Bawari S, Gupta S, Mishra R, Khan SUD, Ali MAM, Shahid M, Srivastava S, Verma D, Gupta A, Kumar S, Kumar S. Unraveling cancer progression pathways and phytochemical therapeutic strategies for its management. Front Pharmacol 2024; 15:1414790. [PMID: 39246660 PMCID: PMC11377287 DOI: 10.3389/fphar.2024.1414790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 09/10/2024] Open
Abstract
Cancer prevention is currently envisioned as a molecular-based approach to prevent carcinogenesis in pre-cancerous stages, i.e., dysplasia and carcinoma in situ. Cancer is the second-leading cause of mortality worldwide, and a more than 61% increase is expected by 2040. A detailed exploration of cancer progression pathways, including the NF-kβ signaling pathway, Wnt-B catenin signaling pathway, JAK-STAT pathway, TNF-α-mediated pathway, MAPK/mTOR pathway, and apoptotic and angiogenic pathways and effector molecules involved in cancer development, has been discussed in the manuscript. Critical evaluation of these effector molecules through molecular approaches using phytomolecules can intersect cancer formation and its metastasis. Manipulation of effector molecules like NF-kβ, SOCS, β-catenin, BAX, BAK, VEGF, STAT, Bcl2, p53, caspases, and CDKs has played an important role in inhibiting tumor growth and its spread. Plant-derived secondary metabolites obtained from natural sources have been extensively studied for their cancer-preventing potential in the last few decades. Eugenol, anethole, capsaicin, sanguinarine, EGCG, 6-gingerol, and resveratrol are some examples of such interesting lead molecules and are mentioned in the manuscript. This work is an attempt to put forward a comprehensive approach to understanding cancer progression pathways and their management using effector herbal molecules. The role of different plant metabolites and their chronic toxicity profiling in modulating cancer development pathways has also been highlighted.
Collapse
Affiliation(s)
- Vikas Sharma
- Metro College of Health Sciences and Research, Greater Noida, India
- School of Pharmacy, Sharda University, Greater Noida, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Vadodara, India
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Devvrat Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Arti Gupta
- Lloyd School of Pharmacy, Greater Noida, India
| | - Sanjay Kumar
- Biological and Bio-computational Laboratory, Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India
- DST-FIST Laboratory, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|
2
|
Mattioli LB, Frosini M, Corazza I, Fiorino S, Zippi M, Micucci M, Budriesi R. Long COVID-19 gastrointestinal related disorders and traditional Chinese medicine: A network target-based approach. Phytother Res 2024; 38:2323-2346. [PMID: 38421118 DOI: 10.1002/ptr.8163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
The significant number of individuals impacted by the pandemic makes prolonged symptoms after COVID-19 a matter of considerable concern. These are numerous and affect multiple organ systems. According to the World Health Organization (WHO), prolonged gastrointestinal issues are a crucial part of post-COVID-19 syndrome. The resulting disruption of homeostasis underscores the need for a therapeutic approach based on compounds that can simultaneously affect more than one target/node. The present review aimed to check for nutraceuticals possessing multiple molecular mechanisms helpful in relieving Long COVID-19-specific gastrointestinal symptoms. Specific plants used in Keywords Chinese Medicine (TCM) expected to be included in the WHO Global Medical Compendium were selected based on the following criteria: (1) they are widely used in the Western world as natural remedies and complementary medicine adjuvants; (2) their import and trade are regulated by specific laws that ensure quality and safety (3) have the potential to be beneficial in alleviating intestinal issues associated with Long COVID-19. Searches were performed in PubMed, Elsevier, Google Scholar, Scopus, Science Direct, and ResearchGate up to 2023. Cinnamomum cassia, Glycyrrhiza uralensis, Magnolia officinalis, Poria cocos, Salvia miltiorrhiza, Scutellaria baicalensis, and Zingiber officinalis were identified as the most promising for their potential impact on inflammation and oxidative stress. Based on the molecular mechanisms of the phytocomplexes and isolated compounds of the considered plants, their clinical use may lead to benefits in gastrointestinal diseases associated with Long COVID-19, thanks to a multiorgan and multitarget approach.
Collapse
Affiliation(s)
- Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Frosini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Ivan Corazza
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sirio Fiorino
- Internal Medicine Unit, Azienda USL, Budrio Hospital, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology & Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Matteo Micucci
- Department of Biomolecular Sciences, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Cheshfar F, Bani S, Mirghafourvand M, Hasanpour S, Javadzadeh Y. The Effects of Ginger ( Zingiber officinale) Extract Ointment on Pain and Episiotomy Wound Healing in Nulliparous Women: A Randomized Clinical Trial. J Caring Sci 2023; 12:181-187. [PMID: 38020739 PMCID: PMC10663440 DOI: 10.34172/jcs.2023.31842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/12/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Episiotomy is a usual midwifery surgery. Iran is a country with an abundant source of medicinal plants. This study aimed to investigate ginger extract ointment's effects on the pain and recovery of episiotomy incisions in nulliparous women. Methods This randomized clinical trial was conducted in a public hospital in Iran on 70 nulliparous women with an episiotomy incision. The women were randomly assigned to ginger extract ointment and placebo groups. The primary outcomes included pain and wound healing that were assessed using a visual analog scale (VAS), redness, edema, ecchymosis/bruising, discharge, and an approximation scale (REEDA). The participants were followed up before discharge from the hospital and 5×1 and 10×1 days after the intervention. The secondary outcome was the number of painkillers used during the study. Data were analyzed by chi-square, independent t test, and the Mann-Whitney U via SPSS-13. The significance levels were determined to be P≤0.05. Results There was no significant difference between participants treated with ginger extract ointment and placebo in the pain and wound healing scores before the intervention, 5×1 and 10×1 days after the intervention. But, the pain intensity decreased, and the recovery speed increased clinically. Also, regarding the secondary outcome of this study, no significant difference between the placebo and intervention groups in the number of painkillers participants took. Conclusion The ginger ointment could not significantly improve episiotomy wounds' pain and healing rate, but it was clinically helpful. So more studies with different doses of this ointment are needed.
Collapse
Affiliation(s)
- Fatemeh Cheshfar
- Department of Midwifery, Nursing and Midwifery Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Bani
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojgan Mirghafourvand
- Department of Midwifery, Nursing and Midwifery Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Hasanpour
- Women’s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Wang L, Fu H, Li J, Chen L, Yang J, Zhong L, Xiao X, Feng Y, Luo Y. Ultra-high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry coupled with three-step data post-processing techniques for comprehensive profiling of the multiple components in Fufang Xianzhuli Ye. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:92-104. [PMID: 36289055 DOI: 10.1002/pca.3182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Fufang Xianzhuli (FXZL) Ye, a classical formula of traditional Chinese medicine, is composed of Succus Bambusae, Houttuyniae herba, Pinelliae Rhizoma, Zingiberis Rhizoma Recens, Eriobotryae Folium, Platycodonis Radix, and peppermint oil. For many years, FXZL has been primarily utilised in China to treat cough and phlegm. The chemical composition of FXZL has not been reported, which seriously affects the safety of the clinical application. OBJECTIVE To establish a systematic method for rapidly classifying and recognising the chemical constituents in the FXZL for the safety of the clinical application. METHODS An ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry coupled with a three-step data post-processing strategy was developed to screen the chemical constituents of FXZL. RESULTS In this experiment, the diagnostic ions in FXZL were classified into six main compounds. A total of 106 compounds were unambiguously identified in FXZL based on their retention times, accurate masses, and tandem mass spectrometry data. These include 11 chlorogenic acids, three flavonoids, eight sesquiterpenoids, six organic acids, 65 triterpenoid saponins, and 13 other compounds. CONCLUSION The chemical composition of FXZL was identified and summarised, providing useful information for quality control and a basis for further exploration of its active ingredients in vivo.
Collapse
Affiliation(s)
- Lanxin Wang
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Institute for Drug Control, Nanchang, 330029, P. R. China
- School of Pharmacy, Nanchang University, Nanchang, 330031, P. R. China
| | - Huizheng Fu
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Institute for Drug Control, Nanchang, 330029, P. R. China
| | - Junmao Li
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330002, P. R. China
| | - Linan Chen
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Institute for Drug Control, Nanchang, 330029, P. R. China
- School of Pharmacy, Nanchang University, Nanchang, 330031, P. R. China
| | - Jiaxi Yang
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Institute for Drug Control, Nanchang, 330029, P. R. China
- School of Pharmacy, Nanchang University, Nanchang, 330031, P. R. China
| | - Lan Zhong
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Institute for Drug Control, Nanchang, 330029, P. R. China
- School of Pharmacy, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiaowu Xiao
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Institute for Drug Control, Nanchang, 330029, P. R. China
| | - Yulin Feng
- The National Pharmaceutical Engineering Center (NPEC) for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330002, P. R. China
| | - Yuehua Luo
- NMPA Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Jiangxi Institute for Drug Control, Nanchang, 330029, P. R. China
- School of Pharmacy, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
6
|
Sishen Wan Treats Ulcerative Colitis in Rats by Regulating Gut Microbiota and Restoring the Treg/Th17 Balance. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1432816. [PMID: 36619196 PMCID: PMC9822768 DOI: 10.1155/2022/1432816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Objective This study was aimed to explore the mechanism of Sishen Wan (SSW) in treating ulcerative colitis (UC) in a rat model of spleen-kidney yang deficiency pattern by regulating gut microbiota and the content of butyric acid in short-chain fatty acid (SCFAs) and restoring regulatory T (Treg)/T helper type 17 (Th17) balance from the perspective of the correlation between gut microbiota and immune function. Methods The UC rat model of spleen-kidney yang deficiency pattern was established by the method of combining disease and syndrome (intragastric administration of senna leaf, subcutaneous injection of hydrocortisone, and enema with 2,4-dinitrobenzenesulfonic acid (DNBS)/ethanol solution). After successful modeling, rats were randomly divided into six groups: the blank group, model group, low-, middle-, and high-dose Sishen Wan groups, and mesalazine group. Samples were taken after continuous administration for 3 weeks. The general conditions and body weight of the rats were observed and recorded, and the disease activity index (DAI) score was calculated. Colonic mucosal injury was observed, and a colonic mucosal damage index (CMDI) score was calculated. Histopathological changes in colon tissues were determined by hematoxylin and eosin (H&E) staining, and the histopathological score (HS) was calculated. The serum levels of transforming growth factor-β1 (TGF-β1), interleukin (IL)-6, IL-10, and IL-17 were determined by enzyme-linked immunosorbent assay (ELISA) assays. The expression of TGF-β1, signal transducer and activator of transcription 3 (STAT3), and peroxisome proliferator-activated receptor γ (PPARγ) was determined by Western blot analysis. The proportion of Th17 and Treg cells in colon tissue was determined by flow cytometry. The relative abundance of gut microbiota was determined by 16S rDNA sequencing, and the concentration of butyric acid of SCFAs was determined by gas chromatography-mass spectrometry (GC-MS). Results Administration of SSW significantly improved the pathological changes of colon tissue in UC rats and could attenuate the DAI and CMDI scores, and the HS. SSW significantly decreased the serum levels of IL-6 and IL-17 and increased the serum levels of TGF-β1 and IL-10. In addition, SSW increased the expression of TGF-β1 and PPARγ and decreased the expression of STAT3 in colon tissue in a dose-dependent manner. Furthermore, SSW significantly decreased the proportion of Th17 cells and increased the proportion of Treg cells in colon tissue. Additionally, SSW altered the gut microbiota, including an increase in the relative abundance of Firmicutes and a decrease in Bacteroidota at the phylum level and an increase in the relative abundance of Lactobacillus at the genus level. Moreover, SSW significantly increased the concentration of butyric acid. Conclusions Combined, these data suggested that SSW increased the relative abundance of firmicutes and the level of butyric acid and restored the balance of Treg/Th17 immune axis and gut homeostasis, thus delaying the progress of UC.
Collapse
|
7
|
Li B, Tao X, Sheng L, Li Y, Zheng N, Li H. Divergent impacts on the gut microbiome and host metabolism induced by traditional Chinese Medicine with Cold or Hot properties in mice. Chin Med 2022; 17:144. [PMID: 36572936 PMCID: PMC9793677 DOI: 10.1186/s13020-022-00697-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/06/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) has been practiced and developed in China over thousands of years under the guidance of a series of complicated traditional theories. Herbs within TCM usually are classified according to their different properties ranging from cold, cool, warm to hot, which are simplified as Cold and Hot properties. TCM with either Cold or Hot properties are used in various formulae designed for the purpose of restoring the balance of patients. Emerging evidence has highlighted that an altered gut microbiota or host metabolism are critically involved in affecting the healing properties of TCM. However, at present the exact influences and crosstalk on the gut microbiota and host metabolism remain poorly understood. METHODS In the present study, the divergent impacts of six TCMs with either Cold or Hot properties on gut microbiome and host metabolism during short- or long-term intervention in mice were investigated. Six typical TCMs with Hot or Cold properties including Cinnamomi Cortex (rougui, RG), Zingiberis Rhizoma (ganjiang, GJ), Aconiti Lateralis Radix Praeparata (fuzi, FZ), Rhei Radix et Rhizoma (dahuang, DH), Scutellariae Radix (huangqin, HQ), and Copitdis Rhizoma (huanglian, HL) were selected and orally administered to male C57BL/6J mice for a short- or a long-term (7 or 35 days). At the end of experiments, serum and cecal contents were collected for metabolomic and gut microbiome analyses using gas chromatography-tandem mass spectrometry (GC-MS) or 16S ribosomal deoxyribonucleic acid (16S rDNA) sequencing. RESULTS The results revealed that the gut microbiome underwent divergent changes both in its composition and functions after short-term intervention with TCM possessing either Cold or Hot properties. Interestingly, the number of changed genus and bacteria pathways was reduced in Hot_LT, but was increased in Cold_LT, especially in the HL group. Increased α diversity and a reduced F/B ratio revealed the changes in Hot_ST, but a reduced Shannon index and increased altered bacteria function was evident in Cold_LT. The serum metabolic profile showed that the influence of TCM on host metabolism was gradually reduced over time. Glycolipid metabolism related pathways were specifically regulated by Hot_ST, but also surprisingly by Cold_LT. Reduced lactic acid in Cold_ST, increased tryptophan concentrations and decreased proline and threonine concentrations in Cold_LT perhaps highlighting the difference between the two natures influence on serum metabolism. These metabolites were closely correlated with altered gut microbiota shown by further correlation analyses. CONCLUSION The results indicated that TCM properties could be, at least partially characterized by an alteration in the gut microbiota and metabolic profile, implying that the divergent responses of gut microbiome and host metabolism are involved in different responses to TCM.
Collapse
Affiliation(s)
- Bingbing Li
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China ,grid.494629.40000 0004 8008 9315School of Life Science, Westlake University, Hangzhou, 310000 China
| | - Xin Tao
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Lili Sheng
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Yan Li
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Ningning Zheng
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Houkai Li
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
8
|
Ooi SL, Pak SC, Campbell R, Manoharan A. Polyphenol-Rich Ginger ( Zingiber officinale) for Iron Deficiency Anaemia and Other Clinical Entities Associated with Altered Iron Metabolism. Molecules 2022; 27:6417. [PMID: 36234956 PMCID: PMC9573525 DOI: 10.3390/molecules27196417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Ginger (Zingiber officinale) is rich in natural polyphenols and may potentially complement oral iron therapy in treating and preventing iron deficiency anaemia (IDA). This narrative review explores the benefits of ginger for IDA and other clinical entities associated with altered iron metabolism. Through in vivo, in vitro, and limited human studies, ginger supplementation was shown to enhance iron absorption and thus increase oral iron therapy's efficacy. It also reduces oxidative stress and inflammation and thus protects against excess free iron. Ginger's bioactive polyphenols are prebiotics to the gut microbiota, promoting gut health and reducing the unwanted side effects of iron tablets. Moreover, ginger polyphenols can enhance the effectiveness of erythropoiesis. In the case of iron overload due to comorbidities from chronic inflammatory disorders, ginger can potentially reverse the adverse impacts and restore iron balance. Ginger can also be used to synthesise nanoparticles sustainably to develop newer and more effective oral iron products and functional ingredients for IDA treatment and prevention. Further research is still needed to explore the applications of ginger polyphenols in iron balance and anaemic conditions. Specifically, long-term, well-designed, controlled trials are required to validate the effectiveness of ginger as an adjuvant treatment for IDA.
Collapse
Affiliation(s)
- Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Ron Campbell
- The Oaks Medical Practice, The Oaks, NSW 2570, Australia
| | - Arumugam Manoharan
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
9
|
Gao Y, Lu Y, Zhang N, Udenigwe CC, Zhang Y, Fu Y. Preparation, pungency and bioactivity of gingerols from ginger ( Zingiber officinale Roscoe): a review. Crit Rev Food Sci Nutr 2022; 64:2708-2733. [PMID: 36135317 DOI: 10.1080/10408398.2022.2124951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ginger has been widely used for different purposes, such as condiment, functional food, drugs, and cosmetics. Gingerols, the main pungent component in ginger, possess a variety of bioactivities. To fully understand the significance of gingerols in the food and pharmaceutical industry, this paper first recaps the composition and physiochemical properties of gingerols, and the major extraction and synthesis methods. Furthermore, the pungency and bioactivity of gingerols are reviewed. In addition, the food application of gingerols and future perspectives are discussed. Gingerols, characterized by a 3-methoxy-4-hydroxyphenyl moiety, are divided into gingerols, shogaols, paradols, zingerone, gingerdiones and gingerdiols. At present, gingerols are extracted by conventional, innovative, and integrated extraction methods, and synthesized by chemical, biological and in vitro cell synthesis methods. Gingerols can activate transient receptor potential vanilloid type 1 (TRPV1) and induce signal transduction, thereby exhibiting its pungent properties and bioactivity. By targeted mediation of various cell signaling pathways, gingerols display potential anticancer, antibacterial, blood glucose regulatory, hepato- and renal-protective, gastrointestinal regulatory, nerve regulatory, and cardiovascular protective effects. This review contributes to the application of gingerols as functional ingredients in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Yuge Gao
- College of Food Science, Southwest University, Chongqing, China
- Westa College, Southwest University, Chongqing, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| |
Collapse
|
10
|
Bioactive Compounds from the Zingiberaceae Family with Known Antioxidant Activities for Possible Therapeutic Uses. Antioxidants (Basel) 2022; 11:antiox11071281. [PMID: 35883772 PMCID: PMC9311506 DOI: 10.3390/antiox11071281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The Zingiberaceae family is a rich source of diverse bioactive phytochemicals. It comprises about 52 genera and 1300 species of aromatic flowering perennial herbs with characteristic creeping horizontal or tuberous rhizomes. Notable members of this family include ginger (Zingiber officinale Roscoe), turmeric (Curcuma longa L.), Javanese ginger (Curcuma zanthorrhiza Roxb.), and Thai ginger (Alpinia galanga L.). This review focuses on two main classes of bioactive compounds: the gingerols (and their derivatives) and the curcuminoids. These compounds are known for their antioxidant activity against several maladies. We highlight the centrality of their antioxidant activities with notable biological activities, including anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective, antimicrobial, and anticancer effects. We also outline various strategies that have been applied to enhance these activities and make suggestions for research areas that require attention.
Collapse
|
11
|
Ning S, Zang J, Zhang B, Feng X, Qiu F. Botanical Drugs in Traditional Chinese Medicine With Wound Healing Properties. Front Pharmacol 2022; 13:885484. [PMID: 35645789 PMCID: PMC9133888 DOI: 10.3389/fphar.2022.885484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Chronic and unhealed wound is a serious public problem, which brings severe economic burdens and psychological pressure to patients. Various botanical drugs in traditional Chinese medicine have been used for the treatment of wounds since ancient time. Nowadays, multiple wound healing therapeutics derived from botanical drugs are commercially available worldwide. An increasing number of investigations have been conducted to elucidate the wound healing activities and the potential mechanisms of botanical drugs in recent years. The aim of this review is to summarize the botanical drugs in traditional Chinese medicine with wound healing properties and the underlying mechanisms of them, which can contribute to the research of wound healing and drug development. Taken together, five botanical drugs that have been developed into commercially available products, and 24 botanical drugs with excellent wound healing activities and several multiherbal preparations are reviewed in this article.
Collapse
Affiliation(s)
| | | | | | | | - Feng Qiu
- *Correspondence: Feng Qiu, ; Xinchi Feng,
| |
Collapse
|
12
|
Jalal K, Khan K, Hassam M, Abbas MN, Uddin R, Khusro A, Sahibzada MUK, Gajdács M. Identification of a Novel Therapeutic Target against XDR Salmonella Typhi H58 Using Genomics Driven Approach Followed Up by Natural Products Virtual Screening. Microorganisms 2021; 9:2512. [PMID: 34946114 PMCID: PMC8708826 DOI: 10.3390/microorganisms9122512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Typhoid fever is caused by a pathogenic, rod-shaped, flagellated, and Gram-negative bacterium known as Salmonella Typhi. It features a polysaccharide capsule that acts as a virulence factor and deceives the host immune system by protecting phagocytosis. Typhoid fever remains a major health concern in low and middle-income countries, with an estimated death rate of ~200,000 per annum. However, the situation is exacerbated by the emergence of the extensively drug-resistant (XDR) strain designated as H58 of S. Typhi. The emergence of the XDR strain is alarming, and it poses serious threats to public health due to the failure of the current therapeutic regimen. A relatively newer computational method called subtractive genomics analyses has been widely applied to discover novel and new drug targets against pathogens, particularly drug-resistant ones. The method involves the gradual reduction of the complete proteome of the pathogen, leading to few potential and novel drug targets. Thus, in the current study, a subtractive genomics approach was applied against the Salmonella XDR strain to identify potential drug targets. The current study predicted four prioritized proteins (i.e., Colanic acid biosynthesis acetyltransferase wcaB, Shikimate dehydrogenase aroE, multidrug efflux RND transporter permease subunit MdtC, and pantothenate synthetase panC) as potential drug targets. Though few of the prioritized proteins are treated in the literature as the established drug targets against other pathogenic bacteria, these drug targets are identified here for the first time against S. Typhi (i.e., S. Typhi XDR). The current study aimed at drawing attention to new drug targets against S. Typhi that remain largely unexplored. One of the prioritized drug targets, i.e., Colanic acid biosynthesis acetyltransferase, was predicted as a unique, new drug target against S. Typhi XDR. Therefore, the Colanic acid was further explored using structure-based techniques. Additionally, ~1000 natural compounds were docked with Colanic acid biosynthesis acetyltransferase, resulting in the prediction of seven compounds as potential lead candidates against the S. Typhi XDR strain. The ADMET properties and binding energies via the docking program of these seven compounds characterized them as novel drug candidates. They may potentially be used for the development of future drugs in the treatment of Typhoid fever.
Collapse
Affiliation(s)
- Khurshid Jalal
- International Center for Chemical and Biological Science, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan;
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Science, University of Karachi, Karachi 75270, Pakistan; (K.K.); (M.H.)
| | - Muhammad Hassam
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Science, University of Karachi, Karachi 75270, Pakistan; (K.K.); (M.H.)
| | - Muhammad Naseer Abbas
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Science, University of Karachi, Karachi 75270, Pakistan; (K.K.); (M.H.)
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Chennai 600034, India;
| | | | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
13
|
Marefati N, Abdi T, Beheshti F, Vafaee F, Mahmoudabady M, Hosseini M. Zingiber officinale (Ginger) hydroalcoholic extract improved avoidance memory in rat model of streptozotocin-induced diabetes by regulating brain oxidative stress. Horm Mol Biol Clin Investig 2021; 43:15-26. [PMID: 34679261 DOI: 10.1515/hmbci-2021-0033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/06/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Diabetes mellitus associated cognitive impairment is suggested to be due to oxidative stress. Considering the anti-diabetic, antioxidant, antihyperlipidemic, and anti-inflammatory effects of Zingiber officinale, the present study aimed to investigate its effect on memory and oxidative stress factors in streptozotocin (STZ)-induced diabetic rats. METHODS The rats were allocated into five groups: Control, Diabetic, Diabetic + Ginger 100, Diabetic + Ginger 200, and Diabetic + Ginger 400. Following diabetes induction by STZ (60 mg/kg), 100, 200, or 400 mg/kg Ginger was given for eight weeks. Passive avoidance test (PA) was done and thiol, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) measurements were carried out in the brain. RESULTS The latency into the dark compartment decreased (p<0.001) and the number of entries and time spent in the dark chamber increased in the Diabetic group compared to the Control (p<0.001 for all). All three doses of extract improved performance of the rats in the PA test (p<0.001 for all). The hippocampal and cortical MDA level was higher (p<0.001) while CAT, SOD, and total thiol were lower (p<0.01-p<0.001) in the Diabetic group than the Control. Treatment with 200 and 400 mg/kg Z. officinale extract reduced hippocampal and cortical MDA (p<0.001) and improved CAT (p<0.001) while, just the dose of 400 mg/kg of the extract increased SOD and total thiol in hippocampal and cortical tissues (p<0.001) compared with Diabetic group. CONCLUSIONS Z. officinale extract could improve memory by reducing the oxidative stress in STZ-induced diabetes model.
Collapse
Affiliation(s)
- Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tara Abdi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|