1
|
Mouchati C, Durieux JC, Zisis SN, Tribout H, Scott S, Smith B, Labbato D, McComsey GA. Zinc Deficiency And sTNF-RII Are Associated With Worse COVID-19 Outcomes. J Nutr 2024; 154:1588-1595. [PMID: 38043624 PMCID: PMC11347801 DOI: 10.1016/j.tjnut.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Zinc (Zn) is known for its substantial involvement in the immune response as an antioxidant and anti-inflammatory agent. Zn plasma levels' clinical significance in coronavirus disease (COVID) diagnosis is not yet fully established. OBJECTIVE We assessed the association between Zn deficiency, gut integrity, inflammation, and COVID-19 outcomes. METHODS A prospective observational cohort in which plasma Zn, soluble tumor necrosis factor alpha receptor II (sTNF-RII) intestinal fatty-acid binding protein (IFABP; marker of intestinal integrity), and zonulin levels (intestinal permeability) were collected from participants during the acute phase of a confirmed COVID-19 diagnosis. Zn was modeled as continuous and binary, categorized as Zn deficiency (Zn < 75 μg/dL) and Zn sufficiency (Zn ≥ 75 μg/dL). COVID-19 outcomes were classified according to the World Health Organization clinical progression scale. We used cumulative probit regression to assess if suboptimal Zn levels, gut, and inflammatory markers increase the likelihood of worse COVID-19 outcomes. RESULTS Zn deficiency was independently associated with 63% higher predicted odds of worse COVID outcomes. Increases in sTNF-RII {unadjusted odds ratio (uOR): 3.43 [95% confidence interval (CI): 2.02, 5.82]} and zonulin [uOR: 1.83 (95% CI: 1.21, 2.76)] levels were associated with greater odds of worse COVID outcomes. IFABP was not associated with worse COVID outcomes [uOR: 1.12 (95% CI: 0.82, 1.53)] or acute Zn deficiency [uOR: 1.35 (95% CI: 0.79, 2.35)]. The adjusted predicted odds of worse COVID outcomes are 3-fold higher (P = 0.04) for every one-unit decrease in Zn and is more than 2 times greater odds of COVID severity (P = 0.01) for every 1-unit increase in sTNF-RII. CONCLUSION Zn deficiency and inflammation were independently associated with greater odds of worse COVID outcomes.
Collapse
Affiliation(s)
- Christian Mouchati
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jared C Durieux
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Sokratis N Zisis
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Heather Tribout
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Sarah Scott
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Beth Smith
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Danielle Labbato
- Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Grace A McComsey
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States; Center for Clinical Research, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.
| |
Collapse
|
2
|
Zhao L, Wei Y, Liu Q, Cai J, Mo X, Tang X, Wang X, Qin L, Liang Y, Cao J, Huang C, Lu Y, Zhang T, Luo L, Rong J, Wu S, Jin W, Guan Q, Teng K, Li Y, Qin J, Zhang Z. Association between multiple-heavy-metal exposures and systemic immune inflammation in a middle-aged and elderly Chinese general population. BMC Public Health 2024; 24:1192. [PMID: 38679723 PMCID: PMC11057124 DOI: 10.1186/s12889-024-18638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Exposure to heavy metals alone or in combination can promote systemic inflammation. The aim of this study was to investigate potential associations between multiple plasma heavy metals and markers of systemic immune inflammation. METHODS Using a cross-sectional study, routine blood tests were performed on 3355 participants in Guangxi, China. Eight heavy metal elements in plasma were determined by inductively coupled plasma mass spectrometry. Immunoinflammatory markers were calculated based on peripheral blood WBC and its subtype counts. A generalised linear regression model was used to analyse the association of each metal with the immunoinflammatory markers, and the association of the metal mixtures with the immunoinflammatory markers was further assessed using weighted quantile sum (WQS) regression. RESULTS In the single-metal model, plasma metal Fe (log10) was significantly negatively correlated with the levels of immune-inflammatory markers SII, NLR and PLR, and plasma metal Cu (log10) was significantly positively correlated with the levels of immune-inflammatory markers SII and PLR. In addition, plasma metal Mn (log10 conversion) was positively correlated with the levels of immune inflammatory markers NLR and PLR. The above associations remained after multiple corrections. In the mixed-metal model, after WQS regression analysis, plasma metal Cu was found to have the greatest weight in the positive effects of metal mixtures on SII and PLR, while plasma metals Mn and Fe had the greatest weight in the positive effects of metal mixtures on NLR and LMR, respectively. In addition, blood Fe had the greatest weight in the negative effects of the metal mixtures for SII, PLR and NLR. CONCLUSION Plasma metals Cu and Mn were positively correlated with immunoinflammatory markers SII, NLR and PLR. While plasma metal Fe was negatively correlated with immunoinflammatory markers SII, NLR, and PLR.
Collapse
Affiliation(s)
- Linhai Zhao
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yanfei Wei
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Qiumei Liu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiansheng Cai
- School of Public Health, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Xiaoting Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xu Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xuexiu Wang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lidong Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yujian Liang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiejing Cao
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chuwu Huang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yufu Lu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tiantian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lei Luo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiahui Rong
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Songju Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wenjia Jin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qinyi Guan
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Kaisheng Teng
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - You Li
- School of Public Health, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Jian Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Zhiyong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
- School of Public Health, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China.
- Guangxi Key Laboratory of Entire Lifecycle Health and Care, Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
3
|
Herrera-Quintana L, Vázquez-Lorente H, Gamarra-Morales Y, Molina-López J, Planells E. Evolution of Status of Trace Elements and Metallothioneins in Patients with COVID-19: Relationship with Clinical, Biochemical, and Inflammatory Parameters. Metabolites 2023; 13:931. [PMID: 37623875 PMCID: PMC10456601 DOI: 10.3390/metabo13080931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
The inflammatory reaction and pathogenesis of COVID-19 may be modulated by circulating trace elements (Iron (Fe), Zinc (Zn), Copper (Cu), Manganese (Mn)) and Metallothioneins (MTs). Thus, the present study aimed to investigate their relationship with clinical, biochemical, and inflammatory parameters in patients with COVID-19 at the early Intensive Care Unit (ICU) phase. Critically ill patients (n = 86) were monitored from the first day of ICU admission until the third day of stay. Serum samples were used to assess mineral levels via Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and MT levels via differential pulse voltammetry. Levels of Cu and MTs were significantly decreased after 3 days (p < 0.05), increasing the prevalence of Cu-deficient values from 50% to 65.3% (p = 0.015). Fe and Zn were shown to have a predictive value for mortality and severity. The present study suggests trace element deficiency may be a risk factor during early ICU treatment of COVID-19, as it is related to different biochemical and clinical parameters, indicating a possible beneficial effect of restoring proper levels of these micronutrients.
Collapse
Affiliation(s)
- Lourdes Herrera-Quintana
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18071 Granada, Spain;
| | - Héctor Vázquez-Lorente
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18071 Granada, Spain;
| | | | - Jorge Molina-López
- Faculty of Education, Psychology and Sports Sciences, University of Huelva, 21007 Huelva, Spain;
| | - Elena Planells
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18071 Granada, Spain;
| |
Collapse
|
4
|
Roldán-Bretón NR, Capuchino-Suárez AG, Mejía-León ME, Olvera-Sandoval C, Lima-Sánchez DN. Selenium serum levels in patients with SARS-CoV-2 infection: a systematic review and meta-analysis. J Nutr Sci 2023; 12:e86. [PMID: 37528833 PMCID: PMC10388439 DOI: 10.1017/jns.2023.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 08/03/2023] Open
Abstract
The nutritional status is a determinant of the immune response that promotes a cellular homeostasis. In particular, adequate selenium levels lead to a better antioxidant and immune response. The aim of this work is to assess whether blood selenium levels, at time of SARS-CoV-2 infection, have an impact on the development and severity of COVID-19. A systematic review and meta-analysis of comparative and descriptive studies using MeSH terms, selenium and COVID-19 was performed. We searched bibliographic databases up to 17 July 2022 in PubMed and ScienceDirect. Studies that reported data on blood selenium levels were considered. A total of 629 articles were examined by abstract and title, of which 595 abstracts were read, of which 38 were included in the systematic review and 11 in the meta-analysis. Meta-analysis was conducted to mean difference (MD) with a 95 % confidence interval (CI), and heterogeneity was tested by I2 with random factors with a MD between selenium levels, mortality, morbidity and healthy subjects with a P-value of 0⋅05. Selenium levels were higher in healthy people compared to those in patients with COVID-19 disease (six studies, random effects MD: test for overall effect Z = 3⋅28 (P = 0⋅001), 97 % CI 28⋅36 (11⋅41-45⋅31), P < 0⋅00001), but without difference when compared with the degree of severity in mild, moderate or severe cases. In conclusion, the patients with active SARS-CoV-2 infection had lower selenium levels than the healthy population. More studies are needed to evaluate its impact on clinical severity through randomised clinical trials.
Collapse
Affiliation(s)
| | | | - María Esther Mejía-León
- Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Baja California, Mexico
| | - Carlos Olvera-Sandoval
- Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Baja California, Mexico
| | - Dania Nimbe Lima-Sánchez
- Department of Biomedical Informatics, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
5
|
Ambra R, Melloni S, Venneria E. Could Selenium Supplementation Prevent COVID-19? A Comprehensive Review of Available Studies. Molecules 2023; 28:molecules28104130. [PMID: 37241870 DOI: 10.3390/molecules28104130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The purpose of this review is to systematically examine the scientific evidence investigating selenium's relationship with COVID-19, aiming to support, or refute, the growing hypothesis that supplementation could prevent COVID-19 etiopathogenesis. In fact, immediately after the beginning of the COVID-19 pandemic, several speculative reviews suggested that selenium supplementation in the general population could act as a silver bullet to limit or even prevent the disease. Instead, a deep reading of the scientific reports on selenium and COVID-19 that are available to date supports neither the specific role of selenium in COVID-19 severity, nor the role of its supplementation in the prevention disease onset, nor its etiology.
Collapse
Affiliation(s)
- Roberto Ambra
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Sahara Melloni
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Eugenia Venneria
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA)-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
6
|
Selenium, Stroke, and Infection: A Threefold Relationship; Where Do We Stand and Where Do We Go? Nutrients 2023; 15:nu15061405. [PMID: 36986135 PMCID: PMC10054895 DOI: 10.3390/nu15061405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Stroke is currently the second most common cause of death worldwide and a major cause of serious long-term morbidity. Selenium is a trace element with pleotropic effects on human health. Selenium deficiency has been associated with a prothrombotic state and poor immune response, particularly during infection. Our aim was to synthesize current evidence on the tripartite interrelationship between selenium levels, stroke, and infection. Although evidence is contradictory, most studies support the association between lower serum selenium levels and stroke risk and outcomes. Conversely, limited evidence on the role of selenium supplementation in stroke indicates a potentially beneficial effect of selenium. Notably, the relationship between stroke risk and selenium levels is bimodal rather than linear, with higher levels of serum selenium linked to disturbances of glucose metabolism and high blood pressure, morbidities which are, in turn, substrates for stroke. Another such substrate is an infection, albeit forming a bidirectional relationship with both stroke and the consequences of impaired selenium metabolism. Perturbed selenium homeostasis leads to impaired immune fitness and antioxidant capacity, which both favor infection and inflammation; specific pathogens may also contend with the host for transcriptional control of the selenoproteome, adding a feed-forward loop to this described process. Broader consequences of infection such as endothelial dysfunction, hypercoagulation, and emergent cardiac dysfunction both provide stroke substrates and further feed-forward feedback to the consequences of deficient selenium metabolism. In this review, we provide a synthesis and interpretation of these outlined complex interrelationships that link selenium, stroke, and infection and attempt to decipher their potential impact on human health and disease. Selenium and the unique properties of its proteome could provide both biomarkers and treatment options in patients with stroke, infection, or both.
Collapse
|
7
|
Golin A, Tinkov AA, Aschner M, Farina M, da Rocha JBT. Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: A critical review. J Trace Elem Med Biol 2023; 75:127099. [PMID: 36372013 PMCID: PMC9630303 DOI: 10.1016/j.jtemb.2022.127099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The antioxidant effects of selenium as a component of selenoproteins has been thought to modulate host immunity and viral pathogenesis. Accordingly, the association of low dietary selenium status with inflammatory and immunodeficiency has been reported in the literature; however, the causal role of selenium deficiency in chronic inflammatory diseases and viral infection is still undefined. The COVID-19, characterized by acute respiratory syndrome and caused by the novel coronavirus 2, SARS-CoV-2, has infected millions of individuals worldwide since late 2019. The severity and mortality from COVID-19 have been associated with several factor, including age, sex and selenium deficiency. However, available data on selenium status and COVID-19 are limited, and a possible causative role for selenium deficiency in COVID-19 severity has yet to be fully addressed. In this context, we review the relationship between selenium, selenoproteins, COVID-19, immune and inflammatory responses, viral infection, and aging. Regardless of the role of selenium in immune and inflammatory responses, we emphasize that selenium supplementation should be indicated after a selenium deficiency be detected, particularly, in view of the critical role played by selenoproteins in human health. In addition, the levels of selenium should be monitored after the start of supplementation and discontinued as soon as normal levels are reached. Periodic assessment of selenium levels after supplementation is a critical issue to avoid over production of toxic metabolites of selenide because under normal conditions, selenoproteins attain saturated expression levels that limits their potential deleterious metabolic effects.
Collapse
Affiliation(s)
- Anieli Golin
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia; Institute of Bioelementology, Orenburg, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil; Departamento de Bioquímica, Instituto Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Taha AM, Shaarawy AS, Omar MM, Abouelmagd K, Shalma NM, Alhashemi M, Ahmed HM, Allam AH, Abd-ElGawad M. Effect of Omega-3 fatty acids supplementation on serum level of C-reactive protein in patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials. J Transl Med 2022; 20:401. [PMID: 36064554 PMCID: PMC9444081 DOI: 10.1186/s12967-022-03604-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 01/08/2023] Open
Abstract
Background Omega-3 may alleviate the severity of coronavirus disease 2019 (COVID-19) by reducing the C-reactive protein (CRP) level, a marker for systemic inflammation. Because the scientific evidence indicating such a role is inconsistent, we aimed to evaluate the effect of Omega-3 on CRP change and CRP level in patients with COVID-19. Methods We conducted a comprehensive search on four databases (PubMed, Web of Science, EMBASE, and Scopus). We included all RCTs comparing Omega-3 with a control group regarding their effect on the CRP levels in patients with COVID-19. We used version two of the Cochrane risk of bias assessment tool to appraise the included studies. We extracted data to an online data extraction sheet. The primary outcomes were CRP change from baseline and CRP serum levels. Results We included four randomized controlled trials (RCTs) with 274 patients in this study. The overall effect estimate favored Omega-3 over the control group in terms of CRP change from baseline (mean difference (MD) =− 2.53, 95% confidence interval (CI): − 4.40, − 0.66) and CRP serum levels at the end of the study (MD =− 6.24, 95% CI: − 11.93, − 0.54). Conclusion Omega-3 showed promising effects on systemic inflammation by reducing CRP levels in COVID-19 patients. Based on this finding, we recommend Omega-3 for COVID-19 patients for its anti-inflammatory actions. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03604-3.
Collapse
Affiliation(s)
- Amira Mohamed Taha
- Faculty of Medicine, Fayoum University, Postal address; Bank street, Talat, Fayoum, 63622, Egypt.
| | | | | | | | | | - Mais Alhashemi
- Faculty of Medicine, University of Aleppo, Aleppo, Syria
| | | | - Ahmed Hafez Allam
- Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | | |
Collapse
|