1
|
Amrati FEZ, Lim A, Slighoua M, Chebaibi M, Mssillou I, Drioiche A, Di Cristo F, Al-Sheikh YA, Aboul-Soud MAM, Edderkaoui M, Bousta D. Unraveling the hepatoprotective and anti-pancreatic cancer potential of Caralluma europaea: a comprehensive in vivo, in vitro and in silico evidence. Drug Chem Toxicol 2025; 48:120-135. [PMID: 39415714 DOI: 10.1080/01480545.2024.2402430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Caralluma europaea Guss. (C. europaea) is a medicinal plant used for cancer treatment. However, these treatments may be associated with complications that need to be investigated. This work aims to evaluate not only the chemical composition but also the hepatoprotective and anticancer properties of C. europaea extracts. The chemical constitution of the hydroethanolic extract was explored using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). The hydroethanolic extract, flavonoids, and polyphenols-rich extract at 100, 15, and 50 mg/kg, respectively, were administered to acetaminophen-treated rats for seven days. We used Western blotting and Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) to determine the protein and the mRNA levels of cancer stemness markers in pancreatic cancer cell lines MIA PaCa-2 and BxPC-3 exposed to increasing doses of C. europaea extracts. In silico analysis was used to evaluate the effects of phenolic compounds revealed in C. europaea on caspase-3 and HSP90, and on liver damage on CYP2E1. The primary phenolics detected by GC-MS and HPLC were ferulic acid and benzofurazan. The positive control group showed an increase in AST, ALT, ALP, triglycerides, and VLDL levels. C. europaea extracts demonstrated hepatoprotective effects by ameliorating acetaminophen-induced alterations of biochemical and hispathological parameters. Immunoblotting and RT-qPCR profiling of cancer stemness markers indicated a reduction in the expression levels of Oct-4 and Nanog proteins, as well as a reduction in the mRNA levels of CD133 by 50-60% and Sox2 by 80-90% in pancreatic cancer cells. Molecular docking showed that naringenin presented the highest docking Gscore on CYP2E1 (-8.199) and HSP90 (-7.742). In conclusion, C. europaea extracts could be considered as a safe and promising therapeutic strategy to sensitize pancreatic cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Fatima Ez-Zahra Amrati
- Laboratory of Cell Biology and Molecular Genetics (LBCGM), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Souss Massa, Morocco
| | - Adrian Lim
- Departments of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Meryem Slighoua
- Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), Faculty of Sciences, University Sidi-Mohamed-Ben-Abdellah (USMBA), Fez, Morocco
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Marrakech, Morocco
| | - Mohamed Chebaibi
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of the Fez, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Aziz Drioiche
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Francesca Di Cristo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, Porano, Italy
| | - Yazeed A Al-Sheikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mourad A M Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mouad Edderkaoui
- Departments of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Dalila Bousta
- National Agency of Medicinal and Aromatic Plants, Taounate, Morocco
| |
Collapse
|
2
|
Mrwad AA, El-Shafey SE, Said NM. Chitosan-encapsulated selenium nanoparticles alleviate CCl 4 induced hepatotoxicity through synergistically modulating NF-κB and Nrf2 signaling pathways and regulating Bcl-2 and Caspase-3 expression: A comprehensive study with multiple regression analysis. J Trace Elem Med Biol 2024; 86:127563. [PMID: 39547053 DOI: 10.1016/j.jtemb.2024.127563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND The delivery of selenium in a nano-form (Se-NPs) is a promising modality of treatment for various oxidative stress-induced diseases. OBJECTIVE This study aims to investigate the conceivable effects of selenium nanoparticles either alone (Se-NPs) or encapsulated with chitosan (Se-CS-NPs) on toxicity induced by CCl4 in rats. METHODS Eighty albino rats were divided equally into eight groups. The first group was the placebo. The second group was a positive control, while the third and the fourth groups got orally (Se-NPs 5 mg/Kg) and (Se-CS-NPs 225 mg/Kg) respectively. The fifth and sixth groups were protective groups in which Se-NPs or Se-CS-NPs were given simultaneously. The seventh and eighth groups were therapeutic as they received either Se-NPs or Se-CS-NPs after stopping the CCl4 injection for 4 weeks more. RESULTS Our results showed that the protective and therapeutic groups showed an increase in caspase-3 gene expression with a decline in the expression of Bcl-2, Nrf2, and AFP genes. Histopathological and immunohistochemical investigations showed the role of selenium nanoparticles either alone or coated with chitosan in decreasing fibrotic marker collagen I positive reaction CONCLUSION: Selenium nanoparticles showed an excellent effect in counteracting the toxic effect of carbon tetrachloride on liver functions, inflammation reactions, and apoptosis process. Moreover, using selenium nanoparticles has a strong role in preserving the liver architecture with its normal constituents. No additional benefit was observed when the selenium nanoparticles were encapsulated with chitosan.
Collapse
Affiliation(s)
| | - Shaymaa E El-Shafey
- Physical Chemistry Department, Surface and Catalysis Lab., National Research Center, El-Bohouth St. 33, Dokki, Giza, Egypt
| | - Noha Mohamed Said
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
3
|
Arshad M, Kousar S, Din A, Afzaal M, Faisal MN, Sharif MK, Rasheed H, Saeed F, Akram N, Ahmed F, Khan MR. Hepatoprotective efficacy of quinoa seed extract against CCl 4- induced acute liver toxicity in rat model. Food Sci Nutr 2024; 12:5007-5018. [PMID: 39055188 PMCID: PMC11266922 DOI: 10.1002/fsn3.4149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 07/27/2024] Open
Abstract
The current research explored the possible protective effect of chenopodium quinoa extract against CCl4 acute liver toxicity in Sprague Dawley rats. Thirty rats were divided into five groups with six rats in each group. CCl4 (Carbon tetrachloride) was administered at a dose rate of 2 mL/kg b.w. intra-peritoneally once a week for 3 weeks. The plant extract was given through oral gavage for a period of 21 days. Group I served as a normal group which was given with basal diet. Group II was referred to as a positive control group and received CCl4 2 mL/kg body weight (i.p.). Group III was the standard treatment group and received 2 mL/kg CCl4 (i.p.) and 16 mg/kg body weight (p.o.) silymarin. Group IV was the plant treatment group, which received 2 mL/kg CCl4 (i.p.) and 600 mg/kg body weight of quinoa seed extract (p.o.). Group V was the combined treatment group, which received 2 mL/kg CCl4 (i.p.) accompanied with a combination of silymarin (p.o.) 16 mg/kg body weight and quinoa seed extract (p.o.) 600 mg/kg body weight. The liver biomarkers were assessed along with histopathological analysis to observe the changes in the liver. The outcome suggested that the treatment, which was given with the combination of silymarin and quinoa seed extract, significantly enhanced the antioxidant levels, reduced the oxidative stress, and restored the liver function as evidenced by biochemical parameters histopathological studies. The hepatoprotective potential may be due to the antioxidant and anti-inflammatory properties of quinoa seed extract.
Collapse
Affiliation(s)
- Maria Arshad
- National Institute of Food Science and Technology (NIFSAT), University of AgricultureFaisalabadPakistan
| | - Shabana Kousar
- National Institute of Food Science and Technology (NIFSAT), University of AgricultureFaisalabadPakistan
| | - Ahmad Din
- National Institute of Food Science and Technology (NIFSAT), University of AgricultureFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Naeem Faisal
- National Institute of Food Science and Technology (NIFSAT), University of AgricultureFaisalabadPakistan
| | - Mian Kamran Sharif
- National Institute of Food Science and Technology (NIFSAT), University of AgricultureFaisalabadPakistan
| | - Hina Rasheed
- National Institute of Food Science and Technology (NIFSAT), University of AgricultureFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Noor Akram
- Food Safety & Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Faiyaz Ahmed
- Department of Clinical Nutrition, College of Applied Sciences in Ar RassQassim UniversityBuraydahSaudi Arabia
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
4
|
Anupama Sekar J, Velayudhan S, Senthilkumar M, Anil Kumar PR. Silymarin enriched gelatin methacrylamide bioink imparts hepatoprotectivity to 3D bioprinted liver construct against carbon tetrachloride induced toxicity. Eur J Pharm Biopharm 2024; 198:114272. [PMID: 38537909 DOI: 10.1016/j.ejpb.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Three-dimensional liver bioprinting is an emerging technology in the field of regenerative medicine that aids in the creation of functional tissue constructs that can be used as transplantable organ substitutes. During transplantation, the bioprinted donor liver must be protected from the oxidative stress environment created by various factors during the transplantation procedure, as well as from drug-induced damage from medications taken as part of the post-surgery medication regimen following the procedure. In this study, Silymarin, a flavonoid with the hepatoprotective properties were introduced into the GelMA bioink formulation to protect the bioprinted liver against hepatotoxicity. The concentration of silymarin to be added in GelMA was optimised, bioink properties were evaluated, and HepG2 cells were used to bioprint liver tissue. Carbon tetrachloride (CCl4) was used to induce hepatotoxicity in bioprinted liver, and the effect of this chemical on the metabolic activities of HepG2 cells was studied. The results showed that Silymarin helps with albumin synthesis and shields liver tissue from the damaging effects of CCl4. According to gene expression analysis, CCl4 treatment increased TNF-α and the antioxidant enzyme SOD expression in HepG2 cells while the presence of silymarin protected the bioprinted construct from CCl4-induced damage. Thus, the outcomes demonstrate that the addition of silymarin in GelMA formulation protects liver function in toxic environments.
Collapse
Affiliation(s)
- J Anupama Sekar
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 012, India
| | - Shiny Velayudhan
- Division of Dental Products, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 012, India
| | - M Senthilkumar
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 012, India
| | - P R Anil Kumar
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 012, India.
| |
Collapse
|
5
|
Siddiqa A, Qureshi R, Raja NI, Khan IA, Ahmad MZ, Rafique S, Ali A, Ahmad A, Kaushik P. Liver-boosting potential: chicory compound-mediated silver nanoparticles for hepatoprotection-biochemical and histopathological insights. Front Pharmacol 2024; 15:1325359. [PMID: 38449804 PMCID: PMC10914973 DOI: 10.3389/fphar.2024.1325359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024] Open
Abstract
Background: Liver disease is a serious health concern in today's world, posing a challenge to both healthcare providers and pharmaceutical companies. Most synthetic drugs and chemicals cause liver damage accounting for approximately 10% of acute hepatitis and 50% of acute liver failure. Purpose: The present study aimed to evaluate the hepato-protective activity of an extract of chicory formulation assisted by silver nanoparticles against carbon tetra chloride (CCl4)-induced hepatic damage in rat's liver. Methods: Rats of the Wistar strain (Rattus norvegicus) were used to test the in vivo hepato-protective efficacy at various doses. Rats were randomly divided into nine groups, each containing six rats. The groups were as follows: first group (control), second group (CCl4), third group, silymarin (20 mg/kg of body weight), fourth group (CCl4+chicory) (1.75 mg/kg of b. wt), fifth group (CCl4 + chicory at the dose of 2.35 mg/kg), sixth group (CCl4 + chicory of 3.25 mg/kg), seventh group (CCl4 +AgNPs 1.75 mg/kg of b. wt.), eighth group (CCl4 + AgNPs 2.35 mg/kg of body weight), and ninth group (CCl4 + AgNPs 3.25 mg/kg of b. wt.). Blood samples were taken 24 h after the last administration (i.e., 30th day). The blood samples were analyzed for different serum enzymes such as ALP (alkaline phosphatase), ALT (alanine transaminase), bilirubin (Blr), triglyceride, and cholesterol. Histology liver sections were performed. Results: Treatment with AgNPs and chicory extract showed significant hepato-protective activity in a dose-dependent manner. In three doses, the chicory extract at a rate of 3.25 mg/kg of body weight significantly reduced elevated levels of biochemical markers in comparison to CCl4-intoxicated rats. Histology of the liver sections from CCl4-treated rats revealed inflammation of hepatocytes, necrosis, cytoplasmic degeneration, vacuolization, and a deformed central vein. The chicory formulation extract exhibited a remarkable recovery percentage in the liver architecture that was higher than the drug (i.e., silymarin). While treatment with AgNPs also repaired the degenerative changes and restored the normal form of the liver, chicory formulation extract possessed more hepato-protective potential as compared to AgNPs by regulating biochemical and histo-pathological parameters. Conclusion: This study can be used as confirmation of the hepato-protective potential of chicory compounds for possible use in the development programs of drugs to treat liver diseases.
Collapse
Affiliation(s)
- Ayesha Siddiqa
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Rahmatullah Qureshi
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Imtiaz Ahmed Khan
- Department of Veterinary Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Zishan Ahmad
- Department of Veterinary Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Shaista Rafique
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Amir Ali
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Prashant Kaushik
- Department of Vegetable Science, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| |
Collapse
|
6
|
Aoiadni N, Chiab N, Jdidi H, Gargouri Bouzid R, El Feki A, Fetoui H, Ghorbel Koubaa F. The pyrethroid insecticide permethrin confers hepatotoxicity through DNA damage and mitochondria-associated apoptosis induction in rat: Palliative benefits of Fumaria officinalis. J Biochem Mol Toxicol 2022; 36:e23172. [PMID: 35861702 DOI: 10.1002/jbt.23172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/16/2021] [Accepted: 07/01/2022] [Indexed: 11/06/2022]
Abstract
Permethrin (PER) is a pyrethroid pesticide that is extensively used as an insecticide in world because of its high activity and its low mammalian toxicity. The current study was conducted to investigate the protective action of Fumaria officinalis against PER-induced liver injury in male rats. However, HPLC-DAD showed the richness of 6 components in F. officinalis (F) including quercetin, ferulic acid, and naringenin which were the most abundant. Total polyphenols, total flavonoids, and condensed tannins were studied by phytochemical screening. In vitro, antioxidant properties showed that F. officinalis exhibited the highest DPPH radical, FRAP, and H2 O2 tests and total antioxidant capacity. Wistar rats were divided into four groups: negative control group (C), positive control group (F) (200 mg F. officinalis/kg BW), PER group (34.05 mg permethrin/kg BW), and PER + F group (34.05 mg permethrin/kg BW and 200 mg F. officinalis/kg BW). Oral administration of PER led to promote a decrease of body weight and Ca2+ -ATPases and Mg2+ -ATPases activities and an increase of plasma C-reactive protein level, transaminases, and hepatic ϒ-GT activities as well as hepatic and mitochondrial oxidative stress. An increase in plasma lactate-to pyruvate ratio and a reduction in complexes enzymes I, III, and IV activities were also observed. In addition, histoarchitecture of liver in PER-treated rats showed apoptosis and necrosis as confirmed by DNA fragmentation. F. officinalis significantly exerted hepatoprotective effect by modulating hepatic alteration and mitochondrial dysfunction as well as genotoxicity. This effect could be attributed to phenolics compounds such as polyphenols, condensed tannins, and flavonoids.
Collapse
Affiliation(s)
- Nissaf Aoiadni
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Nour Chiab
- Laboratory of Plant improvement and Agri-Resources Valorization, National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Hajer Jdidi
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Radhia Gargouri Bouzid
- Laboratory of Plant improvement and Agri-Resources Valorization, National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Abdelfattah El Feki
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Hamadi Fetoui
- Laboratory of Toxicology and Environmental Health (LR17ES06), Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Fatma Ghorbel Koubaa
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
7
|
In Vitro Antioxidant Properties, Glucose-Diffusion Effects, α-Amylase Inhibitory Activity, and Antidiabetogenic Effects of C. Europaea Extracts in Experimental Animals. Antioxidants (Basel) 2021; 10:antiox10111747. [PMID: 34829618 PMCID: PMC8614910 DOI: 10.3390/antiox10111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/03/2022] Open
Abstract
Caralluma europaea (Guss.) N.E.Br. (C. europaea), is a medicinal plant used traditionally to treat diabetes mellitus (DM) in Morocco. This study aimed to investigate the in vitro antioxidant properties, glucose diffusion effects, α-amylase inhibitory activity, and pancreatic protective effects of C. europaea in experimental alloxan-induced diabetes in mice. Total phenolic contents were determined by Folin–Ciocalteu colorimetric method, total flavonoid contents were measured by aluminum chloride colorimetric assay, and tannins contents were determined by employing the vanillin method. C. europaea ethyl acetate fraction exhibited high antioxidant potential in terms of radical scavenging (DPPH) (IC50 = 0.22 ± 0.01 mg/mL), β-carotene bleaching activity (IC50 = 1.153 ± 0.07 mg/mL), and Ferric-reducing antioxidant power. Glucose diffusion was significantly inhibited by the ethyl acetate fraction at 60,120and 180 min, while the aqueous extract did not have this inhibitory effect when compared with the control group. Potent α-amylase inhibitory activity was observed in the ethyl acetate fraction and the aqueous extract in vitro and in vivo using STZ-diabetic rats. On the other hand, the administration of the ethyl acetate fraction (60 mg/kg) significantly attenuated alloxan-induced death and hyperglycemia in treated mice. Furthermore, histopathological investigations revealed that the ethyl acetate fraction protected islets of Langerhans against alloxan-induced tissue alterations. These results suggest that C. europaea exhibited an important antihyperglycemic effect via the inhibition of glucose diffusion and pancreatic α-amylase activity. In addition, the antidiabetogenic effect of C. europaea might be attributed to their polyphenol and flavonoid compounds, which could be reacted alone, or in synergy, to scavenge the free radicals produced by the alloxan.
Collapse
|