1
|
Obayori OS, Adesina OD, Salam LB, Ashade AO, Nwaokorie FO. Depletion of hydrocarbons and concomitant shift in bacterial community structure of a diesel-spiked tropical agricultural soil. ENVIRONMENTAL TECHNOLOGY 2024; 45:5368-5383. [PMID: 38118139 DOI: 10.1080/09593330.2023.2291421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/26/2023] [Indexed: 12/22/2023]
Abstract
Bacterial community of a diesel-spiked agricultural soil was monitored over a 42-day period using the metagenomic approach in order to gain insight into key phylotypes impacted by diesel contamination and be able to predict end point of bioattenuation. Soil physico-chemical parameters showed significant differences (P < 0.05) between the Polluted Soil (PS) and the Unpolluted control (US)across time points. After 21 days, the diesel content decreased by 27.39%, and at the end of 42 days, by 57.11%. Aromatics such as benzene, anthanthrene, propylbenzene, phenanthrenequinone, anthraquinone, and phenanthridine were degraded to non-detected levels within 42 days, while some medium range alkanes and polyaromatics such as acenaphthylene, naphthalene, and anthracene showed significant levels of degradation. After 21 days (LASTD21), there was a massive enrichment of the phylum Proteobacteria (72.94%), a slight decrease in the abundance of phylum Actinobacteriota (12.74%), and > 500% decrease in the abundance of the phylum Acidobacteriodota (5.26%). Day 42 (LASTD42) saw establishment of the dominance of the Proteobacteria (34.95%), Actinobacteriota, (21.71%), and Firmicutes (32.14%), and decimation of phyla such as Gemmatimonadota, Planctomycetota, and Verrucromicrobiota which play important roles in the cycling of elements and soil health. Principal component analysis showed that in PS moisture contents, phosphorus, nitrogen, organic carbon, had greater impacts on the community structure in LASTD21, while acidity, potassium, sodium, calcium and magnesium impacted the control sample. Recovery time of the soil based on the residual hydrocarbons at Day 42 was estimated to be 229.112 d. Thus, additional biostimulation may be required to achieve cleanup within one growing season.
Collapse
Affiliation(s)
| | | | - Lateef Babatunde Salam
- Microbiology Unit, Department of Biological Sciences, Elizade University, Ilara-Mokin, Nigeria
| | | | | |
Collapse
|
2
|
Quiñones-Cerna C, Castañeda-Aspajo A, Tirado-Gutierrez M, Salirrosas-Fernández D, Rodríguez-Soto JC, Cruz-Monzón JA, Hurtado-Butrón F, Ugarte-López W, Gutiérrez-Araujo M, Quezada-Alvarez MA, Gálvez-Rivera JA, Esparza-Mantilla M. Efficacy of Indigenous Bacteria in the Biodegradation of Hydrocarbons Isolated from Agricultural Soils in Huamachuco, Peru. Microorganisms 2024; 12:1896. [PMID: 39338570 PMCID: PMC11434379 DOI: 10.3390/microorganisms12091896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Pollution from crude oil and its derivatives poses a serious threat to human health and ecosystems, with accidental spills causing substantial damage. Biodegradation, using microorganisms to break down these contaminants, presents a promising and cost-effective solution. Exploring and utilizing new bacterial strains from underexplored habitats could improve remediation efforts at contaminated sites. This study aimed to evaluate the hydrocarbon biodegradation capacity of bacteria isolated from agricultural soils in Huamachuco, Peru. Soil samples from Oca crops were collected and bacteria were isolated. Biodegradation assays were conducted using diesel as the sole carbon source in the Bushnell Haas Mineral medium. Molecular characterization of the 16S rRNA gene identified four strains. Diesel biodegradation assays at 1% concentration were performed under agitation conditions at 150 rpm and 30 °C, and monitored on day 10 by measuring cellular biomass (OD600), with hydrocarbons analyzed by gas chromatography. The results showed Pseudomonas protegens (PROM2) achieved the highest efficiency in removing total hydrocarbons (91.5 ± 0.7%). Additionally, Pseudomonas citri PROM3 and Acinetobacter guillouiae ClyRoM5 also demonstrated high capacity in removing several individual hydrocarbons. Indigenous bacteria from uncontaminated agricultural soils present a high potential for hydrocarbon bioremediation, offering an ecological and effective solution for soil decontamination.
Collapse
Affiliation(s)
- Claudio Quiñones-Cerna
- Laboratorio de Biotecnología e Ingeniería Genética, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru
| | - Alina Castañeda-Aspajo
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (A.C.-A.); (M.T.-G.); (W.U.-L.)
| | - Marycielo Tirado-Gutierrez
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (A.C.-A.); (M.T.-G.); (W.U.-L.)
| | - David Salirrosas-Fernández
- Laboratorio de Citometría, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (D.S.-F.); (J.C.R.-S.); (M.G.-A.)
| | - Juan Carlos Rodríguez-Soto
- Laboratorio de Citometría, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (D.S.-F.); (J.C.R.-S.); (M.G.-A.)
| | - José Alfredo Cruz-Monzón
- Departamento de Química, Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru;
| | - Fernando Hurtado-Butrón
- Laboratorio Multidisciplinario de Nanociencia y Nanotecnología “Oswaldo Sánchez Rosales”, Facultad de Ciencias Físicas y Matemáticas, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru;
| | - Wilmer Ugarte-López
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (A.C.-A.); (M.T.-G.); (W.U.-L.)
| | - Mayra Gutiérrez-Araujo
- Laboratorio de Citometría, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (D.S.-F.); (J.C.R.-S.); (M.G.-A.)
| | - Medardo Alberto Quezada-Alvarez
- Laboratorio de Investigación y Desarrollo en Ciencias Ambientales, Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru;
| | - Julieta Alessandra Gálvez-Rivera
- Escuela Profesional de Ciencias Biológicas, Facultad de Ciencias, Universidad Nacional de Piura, Juan Pablo II Av., Trujillo 13008, Peru;
| | | |
Collapse
|
3
|
Siddique A, Al Disi Z, AlGhouti M, Zouari N. Diversity of hydrocarbon-degrading bacteria in mangroves rhizosphere as an indicator of oil-pollution bioremediation in mangrove forests. MARINE POLLUTION BULLETIN 2024; 205:116620. [PMID: 38955089 DOI: 10.1016/j.marpolbul.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Mangrove ecosystems, characterized by high levels of productivity, are susceptible to anthropogenic activities, notably oil pollution arising from diverse origins including spills, transportation, and industrial effluents. Owing to their role in climate regulation and economic significance, there is a growing interest in developing mangrove conservation strategies. In the Arabian Gulf, mangroves stand as the sole naturally occurring green vegetation due to the region's hot and arid climate. However, they have faced persistent oil pollution for decades. This review focuses on global mangrove distribution, with a specific emphasis on Qatar's mangroves. It highlights the ongoing challenges faced by mangroves, particularly in relation to the oil industry, and the impact of oil pollution on these vital ecosystems. It outlines major oil spill incidents worldwide and the diverse hydrocarbon-degrading bacterial communities within polluted areas, elucidating their potential for bioremediation. The use of symbiotic interactions between mangrove plants and bacteria offers a more sustainable, cost-effective and environmentally friendly alternative. However, the success of these bioremediation strategies depends on a deep understanding of the dynamics of bacterial communities, environmental factors and specific nature of the pollutants.
Collapse
Affiliation(s)
- Afrah Siddique
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar
| | - Zulfa Al Disi
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar; Environmental Science Centre, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammad AlGhouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar
| | - Nabil Zouari
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar.
| |
Collapse
|
4
|
Petra de Oliveira Barros V, Macedo Silva JR, Maciel Melo VM, Terceiro PS, Nunes de Oliveira I, Duarte de Freitas J, Francisco da Silva Moura O, Xavier de Araújo-Júnior J, Erlanny da Silva Rodrigues E, Maraschin M, Thompson FL, Landell MF. Biosurfactants production by marine yeasts isolated from zoanthids and characterization of an emulsifier produced by Yarrowia lipolytica LMS 24B. CHEMOSPHERE 2024; 355:141807. [PMID: 38552803 DOI: 10.1016/j.chemosphere.2024.141807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
The present study investigates the potential for biosurfactant production of 19 marine yeast species obtained from zoanthids. Using the emulsification index test to screen the samples produced by the marine yeasts, we verified that five isolates exhibited an emulsification index ≥50%. Additional tests were performed on such isolates, including oil displacement, drop collapse, Parafilm M assay, and surface tension measurement. The tolerance of produced biosurfactants for environmental conditions was also analyzed, especially considering the media's temperature, pH, and salinity. Moreover, the surfactant's ability to emulsify different hydrocarbon sources and to metabolize kerosene as the sole carbon source was evaluated in vitro. Our results demonstrate that yeast biosurfactants can emulsify hydrocarbon sources under different physicochemical conditions and metabolize kerosene as a carbon source. Considering the Yarrowia lipolytica LMS 24B as the yeast model for biosurfactant production from the cell's wall biomass, emulsification indexes of 61.2% were obtained, even at a high temperature of 120 °C. Furthermore, the Fourier-transform middle infrared spectroscopy (FTIR) analysis of the biosurfactant's chemical composition revealed the presence of distinct functional groups assigned to a glycoprotein complex. Considering the status of developing new bioproducts and bioprocesses nowadays, our findings bring a new perspective to biosurfactant production by marine yeasts, especially Y. lipolytica LMS 24B. In particular, the presented results validate the relevance of marine environments as valuable sources of genetic resources, i.e., yeast strains capable of metabolizing and emulsifying petroleum derivatives.
Collapse
Affiliation(s)
- Vitória Petra de Oliveira Barros
- Graduate Program in Genetics. Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Vânia Maria Maciel Melo
- Department of Biology, Microbial Ecology and Biotechnology Laboratory (Lembiotech), Fortaleza, CE, Brazil
| | | | | | | | | | | | | | - Marcelo Maraschin
- Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Melissa Fontes Landell
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, Brazil.
| |
Collapse
|
5
|
Lema NK, Gemeda MT, Woldesemayat AA. Recent Advances in Metagenomic Approaches, Applications, and Challenge. Curr Microbiol 2023; 80:347. [PMID: 37733134 DOI: 10.1007/s00284-023-03451-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/20/2023] [Indexed: 09/22/2023]
Abstract
Advances in metagenomics analysis with the advent of next-generation sequencing have extended our knowledge of microbial communities as compared to conventional techniques providing advanced approach to identify novel and uncultivable microorganisms based on their genetic information derived from a particular environment. Shotgun metagenomics involves investigating the DNA of the entire community without the requirement of PCR amplification. It provides access to study all genes present in the sample. On the other hand, amplicon sequencing targets taxonomically important marker genes, the analysis of which is restricted to previously known DNA sequences. While sequence-based metagenomics is used to analyze DNA sequences directly from the environment without the requirement of library construction and with limited identification of novel genes and products that can be complemented by functional genomics, function-based metagenomics requires fragmentation and cloning of extracted metagenome DNA in a suitable host with subsequent functional screening and sequencing clone for detection of a novel gene. Although advances were made in metagenomics, different challenges arise. This review provides insight into advances in the metagenomic approaches combined with next-generation sequencing, their recent applications highlighting the emerging ones, such as in astrobiology, forensic sciences, and SARS-CoV-2 infection diagnosis, and the challenges associated. This review further discusses the different types of metagenomics and outlines advancements in bioinformatics tools and their significance in the analysis of metagenomic datasets.
Collapse
Affiliation(s)
- Niguse K Lema
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Department of Biotechnology, Arba Minch University, Arba Minch, Ethiopia
| | - Mesfin T Gemeda
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Adugna A Woldesemayat
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
- Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
| |
Collapse
|
6
|
Nnadi MO, Bingle L, Thomas K. Bacterial community dynamics and associated genes in hydrocarbon contaminated soil during bioremediation using brewery spent grain. Access Microbiol 2023; 5:acmi000519.v3. [PMID: 37424545 PMCID: PMC10323799 DOI: 10.1099/acmi.0.000519.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/05/2023] [Indexed: 07/11/2023] Open
Abstract
Brewery spent grain (BSG) has previously been exploited in bioremediation. However, detailed knowledge of the associated bacterial community dynamics and changes in relevant metabolites and genes over time is limited. This study investigated the bioremediation of diesel contaminated soil amended with BSG. We observed complete degradation of three total petroleum hydrocarbon (TPH C10-C28) fractions in amended treatments as compared to one fraction in the unamended, natural attenuation treatments. The biodegradation rate constant (k) was higher in amended treatments (0.1021k) than in unamended (0.059k), and bacterial colony forming units increased significantly in amended treatments. The degradation compounds observed fitted into the elucidated diesel degradation pathways and quantitative PCR results showed that the gene copy numbers of all three associated degradation genes, alkB, catA and xylE, were significantly higher in amended treatments. High-throughput sequencing of 16S rRNA gene amplicons showed that amendment with BSG enriched autochthonous hydrocarbon degraders. Also, community shifts of the genera Acinetobacter and Pseudomonas correlated with the abundance of catabolic genes and degradation compounds observed. This study showed that these two genera are present in BSG and thus may be associated with the enhanced biodegradation observed in amended treatments. The results suggest that the combined evaluation of TPH, microbiological, metabolite and genetic analysis provides a useful holistic approach to assessing bioremediation.
Collapse
Affiliation(s)
- Mabel Owupele Nnadi
- Faculty of Health Sciences & Wellbeing, University of Sunderland, Chester Road, Sunderland SR1 3SD, UK
| | - Lewis Bingle
- Faculty of Health Sciences & Wellbeing, University of Sunderland, Chester Road, Sunderland SR1 3SD, UK
| | - Keith Thomas
- Brewlab, Unit One, West Quay Court, Sunderland SR5 2TE, UK
| |
Collapse
|
7
|
Wei F, Xu R, Rao Q, Zhang S, Ma Z, Ma Y. Biodegradation of asphaltenes by an indigenous bioemulsifier-producing Pseudomonas stutzeri YWX-1 from shale oil in the Ordos Basin: Biochemical characterization and complete genome analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114551. [PMID: 36669280 DOI: 10.1016/j.ecoenv.2023.114551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Crude oil pollution is environmentally ubiquitous and has become a global public concern about its impact on human health. Asphaltenes are the key components of heavy crude oil (HCO) that are underutilized due to their high viscosity and density, and yet, the associated information about biodegradation is extremely limited in the literature. In the present study, an indigenous bacterium with effective asphaltene-degrading activity was isolated from oil shale and identified as Pseudomonas stutzeri by a polyphasic taxonomic approach, named YWX-1. Supplemented with 75 g L-1 heavy crude oil as the sole carbon source for growth in basic mineral salts liquid medium (MSM), strain YWX-1 was able to remove 49% of asphaletene fractions within 14 days, when it was cultivated with an initial inoculation size of 1%. During the degradation process, the bioemulsifier produced by strain YWX-1 could emulsify HCO obviously into particles, as well as it had the ability to solubilize asphaletenes. The bioemulsifier was identified to be a mixture of polysaccharide and protein through Fourier transform infrared spectroscopy (FT-IR). The genome of strain YWX-1 contains one circular chromosome of 4488441 bp with 63.98% GC content and 4145 protein coding genes without any plasmid. Further genome annotation indicated that strain YWX-1 possesses a serial of genes involved in bio-emulsification and asphaltenes biodegradation. This work suggested that P. stutzeri YWX-1 could be a promising species for bioremediation of HCO and its genome analysis provided insight into the molecular basis of asphaltene biodegradation and bioemulsifier production.
Collapse
Affiliation(s)
- Fengdan Wei
- College of Life Science, Northwest University, Xi´an, China
| | - Rui Xu
- College of Life Science, Northwest University, Xi´an, China
| | - Qingyan Rao
- College of Life Science, Northwest University, Xi´an, China
| | - Shuqi Zhang
- College of Life Science, Northwest University, Xi´an, China
| | - Zhiwei Ma
- College of Life Science, Northwest University, Xi´an, China
| | - Yanling Ma
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi´an, Shaanxi 710069, China; College of Life Science, Northwest University, 229 Tai bai North Rd, Xi´an, Shaanxi 710069, China.
| |
Collapse
|
8
|
Bekele GK, Gebrie SA, Abda EM, Sinshaw G, Haregu S, Negie ZW, Tafesse M, Assefa F. Kerosene Biodegradation by Highly Efficient Indigenous Bacteria Isolated From Hydrocarbon-Contaminated Sites. Microbiol Insights 2023; 16:11786361221150759. [PMID: 36895787 PMCID: PMC9989413 DOI: 10.1177/11786361221150759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/26/2022] [Indexed: 03/08/2023] Open
Abstract
Kerosene is widely used in Ethiopia as a household fuel (for lighting and heating), as a solvent in paint and grease, and as a lubricant in glass cutting. It causes environmental pollution and escorts to loss of ecological functioning and health problems. Therefore, this research was designed to isolate, identify, and characterize indigenous kerosene-degrading bacteria that are effective in cleaning ecological units that have been contaminated by kerosene. Soil samples were collected from hydrocarbon-contaminated sites (flower farms, garages, and old-aged asphalt roads) and spread-plated on mineral salt medium (Bushnell Hass Mineral Salts Agar Medium: BHMS), which consists of kerosene as the only carbon source. Seven kerosene-degrading bacterial species were isolated, 2 from flower farms, 3 from garage areas, and 2 from asphalt areas. Three genera from hydrocarbon-contaminated sites were identified, including Pseudomonas, Bacillus, and Acinetobacter using biochemical characterization and the Biolog database. Growth studies in the presence of various concentrations of kerosene (1% and 3% v/v) showed that the bacterial isolates could metabolize kerosene as energy and biomass. Thereby, a gravimetric study was performed on bacterial strains that proliferated well on a BHMS medium with kerosene. Remarkably, bacterial isolates were able to degrade 5% kerosene from 57.2% to 91% in 15 days. Moreover, 2 of the most potent isolates, AUG2 and AUG1, resulted in 85% and 91% kerosene degradation, respectively, when allowed to grow on a medium containing kerosene. In addition, 16S rRNA gene analysis indicated that strain AAUG1 belonged to Bacillus tequilensis, whereas isolate AAUG showed the highest similarity to Bacillus subtilis. Therefore, these indigenous bacterial isolates have the potential to be applied for kerosene removal from hydrocarbon-contaminated sites and the development of remediation approaches.
Collapse
Affiliation(s)
- Gessesse Kebede Bekele
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Solomon Abera Gebrie
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Ebrahim M Abda
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Gebiru Sinshaw
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Department of Biotechnology, Debre Berhan University, Addis Ababa, Ethiopia
| | - Simatsidk Haregu
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Zemene Worku Negie
- Department of Environmental Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Mesfin Tafesse
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.,Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Fasil Assefa
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Saeed M, Ilyas N, Jayachandran K, Shabir S, Akhtar N, Shahzad A, Sayyed RZ, Bano A. Advances in Biochar and PGPR engineering system for hydrocarbon degradation: A promising strategy for environmental remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119282. [PMID: 35413406 DOI: 10.1016/j.envpol.2022.119282] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 05/22/2023]
Abstract
In soil, polycyclic aromatic hydrocarbons (PAHs) have resulted in severe environmental deterioration, compromised soil characteristics, and negatively affect all life forms, including humans. Developing appropriate and effective clean-up technology is crucial in solving the contamination issues. The traditional methods to treat PHAs contaminated soil are less effective and not ecofriendly. Bioremediation, based on bioaugmentation and biostimulation approaches, is a promising strategy for remediating contaminated soil. The use of plant growth-promoting rhizobacteria (PGPR) as a bioaugmentation tool is an effective technique for treating hydrocarbon contaminated soil. Plant growth-promoting rhizobacteria (PGPR) are group of rhizospheric bacteria that colonize the roots of plants. Biochar is a carbon-rich residue, which acts as a source of nutrients, and is also a bio-stimulating candidate to enhance the activities of oil-degrading bacteria. The application of biochar as a nutrient source to bioremediate oil-contaminated soil is a promising approach for reducing PHA contamination. Biochar induces polyaromatic hydrocarbons (PAHs) immobilization and removes the contaminants by various methods such as ion exchange electrostatic attractions and volatilization. In comparison, PGPR produce multiple types of biosurfactants to enhance the adsorption of hydrocarbons and mineralize the hydrocarbons with the conversion to less toxic substances. During the last few decades, the use of PGPR and biochar in the bioremediation of hydrocarbons-contaminated soil has gained greater importance. Therefore, developing and applying a PGPR-biochar-based remediating system can help manage hazardous PAH contaminated soil. The goal of this review paper is to (i) provide an overview of the PGPR mechanism for degradation of hydrocarbons and (ii) discuss the contaminants absorbent by biochar and its characteristics (iii) critically discuss the combined effect of PGPR and biochar for degradation of hydrocarbons by decreasing their mobility and bioavailability. The present review focuses on techniques of bioaugmentation and biostimulation based on use of PGPR and biochar in remediating the oil-contaminated soil.
Collapse
Affiliation(s)
- Maimona Saeed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan; Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan.
| | | | - Sumera Shabir
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Nosheen Akhtar
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Asim Shahzad
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif AJ&K, Pakistan
| | - R Z Sayyed
- Department of Microbiology, P.S.G.V.P. Mandal's, Arts, Science, and Commerce College, Shahada, 425409, India
| | - Asghari Bano
- Department of Biosciences University of Wah, Quaid Avenue, Wah Cantt, Pakistan
| |
Collapse
|