1
|
Xuan W, Wu X, Zheng L, Jia H, Zhang X, Zhang X, Cao B. Gut microbiota-derived acetic acids promoted sepsis-induced acute respiratory distress syndrome by delaying neutrophil apoptosis through FABP4. Cell Mol Life Sci 2024; 81:438. [PMID: 39453486 PMCID: PMC11511807 DOI: 10.1007/s00018-024-05474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
In patients with sepsis, neutrophil apoptosis tends to be inversely proportional to the severity of sepsis, but its mechanism is not yet clear. This study aimed to explore the mechanism of fatty acid binding protein 4 (FABP4) regulating neutrophil apoptosis through combined analysis of gut microbiota and short-chain fatty acids (SCFAs) metabolism. First, neutrophils from bronchoalveolar lavage fluid (BALF) of patients with sepsis-induced acute respiratory distress syndrome (ARDS) were purified and isolated RNA was applied for sequencing. Then, the cecal ligation and puncture (CLP) method was applied to induce the mouse sepsis model. After intervention with differential SCFAs sodium acetate, neutrophil apoptosis and FABP4 expression were further analyzed. Then, FABP4 inhibitor BMS309403 was used to treat neutrophils. We found CLP group had increased lung injury score, lung tissue wet/dry ratio, lung vascular permeability, and inflammatory factors IL-1β, TNF-α, IL-6, IFN-γ, and CCL3 levels in both bronchoalveolar lavage fluid and lung tissue. Additionally, FABP4 was lower in neutrophils of ARDS patients and mice. Meanwhile, CLP-induced dysbiosis of gut microbiota and changes in SCFAs levels were observed. Further verification showed that acetic acids reduced neutrophil apoptosis and FABP4 expression via FFAR2. Besides, FABP4 affected neutrophil apoptosis through endoplasmic reticulum (ER) stress, and neutrophil depletion alleviated the promotion of ARDS development by BMS309403. Moreover, FABP4 in neutrophils regulated the injury of RLE-6TN through inflammatory factors. In conclusion, FABP4 affected by gut microbiota-derived SCFAs delayed neutrophil apoptosis through ER stress, leading to increased inflammatory factors mediating lung epithelial cell damage.
Collapse
Affiliation(s)
- Weixia Xuan
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Xu Wu
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China.
| | - Longcheng Zheng
- People's Hospital of Henan University, Department of Respiratory and Critical Care Medicine, People's Hospital of Henan Province, Zhengzhou, 450003, China
| | - Huayun Jia
- Hunan Province Center for Disease Control and Prevention, Changsha, 410000, Hunan, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, China.
- National Clinical Research Center for Respiratory Diseases, Beijing, 100029, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Zeng QQ, Wang J, Yue RC, Wang FS, Xu Y, Su YP, Zhang QL, Zheng YW, Zhang GF, Li B, Yu CX, Jin GL. Gelsevirine ameliorates sepsis-associated encephalopathy by inhibiting the STING signalling-mediated pyroptosis pathway in microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156071. [PMID: 39326131 DOI: 10.1016/j.phymed.2024.156071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is among the most prevalent and deadly complications associated with sepsis, but satisfactory treatments and therapeutic agents are lacking. Gelsevirine, an active ingredient derived from Gelsemium elegans Benth., has shown promising effects in animal models of anxiety, ischaemic stroke and osteoarthritis. However, its protective effect against SAE and its mechanism of action are still unknown. PURPOSE To elucidate the efficacy of gelsevirine against SAE and the mechanism of its protective effect through the STING signalling-mediated pyroptosis pathway. METHODS We constructed a mouse model of caecum ligation and puncture (CLP)-induced sepsis and explored the protective effects of gelsevirine in mice with SAE by assessing survival rates and behavioural alterations. To further explore its mechanism of action, we investigated the modulatory effects of gelsevirine on the levels of inflammatory factors, microglial activation and pyroptosis by Western blotting, immunohistochemistry staining and PCR. STING knockout mice were used to verify the protective effect of gelsevirine against SAE through the STING pathway. RESULTS Gelsevirine increased the survival rate of mice with SAE. The Morris water maze and open field tests revealed that gelsevirine significantly alleviated cognitive dysfunction and increased exploratory behaviour in mice with SAE. Gelsevirine inhibited the activation of microglia and decreased inflammatory factor levels in the hippocampus of mice with SAE. In mice with SAE and in vitro BV2 microglia, gelsevirine reduced levels of inflammatory factors and inhibited STING protein phosphorylation and microglial pyroptosis. However, after STING knockout, the inhibitory effect of gelsevirine on microglial pyroptosis was significantly weakened, and gelsevirine-mediated protective effects were abolished. CONCLUSIONS Gelsevirine increased the survival rate, ameliorated cognitive impairment, inhibited glial cell activation and reduced inflammation in the hippocampi of mice with SAE; the mechanism may be related to the inhibition of STING signalling pathway-mediated pyroptosis in microglia.
Collapse
Affiliation(s)
- Qing-Quan Zeng
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Jing Wang
- Laboratory Animal Center, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Rong-Cai Yue
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China
| | - Fa-Sheng Wang
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| | - Ying Xu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Yan-Ping Su
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China
| | - Qiao-Ling Zhang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - You-Wei Zheng
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Gui-Fei Zhang
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China
| | - Bo Li
- Amway (Shanghai) Science and Technology Development Co., Ltd, Shanghai, PR China; Amway (China) Botanical R&D Center, Wuxi 214145, PR China.
| | - Chang-Xi Yu
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China.
| | - Gui-Lin Jin
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, Fujian, PR China.
| |
Collapse
|
3
|
Peng H, Liang Z, Zhang S, Yang Y. Optimal target mean arterial pressure for patients with sepsis-associated encephalopathy: a retrospective cohort study. BMC Infect Dis 2024; 24:902. [PMID: 39223467 PMCID: PMC11367872 DOI: 10.1186/s12879-024-09789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) patients often experience changes in intracranial pressure and impaired cerebral autoregulation. Mean arterial pressure (MAP) plays a crucial role in cerebral perfusion pressure, but its relationship with mortality in SAE patients remains unclear. This study aims to investigate the relationship between MAP and the risk of 28-day and in-hospital mortality in SAE patients, providing clinicians with the optimal MAP target. METHODS We retrospectively collected clinical data of patients diagnosed with SAE on the first day of ICU admission from the MIMIC-IV (v2.2) database. Patients were divided into four groups based on MAP quartiles. Kruskal-Wallis H test and Chi-square test were used to compare clinical characteristics among the groups. Restricted cubic spline and segmented Cox regression models, both unadjusted and adjusted for multiple variables, were employed to elucidate the relationship between MAP and the risk of 28-day and in-hospital mortality in SAE patients and to identify the optimal MAP. Subgroup analyses were conducted to assess the stability of the results. RESULTS A total of 3,816 SAE patients were included. The Q1 group had higher rates of acute kidney injury and vasoactive drug use on the first day of ICU admission compared to other groups (P < 0.01). The Q1 and Q4 groups had longer ICU and hospital stays (P < 0.01). The 28-day and in-hospital mortality rates were highest in the Q1 group and lowest in the Q3 group. Multivariable adjustment restricted cubic spline curves indicated a nonlinear relationship between MAP and mortality risk (P for nonlinearity < 0.05). The MAP ranges associated with HRs below 1 for 28-day and in-hospital mortality were 74.6-90.2 mmHg and 74.6-89.3 mmHg, respectively.The inflection point for mortality risk, determined by the minimum hazard ratio (HR), was identified at a MAP of 81.5 mmHg. The multivariable adjusted segmented Cox regression models showed that for MAP < 81.5 mmHg, an increase in MAP was associated with a decreased risk of 28-day and in-hospital mortality (P < 0.05). In Model 4, each 5 mmHg increase in MAP was associated with a 15% decrease in 28-day mortality risk (HR: 0.85, 95% CI: 0.79-0.91, p < 0.05) and a 14% decrease in in-hospital mortality risk (HR: 0.86, 95% CI: 0.80-0.93, p < 0.05). However, for MAP ≥ 81.5 mmHg, there was no significant association between MAP and mortality risk (P > 0.05). Subgroup analyses based on age, congestive heart failure, use of vasoactive drugs, and acute kidney injury showed consistent results across different subgroups.Subsequent analysis of SAE patients with septic shock also showed results similar to those of the original cohort.However, for comatose SAE patients (GCS ≤ 8), there was a negative correlation between MAP and the risk of 28-day and in-hospital mortality when MAP was < 81.5 mmHg, but a positive correlation when MAP was ≥ 81.5 mmHg in adjusted models 2 and 4. CONCLUSION There is a nonlinear relationship between MAP and the risk of 28-day and in-hospital mortality in SAE patients. The optimal MAP target for SAE patients in clinical practice appears to be 81.5 mmHg.
Collapse
Affiliation(s)
- Hongyan Peng
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renmin Middle Road, Yuexiu District, Guangzhou, 510120, China
- Department of Intensive Care Medicine, Liuzhou Affiliated Guangzhou Women and Children's Medical Center, No. 50 Boyuan Avenue, Liudong New District, Yufeng District, Liuzhou, 545005, China
| | - Zhuoxin Liang
- Department of Intensive Care Medicine, Liuzhou Affiliated Guangzhou Women and Children's Medical Center, No. 50 Boyuan Avenue, Liudong New District, Yufeng District, Liuzhou, 545005, China
| | - Senxiong Zhang
- Department of Intensive Care Medicine, Liuzhou Affiliated Guangzhou Women and Children's Medical Center, No. 50 Boyuan Avenue, Liudong New District, Yufeng District, Liuzhou, 545005, China
| | - Yiyu Yang
- Department of Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318 Renmin Middle Road, Yuexiu District, Guangzhou, 510120, China.
| |
Collapse
|
4
|
Fu C, Weng S, Liu D, Guo R, Chen M, Shi B, Weng J. Review on the Role of Mitochondrial Dysfunction in Septic Encephalopathy. Cell Biochem Biophys 2024:10.1007/s12013-024-01493-5. [PMID: 39212823 DOI: 10.1007/s12013-024-01493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Septic Encephalopathy (SE) is a frequent and severe complication of sepsis, characterized by a range of neurocognitive impairments from mild confusion to deep coma. The underlying pathophysiology of SE involves systemic inflammation, neuroinflammation, blood-brain barrier (BBB) disruption, and mitochondrial dysfunction. Among these factors, mitochondrial dysfunction plays a pivotal role, contributing to impaired ATP production, increased reactive oxygen species (ROS) generation, and activation of apoptotic pathways, all of which exacerbate neuronal damage and cognitive deficits. Diagnosis of SE relies on clinical evaluation, neuroimaging, electroencephalography (EEG), and laboratory tests, though specific diagnostic markers are still lacking. Epidemiological data show SE is prevalent in intensive care unit (ICU) patients, especially those with severe sepsis or septic shock, with incidence rates varying widely depending on the population and diagnostic criteria used. Recent research highlights the importance of mitochondrial dynamics, including biogenesis, fission, and fusion, in the development of SE. Mitophagy, a selective form of autophagy that degrades damaged mitochondria, plays a critical role in maintaining mitochondrial health and protecting against dysfunction. Targeting mitochondrial pathways and enhancing mitophagy offers a promising therapeutic strategy to mitigate the effects of SE, reduce oxidative stress, prevent apoptosis, and support the resolution of neuroinflammation. Further research is essential to elucidate the mechanisms of mitochondrial dysfunction and mitophagy in SE and develop effective interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Chunjin Fu
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Shuoyun Weng
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Danjuan Liu
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Rongjie Guo
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Min Chen
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Bingbing Shi
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Junting Weng
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China.
| |
Collapse
|
5
|
Ates G, Tamer S, Ozkok E, Yorulmaz H, Gundogan GI, Aksu A, Balkis N. Utility of melatonin on brain injury, synaptic transmission, and energy metabolism in rats with sepsis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03337-8. [PMID: 39105798 DOI: 10.1007/s00210-024-03337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Melatonin is a powerful endogenous antioxidant hormone. Its healing effects on energy balance and neuronal damage associated with oxidative metabolism disorders have been reported in pathologic conditions. We aimed to determinate the utility of melatonin on neuronal damage, synaptic transmission, and energy balance in the brain tissue of rats with sepsis induced with LPS. Rats was divided into four groups such as control, LPS (20 mg/kg i.p.), melatonin (10 mg/kg i.p. × 3), and LPS + Melatonin (LPS + Mel). After 6 h from the first injection, rats were decapitated, and also tissue and serum samples were taken. Lipid peroxidation and neuron-specific enolase (NSE) levels were determined from the serum in all group. High energy compounds, creatine, and creatine phosphate are measured by HPLC methods from the homogenized tissue. Counts of living neurons are marked with NeuN (neuronal nuclei), degenerated neurons are marked with S100-ß and synaptic vesicles transmission is analyzed with synaptophysin antibodies immunoreactivities. One-way ANOVA and post hoc Tukey tests were used to statistical analysis. In LPS group, AMP, ATP, creatine, and creatine phosphate levels were significantly decreased (p < 0.05), and also ADP levels were significantly increased compared with the other groups (p < 0.01). Living neurons counts were significantly decreased in LPS (p < 0.01), melatonin, and LPS + Melatonin (p < 0.05) groups compared with control. Degenerated neurons counts were increased in LPS group compared with control (p < 0.01) and also decreased in both of melatonin and LPS + Melatonin groups (p < 0.01). Synaptophysin immunoreactivity was decreased in LPS group compared with the other groups (p < 0.05). We observed that melatonin administration prevents neuronal damage, regulates energy metabolism, and protects synaptic vesicle proteins from sepsis-induced reduction.
Collapse
Affiliation(s)
- Gulten Ates
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Yilanlı Ayazma St, Cevizlibag, Istanbul, 34010, Turkey.
| | - Sule Tamer
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Elif Ozkok
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hatice Yorulmaz
- Faculty of Health Science, Halic University, Istanbul, Turkey
| | - Gul Ipek Gundogan
- Department of Histology and Embryology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Abdullah Aksu
- Department of Chemical Oceanography, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| | - Nuray Balkis
- Department of Chemical Oceanography, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Xu HJ, Lin YY, Yu JJ, Zhang N, Hu JM, Qu JS, Yuan CM, Chen DQ, Liang M, Cai HD, Zeng K. Gibberellic acid targeting ZBTB16 reduces NF-κB dependent inflammatory stress in sepsis-induced neuroinflammation. Eur J Pharmacol 2024; 976:176665. [PMID: 38797312 DOI: 10.1016/j.ejphar.2024.176665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE Sepsis is frequently complicated by neuroinflammation. Gibberellic acid (GA3) is recognized for its anti-inflammatory properties. In this study, our objective was to investigate whether GA3 could alleviate Nuclear factor-kappa B (NF-κB) -dependent inflammatory stress in sepsis-induced neuroinflammation. METHODS C57BL/6 J mice were administered 10 mg/kg lipopolysaccharide (LPS) to induce sepsis. BV2 cells were pre-incubated with GA3 and subjected lipopolysaccharide stimulation to replicate the inflammatory microglia during sepsis. Subsequently, we assessed the release of IL-6, TNF-α, and IL-1β, along with the expression of Zbtb16, NF-κB, and IκB. To investigate whether any observed anti-inflammatory effects of GA3 were mediated through a Zbtb16-dependent mechanism, Zbtb16 was silenced using siRNA. RESULTS GA3 improved the survival of sepsis mice and alleviated post-sepsis cognitive impairment. Additionally, GA3 attenuated microglial M1 activation (pro-inflammatory phenotype), inflammation, and neuronal damage in the brain. Moreover, GA3 inhibited the release of TNF-α, IL-6, and IL-1β in microglia stimulated with LPS. The NF-κB signaling pathway emerged as one of the key molecular pathways associated with the impact of GA3 on LPS-stimulated microglia. Lastly, GA3 upregulated Zbtb16 expression in microglia that had been downregulated by LPS. The inhibitory effects of GA3 on microglial M1 activation were partially reversed through siRNA knockdown of Zbtb16. CONCLUSIONS Pre-incubation of microglia with GA3 led to the upregulation of the NF-κB regulator, Zbtb16. This process counteracted LPS-induced microglial M1 activation, resulting in an anti-inflammatory effect upon subsequent LPS stimulation.
Collapse
Affiliation(s)
- Hao-Jie Xu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Ying-Yi Lin
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Jian-Jun Yu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Na Zhang
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Jia-Min Hu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Jin-Shuang Qu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Chao-Mei Yuan
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Da-Qiu Chen
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, 353000, Fujian Province, China
| | - Min Liang
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Hong-da Cai
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China
| | - Kai Zeng
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Institute of Anesthesiology, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
7
|
Zhong H, Liu T, Shang Y, Huang C, Pan S. Breaking the vicious cycle: Targeting the NLRP3 inflammasome for treating sepsis-associated encephalopathy. Biomed Pharmacother 2024; 177:117042. [PMID: 39004064 DOI: 10.1016/j.biopha.2024.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a collection of clinical syndromes resulting from sepsis and characterized by widespread brain dysfunction. The high prevalence of SAE has adverse outcomes on the clinical management and prognosis of sepsis patients. However, currently, there are no effective treatments to ameliorate SAE. The pathogenesis of SAE is complex, including neuroinflammation and microglia activation, destruction of the blood-brain barrier (BBB), neurotransmitter dysfunction, cerebral metabolism and mitochondrial impairment, accumulation of amyloid beta and tauopathy, complement activation, among others. Furthermore, these mechanisms intertwine with each other, further complicating the comprehension of SAE. Among them, neuroinflammation mediated by hyperactivated microglia is considered the primary etiology of SAE. This instigates a detrimental cycle wherein BBB permeability escalates, facilitating direct damage to the central nervous system (CNS) by various neurotoxic substances. Activation of the NLRP3 inflammasome, situated within microglia, can be triggered by diverse danger signals, leading to cell pyroptosis, apoptosis, and tauopathy. These complex processes intricately regulate the onset and progression of neuroinflammation. In this review, we focus on elucidating the inhibitory regulatory mechanism of the NLRP3 inflammasome in microglia, which ultimately manifests as suppression of the inflammatory response. Our ultimate objective is to augment comprehension regarding the role of microglial NLRP3 inflammasome as we explore potential targets for therapeutic interventions against SAE.
Collapse
Affiliation(s)
- Hui Zhong
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,; Hubei Clinical Research Center for Infectious Diseases, ,; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, ,; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences,
| | - Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
| | - Chaolin Huang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,; Hubei Clinical Research Center for Infectious Diseases, ,; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, ,; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,.
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, ,.
| |
Collapse
|
8
|
Zhang Q, Lu C, Fan W, Yin Y. Exploring the molecular mechanism of sepsis-associated encephalopathy by integrated analysis of multiple datasets. Cytokine 2024; 180:156609. [PMID: 38781871 DOI: 10.1016/j.cyto.2024.156609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/06/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND We aim to deal with the Hub-genes and signalling pathways connected with Sepsis-associated encephalopathy (SAE). METHODS The raw datasets were acquired from the Gene Expression Omnibus (GEO) database (GSE198861 and GSE167610). R software filtered the differentially expressed genes (DEGs) for hub genes exploited for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Hub genes were identified from the intersection of DEGs via protein-protein interaction (PPI) network. And the single-cell dataset (GSE101901) was used to authenticate where the hub genes express in hippocampus cells. Cell-cell interaction analysis and Gene Set Variation Analysis (GSVA) analysis of the whole transcriptome validated the interactions between hippocampal cells. RESULTS A total of 161 DEGs were revealed in GSE198861 and GSE167610 datasets. Biological function analysis showed that the DEGs were primarily involved in the phagosome pathway and significantly enriched. The PPI network extracted 10 Hub genes. The M2 Macrophage cell decreased significantly during the acute period, and the hub gene may play a role in this biological process. The hippocampal variation pathway was associated with the MAPK signaling pathway. CONCLUSION Hub genes (Pecam1, Cdh5, Fcgr, C1qa, Vwf, Vegfa, C1qb, C1qc, Fcgr4 and Fcgr2b) may paticipate in the biological process of SAE.
Collapse
Affiliation(s)
- Qiulei Zhang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, China
| | - Chang Lu
- Department of Anesthesiology, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, China
| | - Weixuan Fan
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, China
| | - Yongjie Yin
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, China.
| |
Collapse
|
9
|
Zhi M, Huang J, Jin X. Clinical value of serum neuron-specific enolase in sepsis-associated encephalopathy: a systematic review and meta-analysis. Syst Rev 2024; 13:191. [PMID: 39039544 PMCID: PMC11265151 DOI: 10.1186/s13643-024-02583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the serum levels of neuron-specific enolase (NSE) in sepsis-associated encephalopathy (SAE) and perform a meta-analysis to assess the diagnostic and prognostic potential of serum NSE in SAE patients. METHODS We searched English and Chinese databases for studies related to SAE that reported serum NSE levels until November 2023. We extracted information from these studies including the first author and year of publication, the number of samples, the gender and age of patients, the collection time of blood samples in patients, the assay method of serum NSE, the study methods, and the levels of serum NSE with units of ng/mL. The quality assessment of diagnostic accuracy studies 2 (QUADAS-2) tool was used to evaluate the study quality. A meta-analysis was performed using Review Manager version 5.3, employing either a random effects model or a fixed effects model. RESULTS A total of 17 studies were included in the final meta-analysis, including 682 SAE patients and 946 NE patients. The meta-analysis demonstrated significantly higher serum NSE levels in SAE patients compared to NE patients (Z = 5.97, P < 0.001, MD = 7.79, 95%CI 5.23-10.34), irrespective of the method used for serum NSE detection (Z = 6.15, P < 0.001, mean difference [MD] = 7.75, 95%CI 5.28-10.22) and the study methods (Z = 5.97, P < 0.001, MD = 7.79, 95%CI 5.23-10.34). Furthermore, sepsis patients with a favorable outcome showed significantly lower levels of serum NSE compared to those with an unfavorable outcome (death or adverse neurological outcomes) (Z = 5.44, P < 0.001, MD = - 5.34, 95%CI - 7.26-3.42). CONCLUSION The Serum level of NSE in SAE patients was significantly higher than that in septic patients without encephalopathy. The higher the serum NSE level in SAE patients, the higher their mortality rate and incidence of adverse neurological outcomes.
Collapse
Affiliation(s)
- Meiling Zhi
- Clinical Laboratory, Hangzhou Ninth People's Hospital, No. 98 Yilong Road, Qiantang District, Hangzhou, 310020, China.
- Emergency Internal Medicine, Hangzhou Ninth People's Hospital, Hangzhou, 310020, China.
| | - Jian Huang
- Clinical Laboratory, Hangzhou Ninth People's Hospital, No. 98 Yilong Road, Qiantang District, Hangzhou, 310020, China
- Emergency Internal Medicine, Hangzhou Ninth People's Hospital, Hangzhou, 310020, China
| | - Xuli Jin
- Clinical Laboratory, Hangzhou Ninth People's Hospital, No. 98 Yilong Road, Qiantang District, Hangzhou, 310020, China
- Emergency Internal Medicine, Hangzhou Ninth People's Hospital, Hangzhou, 310020, China
| |
Collapse
|
10
|
Liu Y, Hu S, Shi B, Yu B, Luo W, Peng S, Du X. The Role of Iron Metabolism in Sepsis-associated Encephalopathy: a Potential Target. Mol Neurobiol 2024; 61:4677-4690. [PMID: 38110647 DOI: 10.1007/s12035-023-03870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is an acute cerebral dysfunction secondary to infection, and the severity can range from mild delirium to deep coma. Disorders of iron metabolism have been proven to play an important role in a variety of neurodegenerative diseases by inducing cell damage through iron accumulation in glial cells and neurons. Recent studies have found that iron accumulation is also a potential mechanism of SAE. Systemic inflammation can induce changes in the expression of transporters and receptors on cells, especially high expression of divalent metal transporter1 (DMT1) and low expression of ferroportin (Fpn) 1, which leads to iron accumulation in cells. Excessive free Fe2+ can participate in the Fenton reaction to produce reactive oxygen species (ROS) to directly damage cells or induce ferroptosis. As a result, it may be of great help to improve SAE by treatment of targeting disorders of iron metabolism. Therefore, it is important to review the current research progress on the mechanism of SAE based on iron metabolism disorders. In addition, we also briefly describe the current status of SAE and iron metabolism disorders and emphasize the therapeutic prospect of targeting iron accumulation as a treatment for SAE, especially iron chelator. Moreover, drug delivery and side effects can be improved with the development of nanotechnology. This work suggests that treating SAE based on disorders of iron metabolism will be a thriving field.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengnan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
11
|
Zhou Y, Bai L, Tang W, Yang W, Sun L. Research progress in the pathogenesis of sepsis-associated encephalopathy. Heliyon 2024; 10:e33458. [PMID: 39027435 PMCID: PMC11254713 DOI: 10.1016/j.heliyon.2024.e33458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a syndrome that causes dysfunction of multiple organs due to the host's uncontrolled response to infection and is a significant contributor to morbidity and mortality in intensive care units worldwide. Surviving patients are often left with acute brain injury and long-term cognitive impairment, known as sepsis-associated encephalopathy (SAE). In recent years, researchers have directed their focus towards the pathogenesis of SAE. However, due to the complexity of its development, there remains a lack of effective treatment measures that arise as a serious issue affecting the prognosis of sepsis patients. Further research on the possible causes of SAE aims to provide clinicians with potential therapeutic targets and help develop targeted prevention strategies. This paper aims to review recent research on the pathogenesis of SAE, in order to enhance our understanding of this syndrome.
Collapse
Affiliation(s)
- Yue Zhou
- Teaching Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Bai
- Department of Medical Oncology, Dalian NO.3 People's Hospital, Dalian, 116091, China
| | - Wenjing Tang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun, 130021, China
| | - Weiying Yang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun, 130021, China
| | - Lichao Sun
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
12
|
Centner FS, Wenz H, Oster ME, Dally FJ, Sauter-Servaes J, Pelzer T, Schoettler JJ, Hahn B, Abdulazim A, Hackenberg KAM, Groden C, Krebs J, Thiel M, Etminan N, Maros ME. Sepsis and delayed cerebral ischemia are associated and have a cumulative effect on poor functional outcome in aneurysmal subarachnoid hemorrhage. Front Neurol 2024; 15:1393989. [PMID: 38882701 PMCID: PMC11179438 DOI: 10.3389/fneur.2024.1393989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Objective Although sepsis and delayed cerebral ischemia (DCI) are severe complications in patients with aneurysmal subarachnoid hemorrhage (aSAH) and share pathophysiological features, their interrelation and additive effect on functional outcome is uncertain. We investigated the association between sepsis and DCI and their cumulative effect on functional outcome in patients with aSAH using current sepsis-3 definition. Methods Patients admitted to our hospital between 11/2014 and 11/2018 for aSAH were retrospectively analyzed. The main explanatory variable was sepsis, diagnosed using sepsis-3 criteria. Endpoints were DCI and functional outcome at hospital discharge (modified Rankin Scale (mRS) 0-3 vs. 4-6). Propensity score matching (PSM) and multivariable logistic regressions were performed. Results Of 238 patients with aSAH, 55 (23.1%) developed sepsis and 74 (31.1%) DCI. After PSM, aSAH patients with sepsis displayed significantly worse functional outcome (p < 0.01) and longer ICU stay (p = 0.046). Sepsis was independently associated with DCI (OR = 2.46, 95%CI: 1.28-4.72, p < 0.01). However, after exclusion of patients who developed sepsis before (OR = 1.59, 95%CI: 0.78-3.24, p = 0.21) or after DCI (OR = 0.85, 95%CI: 0.37-1.95, p = 0.70) this statistical association did not remain. Good functional outcome gradually decreased from 56.3% (76/135) in patients with neither sepsis nor DCI, to 43.8% (21/48) in those with no sepsis but DCI, to 34.5% (10/29) with sepsis but no DCI and to 7.7% (2/26) in patients with both sepsis and DCI. Conclusion Our study demonstrates a strong association between sepsis, DCI and functional outcome in patients with aSAH and suggests a complex interplay resulting in a cumulative effect towards poor functional outcome, which warrants further studies.
Collapse
Affiliation(s)
- Franz-Simon Centner
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Holger Wenz
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mariella Eliana Oster
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Franz-Joseph Dally
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Orthopedics and Trauma Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Johannes Sauter-Servaes
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tanja Pelzer
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Neonatology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jochen J Schoettler
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bianka Hahn
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Amr Abdulazim
- Department of Neurosurgery, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Katharian A M Hackenberg
- Department of Neurosurgery, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Joerg Krebs
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Manfred Thiel
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nima Etminan
- Department of Neurosurgery, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Máté E Maros
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Biomedical Informatics at the Center for Preventive Medicine and Digital Health (CPD), University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
13
|
Wang L, Ma X, Zhou G, Gao S, Pan W, Chen J, Su L, He H, Long Y, Yin Z, Shu T, Zhou X. SOFA in sepsis: with or without GCS. Eur J Med Res 2024; 29:296. [PMID: 38790024 PMCID: PMC11127461 DOI: 10.1186/s40001-024-01849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE Sepsis is a global public health burden. The sequential organ failure assessment (SOFA) is the most commonly used scoring system for diagnosing sepsis and assessing severity. Due to the widespread use of endotracheal intubation and sedative medications in sepsis, the accuracy of the Glasgow Coma Score (GCS) is the lowest in SOFA. We designed this multicenter, cross-sectional study to investigate the predictive efficiency of SOFA with or without GCS on ICU mortality in patients with sepsis. METHODS First, 3048 patients with sepsis admitted to Peking Union Medical College Hospital (PUMCH) were enrolled in this survey. The data were collected from June 8, 2013 to October 12, 2022. Second, 18,108 patients with sepsis in the eICU database were enrolled. Third, 2397 septic patients with respiratory system ≥ 3 points in SOFA in the eICU database were included. We investigated the predictive efficiency of SOFA with or without GCS on ICU mortality in patients with sepsis in various ICUs of PUMCH, and then we validated the results in the eICU database. MAIN RESULTS In data of ICUs in PUMCH, the predictive efficiency of SOFA without GCS (AUROC [95% CI], 24 h, 0.724 [0.688, 0.760], 48 h, 0.734 [0.699, 0.769], 72 h, 0.748 [0.713, 0.783], 168 h, 0.781 [0.747, 0.815]) was higher than that of SOFA with GCS (AUROC [95% CI], 24 h, 0.708 [0.672, 0.744], 48 h, 0.721 [0.685, 0.757], 72 h, 0.735 [0.700, 0.757], 168 h, 0.770 [0.736, 0.804]) on ICU mortality in patients with sepsis, and the difference was statistically significant (P value, 24 h, 0.001, 48 h, 0.003, 72 h, 0.004, 168 h, 0.005). In septic patients with respiratory system ≥ 3 points in SOFA in the eICU database, although the difference was not statistically significant (P value, 24 h, 0.148, 48 h, 0.178, 72 h, 0.132, 168 h, 0.790), SOFA without GCS (AUROC [95% CI], 24 h, 0.601 [0.576, 0.626], 48 h, 0.625 [0.601, 0.649], 72 h, 0.639 [0.615, 0.663], 168 h, 0.653 [0.629, 0.677]) had a higher predictive efficiency on ICU mortality than SOFA with GCS (AUROC [95% CI], 24 h, 0.591 [0.566, 0.616], 48 h, 0.616 [0.592, 0.640], 72 h, 0.628 [0.604, 0.652], 168 h, 0.651 [0.627, 0.675]). CONCLUSIONS In severe sepsis, it is realistic and feasible to discontinue the routine GCS for SOFA in patients with a respiratory system ≥ 3 points, and even better predict ICU mortality.
Collapse
Affiliation(s)
- Lu Wang
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Xudong Ma
- Department of Medical Administration, National Health Commission of the People's Republic of China, Beijing, 100044, China
| | - Guanghua Zhou
- Department of Information Technology, Center of Statistics and Health Informatics, National Health Commission of the People's Republic of China, Beijing, 100044, China
| | - Sifa Gao
- Department of Medical Administration, National Health Commission of the People's Republic of China, Beijing, 100044, China
| | - Wei Pan
- Information Center Department/Department of Information Management, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jieqing Chen
- Information Center Department/Department of Information Management, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Huaiwu He
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Zhi Yin
- Department of Intensive Care Unit, The People's Hospital of Zizhong, Neijiang, 641000, Sichuang, China.
| | - Ting Shu
- National Institute of Hospital Administration, Beijing, 100730, China.
| | - Xiang Zhou
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, China.
- Information Center Department/Department of Information Management, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
14
|
Guo J, Kong Z, Yang S, Da J, Chu L, Han G, Liu J, Tan Y, Zhang J. Therapeutic effects of orexin-A in sepsis-associated encephalopathy in mice. J Neuroinflammation 2024; 21:131. [PMID: 38760784 PMCID: PMC11102217 DOI: 10.1186/s12974-024-03111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) causes acute and long-term cognitive deficits. However, information on the prevention and treatment of cognitive dysfunction after sepsis is limited. The neuropeptide orexin-A (OXA) has been shown to play a protective role against neurological diseases by modulating the inflammatory response through the activation of OXR1 and OXR2 receptors. However, the role of OXA in mediating the neuroprotective effects of SAE has not yet been reported. METHODS A mouse model of SAE was induced using cecal ligation perforation (CLP) and treated via intranasal administration of exogenous OXA after surgery. Mouse survival, in addition to cognitive and anxiety behaviors, were assessed. Changes in neurons, cerebral edema, blood-brain barrier (BBB) permeability, and brain ultrastructure were monitored. Levels of pro-inflammatory factors (IL-1β, TNF-α) and microglial activation were also measured. The underlying molecular mechanisms were investigated by proteomics analysis and western blotting. RESULTS Intranasal OXA treatment reduced mortality, ameliorated cognitive and emotional deficits, and attenuated cerebral edema, BBB disruption, and ultrastructural brain damage in mice. In addition, OXA significantly reduced the expression of the pro-inflammatory factors IL-1β and TNF-α, and inhibited microglial activation. In addition, OXA downregulated the expression of the Rras and RAS proteins, and reduced the phosphorylation of P-38 and JNK, thus inhibiting activation of the MAPK pathway. JNJ-10,397,049 (an OXR2 blocker) reversed the effect of OXA, whereas SB-334,867 (an OXR1 blocker) did not. CONCLUSION This study demonstrated that the intranasal administration of moderate amounts of OXA protects the BBB and inhibits the activation of the OXR2/RAS/MAPK pathway to attenuate the outcome of SAE, suggesting that OXA may be a promising therapeutic approach for the management of SAE.
Collapse
Affiliation(s)
- Jing Guo
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Zhuo Kong
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Sha Yang
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Jingjing Da
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Liangzhao Chu
- Department of Neurosurgery, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
15
|
Tan H, Liang D, Lu N, Zhang J, Zhang S, Tan G. Mangiferin attenuates lipopolysaccharide-induced neuronal injuries in primary cultured hippocampal neurons. Aging (Albany NY) 2024; 16:8645-8656. [PMID: 38752883 PMCID: PMC11164489 DOI: 10.18632/aging.205830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/10/2024] [Indexed: 06/06/2024]
Abstract
Mangiferin, a naturally occurring potent glucosylxanthone, is mainly isolated from the Mangifera indica plant and shows potential pharmacological properties, including anti-bacterial, anti-inflammation, and antioxidant in sepsis-induced lung and kidney injury. However, there was a puzzle as to whether mangiferin had a protective effect on sepsis-associated encephalopathy. To answer this question, we established an in vitro cell model of sepsis-associated encephalopathy and investigated the neuroprotective effects of mangiferin in primary cultured hippocampal neurons challenged with lipopolysaccharide (LPS). Neurons treated with 20 μmol/L or 40 μmol/L mangiferin for 48 h can significantly reverse cell injuries induced by LPS treatment, including improved cell viability, decreased inflammatory cytokines secretion, relief of microtubule-associated light chain 3 expression levels and several autophagosomes, as well as attenuated cell apoptosis. Furthermore, mangiferin eliminated pathogenic proteins and elevated neuroprotective factors at both the mRNA and protein levels, showing strong neuroprotective effects of mangiferin, including anti-inflammatory, anti-autophagy, and anti-apoptotic effects on neurons in vitro.
Collapse
Affiliation(s)
- Hongling Tan
- Department of Emergency Intensive Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Dan Liang
- Department of Emergency Intensive Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Na Lu
- Department of Emergency Intensive Care Medicine, The First Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Junli Zhang
- Department of Emergency Intensive Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Shiyan Zhang
- Department of Medical, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Guojun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
16
|
Zhou Z, Yang Y, Wei Y, Xie Y. Remimazolam Attenuates LPS-Derived Cognitive Dysfunction via Subdiaphragmatic Vagus Nerve Target α7nAChR-Mediated Nrf2/HO-1 Signal Pathway. Neurochem Res 2024; 49:1306-1321. [PMID: 38472553 PMCID: PMC10991060 DOI: 10.1007/s11064-024-04115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Sepsis-induced neuroinflammation is significantly associated with sepsis-related brain dysfunction. Remimazolam is a novel ultra-short-acting benzodiazepine anesthetic with multiple organ protective effects. However, it is unknown whether remimazolam can ameliorate LPS-induced brain impairment. In this study, Lipopolysaccharide (5 mg/kg, LPS) severely impaired Sprague-Dawley rats spatial learning ability, memory, and cognitive function. However, remimazolam treatment showed a protective effect on LPS-induced cognitive dysfunction. Remimazolam partly reversed LPS-induced splenomegaly, decreased serum cytokine expression, suppressed hippocampal M1 microglial activation, and mitigated oxidative stress injury and neuroinflammation. Electroacupuncture (EA) or PNU282987 treatment improved LPS-induced cognitive dysfunction and also significantly inhibited neuroinflammation and systemic inflammation. However, MLA, ML385, or subdiaphragmatic vagus nerve (SDV) treatment abolished the protective effects of remimazolam. Further mechanistic studies showed that remimazolam induces protective effects by activating subdiaphragmatic vagus nerve target α7nAChR-mediated Nrf2/HO-1 signaling pathway. These results demonstrate that remimazolam can up-regulate α7nAChR, Cyto-Nrf2, HO-1, and cognitive-related (CREB, BDNF, PSD95) protein expressions, suppress M1 microglia, ameliorate neuroinflammation or systemic inflammation, and reverse cognitive dysfunction. Therefore, this study provides insight into a new therapeutic target for the treatment of sepsis-induced cerebral dysfunction.
Collapse
Affiliation(s)
- Zhan Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ying Yang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yi Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
17
|
Pan YH, Tsai HW, Lin HA, Chen CY, Chao CC, Lin SF, Hou SK. Early Identification of Sepsis-Induced Acute Kidney Injury by Using Monocyte Distribution Width, Red-Blood-Cell Distribution, and Neutrophil-to-Lymphocyte Ratio. Diagnostics (Basel) 2024; 14:918. [PMID: 38732331 PMCID: PMC11083534 DOI: 10.3390/diagnostics14090918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis-induced acute kidney injury (AKI) is a common complication in patients with severe illness and leads to increased risks of mortality and chronic kidney disease. We investigated the association between monocyte distribution width (MDW), red-blood-cell volume distribution width (RDW), neutrophil-to-lymphocyte ratio (NLR), sepsis-related organ-failure assessment (SOFA) score, mean arterial pressure (MAP), and other risk factors and sepsis-induced AKI in patients presenting to the emergency department (ED). This retrospective study, spanning 1 January 2020, to 30 November 2020, was conducted at a university-affiliated teaching hospital. Patients meeting the Sepsis-2 consensus criteria upon presentation to our ED were categorized into sepsis-induced AKI and non-AKI groups. Clinical parameters (i.e., initial SOFA score and MAP) and laboratory markers (i.e., MDW, RDW, and NLR) were measured upon ED admission. A logistic regression model was developed, with sepsis-induced AKI as the dependent variable and laboratory parameters as independent variables. Three multivariable logistic regression models were constructed. In Model 1, MDW, initial SOFA score, and MAP exhibited significant associations with sepsis-induced AKI (area under the curve [AUC]: 0.728, 95% confidence interval [CI]: 0.668-0.789). In Model 2, RDW, initial SOFA score, and MAP were significantly correlated with sepsis-induced AKI (AUC: 0.712, 95% CI: 0.651-0.774). In Model 3, NLR, initial SOFA score, and MAP were significantly correlated with sepsis-induced AKI (AUC: 0.719, 95% CI: 0.658-0.780). Our novel models, integrating MDW, RDW, and NLR with initial SOFA score and MAP, can assist with the identification of sepsis-induced AKI among patients with sepsis presenting to the ED.
Collapse
Affiliation(s)
- Yi-Hsiang Pan
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-H.P.); (H.-W.T.); (H.-A.L.); (C.-C.C.)
| | - Hung-Wei Tsai
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-H.P.); (H.-W.T.); (H.-A.L.); (C.-C.C.)
| | - Hui-An Lin
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-H.P.); (H.-W.T.); (H.-A.L.); (C.-C.C.)
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei 110, Taiwan
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Yi Chen
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chun-Chieh Chao
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-H.P.); (H.-W.T.); (H.-A.L.); (C.-C.C.)
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Sheng-Feng Lin
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-H.P.); (H.-W.T.); (H.-A.L.); (C.-C.C.)
- School of Public Health, College of Public Health, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Center of Evidence-Based Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Sen-Kuang Hou
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-H.P.); (H.-W.T.); (H.-A.L.); (C.-C.C.)
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
18
|
Zhang Z, Liu D, Lv R, Zhao H, Li T, Huang Y, Tian Z, Gao X, Luo P, Li X. FBL Promotes LPS-Induced Neuroinflammation by Activating the NF-κB Signaling Pathway. J Inflamm Res 2024; 17:2217-2231. [PMID: 38623466 PMCID: PMC11018134 DOI: 10.2147/jir.s451049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Purpose Neuroinflammation occurs in response to central nervous system (CNS) injury, infection, stimulation by toxins, or autoimmunity. We previously analyzed the downstream molecular changes in HT22 cells (mouse hippocampal neurons) upon lipopolysaccharide (LPS) stimulation. We detected elevated expression of Fibrillarin (FBL), a nucleolar methyltransferase, but the associated proinflammatory mechanism was not systematically elucidated. The aim of this study was to investigate the underlying mechanisms by which FBL affects neuroinflammation. Methods RT-real-time PCR, Western blotting and immunofluorescence were used to assess the mRNA and protein expression of FBL in HT22 cells stimulated with LPS, as well as the cellular localization and fluorescence intensity of FBL. BAY-293 (a son of sevenless homolog 1 (SOS1) inhibitor), SR11302 (an activator protein-1 (AP-1) inhibitor) and KRA-533 (a KRAS agonist) were used to determine the molecular mechanisms underlying the effect of FBL. AP-1 was predicted to be the target protein of FBL by molecular docking analysis, and validation was performed with T-5224 (an AP-1 inhibitor). In addition, the downstream signaling pathways of FBL were identified by transcriptome sequencing and verified by RT-real-time PCR. Results LPS induced FBL mRNA and protein expression in HT22 cells. In-depth mechanistic studies revealed that when we inhibited c-Fos, AP-1, and SOS1, FBL expression decreased, whereas FBL expression increased when KRAS agonists were used. In addition, the transcript levels of inflammatory genes in the NF-kB signaling pathway (including CD14, MYD88, TNF, TRADD, and NFKB1) were elevated after the overexpression of FBL. Conclusion LPS induced the expression of FBL in HT22 cells through the RAS/MAPK signaling pathway, and FBL further activated the NF-kB signaling pathway, which promoted the expression of relevant inflammatory genes and the release of cytokines. The present study reveals the mechanism by which FBL promotes neuroinflammation and offers a potential target for the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Zhuoyuan Zhang
- Biochemistry and Molecular Biology, College of Life Science, Northwest University, Xi’an, 710127, People’s Republic of China
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Dan Liu
- Biochemistry and Molecular Biology, College of Life Science, Northwest University, Xi’an, 710127, People’s Republic of China
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Rui Lv
- Biochemistry and Molecular Biology, College of Life Science, Northwest University, Xi’an, 710127, People’s Republic of China
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Haoyan Zhao
- Biochemistry and Molecular Biology, College of Life Science, Northwest University, Xi’an, 710127, People’s Republic of China
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Tianjing Li
- Biochemistry and Molecular Biology, College of Life Science, Northwest University, Xi’an, 710127, People’s Republic of China
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Zhicheng Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, People’s Republic of China
| |
Collapse
|
19
|
Zhu Q, Wan L, Huang H, Liao Z. IL-1β, the first piece to the puzzle of sepsis-related cognitive impairment? Front Neurosci 2024; 18:1370406. [PMID: 38665289 PMCID: PMC11043581 DOI: 10.3389/fnins.2024.1370406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis is a leading cause of death resulting from an uncontrolled inflammatory response to an infectious agent. Multiple organ injuries, including brain injuries, are common in sepsis. The underlying mechanism of sepsis-associated encephalopathy (SAE), which is associated with neuroinflammation, is not yet fully understood. Recent studies suggest that the release of interleukin-1β (IL-1β) following activation of microglial cells plays a crucial role in the development of long-lasting neuroinflammation after the initial sepsis episode. This review provides a comprehensive analysis of the recent literature on the molecular signaling pathways involved in microglial cell activation and interleukin-1β release. It also explores the physiological and pathophysiological role of IL-1β in cognitive function, with a particular focus on its contribution to long-lasting neuroinflammation after sepsis. The findings from this review may assist healthcare providers in developing novel interventions against SAE.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Wan
- Department of Medical Genetics/Prenatal Diagnostic Center Nursing and Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhimin Liao
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
LI Z, WANG X, Luis U, Ayman Y, BAI Y, XU X, LIU Q. Complementary and alternative medicine on cognitive defects and neuroinflammation after sepsis. J TRADIT CHIN MED 2024; 44:408-416. [PMID: 38504548 PMCID: PMC10927414 DOI: 10.19852/j.cnki.jtcm.20240203.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/27/2023] [Indexed: 03/21/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a common manifestation of sepsis, ranging from mild confusion and delirium to severe cognitive impairment and deep coma. SAE is associated with higher mortality and long-term outcomes, particularly substantial declines in cognitive function. The mechanisms of SAE probably include neuroinflammation that is mediated by systemic inflammation and ischemic lesions in the brain, a disrupted blood-brain barrier, oxidative stress, neurotransmitter dysfunction, and severe microglial activation. Increasing evidence suggests that complementary and alternative medicine, especially Traditional Chinese Medicine (TCM), is favorable in alleviating cognitive decline after sepsis. Here, we summarized the studies of traditional herbal remedies, TCM formulas and acupuncture therapy in animal models of neurological dysfunctions after sepsis in recent decades and reviewed their potential mechanisms.
Collapse
Affiliation(s)
- Zhenxuan LI
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xuerui WANG
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Ulloa Luis
- 5 Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Youssef Ayman
- 5 Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yunjing BAI
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xiaolong XU
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Qingquan LIU
- 1 Department of Infectious Diseases, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
- 2 Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China
- 3 Infection immunity laboratory, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
- 4 Clinical College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
21
|
Sun Y, Sun S, Chen P, Dai Y, Yang D, Lin Y, Yi L. Maresins as novel anti-inflammatory actors and putative therapeutic targets in sepsis. Pharmacol Res 2024; 202:107113. [PMID: 38387744 DOI: 10.1016/j.phrs.2024.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Sepsis, a complex clinical syndrome characterized by an exaggerated host response to infection, often necessitates hospitalization and intensive care unit admission. Delayed or inaccurate diagnosis of sepsis, coupled with suboptimal treatment strategies, can result in unfavorable outcomes, including mortality. Maresins, a newly discovered family of lipid mediators synthesized from docosahexaenoic acid by macrophages, have emerged as key players in promoting inflammation resolution and the termination of inflammatory processes. Extensive evidence has unequivocally demonstrated the beneficial effects of maresins in modulating the inflammatory response associated with sepsis; however, their bioactivity and functions exhibit remarkable diversity and complexity. This article presents a comprehensive review of recent research on the role of maresins in sepsis, aiming to enhance our understanding of their effectiveness and elucidate the specific mechanisms underlying their actions in sepsis treatment. Furthermore, emerging insights into the management of patients with sepsis are also highlighted.
Collapse
Affiliation(s)
- Yan Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Dong Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Lisha Yi
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
22
|
Tian M, Zhan Y, Cao J, Gao J, Sun J, Zhang L. Targeting blood-brain barrier for sepsis-associated encephalopathy: Regulation of immune cells and ncRNAs. Brain Res Bull 2024; 209:110922. [PMID: 38458135 DOI: 10.1016/j.brainresbull.2024.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Sepsis causes significant morbidity and mortality worldwide, most surviving patients show acute or chronic mental disorders, which are known as sepsis-associated encephalopathy (SAE). SAE involves many pathological processes, including the blood-brain barrier (BBB) damage. The BBB is located at the interface between the central nervous system and the surrounding environment, which protects the central nervous system (CNS) from the invasion of exogenous molecules, harmful substances or microorganisms in the blood. Recently, a growing number of studies have indicated that the BBB destruction was involved in SAE and played an important role in SAE-induced brain injury. In the present review, we firstly reveal the pathological processes of SAE such as the neurotransmitter disorders, oxidative stress, immune dysfunction and BBB destruction. Moreover, we introduce the structure of BBB, and describe the immune cells including microglia and astrocytes that participate in the BBB destruction after SAE. Furthermore, in view of the current research on non-coding RNAs (ncRNAs), we explain the regulatory mechanism of ncRNAs including long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) on BBB in the processes of SAE. Finally, we propose some challenges and perspectives of regulating BBB functions in SAE. Hence, on the basis of these effects, both immune cells and ncRNAs may be developed as therapeutic targets to protect BBB for SAE patients.
Collapse
Affiliation(s)
- Mi Tian
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province, China
| | - Yunliang Zhan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jinyuan Cao
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province, China
| | - Jinqi Gao
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province, China
| | - Jie Sun
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province, China.
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
23
|
Ferreira FM, Gomes SV, Carvalho LCF, de Alcantara AC, da Cruz Castro ML, Perucci LO, Pio S, Talvani A, de Abreu Vieira PM, Calsavara AJC, Costa DC. Potential of piperine for neuroprotection in sepsis-associated encephalopathy. Life Sci 2024; 337:122353. [PMID: 38104862 DOI: 10.1016/j.lfs.2023.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
AIMS Sepsis-associated encephalopathy (SAE) is a common complication that increases mortality and leads to long-term cognitive impairment in sepsis survivors. However, no specific or effective therapy has been identified for this complication. Piperine is an alkaloid known for its anti-inflammatory, antioxidant, and neuroprotective properties, which are important characteristics for treatment of SAE. The objective of this study was to evaluate the neuroprotective effect of piperine on SAE in C57BL/6 mice that underwent cecum ligation and perforation surgery (CLP). MAIN METHODS C57BL/6 male mice were randomly assigned to groups that underwent SHAM surgery or CLP. Mice in the CLP group were treated with piperine at doses of 20 or 40 mg/kg for short- (5 days) or long-term (10 days) periods after CLP. KEY FINDINGS Our results revealed that untreated septic animals exhibited increased concentrations of IL-6, TNF, VEGF, MMP-9, TBARS, and NLRP3, and decreased levels of BDNF, sulfhydryl groups, and catalase in the short term. Additionally, the levels of carbonylated proteins and degenerated neuronal cells were increased at both time points. Furthermore, short-term and visuospatial memories were impaired. Piperine treatment reduced MMP-9 activity in the short term and decreased the levels of carbonylated proteins and degenerated neuronal cells in the long term. It also lowered IL-6 and TBARS levels at both time points evaluated. Moreover, piperine increased short-term catalase and long-term BDNF factor levels and improved memory at both time points. SIGNIFICANCE In conclusion, our data demonstrate that piperine exerts a neuroprotective effect on SAE in animals that have undergone CLP.
Collapse
Affiliation(s)
- Flavia Monteiro Ferreira
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Sttefany Viana Gomes
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Luana Cristina Faria Carvalho
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Ana Carolina de Alcantara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Maria Laura da Cruz Castro
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Luiza Oliveira Perucci
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Sirlaine Pio
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Paula Melo de Abreu Vieira
- Morphopathology Laboratory, Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Allan Jefferson Cruz Calsavara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
24
|
Mei J, Zhang X, Sun X, Hu L, Song Y. Optimizing the prediction of sepsis-associated encephalopathy with cerebral circulation time utilizing a nomogram: a pilot study in the intensive care unit. Front Neurol 2024; 14:1303075. [PMID: 38274881 PMCID: PMC10808420 DOI: 10.3389/fneur.2023.1303075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Background Sepsis-associated encephalopathy (SAE) is prevalent in intensive care unit (ICU) environments but lacks established treatment protocols, necessitating prompt diagnostic methods for early intervention. Traditional symptom-based diagnostics are non-specific and confounded by sedatives, while emerging biomarkers like neuron-specific enolase (NSE) and S100 calcium-binding protein B (S100B) have limited specificity. Transcranial Doppler (TCD) indicators, although is particularly relevant for SAE, requires high operator expertise, limiting its clinical utility. Objective This pilot study aims to utilize cerebral circulation time (CCT) assessed via contrast-enhanced ultrasound (CEUS) as an innovative approach to investigate the accuracy of SAE prediction. Further, these CCT measurements are integrated into a nomogram to optimize the predictive performance. Methods This study employed a prospective, observational design, enrolling 67 ICU patients diagnosed with sepsis within the initial 24 h. Receiver operating characteristic (ROC) curve analyses were conducted to assess the predictive accuracy of potential markers including NSE, S100B, TCD parameters, and CCT for SAE. A nomogram was constructed via multivariate Logistic Regression to further explore the combined predictive potential of these variables. The model's predictive performance was evaluated through discrimination, calibration, and decision curve analysis (DCA). Results SAE manifested at a median of 2 days post-admission in 32 of 67 patients (47.8%), with the remaining 35 sepsis patients constituting the non-SAE group. ROC curves revealed substantial predictive utility for CCT, pulsatility index (PI), and S100B, with CCT emerging as the most efficacious predictor, evidenced by an area under the curve (AUC) of 0.846. Multivariate Logistic Regression identified these markers as independent predictors for SAE, leading to the construction of a nomogram with excellent discrimination, substantiated by an AUC of 0.924 through bootstrap resampling. The model exhibited satisfactory concordance between observed and predicted probabilities, and DCA confirmed its clinical utility for the prompt identification of SAE. Conclusion This study highlighted the enhanced predictive value of CCT in SAE detection within ICU settings. A novel nomogram incorporating CCT, PI, and S100B demonstrated robust discrimination, calibration, and clinical utility, solidifying it as a valuable tool for early SAE intervention.
Collapse
Affiliation(s)
- Jiangjun Mei
- Department of Ultrasonography, Shanghai Pudong New Area Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiajing Zhang
- School of Medical Devices, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuesong Sun
- Department of Ultrasonography, Shanghai Pudong New Area Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lihua Hu
- Department of Ultrasonography, Shanghai Pudong New Area Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Ye Song
- Department of Ultrasonography, Shanghai Pudong New Area Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
25
|
Guo J, Cheng H, Wang Z, Qiao M, Li J, Lyu J. Factor analysis based on SHapley Additive exPlanations for sepsis-associated encephalopathy in ICU mortality prediction using XGBoost - a retrospective study based on two large database. Front Neurol 2023; 14:1290117. [PMID: 38162445 PMCID: PMC10755941 DOI: 10.3389/fneur.2023.1290117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Objective Sepsis-associated encephalopathy (SAE) is strongly linked to a high mortality risk, and frequently occurs in conjunction with the acute and late phases of sepsis. The objective of this study was to construct and verify a predictive model for mortality in ICU-dwelling patients with SAE. Methods The study selected 7,576 patients with SAE from the MIMIC-IV database according to the inclusion criteria and randomly divided them into training (n = 5,303, 70%) and internal validation (n = 2,273, 30%) sets. According to the same criteria, 1,573 patients from the eICU-CRD database were included as an external test set. Independent risk factors for ICU mortality were identified using Extreme Gradient Boosting (XGBoost) software, and prediction models were constructed and verified using the validation set. The receiver operating characteristic (ROC) and the area under the ROC curve (AUC) were used to evaluate the discrimination ability of the model. The SHapley Additive exPlanations (SHAP) approach was applied to determine the Shapley values for specific patients, account for the effects of factors attributed to the model, and examine how specific traits affect the output of the model. Results The survival rate of patients with SAE in the MIMIC-IV database was 88.6% and that of 1,573 patients in the eICU-CRD database was 89.1%. The ROC of the XGBoost model indicated good discrimination. The AUCs for the training, test, and validation sets were 0.908, 0.898, and 0.778, respectively. The impact of each parameter on the XGBoost model was depicted using a SHAP plot, covering both positive (acute physiology score III, vasopressin, age, red blood cell distribution width, partial thromboplastin time, and norepinephrine) and negative (Glasgow Coma Scale) ones. Conclusion A prediction model developed using XGBoost can accurately predict the ICU mortality of patients with SAE. The SHAP approach can enhance the interpretability of the machine-learning model and support clinical decision-making.
Collapse
Affiliation(s)
- Jiayu Guo
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of Public Health, Shannxi University of Chinese Medicine, Xianyang, China
| | - Hongtao Cheng
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of Nursing, Jinan University, Guangzhou, Guangdong, China
| | - Zicheng Wang
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mengmeng Qiao
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of Public Health, Shannxi University of Chinese Medicine, Xianyang, China
| | - Jing Li
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of Public Health, Shannxi University of Chinese Medicine, Xianyang, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Chen Y, Guo DZ, Zhu CL, Ren SC, Sun CY, Wang Y, Wang JF. The implication of targeting PD-1:PD-L1 pathway in treating sepsis through immunostimulatory and anti-inflammatory pathways. Front Immunol 2023; 14:1323797. [PMID: 38193090 PMCID: PMC10773890 DOI: 10.3389/fimmu.2023.1323797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Sepsis currently remains a major contributor to mortality in the intensive care unit (ICU), with 48.9 million cases reported globally and a mortality rate of 22.5% in 2017, accounting for almost 20% of all-cause mortality worldwide. This highlights the urgent need to improve the understanding and treatment of this condition. Sepsis is now recognized as a dysregulation of the host immune response to infection, characterized by an excessive inflammatory response and immune paralysis. This dysregulation leads to secondary infections, multiple organ dysfunction syndrome (MODS), and ultimately death. PD-L1, a co-inhibitory molecule expressed in immune cells, has emerged as a critical factor in sepsis. Numerous studies have found a significant association between the expression of PD-1/PD-L1 and sepsis, with a particular focus on PD-L1 expressed on neutrophils recently. This review explores the role of PD-1/PD-L1 in immunostimulatory and anti-inflammatory pathways, illustrates the intricate link between PD-1/PD-L1 and sepsis, and summarizes current therapeutic approaches against PD-1/PD-L1 in the treatment and prognosis of sepsis in preclinical and clinical studies.
Collapse
Affiliation(s)
- Yu Chen
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - De-zhi Guo
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Cheng-long Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shi-chun Ren
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen-yan Sun
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jia-feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
27
|
Huang X, Ye C, Zhao X, Tong Y, Lin W, Huang Q, Zheng Y, Wang J, Zhang A, Mo Y. TRIM45 aggravates microglia pyroptosis via Atg5/NLRP3 axis in septic encephalopathy. J Neuroinflammation 2023; 20:284. [PMID: 38037161 PMCID: PMC10688018 DOI: 10.1186/s12974-023-02959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Neuroinflammation mediated by microglial pyroptosis is an important pathogenic mechanism of septic encephalopathy (SAE). It has been reported that TRIM45 is associated with tumours and inflammatory diseases. However, the role of TRIM45 in SAE and the relationship between TRIM45 and microglial pyroptosis are unknown. In this study, we found that TRIM45 played an important role in regulating microglial pyroptosis and the molecular mechanism. METHODS SAE was induced by intraperitoneal injection of LPS in WT and AAV-shTRIM45 mice. BV2 cells were treated with LPS/ATP in vitro. Cognitive function was assessed by the Morris water maze. Nissl staining was used to evaluate histological and structural lesions. ELISA was used to dectect neuroinflammation. qPCR was used to detect the mRNA levels of inflammatory cytokines, NLRP3, and autophagy genes. Western blotting and immunofluorescence analysis were used to analyse the expression of the proteins. Changes in reactive oxygen species (ROS) in cells were observed by flow cytometry. Changes in mitochondrial membrane potential in BV2 cells were detected by JC-1 staining. Peripheral blood mononuclear cells were extracted from blood by density gradient centrifugation and then used for qPCR, western blotting and flow detection. To further explore the mechanism, we used the overexpression plasmids TRIM45 and Atg5 as well as siRNA-TRIM45 and siRNA-Atg5 to analyse the downstream pathway of NLRP3. The protein and mRNA levels of TRIM45 in peripheral blood mononuclear cells from sepsis patients were examined. RESULTS Knocking down TRIM45 protected against neuronal damage and cognitive impairment in septic mice. TRIM45 knockdown inhibited microglial pyroptosis and the secretion of inflammatory cytokines in vivo and in vitro, which was mediated by NLRP3/Gsdmd-N activation. Overexpression of TRIM45 could activate NLRP3 and downstream proteins. Further examination showed that TRIM45 regulated the activation of NLRP3 by altering Atg5 and regulating autophagic flux. It was also found that overexpression and knockdown of TRIM45 affected the changes in ROS and mitochondrial membrane potential. Thus, knocking down TRIM45 could reduce microglial pyroptosis, the secretion of proinflammatory cytokines, and neuronal damage and improve cognitive function. In addition, the level of TRIM45 protein in septic patients was increased. There was a positive linear correlation between APACHE II score and TRIM45, between SOFA score and TRIM45. Compared to group GCS > 9, level of TRIM45 were increased in group GCS ≤ 8. CONCLUSION TRIM45 plays a key role in neuroinflammation caused by LPS, and the mechanism may involve TRIM45-mediated exacerbation of microglial pyroptosis via the Atg5/NLRP3 axis.
Collapse
Affiliation(s)
- Xuliang Huang
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changzhou Ye
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Zhao
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Tong
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen Lin
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Huang
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuhao Zheng
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Junlu Wang
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Anqi Zhang
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yunchang Mo
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
28
|
Hong Y, Chen P, Gao J, Lin Y, Chen L, Shang X. Sepsis-associated encephalopathy: From pathophysiology to clinical management. Int Immunopharmacol 2023; 124:110800. [PMID: 37619410 DOI: 10.1016/j.intimp.2023.110800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Sepsis-associated encephalopathy, which presents as delirium and coma, is a significant complication of sepsis characterized by acute brain dysfunction. The presence of inflammatory pathological changes in the brain of sepsis patients and animal models has been recognized since the 1920 s, initially attributed to the entry of microbial toxins into the brain. In the early 2000 s, attention shifted towards the impact of oxidative stress, the cholinergic system, and cytokines on brain function following sepsis onset. More recently, sepsis-associated encephalopathy has been defined as a diffuse brain dysfunction not directly caused by pathogenic infection of the brain. Currently, there is no evidence-based standard for diagnosing sepsis-associated encephalopathy, and clinical management is primarily focused on symptomatic and supportive measures. This review aims to explore the pathophysiology of sepsis-associated encephalopathy and establish the connection between pathophysiological mechanisms and clinical characteristics. We hope that this work will spark the interest of researchers from various fields and contribute to the advancement of sepsis-associated encephalopathy research.
Collapse
Affiliation(s)
- Yixiao Hong
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
| | - Peiling Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
| | - Jingqi Gao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
| | - Yingying Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
| | - Linfang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China
| | - Xiuling Shang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, China.
| |
Collapse
|
29
|
Gao H, Zhao Y. A prediction model for assessing hypoglycemia risk in critically ill patients with sepsis. Heart Lung 2023; 62:43-49. [PMID: 37302264 DOI: 10.1016/j.hrtlng.2023.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Few studies have reported the risk factors or developed a risk predictive model of hypoglycemia patients with sepsis. OBJECTIVE To develop a predictive model to assess the hypoglycemia risk in critically ill patients with sepsis. METHODS For this retrospective study, we collected the data from the Medical Information Mart for Intensive Care III and IV (MIMIC-III and MIMIC-IV). All eligible patients from the MIMIC-III were randomly divided into the training set for development of predictive model and testing set for internal validation of the predictive model at a ratio of 8:2. Patients from the MIMIC-IV database were used as the external validation set. The primary endpoint was the occurrence of hypoglycemia. Univariate and multivariate logistic model was used to screen predictors. Adopted receiver operating characteristics (ROC) and calibration curves to estimate the performance of the nomogram. RESULTS The median follow-up time was 5.13 (2.61-9.79) days. Diabetes, dyslipidemia, mean arterial pressure, anion gap, hematocrit, albumin, sequential organ failure assessment, vasopressors, mechanical ventilation and insulin were identified as the predictors for hypoglycemia risk in critically ill patients with sepsis. We constructed a nomogram for predicting hypoglycemia risk in critically ill patients with sepsis based on these predictors. An online individualized predictive tool: https://ghongyang.shinyapps.io/DynNomapp/. The established nomogram had a good predictive ability by ROC and calibration curves in the training set, testing set and external validation cohort. CONCLUSION A predictive model of hypoglycemia risk was constructed, with a good ability in predicting the risk of hypoglycemia in critically ill patients with sepsis.
Collapse
Affiliation(s)
- Hongyang Gao
- Emergency Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Yang Zhao
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, PR China; Institution of Clinical Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China.
| |
Collapse
|
30
|
An N, Chen Z, Zhao P, Yin W. Extracellular Vesicles in Sepsis: Pathogenic Roles, Organ Damage, and Therapeutic Implications. Int J Med Sci 2023; 20:1722-1731. [PMID: 37928875 PMCID: PMC10620861 DOI: 10.7150/ijms.86832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Despite significant advances in anti-infective treatment and organ function support technology in recent years, the mortality rate of sepsis remains high. In addition to the high costs of sepsis treatment, the increasing consumption of medical resources also aggravates economic pressure and social burden. Extracellular vesicles (EVs) are membrane vesicles released from different types of activated or apoptotic cells to mediate intercellular communication, which can be detected in both human and animal body fluids. A growing body of researches suggest that EVs play an important role in the pathogenesis of sepsis. In this review, we summarize the predominant roles of EVs in various pathological processes during sepsis and its related organ dysfunction.
Collapse
Affiliation(s)
- Ni An
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhe Chen
- University College London, London, UK
| | - Peng Zhao
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wen Yin
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
31
|
Amano Y, Ikeda H, Sano C, Ohta R. A Case of Septic Encephalopathy Diagnosed Following Non-inflammatory Febrile Response in an Elderly Patient After Sepsis. Cureus 2023; 15:e46600. [PMID: 37933356 PMCID: PMC10625807 DOI: 10.7759/cureus.46600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Intracranial disorders are common in cases of prolonged disturbances of consciousness following sepsis. Among these, investigation of vascular lesions is warranted because only a few patients have encephalitic symptoms. However, the examination may not be comprehensive owing to the lack of rapid changes in the clinical status. This report presents the case of an elderly woman with severe sepsis who experienced prolonged disturbances in consciousness and persistent fever. Lumbar puncture results suggested the possibility of post-sepsis encephalitis. Sepsis induces systemic acute inflammation and activates autoimmune responses, leading to prolonged brain inflammation in some cases. When disturbances in consciousness persist after sepsis, a thorough investigation for the possibility of post-septic encephalitis is imperative.
Collapse
Affiliation(s)
- Yuki Amano
- Family Medicine, Shimane University Medical School, Izumo, JPN
| | | | - Chiaki Sano
- Community Medicine Management, Shimane University Faculty of Medicine, Izumo, JPN
| | | |
Collapse
|
32
|
Burzyńska M, Uryga A, Kasprowicz M, Czosnyka M, Goździk W, Robba C. Cerebral Autoregulation, Cerebral Hemodynamics, and Injury Biomarkers, in Patients with COVID-19 Treated with Veno-Venous Extracorporeal Membrane Oxygenation. Neurocrit Care 2023; 39:425-435. [PMID: 36949359 PMCID: PMC10033181 DOI: 10.1007/s12028-023-01700-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND This study aimed to describe the cerebrovascular dynamics, in particular cerebral autoregulation (CA), and cerebral biomarkers as neuron-specific enolase (NSE) in patients with a diagnosis of coronavirus disease 2019 and acute respiratory distress syndrome as well as undergoing veno-venous extracorporeal membrane treatment. METHODS This was a single center, observational study conducted in the intensive care unit of the University Hospital in Wroclaw from October 2020 to February 2022. Transcranial Doppler recordings of the middle cerebral artery conducted for at least 20 min were performed. Cerebral autoregulation (CA) was estimated by using the mean velocity index (Mxa), calculated as the moving correlation coefficient between slow-wave oscillations in cerebral blood flow velocity and arterial blood pressure. Altered CA was defined as a positive Mxa. Blood samples for the measurement of NSE were obtained at the same time as transcranial Doppler measurements. RESULTS A total of 16 patients fulfilled the inclusion criteria and were enrolled in the study. The median age was 39 (34-56) years. Altered CA was found in 12 patients, and six out of seven patients who died had altered CA. A positive Mxa was a significant predictor of mortality, with a sensitivity of 85.7%. We found that three out of five patients with pathological changes in brain computed tomography and six out of ten patients with neurological complications had altered CA. NSE was a significant predictor of mortality (cutoff value: 28.9 µg/L); area under the curve = 0.83, p = 0.006), with a strong relationship between increased level of NSE and altered CA, χ2 = 6.24; p = 0.035; φ = 0.69. CONCLUSIONS Patients with coronavirus disease 2019-related acute respiratory distress syndrome, requiring veno-venous extracorporeal membrane treatment, are likely to have elevated NSE levels and altered CA. The CA was associated with NSE values in this group. This preliminary analysis suggests that advanced neuromonitoring and evaluation of biomarkers should be considered in this population.
Collapse
Affiliation(s)
- Małgorzata Burzyńska
- Department of Anaesthesiology and Intensive Care, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| | - Waldemar Goździk
- Department of Anaesthesiology and Intensive Care, Wroclaw Medical University, Wroclaw, Poland
| | - Chiara Robba
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genoa, Italy
| |
Collapse
|
33
|
Millán Solano MV, Salinas Lara C, Sánchez-Garibay C, Soto-Rojas LO, Escobedo-Ávila I, Tena-Suck ML, Ortíz-Butrón R, Choreño-Parra JA, Romero-López JP, Meléndez Camargo ME. Effect of Systemic Inflammation in the CNS: A Silent History of Neuronal Damage. Int J Mol Sci 2023; 24:11902. [PMID: 37569277 PMCID: PMC10419139 DOI: 10.3390/ijms241511902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/13/2023] Open
Abstract
Central nervous system (CNS) infections including meningitis and encephalitis, resulting from the blood-borne spread of specific microorganisms, provoke nervous tissue damage due to the inflammatory process. Moreover, different pathologies such as sepsis can generate systemic inflammation. Bacterial lipopolysaccharide (LPS) induces the release of inflammatory mediators and damage molecules, which are then released into the bloodstream and can interact with structures such as the CNS, thus modifying the blood-brain barrier's (BBB´s) and blood-cerebrospinal fluid barrier´s (BCSFB´s) function and inducing aseptic neuroinflammation. During neuroinflammation, the participation of glial cells (astrocytes, microglia, and oligodendrocytes) plays an important role. They release cytokines, chemokines, reactive oxygen species, nitrogen species, peptides, and even excitatory amino acids that lead to neuronal damage. The neurons undergo morphological and functional changes that could initiate functional alterations to neurodegenerative processes. The present work aims to explain these processes and the pathophysiological interactions involved in CNS damage in the absence of microbes or inflammatory cells.
Collapse
Affiliation(s)
- Mara Verónica Millán Solano
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - Citlaltepetl Salinas Lara
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Carlos Sánchez-Garibay
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Luis O. Soto-Rojas
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Itzel Escobedo-Ávila
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Martha Lilia Tena-Suck
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Rocío Ortíz-Butrón
- Laboratorio de Neurobiología, Departamento de Fisiología de ENCB, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - José Pablo Romero-López
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Estela Meléndez Camargo
- Laboratorio de Farmacología, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Manuel Luis Stampa S/N, U.P. Adolfo López Mateos, Mexico City 07738, Mexico;
| |
Collapse
|
34
|
Liu Y, Yang H, Luo N, Fu Y, Qiu F, Pan Z, Li X, Jian W, Yang X, Xue Q, Luo Y, Yu B, Liu Z. An Fgr kinase inhibitor attenuates sepsis-associated encephalopathy by ameliorating mitochondrial dysfunction, oxidative stress, and neuroinflammation via the SIRT1/PGC-1α signaling pathway. J Transl Med 2023; 21:486. [PMID: 37475042 PMCID: PMC10360347 DOI: 10.1186/s12967-023-04345-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is characterized by diffuse brain dysfunction, long-term cognitive impairment, and increased morbidity and mortality. The current treatment for SAE is mainly symptomatic; the lack of specific treatment options and a poor understanding of the underlying mechanism of disease are responsible for poor patient outcomes. Fgr is a member of the Src family of tyrosine kinases and is involved in the innate immune response, hematologic cancer, diet-induced obesity, and hemorrhage-induced thalamic pain. This study investigated the protection provided by an Fgr kinase inhibitor in SAE and the underlying mechanism(s) of action. METHODS A cecal ligation and puncture (CLP)-induced mouse sepsis model was established. Mice were treated with or without an Fgr inhibitor and a PGC-1α inhibitor/activator. An open field test, a novel object recognition test, and an elevated plus maze were used to assess neurobehavioral changes in the mice. Western blotting and immunofluorescence were used to measure protein expression, and mRNA levels were measured using quantitative PCR (qPCR). An enzyme-linked immunosorbent assay was performed to quantify inflammatory cytokines. Mitochondrial membrane potential and morphology were measured by JC-1, electron microscopy, and the MitoTracker Deep Red probe. Oxidative stress and mitochondrial dysfunction were analyzed. In addition, the regulatory effect of Fgr on sirtuin 1 (SIRT1) was assessed. RESULTS CLP-induced sepsis increased the expression of Fgr in the hippocampal neurons. Pharmacological inhibition of Fgr attenuated CLP-induced neuroinflammation, the survival rate, cognitive and emotional dysfunction, oxidative stress, and mitochondrial dysfunction. Moreover, Fgr interacted with SIRT1 and reduced its activity and expression. In addition, activation of SIRT1/PGC-1α promoted the protective effects of the Fgr inhibitor on CLP-induced brain dysfunction, while inactivation of SIRT1/PGC-1α counteracted the benefits of the Fgr inhibitor. CONCLUSIONS To our knowledge, this is the first report of Fgr kinase inhibition markedly ameliorating SAE through activation of the SIRT1/PGC-1α pathway, and this may be a promising therapeutic target for SAE.
Collapse
Affiliation(s)
- Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Han Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Nanbo Luo
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yifei Fu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Qiu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Zhenglong Pan
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiongjuan Li
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenling Jian
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinping Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
35
|
Shang L, Li J, Zhou F, Zhang M, Wang S, Yang S. MiR-874-5p targets VDR/NLRP3 to reduce intestinal pyroptosis and improve intestinal barrier damage in sepsis. Int Immunopharmacol 2023; 121:110424. [PMID: 37315369 DOI: 10.1016/j.intimp.2023.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Vitamin D receptor (VDR) is associated with intestinal barrier damage in sepsis. However, the mechanism of action of miR-874-5p/VDR/NLRP3 axis in disease has not been clearly explained. Therefore, the main content of this study is to explore the mechanism of this axis in intestinal barrier damage in sepsis. METHODS In order to confirm the progress of miR-874-5p regulation of VDR/NLRP3 pathway and its involvement in intestinal barrier damage in sepsis, a series of molecular biology and cell biology methods were carried out in this study. These include the establishment of cecal ligation puncture model, Western blot, RT-qPCR, hematoxylin and eosin staining, double luciferase reporting method, Fluorescence in situ hybridization, immunohistochemistry, and enzyme-linked immunosorption assay. RESULTS The expression level of miR-874-5p was higher and that of VDR was lower in sepsis. miR-874-5p was negatively correlated with VDR. Inhibition of miR-874-5p expression increased the expression of VDR, decreased the expression of NLRP3, reduced caspase-1 activation and IL-1β secretion, reduced pyroptosis and inflammatory response, and thus protected the intestinal barrier damage in sepsis, all of which were reversed by the downregulation of VDR. CONCLUSIONS This study suggested that down-regulation of miR-874-5p or up-regulation of VDR could reduce intestinal barrier damage in sepsis, which may provide potential biomarkers and therapeutic targets for intestinal barrier damage in sepsis.
Collapse
Affiliation(s)
- Luorui Shang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxiao Li
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangyuan Zhou
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengqi Zhang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuhan Wang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenglan Yang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
36
|
Su W, Xie Z, Bai X, Li Z, Liu X. The Absence of Gasdermin D Reduces Nuclear Autophagy in a Cecal Ligation and Puncture-Induced Sepsis-Associated Encephalopathy Mouse Model. Brain Sci 2023; 13:brainsci13030478. [PMID: 36979288 PMCID: PMC10046561 DOI: 10.3390/brainsci13030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, which is a life-threatening condition resulting from a dysregulated host response to infection. Pyroptosis, a pro-inflammatory mode of lytic cell death mediated by GSDMD (Gasdermin D), is involved in the pathogenesis of SAE. While autophagy has been extensively studied in SAE, the role of nuclear autophagy is not yet well understood. In this study, we aimed to investigate the involvement of pyroptosis and neural nuclear autophagy in the pathogenesis of SAE. We analyzed a CLP (cecal ligation and puncture)-induced SAE model in wild-type and GSDMD−/− mice to gain insights into the underlying mechanisms. Here, we show that in sepsis, neural nuclear autophagy is extremely activated, and nuclear LaminB decreases and is accompanied by an increase in the ratio of LC3BII/I. These effects can be reversed in GSDMD−/− mice. The behavioral outcomes of septic wild-type mice are impaired by the evidence from the novel object recognition test (NORT) and open field test (OFT), but are improved in septic GSDMD−/− mice. In conclusion, our study demonstrates the activation of neural nuclear autophagy in SAE. The absence of GSDMD inhibits nuclear autophagy and improves the behavioral outcomes of SAE.
Collapse
Affiliation(s)
- Wei Su
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenxing Xie
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangjun Bai
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhanfei Li
- Trauma Center/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.L.); (X.L.); Tel.: +86-139-8629-7138 (Z.L.); +86-180-7140-1480 (X.L.)
| | - Xinghua Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.L.); (X.L.); Tel.: +86-139-8629-7138 (Z.L.); +86-180-7140-1480 (X.L.)
| |
Collapse
|
37
|
Zheng Y, Shen M, Xuan L, Pan S, Chen S, Zhong M, Zhu B. Cerebral Blood Flow Alterations in Sepsis-Associated Encephalopathy: A Prospective Observational Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023. [PMID: 36851836 DOI: 10.1002/jum.16204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The timely recognition of sepsis-associated encephalopathy (SAE) remains a challenge. This study aimed to observe the CBF changes via TCD during sepsis and explore their possible predictive value in SAE. METHODS In this prospective observational study, septic patients were enrolled and classified according to the diagnosis of SAE into two groups: SAE group and non-SAE group. Then SAE patients were further divided into subgroup A (the type with agitation) and subgroup B (the type with depressed consciousness) based on their clinical manifestations. The clinical profiles and TCD parameters within 24 hours of onset were compared between groups and subgroups. RESULTS Exactly 198 septic patients were enrolled including 65 patients in SAE group (36 male/29 female with a median age of 70) and 133 patients in non-SAE group (75 male/58 female with a median age of 67). Significant elevated peak-systolic velocity (VS; 107 [69-138] cm/s vs 85 [69-101] cm/s, P = .002) of the left middle cerebral artery (MCA) and pulsatility index (PI; left: 0.99 [0.81-1.34] vs 0.89 [0.76-1.00], P < .001; right: 0.99 [0.77-1.21] vs 0.88 [0.78-1.03], P = .007) of bilateral MCAs were found in SAE group compared with non-SAE group. In subgroup analysis, subgroup A (the type with agitation) showed significantly increased VS/VM/VD and lower PI/RI of bilateral MCAs compared with subgroup B (the type with depressed consciousness). The cerebral blood flow volume of subgroup A were obviously higher than subgroup B [858.7 (729.1,876.9) mL/s vs 380.9 (373.3,447.4) mL/s, P < .001]. CONCLUSIONS This study confirmed the abnormal CBF among SAE and found different types of CBF alterations were related to different clinical features. VS and PI might help clinicians to early identify different types of SAE.
Collapse
Affiliation(s)
- Yijun Zheng
- Department of Anaesthesia, Critical Care and Pain Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Meihua Shen
- Department of Critical Care Medicine, Shanghai Provincial Corps Hospital, Chinese People's Armed Police Forces, Shanghai, People's Republic of China
| | - Lizhen Xuan
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, People's Republic of China
| | - Simeng Pan
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, People's Republic of China
| | - Song Chen
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, People's Republic of China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, People's Republic of China
| | - Biao Zhu
- Department of Anaesthesia, Critical Care and Pain Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| |
Collapse
|
38
|
Xiao MZ, Liu CX, Zhou LG, Yang Y, Wang Y. Postoperative delirium, neuroinflammation, and influencing factors of postoperative delirium: A review. Medicine (Baltimore) 2023; 102:e32991. [PMID: 36827061 PMCID: PMC11309669 DOI: 10.1097/md.0000000000032991] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/25/2023] Open
Abstract
Postoperative delirium (POD) is an acute cognitive dysfunction that is mainly characterized by memory impairment and disturbances in consciousness. POD can prolong the hospital stay and increase the 1-month mortality rate of patients. The overall incidence of POD is approximately 23%, and its prevalence can go up to 50% in high-risk surgeries. Neuroinflammation is an important pathogenic mechanism of POD that mediates microglial activation and leads to synaptic remodeling. Neuroinflammation, as an indispensable pathogenesis of POD, can occur due to a variety of factors, including aseptic inflammation caused by surgery, effects of anesthetic drugs, disruption of the blood-brain barrier, and epigenetics. Understanding these factors and avoiding the occurrence of risk factors may help prevent POD in time. This review provides a brief overview of POD and neuroinflammation and summarizes various factors affecting POD development mediated by neuroinflammation, which may serve as future targets for the prevention and treatment of POD.
Collapse
Affiliation(s)
- M. Z. Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - C. X. Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - L. G. Zhou
- Department of Anatomy, Hengyang Medical College of University of South China, Hengyang, China
| | - Y. Yang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Y. Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|