1
|
Elgazzaz M, Woodham PC, Maher J, Faulkner JL. Implications of pregnancy on cardiometabolic disease risk: preeclampsia and gestational diabetes. Am J Physiol Cell Physiol 2024; 327:C646-C660. [PMID: 39010840 PMCID: PMC11427017 DOI: 10.1152/ajpcell.00293.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Cardiometabolic disorders, such as obesity, insulin resistance, and hypertension, prior to and within pregnancy are increasing in prevalence worldwide. Pregnancy-associated cardiometabolic disease poses a great risk to the short- and long-term well-being of the mother and offspring. Hypertensive pregnancy, notably preeclampsia, as well as gestational diabetes are the major diseases of pregnancy growing in prevalence as a result of growing cardiometabolic disease prevalence. The mechanisms whereby obesity, diabetes, and other comorbidities lead to preeclampsia and gestational diabetes are incompletely understood and continually evolving in the literature. In addition, novel therapeutic avenues are currently being explored in these patients to offset cardiometabolic-induced adverse pregnancy outcomes in preeclamptic and gestational diabetes pregnancies. In this review, we discuss the emerging pathophysiological mechanisms of preeclampsia and gestational diabetes in the context of cardiometabolic risk as well as the most recent preclinical and clinical updates in the pathogenesis and treatment of these conditions.
Collapse
Affiliation(s)
- Mona Elgazzaz
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Padmashree C Woodham
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - James Maher
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Jessica L Faulkner
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
2
|
Kirkgöz K, Vogtmann R, Xie Y, Zhao F, Riedel A, Adam LM, Freitag N, Harms C, Garcia MG, Plösch T, Gellhaus A, Blois SM. Placental glycosylation senses the anti-angiogenic milieu induced by human sFLT1 during pregnancy. J Reprod Immunol 2024; 164:104284. [PMID: 38908337 DOI: 10.1016/j.jri.2024.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Abnormal placental angiogenesis during gestation resulting from high levels of anti-angiogenic factors, soluble fms-like tyrosine kinase-1 (sFLT1) and soluble endoglin, has been implicated in the progression of preeclampsia (PE). This heterogeneous syndrome (defined by hypertension with or without proteinuria after 20 weeks of pregnancy) remains a major global health burden with long-term consequences for both mothers and child. Previously, we showed that in vivo systemic human (hsFLT1) overexpression led to reduced placental efficiency and PE-like syndrome in mice. Galectins (gal-1, -3 and -9) are critical determinants of vascular adaptation to pregnancy and dysregulation of the galectin-glycan circuits is associated with the development of this life-threatening disease. In this study, we assessed the galectin-glycan networks at the maternal-fetal interface associated with the hsFLT1-induced PE in mice. We observed an increase on the maternal gal-1 expression in the decidua and junctional zone layers of the placenta derived from hs FLT1high pregnancies. In contrast, placental gal-3 and gal-9 expression were not sensitive to the hsFLT1 overexpression. In addition, O- and N-linked glycan expression, poly-LacNAc sequences and terminal sialylation were down-regulated in hsFLT1 high placentas. Thus, the gal-1-glycan axis appear to play an important role counteracting the anti-angiogenic status caused by sFLT1, becoming critical for vascular adaptation at the maternal-fetal interface.
Collapse
Affiliation(s)
- Kürsat Kirkgöz
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rebekka Vogtmann
- Department of Gynecology and Obstetrics, University Hospital Essen, Germany
| | - Yiran Xie
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fangqi Zhao
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alina Riedel
- Department of Gynecology and Obstetrics, University Hospital Essen, Germany
| | - Lisa-Marie Adam
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nancy Freitag
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Harms
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mariana G Garcia
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carlvon Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, Germany
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, Glycoimmunology Research Group, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Barron A, Barrett L, Tuulari J, Karlsson L, Karlsson H, McCarthy C, O'Keeffe G. sFlt-1 impairs neurite growth and neuronal differentiation in SH-SY5Y cells and human neurons. Biosci Rep 2024; 44:BSR20240562. [PMID: 38700092 PMCID: PMC11130541 DOI: 10.1042/bsr20240562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024] Open
Abstract
Pre-eclampsia (PE) is a hypertensive disorder of pregnancy which is associated with increased risk of neurodevelopmental disorders in exposed offspring. The pathophysiological mechanisms mediating this relationship are currently unknown, and one potential candidate is the anti-angiogenic factor soluble Fms-like tyrosine kinase 1 (sFlt-1), which is highly elevated in PE. While sFlt-1 can impair angiogenesis via inhibition of VEGFA signalling, it is unclear whether it can directly affect neuronal development independently of its effects on the vasculature. To test this hypothesis, the current study differentiated the human neural progenitor cell (NPC) line ReNcell® VM into a mixed culture of mature neurons and glia, and exposed them to sFlt-1 during development. Outcomes measured were neurite growth, cytotoxicity, mRNA expression of nestin, MBP, GFAP, and βIII-tubulin, and neurosphere differentiation. sFlt-1 induced a significant reduction in neurite growth and this effect was timing- and dose-dependent up to 100 ng/ml, with no effect on cytotoxicity. sFlt-1 (100 ng/ml) also reduced βIII-tubulin mRNA and neuronal differentiation of neurospheres. Undifferentiated NPCs and mature neurons/glia expressed VEGFA and VEGFR-2, required for endogenous autocrine and paracrine VEGFA signalling, while sFlt-1 treatment prevented the neurogenic effects of exogenous VEGFA. Overall, these data provide the first experimental evidence for a direct effect of sFlt-1 on neurite growth and neuronal differentiation in human neurons through inhibition of VEGFA signalling, clarifying our understanding of the potential role of sFlt-1 as a mechanism by which PE can affect neuronal development.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Lauren Barrett
- Department of Anatomy and Neuroscience, University College, Cork, Ireland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry and Turku Brain and Mind Centre, University of Turku and Turku University Hospital, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
- Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- Department of Clinical Medicine, Unit of Public Health, University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Centre, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry and Turku Brain and Mind Centre, University of Turku and Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Gerard W. O'Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland
| |
Collapse
|
4
|
Vogtmann R, Riedel A, Sassmannshausen I, Langer S, Kühnel-Terjung E, Kimmig R, Schorle H, Winterhager E, Gellhaus A. Overexpression of Human sFLT1 in the Spongiotrophoblast Is Sufficient to Induce Placental Dysfunction and Fetal Growth Restriction in Transgenic Mice. Int J Mol Sci 2024; 25:2040. [PMID: 38396719 PMCID: PMC10888837 DOI: 10.3390/ijms25042040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Preeclampsia (PE) is characterized by maternal hypertension and placental dysfunction, often leading to fetal growth restriction (FGR). It is associated with an overexpression of the anti-angiogenic sFLT1 protein, which originates from the placenta and serves as a clinical biomarker to predict PE. To analyze the impact of sFLT1 on placental function and fetal growth, we generated transgenic mice with placenta-specific human sFLT1 (hsFLT1) overexpression. Immunohistochemical, morphometrical, and molecular analyses of the placentas on 14.5 dpc and 18.5 dpc were performed with a focus on angiogenesis, nutrient transport, and inflammation. Additionally, fetal development upon placental hsFLT1 overexpression was investigated. Dams exhibited a mild increase in serum hsFLT1 levels upon placental hsFLT1 expression and revealed growth restriction of the fetuses in a sex-specific manner. Male FGR fetuses expressed higher amounts of placental hsFLT1 mRNA compared to females. FGR placentas displayed an altered morphology, hallmarked by an increase in the spongiotrophoblast layer and changes in labyrinthine vascularization. Further, FGR placentas showed a significant reduction in placental glycogen storage and nutrient transporter expression. Moreover, signs of hypoxia and inflammation were observed in FGR placentas. The transgenic spongiotrophoblast-specific hsFLT1 mouse line demonstrates that low hsFLT1 serum levels are sufficient to induce significant alterations in fetal and placental development in a sex-specific manner.
Collapse
Affiliation(s)
- Rebekka Vogtmann
- Department of Gynecology and Obstetrics, University Hospital, 45147 Essen, Germany (A.R.); (R.K.)
| | - Alina Riedel
- Department of Gynecology and Obstetrics, University Hospital, 45147 Essen, Germany (A.R.); (R.K.)
| | - Ivanka Sassmannshausen
- Department of Gynecology and Obstetrics, University Hospital, 45147 Essen, Germany (A.R.); (R.K.)
| | - Sarah Langer
- Department of Gynecology and Obstetrics, University Hospital, 45147 Essen, Germany (A.R.); (R.K.)
| | - Elisabeth Kühnel-Terjung
- Department of Gynecology and Obstetrics, University Hospital, 45147 Essen, Germany (A.R.); (R.K.)
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital, 45147 Essen, Germany (A.R.); (R.K.)
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Elke Winterhager
- EM Unit, Imaging Center Essen, University Hospital, 45147 Essen, Germany;
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital, 45147 Essen, Germany (A.R.); (R.K.)
| |
Collapse
|
5
|
Vogtmann R, Bao M, Dewan MV, Riedel A, Kimmig R, Felderhoff-Müser U, Bendix I, Plösch T, Gellhaus A. Growth-Restricted Fetuses and Offspring Reveal Adverse Sex-Specific Metabolic Responses in Preeclamptic Mice Expressing Human sFLT1. Int J Mol Sci 2023; 24:ijms24086885. [PMID: 37108049 PMCID: PMC10139224 DOI: 10.3390/ijms24086885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Fetal adaptations to harmful intrauterine environments due to pregnancy disorders such as preeclampsia (PE) can negatively program the offspring's metabolism, resulting in long-term metabolic changes. PE is characterized by increased circulating levels of sFLT1, placental dysfunction and fetal growth restriction (FGR). Here we examine the consequences of systemic human sFLT1 overexpression in transgenic PE/FGR mice on the offspring's metabolic phenotype. Histological and molecular analyses of fetal and offspring livers as well as examinations of offspring serum hormones were performed. At 18.5 dpc, sFLT1 overexpression resulted in growth-restricted fetuses with a reduced liver weight, combined with reduced hepatic glycogen storage and histological signs of hemorrhages and hepatocyte apoptosis. This was further associated with altered gene expression of the molecules involved in fatty acid and glucose/glycogen metabolism. In most analyzed features males were more affected than females. The postnatal follow-up revealed an increased weight gain of male PE offspring, and increased serum levels of Insulin and Leptin. This was associated with changes in hepatic gene expression regulating fatty acid and glucose metabolism in male PE offspring. To conclude, our results indicate that sFLT1-related PE/FGR in mice leads to altered fetal liver development, which might result in an adverse metabolic pre-programming of the offspring, specifically targeting males. This could be linked to the known sex differences seen in PE pregnancies in human.
Collapse
Affiliation(s)
- Rebekka Vogtmann
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Mian Bao
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Monia Vanessa Dewan
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University Duisburg-Essen, 45147 Essen, Germany
| | - Alina Riedel
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University Duisburg-Essen, 45147 Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University Duisburg-Essen, 45147 Essen, Germany
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Perinatal Neurobiology Research Group, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
6
|
Barron A, Manna S, McElwain CJ, Musumeci A, McCarthy FP, O’Keeffe GW, McCarthy CM. Maternal pre-eclampsia serum increases neurite growth and mitochondrial function through a potential IL-6-dependent mechanism in differentiated SH-SY5Y cells. Front Physiol 2023; 13:1043481. [PMID: 36714304 PMCID: PMC9877349 DOI: 10.3389/fphys.2022.1043481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction: Pre-eclampsia (PE) is a common and serious hypertensive disorder of pregnancy, which affects 3%-5% of first-time pregnancies and is a leading cause of maternal and neonatal morbidity and mortality. Prenatal exposure to PE is associated with an increased risk of neurodevelopmental disorders in affected offspring, although the cellular and molecular basis of this increased risk is largely unknown. Methods: Here, we examined the effects of exposure to maternal serum from women with PE or a healthy uncomplicated pregnancy on the survival, neurite growth and mitochondrial function of neuronally differentiated human SH-SY5Y neuroblastoma cells, which are commonly used to study neurite growth. Neurite growth and mitochondrial function are two strongly linked neurodevelopmental parameters in which alterations have been implicated in neurodevelopmental disorders. Following this, we investigated the pleiotropic cytokine interleukin-6 (IL-6) levels as a potential mechanism. Results: Cells exposed to 3% (v/v) PE serum for 72 h exhibited increased neurite growth (p < 0.05), which was validated in the human neural progenitor cell line, ReNcell® VM (p < 0.01), and mitochondrial respiration (elevated oxygen consumption rate (p < 0.05), basal mitochondrial respiration, proton leak, ATP synthesis, and non-mitochondrial respiration) compared to control serum-treated cells. ELISA analysis showed elevations in maternal IL-6 in PE sera (p < 0.05) and placental explants (p < 0.05). In support of this, SH-SY5Y cells exposed to 3% (v/v) PE serum for 24 h had increased phospho-STAT3 levels, which is a key intracellular mediator of IL-6 signalling (p < 0.05). Furthermore, treatment with anti-IL-6 neutralizing antibody blocked the effects of PE serum on neurite growth (p < 0.05), and exposure to IL-6 promoted neurite growth in SH-SY5Y cells (p < 0.01). Discussion: Collectively these data show elevated serum levels of maternal IL-6 in PE, which increases neurite growth and mitochondrial function in SH-SY5Y cells. This rationalizes the further study of IL-6 as a potential mediator between PE exposure and neurodevelopmental outcome in the offspring.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland,Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Samprikta Manna
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland,Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Colm J. McElwain
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Andrea Musumeci
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland,Cork Neuroscience Centre, University College Cork, Cork, Ireland,*Correspondence: Gerard W. O’Keeffe, ; Cathal M. McCarthy,
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland,*Correspondence: Gerard W. O’Keeffe, ; Cathal M. McCarthy,
| |
Collapse
|