1
|
Mohammad F, Pandith AA, Rasool SUA, Guru FR, Qasim I, Geelani S, Nisar S, Baba SM, Ganie FA, Kouser S, Rasool J. Significance and implications of FHIT gene expression and promoter hypermethylation in acute lymphoblastic leukemia (ALL). Discov Oncol 2024; 15:108. [PMID: 38587694 PMCID: PMC11001825 DOI: 10.1007/s12672-024-00971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Fragile histidine triad (FHIT) has been documented to play a vital role in various cancers including acute lymphoblastic leukemia (ALL). Keeping in view the plausible role of FHIT gene, we aimed to examine DNA promoter hypermethylation and mRNA expression in ALL cases in Kashmir (North India). METHODS A total of 66 cases of ALL were analyzed for FHIT mRNA expression and promoter methylation by qRT-PCR and Methylation Specific-PCR (MS-PCR) respectively. RESULTS FHIT mRNA expression showed significantly decreased expression in ALL cases with mean fold change of 9.24 ± 5.44 as compared to healthy controls (p = 0.01). The pattern of FHIT deregulation in ALL cases differed significantly between decreased and increased expression (p < 0.0001). A threefold decreased expression was observed in 75% of ALL cases than healthy controls (- 3.58 ± 2.32). ALL patients with FHIT gene promoter hypermethylation presented significantly higher in 80% (53/66) of cases (p = 0.0005). The association of FHIT gene hypermethylation and its subsequent expression showed FHIT mRNA expression as significantly lower in ALL cases with hypermethylation (p = 0.0008). B-ALL cases exhibited a highly significant association between the methylation pattern and its mRNA expression (p = 0.000). In low range WBC group, a significant association was found between increased expression (26%) of the cases and methylated (4%)/unmethylated group 86% (p = 0.0006). CONCLUSION The present study conclude that FHIT gene hypermethylation and its altered expression may be linked in the pathogenesis of ALL and provide an evidence for the role of FHIT in the development of ALL.
Collapse
Affiliation(s)
- Fozia Mohammad
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Arshad A Pandith
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India.
| | - Shayaq Ul Abeer Rasool
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
| | - Faisal R Guru
- Department of Medical Oncology, SKIMS, Srinagar, J&K,, 190011, India
| | - Iqbal Qasim
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
| | - Sajad Geelani
- Department of Hematology, SKIMS, Srinagar, 190011, J&K, India
| | - Syed Nisar
- Department of Medical Oncology, SKIMS, Srinagar, J&K,, 190011, India
| | - Shahid M Baba
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
- Department of Urology, SKIMS, Srinagar, 190011, J&K, India
| | | | - Safiya Kouser
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
| | - Javid Rasool
- Department of Hematology, SKIMS, Srinagar, 190011, J&K, India
| |
Collapse
|
2
|
Feng S, Yuan Y, Lin Z, Li M, Ye D, Shi L, Li D, Zhao M, Meng C, He X, Wu S, Xiong F, Ye S, Yang J, Zhuang H, Hong L, Gao S. Low-dose hypomethylating agents cooperate with ferroptosis inducers to enhance ferroptosis by regulating the DNA methylation-mediated MAGEA6-AMPK-SLC7A11-GPX4 signaling pathway in acute myeloid leukemia. Exp Hematol Oncol 2024; 13:19. [PMID: 38378601 PMCID: PMC10877917 DOI: 10.1186/s40164-024-00489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Ferroptosis is a new form of nonapoptotic and iron-dependent type of cell death. Glutathione peroxidase-4 (GPX4) plays an essential role in anti-ferroptosis by reducing lipid peroxidation. Although acute myeloid leukemia (AML) cells, especially relapsed and refractory (R/R)-AML, present high GPX4 levels and enzyme activities, pharmacological inhibition of GPX4 alone has limited application in AML. Thus, whether inhibition of GPX4 combined with other therapeutic reagents has effective application in AML is largely unknown. METHODS Lipid reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH) assays were used to assess ferroptosis in AML cells treated with the hypomethylating agent (HMA) decitabine (DAC), ferroptosis-inducer (FIN) RAS-selective lethal 3 (RSL3), or their combination. Combination index (CI) analysis was used to assess the synergistic activity of DAC + RSL3 against AML cells. Finally, we evaluated the synergistic activity of DAC + RSL3 in murine AML and a human R/R-AML-xenografted NSG model in vivo. RESULTS We first assessed GPX4 expression and found that GPX4 levels were higher in AML cells, especially those with MLL rearrangements, than in NCs. Knockdown of GPX4 by shRNA and indirect inhibition of GPX4 enzyme activity by RSL3 robustly induced ferroptosis in AML cells. To reduce the dose of RSL3 and avoid side effects, low doses of DAC (0.5 µM) and RSL3 (0.05 µM) synergistically facilitate ferroptosis by inhibiting the AMP-activated protein kinase (AMPK)-SLC7A11-GPX4 axis. Knockdown of AMPK by shRNA enhanced ferroptosis, and overexpression of SLC7A11 and GPX4 rescued DAC + RSL3-induced anti-leukemogenesis. Mechanistically, DAC increased the expression of MAGEA6 by reducing MAGEA6 promoter hypermethylation. Overexpression of MAGEA6 induced the degradation of AMPK, suggesting that DAC inhibits the AMPK-SLC7A11-GPX4 axis by increasing MAGEA6 expression. In addition, DAC + RSL3 synergistically reduced leukemic burden and extended overall survival compared with either DAC or RSL3 treatment in the MLL-AF9-transformed murine model. Finally, DAC + RSL3 synergistically reduced viability in untreated and R/R-AML cells and extended overall survival in two R/R-AML-xenografted NSG mouse models. CONCLUSIONS Our study first identify vulnerability to ferroptosis by regulating MAGEA6-AMPK-SLC7A11-GPX4 signaling pathway. Combined treatment with HMAs and FINs provides a potential therapeutic choice for AML patients, especially for R/R-AML.
Collapse
Affiliation(s)
- Shuya Feng
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Yigang Yuan
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Zihan Lin
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Min Li
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Daijiao Ye
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Liuzhi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Danyang Li
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Min Zhao
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Chen Meng
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Xiaofei He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Shanshan Wu
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Fang Xiong
- The Children's Hospital of Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, 310051, Zhejiang Province, China
| | - Siyu Ye
- School of Marine Sciences, Ningbo University, 818 Fenghua Road, Jiangbei District, Ningbo, Zhejiang Province, China
| | - Junjun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 Xuanyuanxi Road, Wenzhou, Zhejiang Province, China
| | - Haifeng Zhuang
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Post Road, Hangzhou, Zhejiang Province, China
| | - Lili Hong
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Post Road, Hangzhou, Zhejiang Province, China.
| | - Shenmeng Gao
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China.
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 Xuanyuanxi Road, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Xu H, Yu H, Jin R, Wu X, Chen H. Genetic and Epigenetic Targeting Therapy for Pediatric Acute Lymphoblastic Leukemia. Cells 2021; 10:cells10123349. [PMID: 34943855 PMCID: PMC8699354 DOI: 10.3390/cells10123349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Acute lymphoblastic leukemia is the most common malignancy in children and is characterized by numerous genetic and epigenetic abnormalities. Epigenetic mechanisms, including DNA methylations and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. Emerging studies are increasing our understanding of the epigenetic role of leukemogenesis and have demonstrated the potential of DNA methylations and histone modifications as a biomarker for lineage and subtypes classification, predicting relapse, and disease progression in acute lymphoblastic leukemia. Epigenetic abnormalities are relatively reversible when treated with some small molecule-based agents compared to genetic alterations. In this review, we conclude the genetic and epigenetic characteristics in ALL and discuss the future role of DNA methylation and histone modifications in predicting relapse, finally focus on the individual and precision therapy targeting epigenetic alterations.
Collapse
|
4
|
Bellon M, Bialuk I, Galli V, Bai XT, Farre L, Bittencourt A, Marçais A, Petrus MN, Ratner L, Waldmann TA, Asnafi V, Gessain A, Matsuoka M, Franchini G, Hermine O, Watanabe T, Nicot C. Germinal epimutation of Fragile Histidine Triad (FHIT) gene is associated with progression to acute and chronic adult T-cell leukemia diseases. Mol Cancer 2021; 20:86. [PMID: 34092254 PMCID: PMC8183032 DOI: 10.1186/s12943-021-01370-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human T cell Leukemia virus type 1 (HTLV-I) is etiologically linked to adult T cell leukemia/lymphoma (ATL) and an inflammatory neurodegenerative disease called HTLV-I-associated myelopathy or tropical spastic paraparesis (HAM/TSP). The exact genetic or epigenetic events and/or environmental factors that influence the development of ATL, or HAM/TSP diseases are largely unknown. The tumor suppressor gene, Fragile Histidine Triad Diadenosine Triphosphatase (FHIT), is frequently lost in cancer through epigenetic modifications and/or deletion. FHIT is a tumor suppressor acting as genome caretaker by regulating cellular DNA repair. Indeed, FHIT loss leads to replicative stress and accumulation of double DNA strand breaks. Therefore, loss of FHIT expression plays a key role in cellular transformation. METHODS Here, we studied over 400 samples from HTLV-I-infected individuals with ATL, TSP/HAM, or asymptomatic carriers (AC) for FHIT loss and expression. We examined the epigenetic status of FHIT through methylation specific PCR and bisulfite sequencing; and correlated these results to FHIT expression in patient samples. RESULTS We found that epigenetic alteration of FHIT is specifically found in chronic and acute ATL but is absent in asymptomatic HTLV-I carriers and TSP/HAM patients' samples. Furthermore, the extent of FHIT methylation in ATL patients was quantitatively comparable in virus-infected and virus non-infected cells. We also found that longitudinal HTLV-I carriers that progressed to smoldering ATL and descendants of ATL patients harbor FHIT methylation. CONCLUSIONS These results suggest that germinal epigenetic mutation of FHIT represents a preexisting mark predisposing to the development of ATL diseases. These findings have important clinical implications as patients with acute ATL are rarely cured. Our study suggests an alternative strategy to the current "wait and see approach" in that early screening of HTLV-I-infected individuals for germinal epimutation of FHIT and early treatment may offer significant clinical benefits.
Collapse
Affiliation(s)
- Marcia Bellon
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Izabela Bialuk
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xue-Tao Bai
- Comprehensive Cancer Center, Department of Health Sciences, Ohio State University, Columbus, OH, USA
| | - Lourdes Farre
- Program in Molecular Mechanisms and Experimental Therapy in Oncology, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Achilea Bittencourt
- Department of Pathology, Prof. Edgard Santos Teaching Hospital, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Ambroise Marçais
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Laboratoire Onco-Hématologie, Paris, France
| | - Michael N Petrus
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lee Ratner
- Division of Oncology, Department of Medicine, Washington University, St Louis, MO, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vahid Asnafi
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151 Laboratoire Onco-Hematology, Paris, France
| | - Antoine Gessain
- Unité d'épidémiologie et de Physiopathologie des virus Oncogene, Institut Pasteur, 75015, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 3569, 75015, Paris, France
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Hematology, Rheumatology, and Infectious Disease, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olivier Hermine
- Institut Necker-Enfants Malades, Institut National de la Santé et de la Recherche Médicale U1151, Laboratoire Onco-Hématologie, Paris, France
| | - Toshiki Watanabe
- Department of Hematology/Oncology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
5
|
Friedemann M, Gutewort K, Thiem D, Nacke B, Jandeck C, Lange BS, Sukocheva O, Suttorp M, Menschikowski M. Methylation of the Phospholipase A2 Receptor 1 Promoter Region in Childhood B Cell Acute Lymphoblastic Leukaemia. Sci Rep 2020; 10:9058. [PMID: 32493972 PMCID: PMC7270080 DOI: 10.1038/s41598-020-65825-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/05/2020] [Indexed: 02/08/2023] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common form of paediatric cancer and epigenetic aberrations are determinants of leukaemogenesis. The aim of this study was to investigate the methylation degree of a distinct phospholipase A2 receptor 1 (PLA2R1) promoter region in paediatric ALL patients and to evaluate its relevance as new biomarker for monitoring treatment response and burden of residual disease. The impact of PLA2R1 re-expression on proliferative parameters was assessed in vitro in Jurkat cells with PLA2R1 naturally silenced by DNA methylation. Genomic DNA was isolated from bone marrow (BM) and peripheral blood (PB) of 44 paediatric ALL patients. PLA2R1 methylation was analysed using digital PCR and compared to 20 healthy controls. Transfected Jurkat cells were investigated using cell growth curve analysis and flow cytometry. PLA2R1 was found hypermethylated in BM and PB from pre-B and common ALL patients, and in patients with the disease relapse. PLA2R1 methylation decreased along with leukaemic blast cell reduction during ALL induction treatment. In vitro analysis revealed an anti-proliferative phenotype associated with PLA2R1 re-expression, suggesting a tumour-suppressive function of PLA2R1. Collected data indicates that PLA2R1 promoter methylation quantitation can be used as biomarker for ALL induction treatment control, risk stratification, and early detection of ALL relapse.
Collapse
Affiliation(s)
- Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307, Dresden, Germany
| | - Katharina Gutewort
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307, Dresden, Germany
| | - Dana Thiem
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307, Dresden, Germany
| | - Brit Nacke
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307, Dresden, Germany
| | - Carsten Jandeck
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307, Dresden, Germany
| | - Björn Sönke Lange
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307, Dresden, Germany
| | - Olga Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, 5042, Australia
| | - Meinolf Suttorp
- Medical Faculty, Paediatric Haemato-Oncology, Technical University, 01307, Dresden, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307, Dresden, Germany.
| |
Collapse
|
6
|
Raboso-Gallego J, Casado-García A, Isidro-Hernández M, Vicente-Dueñas C. Epigenetic Priming in Childhood Acute Lymphoblastic Leukemia. Front Cell Dev Biol 2019; 7:137. [PMID: 31380372 PMCID: PMC6652134 DOI: 10.3389/fcell.2019.00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 01/28/2023] Open
Abstract
Leukemogenesis is considered to be a process by which a normal cell acquires new but aberrant identity in order to disseminate a malignant clonal population. Under this setting, the phenotype of the leukemic cells is identical to the leukemia-initiating cell in which the genetic insult is taking place. Thus, with some exceptions, B-cell and T-cell childhood leukemias are supposed to arise from B- or T-committed cells. In contrast, several recent studies have revealed that genetic alterations may act in a “hit-and-run” way in the cell-of-origin by imposing the tumor cell identity giving rise to either B-cell or T-cell leukemias. This novel mechanism of cell transformation is mediated by an epigenetic priming mechanism that is established by the initial genetic lesion. This initial hit might be unnecessary for the subsequent tumor evolution and conservation, being the epigenetic priming the engine for the tumor evolution.
Collapse
Affiliation(s)
- Javier Raboso-Gallego
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ana Casado-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Marta Isidro-Hernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | |
Collapse
|
7
|
Ramos KN, Ramos IN, Zeng Y, Ramos KS. Genetics and epigenetics of pediatric leukemia in the era of precision medicine. F1000Res 2018; 7. [PMID: 30079227 PMCID: PMC6053694 DOI: 10.12688/f1000research.14634.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 01/06/2023] Open
Abstract
Pediatric leukemia represents a heterogeneous group of diseases characterized by germline and somatic mutations that manifest within the context of disturbances in the epigenetic machinery and genetic regulation. Advances in genomic medicine have allowed finer resolution of genetic and epigenetic strategies that can be effectively used to risk-stratify patients and identify novel targets for therapy. This review discusses the genetic and epigenetic mechanisms of leukemogenesis, particularly as it relates to acute lymphocytic leukemias, the mechanisms of epigenetic control of leukemogenesis, namely DNA methylation, histone modifications, microRNAs, and LINE-1 retroelements, and highlights opportunities for precision medicine therapeutics in further guiding disease management. Future efforts to broaden the integration of advances in genomic and epigenomic science into the practice of pediatric oncology will not only identify novel therapeutic strategies to improve clinical outcomes but also improve the quality of life for this unique patient population. Recent findings in precision therapeutics of acute lymphocytic leukemias over the past three years, along with some provocative areas of epigenetics research, are reviewed here.
Collapse
Affiliation(s)
- Kristie N Ramos
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine-Tucson, Tucson, USA
| | - Irma N Ramos
- Department of Promotion Health Sciences, University of Arizona Mel and Enid Zucherman College of Public Health, Tucson, USA
| | - Yi Zeng
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Arizona College of Medicine-Tucson, Tucson, USA.,University of Arizona Cancer Center, Tucson, USA
| | - Kenneth S Ramos
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine-Tucson, Tucson, USA.,University of Arizona Cancer Center, Tucson, USA.,Department of Medicine, Division of Clinical Support and Data Analytics, University of Arizona College of Medicine-Phoenix, Phoenix, USA
| |
Collapse
|
8
|
Nordlund J, Syvänen AC. Epigenetics in pediatric acute lymphoblastic leukemia. Semin Cancer Biol 2017; 51:129-138. [PMID: 28887175 DOI: 10.1016/j.semcancer.2017.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/21/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. ALL arises from the malignant transformation of progenitor B- and T-cells in the bone marrow into leukemic cells, but the mechanisms underlying this transformation are not well understood. Recent technical advances and decreasing costs of methods for high-throughput DNA sequencing and SNP genotyping have stimulated systematic studies of the epigenetic changes in leukemic cells from pediatric ALL patients. The results emerging from these studies are increasing our understanding of the epigenetic component of leukemogenesis and have demonstrated the potential of DNA methylation as a biomarker for lineage and subtype classification, prognostication, and disease progression in ALL. In this review, we provide a concise examination of the epigenetic studies in ALL, with a focus on DNA methylation and mutations perturbing genes involved in chromatin modification, and discuss the future role of epigenetic analyses in research and clinical management of ALL.
Collapse
Affiliation(s)
- Jessica Nordlund
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Sweden.
| | - Ann-Christine Syvänen
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
9
|
Navarrete-Meneses MDP, Pérez-Vera P. Alteraciones epigenéticas en leucemia linfoblástica aguda. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2017; 74:243-264. [DOI: 10.1016/j.bmhimx.2017.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022] Open
|
10
|
|
11
|
Mai H, Liu X, Chen Y, Li C, Cao L, Chen X, Chen S, Liu G, Wen F. Hypermethylation of p15 gene associated with an inferior poor long-term outcome in childhood acute lymphoblastic leukemia. J Cancer Res Clin Oncol 2016; 142:497-504. [PMID: 26501552 DOI: 10.1007/s00432-015-2063-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE To quantitate methylation of the CpG island of the promoter region of the p15 gene in childhood acute lymphoblastic leukemia (ALL) and explore its effect on prognosis. METHODS We assessed methylation of the CpG island on the p15 gene in bone marrow mononuclear cells in 93 ALL cases and in a control group of 20 children with idiopathic thrombocytopenia (ITP) by restriction enzyme Eco52I digestion combined with polymerase chain reaction techniques. We explored the effect of varying levels of methylation on event-free survival (EFS). RESULTS The mean methylation level was 25 % in de novo ALL and significantly higher than the control group 2 %, P < 0.01). Forty-two percent of cases (39/93) had hypermethylation (level over 10 %). Fifty-seven percent (12/21) and 38 % (27/72) T- and precursor-B ALL patients had hypermethylation (not significant). For all patients, the 8-year EFS was (83 ± 4) %, standard risk (91 ± 4) %, intermediate risk (IR) (82 ± 5) %, and high risk (HR) (43 ± 19) % (χ(2) = 11.58, P < 0.01). Hypermethylation was associated with a lower 8-year EFS (71 ± 7 vs. 91 ± 4 %, P = 0.02) in univariate analyses. CONCLUSIONS Children with ALL have higher levels of p15 CpG island methylation than a control group of children with ITP. Among children with ALL, hypermethylation was associated with inferior EFS. Higher levels of p15 CpG island methylation may be a poor prognostic marker in childhood ALL.
Collapse
|
12
|
Wu X, Wu G, Yao X, Hou G, Jiang F. The clinicopathological significance and ethnic difference of FHIT hypermethylation in non-small-cell lung carcinoma: a meta-analysis and literature review. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:699-709. [PMID: 26929601 PMCID: PMC4760666 DOI: 10.2147/dddt.s85253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging evidence indicates that FHIT is a candidate tumor suppressor in many types of tumors including non-small-cell lung carcinoma (NSCLC). However, the prognostic value and correlation between FHIT hypermethylation and clinicopathological characteristics of NSCLC remains unclear. In this report, we performed a meta-analysis to evaluate the effects of FHIT hypermethylation on the incidence of NSCLC and clinicopathological characteristics of human NSCLC patients. Final analysis of 1,801 NSCLC patients from 18 eligible studies was performed. FHIT hypermethylation was found to be significantly higher in NSCLC than in normal lung tissue. The pooled odds ratio (OR) from ten studies included 819 NSCLC and 792 normal lung tissues (OR =7.51, 95% confidence interval [CI] =2.98-18.91, P<0.0001). Subgroup analysis based on ethnicity implied that FHIT hypermethylation level was higher in NSCLC tissues than in normal tissues in both Caucasians (P=0.02) and Asians (P<0.0001), indicating that the difference in Asians was much more significant. FHIT hypermethylation was also correlated with sex status, smoking status, as well as pathological types. In addition, patients with FHIT hypermethylation had a lower survival rate than those without (hazard ratio =1.73, 95% CI =1.10-2.71, P=0.02). The results of this meta-analysis suggest that FHIT hypermethylation is associated with an increased risk and poor survival in NSCLC patients. FHIT hypermethylation, which induces the inactivation of FHIT gene, plays an important role in the carcinogenesis and clinical outcome and may serve as a potential diagnostic marker and drug target of NSCLC.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Guannan Wu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Xuequan Yao
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Gang Hou
- Department of Respiratory Medicine, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
The clinicopathological significance of FHIT hypermethylation in non-small cell lung cancer, a meta-analysis and literature review. Sci Rep 2016; 6:19303. [PMID: 26796853 PMCID: PMC4726317 DOI: 10.1038/srep19303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 11/18/2015] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence indicates that FHIT is a candidate tumor suppressor in non-small cell lung cancer (NSCLC). However, the correlation between FHIT hypermethylation and clinicopathological characteristics of NSCLC remains unclear. Thus, we conducted a meta-analysis to quantitatively evaluate the effects of FHIT hypermethylation on the incidence of NSCLC and clinicopathological characteristics. Final analysis of 1717 NSCLC patients from 16 eligible studies was performed. FHIT hypermethylation was found to be significantly higher in NSCLC than in normal lung tissue, the pooled OR from 8 studies including 735 NSCLC and 708 normal lung tissue, OR = 5.45, 95% CI = 2.15-13.79, p = 0.0003. FHIT hypermethylation was also correlated with sex status, smoking status, as well as pathological types. We did not find that FHIT hypermethylation was correlated with the differentiated types or clinical stages in NSCLC patients. However, patients with FHIT hypermethylation had a lower survival rate than those without, HR = 1.73, 95% CI = 1.10-2.71, p = 0.02. The results of this meta-analysis suggest that FHIT hypermethylation is associated with an increased risk and worsen survival in NSCLC patients. FHIT hypermethylation, which induces the inactivation of FHIT gene, plays an important role in the carcinogenesis and clinical outcome and may serve as a potential drug target of NSCLC.
Collapse
|
14
|
Malak CAA, Elghanam DM, Elbossaty WF. FHIT Gene Expression in Acute Lymphoblastic Leukemia and its Clinical Significance. Asian Pac J Cancer Prev 2016; 16:8197-201. [PMID: 26745060 DOI: 10.7314/apjcp.2015.16.18.8197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the expression of the fragile histidine triad (FHIT) gene in acute lymphoblastic leukemia and its clinical significance. MATERIALS AND METHODS The level of expressed FHIT mRNA in peripheral blood from 50 patients with acute lymphoblastic leukemia (ALL) and in 50 peripheral blood samples from healthy volunteers was measured via RT-PCR. Correlation analyses between FHIT gene expression and clinical characteristics (gender, age, white blood count, immunophenotype of acute lymphoblastic leukemia and percentage of blast cells) of the patients were performed. RESULTS The FHIT gene was expressed at 2.49±7.37 of ALL patients against 14.4±17.9 in the healthy volunteers. The difference in the expression levels between ALL patients and healthy volunteers was statistically significant. The rate of gene expression did not significantly vary with immunophenotype subtypes. Gene expression was also found to be correlated with increase of total leukocyte and decrease in platelets, but not with age, gender, immunophenotyping or percentage of blast cells. CONCLUSIONS FHIT gene expression is low in acute lymphoblastic leukemia and could be a useful marker to monitor minimal residual disease. This gene is also a candidate target for the immunotherapy of acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Camelia A Abdel Malak
- Department of Chemistry, Biochemistry Division, Faculty of Science, Damietta University, Damietta, Egypt E-mail :
| | | | | |
Collapse
|
15
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Zaki SM, Abdel-Azeez HA, El Nagar MR, Metwally KAA, S Ahmed MMS. Analysis of FHIT gene methylation in egyptian breast cancer women: association with clinicopathological features. Asian Pac J Cancer Prev 2015; 16:1235-9. [PMID: 25735361 DOI: 10.7314/apjcp.2015.16.3.1235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fragile histidine triad (FHIT) gene is a tumor suppressor gene which involved in breast cancer pathogenesis. Epigenetics alterations in FHIT contributes to tumorigenesis of breast cancer. OBJECTIVE Our objective was to study FHIT promoter region hypermethylation in Egyptian breast cancer patients and its association with clinicopathological features. MATERIALS AND METHODS Methylation-specific polymerase chain reaction was performed to study the hypermethylation of FHIT promoter region in 20 benign breast tissues and 30 breast cancer tissues. RESULTS The frequency of hypermethylation of FHIT promoter region was significantly increased in breast cancer patients compared to bengin breast disease patients. The Odd ?s ratio (95%CI) of development of breast cancer in individuals with FHIT promoter hypermethylation (MM) was 11.0 (1.22-250.8). There were also significant associations between FHIT promoter hypermethylation and estrogen, progesterone receptors negativity, tumor stage and nodal involvment in breast cancer pateints. CONCLUSIONS Our results support an association between FHIT promotor hypermethylation and development of breast cancer in Egyptian breast cancer patients. FHIT promoter hypermethylation is associated with some poor prognostic features of breast cancer.
Collapse
Affiliation(s)
- Seham Mahrous Zaki
- Clinical Pathology, Faculty of Medicine, Zagazig University Hospitals, Zagazig, Egypt E-mail :
| | | | | | | | | |
Collapse
|
17
|
Su Y, Wang X, Li J, Xu J, Xu L. The clinicopathological significance and drug target potential of FHIT in breast cancer, a meta-analysis and literature review. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5439-45. [PMID: 26491255 PMCID: PMC4598219 DOI: 10.2147/dddt.s89861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
FHIT is a bona fide tumor-suppressor gene and its loss contributes to tumorigenesis of epithelial cancers including breast cancer (BC). However, the association and clinicopathological significance between FHIT promoter hypermethylation and BC remains unclear. The purpose of this study is to conduct a meta-analysis and literature review to investigate the clinicopathological significance of FHIT methylation in BC. A detailed literature search was performed in PubMed, EMBASE, Web of Science, and Google Scholar databases. The data were extracted and assessed by two reviewers independently. Odds ratios with 95% corresponding confidence intervals were calculated. A total of seven relevant articles were available for meta-analysis, which included 985 patients. The frequency of FHIT hypermethylation was significantly increased in invasive ductal carcinoma compared to benign breast disease, the pooled odds ratio was 8.43, P<0.00001. The rate of FHIT hypermethylation was not significantly different between stage I/II and stage III/IV, odds ratio was 2.98, P=0.06. In addition, FHIT hypermethylation was not significantly associated with ER and PR status. FHIT hypermethylation was not significantly correlated with premenopausal and postmenopausal patients with invasive ductal carcinoma. In summary, our meta-analysis indicated that the frequency of FHIT hypermethylation was significantly increased in BC compared to benign breast disease. The rate of FHIT hypermethylation in advanced stages of BC was higher than in earlier stages; however, the difference was not statistically significant. Our data suggested that FHIT methylation could be a diagnostic biomarker of BC carcinogenesis. FHIT is a potential drug target for development of demethylation treatment for patients with BC.
Collapse
Affiliation(s)
- Yunshu Su
- Department of Cardiothoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaoli Wang
- Department of Cardiothoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China ; Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jun Li
- Department of Cardiothoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Junming Xu
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Lijun Xu
- Department of Cardiothoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
18
|
Hahn SM, Kwon SY, Kim HS, Han JW, Lyu CJ. Aberrant DNA Methylation of CDH1, p16 and DAPK in Childhood Acute Lymphoblastic Leukemia. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2015. [DOI: 10.15264/cpho.2015.22.1.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Seung Min Hahn
- Department of Pediatrics, Yonsei Cancer Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Yeon Kwon
- Department of Pediatrics, Yonsei Cancer Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Sun Kim
- Department of Pediatrics, Yonsei Cancer Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Woo Han
- Department of Pediatrics, Yonsei Cancer Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Chuhl Joo Lyu
- Department of Pediatrics, Yonsei Cancer Research Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Lymphohematopoietic cancers induced by chemicals and other agents and their implications for risk evaluation: An overview. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 761:40-64. [PMID: 24731989 DOI: 10.1016/j.mrrev.2014.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/13/2022]
Abstract
Lymphohematopoietic neoplasia are one of the most common types of cancer induced by therapeutic and environmental agents. Of the more than 100 human carcinogens identified by the International Agency for Research on Cancer, approximately 25% induce leukemias or lymphomas. The objective of this review is to provide an introduction into the origins and mechanisms underlying lymphohematopoietic cancers induced by xenobiotics in humans with an emphasis on acute myeloid leukemia, and discuss the implications of this information for risk assessment. Among the agents causing lymphohematopoietic cancers, a number of patterns were observed. Most physical and chemical leukemia-inducing agents such as the therapeutic alkylating agents, topoisomerase II inhibitors, and ionizing radiation induce mainly acute myeloid leukemia through DNA-damaging mechanisms that result in either gene or chromosomal mutations. In contrast, biological agents and a few immunosuppressive chemicals induce primarily lymphoid neoplasms through mechanisms that involve alterations in immune response. Among the environmental agents examined, benzene was clearly associated with acute myeloid leukemia in humans, with increasing but still limited evidence for an association with lymphoid neoplasms. Ethylene oxide and 1,3-butadiene were linked primarily to lymphoid cancers. Although the association between formaldehyde and leukemia remains controversial, several recent evaluations have indicated a potential link between formaldehyde and acute myeloid leukemia. The four environmental agents examined in detail were all genotoxic, inducing gene mutations, chromosomal alterations, and/or micronuclei in vivo. Although it is clear that rapid progress has been made in recent years in our understanding of leukemogenesis, many questions remain for future research regarding chemically induced leukemias and lymphomas, including the mechanisms by which the environmental agents reviewed here induce these diseases and the risks associated with exposures to such agents.
Collapse
|
20
|
Xiao J, Lee ST, Xiao Y, Ma X, Houseman EA, Hsu LI, Roy R, Wrensch M, de Smith AJ, Chokkalingam A, Buffler P, Wiencke JK, Wiemels JL. PTPRG inhibition by DNA methylation and cooperation with RAS gene activation in childhood acute lymphoblastic leukemia. Int J Cancer 2014; 135:1101-9. [PMID: 24496747 DOI: 10.1002/ijc.28759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 01/24/2014] [Indexed: 01/12/2023]
Abstract
While the cytogenetic and genetic characteristics of childhood acute lymphoblastic leukemias (ALL) are well studied, less clearly understood are the contributing epigenetic mechanisms that influence the leukemia phenotype. Our previous studies and others identified gene mutation (RAS) and DNA methylation (FHIT) to be associated with the most common cytogenetic subgroup of childhood ALL, high hyperdiploidy (having five more chromosomes). We screened DNA methylation profiles, using a genome-wide high-dimension platform of 166 childhood ALLs and 6 normal pre-B cell samples and observed a strong association of DNA methylation status at the PTPRG locus in human samples with levels of PTPRG gene expression as well as with RAS gene mutation status. In the 293 cell line, we found that PTPRG expression induces dephosphorylation of ERK, a downstream RAS target that may be critical for mutant RAS-induced cell growth. In addition, PTPRG expression is upregulated by RAS activation under DNA hypomethylating conditions. An element within the PTPRG promoter is bound by the RAS-responsive transcription factor RREB1, also under hypomethylating conditions. In conclusion, we provide evidence that DNA methylation of the PTPRG gene is a complementary event in oncogenesis induced by RAS mutations. Evidence for additional roles for PTPR family member genes is also suggested. This provides a potential therapeutic target for RAS-related leukemias as well as insight into childhood ALL etiology and pathophysiology.
Collapse
Affiliation(s)
- Jianqiao Xiao
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Newton TP, Cummings CT, Graham DK, Bernt KM. Epigenetics and chemoresistance in childhood acute lymphoblastic leukemia. Int J Hematol Oncol 2014. [DOI: 10.2217/ijh.13.68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY For children with acute lymphoblastic leukemia (ALL) who relapse, prognosis is poor and novel therapeutic strategies are needed. In the last decade, it has become apparent that ALL exhibits unique epigenetic patterns in addition to the well known cytogenetic findings. Furthermore, whole genome sequencing efforts are revealing recurrent mutations in epigenetic modifiers in ALL. Aberrant epigenetic modulation may be involved in leukemic transformation and resistance to chemotherapy. Consequently, compounds that specifically modulate the maintenance of such epigenetic programs may offer new approaches to therapy, including the modulation or prevention of chemoresistance in ALL. In this article, we review some of the most recent findings with regard to epigenetic aberrations in ALL, and discuss therapeutic strategies that are currently in development.
Collapse
Affiliation(s)
- Timothy P Newton
- Center for Cancer & Blood Disorders, Children’s Hospital Colorado & Department of Pediatrics, Section of Hematology, Oncology & Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, RC1N, Mail Stop 8302, Aurora, CO 80045, USA
| | - Christopher T Cummings
- Center for Cancer & Blood Disorders, Children’s Hospital Colorado & Department of Pediatrics, Section of Hematology, Oncology & Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, RC1N, Mail Stop 8302, Aurora, CO 80045, USA
| | - Douglas K Graham
- Center for Cancer & Blood Disorders, Children’s Hospital Colorado & Department of Pediatrics, Section of Hematology, Oncology & Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, RC1N, Mail Stop 8302, Aurora, CO 80045, USA
| | - Kathrin M Bernt
- Center for Cancer & Blood Disorders, Children’s Hospital Colorado & Department of Pediatrics, Section of Hematology, Oncology & Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, RC1N, Mail Stop 8302, Aurora, CO 80045, USA.
| |
Collapse
|
22
|
Ge J, Shen S, Zhang X, Wang K, Liu B, Sun D, Wang L. FHIT overexpression in HepG2 hepatoma cells affects growth and cyclin D1 expression in vitro.. Exp Ther Med 2014; 7:311-315. [PMID: 24396396 PMCID: PMC3881045 DOI: 10.3892/etm.2013.1436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/26/2013] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the methylation status of fragile histidine triad (FHIT) and the effects of FHIT on cell growth and cyclin D1 expression in hepatoma cells. The total proteins from the human hepatoma cell lines HepG2, Hep3B and Huh7 were collected and the expression levels of FHIT were analyzed. The methylation status in the promoter region of FHIT in the hepatoma cells was measured using methylation-specific polymerase chain reaction (PCR). The HepG2, Hep3B and Huh7 cells were subsequently treated with 5-aza-2′-deoxycytidine (5-azadc) and the restoration of FHIT expression was then examined. A p-hemagglutinin (HA)-FHIT plasmid was constructed and used to transfect the HepG2 cells, and the inhibitory effects of the transfection on cell growth were then assessed. In addition, HepG2 cells were cotransfected with the pHA-FHIT plasmid and a cyclin D1 luciferase reporter plasmid, and the effects of FHIT on the activity of cyclin D1 transcription factor were analyzed using a luciferase assay. FHIT was observed to be expressed at a low level in Hep3B and HepG2 cells; however, it was expressed at a relatively high level in Huh7 cells. The promoter region of FHIT in the Hep3B and HepG2 cells was partially methylated, and 5-azadc treatment induced an increased expression of FHIT. The increased expression of FHIT inhibited the growth of HepG2 cells. Cotransfection with the pHA-FHIT plasmid significantly inhibited the transcriptional activity of the cyclin D1 promoter and decreased the expression of cyclin D1 in HepG2 cells. In conclusion, FHIT was partially methylated in the HepG2 and Hep3B hepatoma cells. The overexpression of FHIT inhibited cell growth and decreased the expression of cyclin D1 in HepG2 cells.
Collapse
Affiliation(s)
- Jiayun Ge
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Simin Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Xiaowen Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Kun Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Bo Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Deyun Sun
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Lin Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
23
|
Chatterton Z, Morenos L, Mechinaud F, Ashley DM, Craig JM, Sexton-Oates A, Halemba MS, Parkinson-Bates M, Ng J, Morrison D, Carroll WL, Saffery R, Wong NC. Epigenetic deregulation in pediatric acute lymphoblastic leukemia. Epigenetics 2014; 9:459-67. [PMID: 24394348 DOI: 10.4161/epi.27585] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Similar to most cancers, genome-wide DNA methylation profiles are commonly altered in pediatric acute lymphoblastic leukemia (ALL); however, recent observations highlight that a large portion of malignancy-associated DNA methylation alterations are not accompanied by related gene expression changes. By analyzing and integrating the methylome and transcriptome profiles of pediatric B-cell ALL cases and primary tissue controls, we report 325 genes hypermethylated and downregulated and 45 genes hypomethylated and upregulated in pediatric B-cell ALL, irrespective of subtype. Repressed cation channel subunits and cAMP signaling activators and transducers are overrepresented, potentially indicating a reduced cellular potential to receive and propagate apoptotic signals. Furthermore, we report specific DNA methylation alterations with concurrent gene expression changes within individual ALL subtypes. The ETV6-RUNX1 translocation was associated with downregulation of ASNS and upregulation of the EPO-receptor, while Hyperdiploid patients (> 50 chr) displayed upregulation of B-cell lymphoma (BCL) members and repression of PTPRG and FHIT. In combination, these data indicate genetically distinct B-cell ALL subtypes contain cooperative epimutations and genome-wide epigenetic deregulation is common across all B-cell ALL subtypes.
Collapse
Affiliation(s)
- Zac Chatterton
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Leah Morenos
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | | | - David M Ashley
- Andrew Love Cancer Centre; Deakin University; Victoria, VIC Australia
| | - Jeffrey M Craig
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Alexandra Sexton-Oates
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Minhee S Halemba
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Mandy Parkinson-Bates
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Jane Ng
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | | | | | - Richard Saffery
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Nicholas C Wong
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| |
Collapse
|
24
|
Gene expression of WWOX, FHIT and p73 in acute lymphoblastic leukemia. Oncol Lett 2013; 6:963-969. [PMID: 24137446 PMCID: PMC3796419 DOI: 10.3892/ol.2013.1514] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to analyze the expression of WW-domain oxidoreductase (WWOX), fragile histidine triad (FHIT) and p73 in acute lymphoblastic leukemia (ALL). Samples from 122 ALL patients and 35 non-ALL control patients were collected in this study. RT-PCR was performed to detect the mRNA expression of WWOX, FHIT and p73. The methylation status of the WWOX promoter region, FHIT promoter region and the first exon region of p73 were also analyzed using the methylation-specific PCR method. The mRNA expression of WWOX, FHIT and p73 was significantly lower in the ALL samples compared with the controls (48.2, 42.9 and 55.4%, respectively). By contrast, the methylation frequency of WWOX, FHIT and p73 was significantly higher in the ALL samples compared with the controls (44.6, 46.4 and 37.5%, respectively). The mRNA expression of these three genes was inversely correlated with the methylation frequency in the ALL samples (correlation coefficients, −0.661, −0.685 and −0.536 for WWOX, FHIT and p73, respectively). Moreover, the mRNA expression of WWOX was positively correlated with that of FHIT and p73 (correlation coefficients, 0.569 and 0.556, respectively). However, the methylation status of WWOX had no correlation with that of FHIT or p73. It was concluded that the high methylation status of WWOX, FHIT and p73 may lead to the inactivation of expression and the silencing of these genes, promoting the occurrence and development of ALL. The determination of the mRNA expression and methylation status of WWOX, FHIT and p73 may aid in the development of treatment approaches for ALL.
Collapse
|
25
|
Figueroa ME, Chen SC, Andersson AK, Phillips LA, Li Y, Sotzen J, Kundu M, Downing JR, Melnick A, Mullighan CG. Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia. J Clin Invest 2013; 123:3099-111. [PMID: 23921123 DOI: 10.1172/jci66203] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 04/23/2013] [Indexed: 01/23/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the commonest childhood malignancy and is characterized by recurring structural genetic alterations. Previous studies of DNA methylation suggest epigenetic alterations may also be important, but an integrated genome-wide analysis of genetic and epigenetic alterations in ALL has not been performed. We analyzed 137 B-lineage and 30 T-lineage childhood ALL cases using microarray analysis of DNA copy number alterations and gene expression, and genome-wide cytosine methylation profiling using the HpaII tiny fragment enrichment by ligation-mediated PCR (HELP) assay. We found that the different genetic subtypes of ALL are characterized by distinct DNA methylation signatures that exhibit significant correlation with gene expression profiles. We also identified an epigenetic signature common to all cases, with correlation to gene expression in 65% of these genes, suggesting that a core set of epigenetically deregulated genes is central to the initiation or maintenance of lymphoid transformation. Finally, we identified aberrant methylation in multiple genes also targeted by recurring DNA copy number alterations in ALL, suggesting that these genes are inactivated far more frequently than suggested by structural genomic analyses alone. Together, these results demonstrate subtype- and disease-specific alterations in cytosine methylation in ALL that influence transcriptional activity, and are likely to exert a key role in leukemogenesis.
Collapse
Affiliation(s)
- Maria E Figueroa
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Promoter hypermethylation of tumour suppressor genes (p14/ARF and p16/INK4a): case-control study in North Indian population. Mol Biol Rep 2013; 40:4921-8. [PMID: 23712779 DOI: 10.1007/s11033-013-2592-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 04/29/2013] [Indexed: 12/30/2022]
Abstract
The epigenetic modifications have been reported to be key factors in breast carcinogenesis. In the current study, it has been tried to determine the methylation status of two tumour suppressor genes p14/ARF and p16/INK4a in 150 breast cancer patients as well as 150 controls by using MSP-PCR. There was, highly significant difference in methylation of p14/ARF and p16/INK4a (P=0.000) between patients and controls. Methylation of both the genes together significantly increased the risk of breast cancer by 12.31 folds. The present study concludes that hypermethylation of p14/ARF and p16/INK4a promoters demonstrate significant association with the risk of breast cancer, hence indicating these as important tumour suppressor genes involved in the pathogenesis of breast cancer in North Indian population (i.e. Punjab, Haryana, Uttar Pradesh, Himachal Pradesh as well as Union Territory of Chandigarh).
Collapse
|
27
|
Jha AK, Nikbakht M, Jain V, Sehgal A, Capalash N, Kaur J. Promoter hypermethylation of p73 and p53 genes in cervical cancer patients among north Indian population. Mol Biol Rep 2012; 39:9145-57. [PMID: 22729911 DOI: 10.1007/s11033-012-1787-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 06/09/2012] [Indexed: 12/31/2022]
Abstract
Hypermethylation of CpG islands leads to transcriptional silencing and it is the predominant mechanism of tumor suppressor gene inactivation in many tumors. Methylation-specific polymerase chain reaction was performed to analyse the methylation status of the promoter region of the tumor suppressor genes. Hypermethylation of the 5' CpG island of the p21 ( CIP1 ), p27 ( KIP1 ), p57 ( KIP2 ), p53, p73 and RB 1 gene promoter were found in 8.8, 8.8, 11.2, 12, 25.6 and 4.8 % of 125 cervical cancer samples from north Indian population, respectively. Methylation of p73 was significantly (P < 0.001) associated with the cervical cancer cases in comparison to controls. Significant correlation was also observed between the methylation of p73 gene and increase in the risk of cervical cancer among passive smokers. Promoter hypermethylation of p53 gene was also observed to be significant among oral contraceptive users and cervical cancer patients having age at first sexual intercourse <20 years whereas hypermethylation of other genes was not found to be significant in the present study. This is the first report showing significant hypermethylation of p73 and p53 genes among cervical cancer patients in north Indian population. This is also the first report on significant p53 hypermethylation in cervical cancer in any population. Our findings did not show any correlation between promoter methylation of p73 and the other genes under study with clinicopathological parameters, including human papillomavirus infection and stage of the disease. The frequency of aberrant methylation of p73 and p53 gene promoter was unchanged according to the age of patients.
Collapse
|
28
|
Litzow MR. Novel therapeutic approaches for acute lymphoblastic leukemia. Hematol Oncol Clin North Am 2012; 25:1303-17. [PMID: 22093588 DOI: 10.1016/j.hoc.2011.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Therapy for ALL in adults remains a tremendous challenge for clinicians. The use of pediatric-intensive regimens in young and middle-aged adults shows promise in improving outcomes. The addition of monoclonal antibody therapy to chemotherapy appears to hold great promise in lessening relapse rates. The anti-CD20 antibody, rituximab, which has been of such benefit in patients with non-Hodgkin lymphoma, now seems poised to bring significant benefit to adults with ALL. Other monoclonal antibody approaches are in earlier stages of development, but will likely be of significant benefit. The BiTE antibody, blinatumomab, represents an exciting new approach in this arena. As new molecular abnormalities are identified in ALL, these will certainly become new targets for drug development. The increasing use of MRD testing by molecular or flow cytometric techniques will also be invaluable in further refining prognostication in ALL in helping with the selection of patients most likely to benefit from BMT. Several new small molecules and chemotherapeutic agents will, it is hoped, also find a niche in the therapy for ALL. Early examples including NOTCH1 inhibitors; hypomethylating agents such as decitabine, folic acid, antagonists, flavopiridol, bortezomib, and mTOR inhibitors will all hopefully find a role in the therapy for this challenging disorder. Although many challenges remain, there is hope that the therapy for adults with ALL can make significant progress in the next few years, in comparison with the relative plateau that has been experienced over the last several decades.
Collapse
Affiliation(s)
- Mark R Litzow
- Division of Hematology, Mayo Clinic, 200 First Street, South West, Rochester, MN 55905, USA.
| |
Collapse
|
29
|
Cecener G, Tunca B, Egeli U, Bekar A, Tezcan G, Erturk E, Bayram N, Tolunay S. The promoter hypermethylation status of GATA6, MGMT, and FHIT in glioblastoma. Cell Mol Neurobiol 2012; 32:237-44. [PMID: 21928112 DOI: 10.1007/s10571-011-9753-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/26/2011] [Indexed: 11/30/2022]
Abstract
Glioblastoma (GBM) is an aggressive and lethal cancer, accounting for the majority of primary brain tumors in adults. GBMs are characterized by large and small alterations in genes that control cell growth, apoptosis, angiogenesis, and invasion. Epigenetic alterations also affect the expression of cancer genes, either alone or in combination with genetic mechanisms. The current evidence suggests that hypermethylation of promoter CpG islands is a common epigenetic event in a variety of human cancers. A subset of GBMs is also characterized by a locus-specific and genome-wide decrease in DNA methylation. Epigenetic alterations are important in the molecular pathology of GBM. However, there are very limited data about these epigenetic alterations in GBM. Alterations in promoter methylations are important to understand because histone deacetylases are targets for drugs that are in clinical trial for GBMs. The aim of the current study was to investigate whether the promoter hypermethylation of putative tumor suppressor genes was involved in GBM. We examined the methylation status at the promoter regions of GATA6, MGMT, and FHIT using the methylation-specific polymerase chain reaction in 61 primary GBMs. Our results reveal that there is no promoter hypermethylation of FHIT in the examined GBM tissue specimens. In contrast, the promoter hypermethylation of GATA6 and MGMT was detected in 42.8 and 11.11% of GBMs, respectively. The frequency of MGMT promoter hypermethylation was low in the group of patients we evaluated. In conclusion, our study demonstrates that promoter hypermethylation of MGMT is a common event in GBMs, whereas GATA6 is epigenetically affected in GBMs. Furthermore, inactivation of FHIT by epigenetic mechanisms in GBM may not be associated with brain tumorigenesis.
Collapse
Affiliation(s)
- Gulsah Cecener
- Department of Medical Biology, School of Medicine, Uludag University, Bursa, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Litzow MR. Pharmacotherapeutic advances in the treatment of acute lymphoblastic leukaemia in adults. Drugs 2011; 71:415-42. [PMID: 21395356 DOI: 10.2165/11588950-000000000-00000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acute lymphoblastic leukaemia (ALL) in adults is a challenging malignancy in that many patients will show evidence of initial chemotherapy responsiveness but will subsequently relapse. The disease is heterogeneous and outcomes vary dramatically depending on the prognostic factors present in an individual patient. An important determinant of outcome is the age of the patient. The stunning success of therapy in paediatric ALL has led to the use of intensive paediatric regimens in adolescents and young adults with what appear to be improved outcomes. For patients who relapse or have high-risk features, blood and marrow transplantation (BMT) continues to play an important role in the therapeutic armamentarium. The use of reduced-intensity conditioning regimens for allogeneic BMT suggests that outcomes may be improved by this approach. Monoclonal antibodies are showing benefit as single agents in the relapsed setting or in combination with chemotherapy in newly diagnosed patients. In recent years, several new chemotherapeutic agents have shown promise as single agents and are being incorporated into multi-agent chemotherapy. The development of tyrosine kinase inhibitors for Philadelphia chromosome-positive leukaemias has significantly improved outcomes. The molecular revolution has led to the identification of new aberrant molecular pathways in the pathogenesis of ALL, and drugs targeting these aberrancies are in various stages of development preclinically and clinically. These developments bring the hope that therapeutic outcomes in adult ALL can begin to approach those seen in the paediatric setting.
Collapse
Affiliation(s)
- Mark R Litzow
- Department of Hematology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| |
Collapse
|
31
|
Takeuchi S, Matsushita M, Zimmermann M, Ikezoe T, Komatsu N, Seriu T, Schrappe M, Bartram CR, Koeffler HP. Clinical significance of aberrant DNA methylation in childhood acute lymphoblastic leukemia. Leuk Res 2011; 35:1345-9. [PMID: 21592569 DOI: 10.1016/j.leukres.2011.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 04/13/2011] [Accepted: 04/17/2011] [Indexed: 12/31/2022]
Abstract
Methylation profile was analyzed in ninety-five patients with childhood acute lymphoblastic leukemia (ALL). Methylation of both MGMT and p16 genes were associated with higher age (p=0.01 and p=0.03, respectively). Methylation of both p15 and SHP1 genes occurred more frequently in T-ALL than in precursor B-ALL (p=0.02 and p=0.01, respectively). In contrast, methylation of the DAPK gene was more frequent in precursor B-ALL (p=0.01). Patients with methylation of multiple genes more likely had T cell phenotype, and are classified as medium/high risk (p=0.004 and p=0.03, respectively). These results suggest that methylation status is associated with clinicopathological features in childhood ALL.
Collapse
Affiliation(s)
- Seisho Takeuchi
- Department of Medicine, Kochi Medical School, Oko-cho, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Klimek VM, Tallman MS. Hypomethylating agents in acute lymphoblastic leukemia: untapped potential? Leuk Lymphoma 2010; 52:7-8. [PMID: 20929335 DOI: 10.3109/10428194.2010.524330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Virginia M Klimek
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, NewYork, NY, USA.
| | | |
Collapse
|
33
|
Griffiths EA, Gore SD, Hooker CM, Mohammad HP, McDevitt MA, Smith BD, Karp JE, Herman JG, Carraway HE. Epigenetic differences in cytogenetically normal versus abnormal acute myeloid leukemia. Epigenetics 2010; 5:590-600. [PMID: 20671427 DOI: 10.4161/epi.5.7.12558] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Methylation of tumor suppression genes (TSGs) is common in myeloid malignancies. However, application of this as a molecular marker for risk stratification in patients with AML is limited. DESIGN AND METHODS To elucidate the impact of patterns of TSG methylation on outcome in cytogenetically normal patients, 106 samples from patients with having normal cytogenetic AML were evaluated for methylation of 12 genes by MSP. For sake of comparison, samples from patients with AML and abnormal cytogenetics (n = 63) were also evaluated. RESULTS Methylation frequencies in the whole group (n = 169) were similar to previous reports for CDH1 (31%), ER (31%), FHIT (9%), p15 (INK4b) (44%), p73 (25%), and SOCS1 (75%). Methylation of CTNNA1 was observed in 10%, CEBP-α in16%, CEBP-δ in 2%, MLH1 in 24%, MGMT in 11% and DAPK in 2% of AML samples. We find that DNA methylation was more prevalent in patients with normal compared to karyotypically abnormal AML for most genes; CEBPα (20% vs 9%), CTNNA1 (14% vs 4%), and ER (41% vs 19%) (p < 0.05 for all comparisons). In contrast, p73 was more frequently methylated in patients with karyotypic abnormalities (17% vs 38%; p < 0.05), perhaps due to specific silencing of the pro-apoptotic promoter shifting p73 gene expression to the anti-apoptotic transcript. In AML patients with normal cytogenetics, TSG methylation was not associated with event free or overall survival in a multivariate analysis. CONCLUSIONS In patients with AML, TSG methylation is more frequent in patients with normal karyotype than those with karyotypic abnormalities but does not confer independent prognostic information for patients with normal cytogenetics.
Collapse
|
34
|
Hassan MI, Naiyer A, Ahmad F. Fragile histidine triad protein: structure, function, and its association with tumorogenesis. J Cancer Res Clin Oncol 2009; 136:333-50. [PMID: 20033706 DOI: 10.1007/s00432-009-0751-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 12/09/2009] [Indexed: 01/31/2023]
Abstract
BACKGROUND The human fragile histidine triad (FHIT) gene is a putative tumor suppressor gene, which is located at chromosome region 3p14.2. It was suggested that the loss of heterozygosity (LOH), homozygous deletions, and abnormal expression of the FHIT gene were involved in several types of human malignancies. MATERIALS AND METHODS To determine the role of FHIT in various cancers, we have performed structural and functional analysis of FHIT in detail. RESULTS AND DISCUSSION The protein FHIT catalyzes the Mg(2+) dependent hydrolysis of P1-5 cent-O-adenosine-P3-5 cent-O-adenosine triphosphate, Ap3A, to AMP, and ADP. The reaction is thought to follow a two-step mechanism. Histidine triad proteins, named for a motif related to the sequence H-cent-H-cent-H-cent-cent- (cent, a hydrophobic amino acid), belong to superfamily of nucleotide hydrolases and transferases. This enzyme acts on the R-phosphate of ribonucleotides, and contain a approximately 30-kDa domain that is typically a homodimer of approximately 15 kDa polypeptides with catalytic site. CONCLUSION Here we have gathered information is known about biological activities of FHIT, the structural and biochemical bases for their functions. Our approach may provide a comparative framework for further investigation of FHIT.
Collapse
Affiliation(s)
- Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | | | | |
Collapse
|
35
|
Paulsson K, Johansson B. High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 2009; 48:637-60. [PMID: 19415723 DOI: 10.1002/gcc.20671] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High hyperdiploidy (51-67 chromosomes) is the most common cytogenetic abnormality pattern in childhood B-cell precursor acute lymphoblastic leukemia (ALL), occurring in 25-30% of such cases. High hyperdiploid ALL is characterized cytogenetically by a nonrandom gain of chromosomes X, 4, 6, 10, 14, 17, 18, and 21 and clinically by a favorable prognosis. Despite the high frequency of this karyotypic subgroup, many questions remain regarding the epidemiology, etiology, presence of other genetic changes, the time and cell of origin, and the formation and pathogenetic consequences of high hyperdiploidy. However, during the last few years, several studies have addressed some of these important issues, and these, as well as previous reports on high hyperdiploid childhood ALL, are reviewed herein.
Collapse
Affiliation(s)
- Kajsa Paulsson
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | |
Collapse
|
36
|
Jiang Y, Lucas I, Young DJ, Davis EM, Karrison T, Rest JS, Le Beau MM. Common fragile sites are characterized by histone hypoacetylation. Hum Mol Genet 2009; 18:4501-12. [PMID: 19717471 PMCID: PMC2773265 DOI: 10.1093/hmg/ddp410] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Common fragile sites (CFSs) represent large, highly unstable regions of the human genome. CFS sequences are sensitive to perturbation of replication; however, the molecular basis for the instability at CFSs is poorly understood. We hypothesized that a unique epigenetic pattern may underlie the unusual sensitivity of CFSs to replication interference. To examine this hypothesis, we analyzed chromatin modification patterns within the six human CFSs with the highest levels of breakage, and their surrounding non-fragile regions (NCFSs). Chromatin at most of the CFSs analyzed has significantly less histone acetylation than that of their surrounding NCFSs. Trichostatin A and/or 5-azadeoxycytidine treatment reduced chromosome breakage at CFSs. Furthermore, chromatin at the most commonly expressed CFS, the FRA3B, is more resistant to micrococcal nuclease than that of the flanking non-fragile sequences. These results demonstrate that histone hypoacetylation is a characteristic epigenetic pattern of CFSs, and chromatin within CFSs might be relatively more compact than that of the NCFSs, indicating a role for chromatin conformation in genomic instability at CFSs. Moreover, lack of histone acetylation at CFSs may contribute to the defective response to replication stress characteristic of CFSs, leading to the genetic instability characteristic of this regions.
Collapse
Affiliation(s)
- Yanwen Jiang
- Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
While cure rates of over 80% are achieved in contemporary pediatric acute lymphoblastic leukemia (ALL) protocols, most adults with ALL succumb to their disease, and little progress has been made in the treatment of refractory and relapsed ALL. Moreover, the burden of therapy is high in a significant number of newly diagnosed patients, and in all those with relapse. Early response to therapy measured by minimal residual disease evaluation has proven the single most important prognostic factor and is increasingly used in risk stratification. However, as the benefit from intensification of frontline therapy becomes limiting, it becomes increasingly challenging to rescue patients who fail on contemporary risk-adapted protocols. New therapeutic strategies are needed, not only in salvage regimens but also in frontline protocols for patients who are at high risk of relapse. Current novel approaches include new formulations of existing chemotherapeutic agents, new antimetabolites and nucleoside analogs, monoclonal antibodies against leukemic-associated antigens, cellular immunotherapy, and molecular therapeutics. Some have already been adopted into standard regimens, while others remain in early stages of development. This review summarizes the current status of these novel therapies as they get integrated into ALL regimens.
Collapse
Affiliation(s)
- Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
38
|
HIRAOKA H, MINAMI K, KANEKO N, SHIMOKAWA MIYAMA T, OKAMURA Y, MIZUNO T, OKUDA M. Aberrations of the FHIT Gene and Fhit Protein in Canine Lymphoma Cell Lines. J Vet Med Sci 2009; 71:769-77. [DOI: 10.1292/jvms.71.769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Hiroko HIRAOKA
- Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Yamaguchi University
| | - Koji MINAMI
- Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Yamaguchi University
| | - Naoki KANEKO
- Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Yamaguchi University
| | | | - Yasuhiko OKAMURA
- Laboratory of Veterinary Teaching Hospital, Faculty of Agriculture, Iwate University
| | - Takuya MIZUNO
- Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Yamaguchi University
| | - Masaru OKUDA
- Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Yamaguchi University
| |
Collapse
|
39
|
Abstract
The term epigenetics refers to the study of a number of biochemical modifications of chromatin that have an impact on gene expression regulation. Aberrant epigenetic lesions, in particular DNA methylation of promoter associated CpG islands, are common in acute lymphocytic leukemia (ALL). Recent data from multiple laboratories indicate that several hundred genes, involving dozens of critical molecular pathways, are epigenetically suppressed in ALL. Because these lesions are potentially reversible, the reactivation of these pathways using, for instance, hypomethylating agents may have therapeutic potential in this disease. Furthermore, the analysis of epigenetic alterations in ALL may allow: (1) identification of subsets of patients with poor prognosis when treated with conventional therapy; (2) development of new techniques to evaluate minimal residual disease; (3) better understanding of the differences between pediatric and adult ALL; and (4) new therapeutic interventions by incorporating agents with hypomethylating activity to conventional chemotherapeutic programs. In this review, we describe the role of epigenetic alterations in ALL from a translational perspective.
Collapse
Affiliation(s)
- Guillermo Garcia-Manero
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Paulsson K, An Q, Moorman AV, Parker H, Molloy G, Davies T, Griffiths M, Ross FM, Irving J, Harrison CJ, Young BD, Strefford JC. Methylation of tumour suppressor gene promoters in the presence and absence of transcriptional silencing in high hyperdiploid acute lymphoblastic leukaemia. Br J Haematol 2008; 144:838-47. [PMID: 19120349 DOI: 10.1111/j.1365-2141.2008.07523.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Promoter methylation is a common phenomenon in tumours, including haematological malignancies. In the present study, we investigated 36 cases of high hyperdiploid (>50 chromosomes) acute lymphoblastic leukaemia (ALL) with methylation-specific multiplex ligase-dependent probe amplification to determine the extent of aberrant methylation in this subgroup. The analysis, which comprised the promoters of 35 known tumour suppressor genes, showed that 16 genes displayed abnormal methylation in at least one case each. The highest number of methylated gene promoters seen in a single case was thirteen, with all but one case displaying methylation for at least one gene. The most common targets were ESR1 (29/36 cases; 81%), CADM1 (IGSF4, TSLC1; 25/36 cases; 69%), FHIT (24/36 cases; 67%) and RARB (22/36 cases; 61%). Interestingly, quantitative reverse transcription-polymerase chain reaction showed that although methylation of the CADM1 and RARB promoters resulted in the expected pattern of downregulation of the respective genes, no difference could be detected in FHIT expression between methylation-positive and -negative cases. Furthermore, TIMP3 was not expressed regardless of methylation status, showing that aberrant methylation does not always lead to gene expression changes. Taken together, our findings suggest that aberrant methylation of tumour suppressor gene promoters is a common phenomenon in high hyperdiploid ALL.
Collapse
Affiliation(s)
- Kajsa Paulsson
- Cancer Research UK Medical Oncology Centre, Barts and the London School of Medicine, Queen Mary College, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kuchinskaya E, Heyman M, Nordgren A, Schoumans J, Staaf J, Borg Å, Söderhäll S, Grandér D, Nordenskjöld M, Blennow E. Array-CGH reveals hidden gene dose changes in children with acute lymphoblastic leukaemia and a normal or failed karyotype by G-banding. Br J Haematol 2008; 140:572-7. [DOI: 10.1111/j.1365-2141.2007.06917.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Yang JY, Yang MQ, Luo Z, Ma Y, Li J, Deng Y, Huang X. A hybrid machine learning-based method for classifying the Cushing's Syndrome with comorbid adrenocortical lesions. BMC Genomics 2008; 9 Suppl 1:S23. [PMID: 18366613 PMCID: PMC2386065 DOI: 10.1186/1471-2164-9-s1-s23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The prognosis for many cancers could be improved dramatically if they could be detected while still at the microscopic disease stage. It follows from a comprehensive statistical analysis that a number of antigens such as hTERT, PCNA and Ki-67 can be considered as cancer markers, while another set of antigens such as P27KIP1 and FHIT are possible markers for normal tissue. Because more than one marker must be considered to obtain a classification of cancer or no cancer, and if cancer, to classify it as malignant, borderline, or benign, we must develop an intelligent decision system that can fullfill such an unmet medical need. RESULTS We have developed an intelligent decision system using machine learning techniques and markers to characterize tissue as cancerous, non-cancerous or borderline. The system incorporates learning techniques such as variants of support vector machines, neural networks, decision trees, self-organizing feature maps (SOFM) and recursive maximum contrast trees (RMCT). These variants and algorithms we have developed, tend to detect microscopic pathological changes based on features derived from gene expression levels and metabolic profiles. We have also used immunohistochemistry techniques to measure the gene expression profiles from a number of antigens such as cyclin E, P27KIP1, FHIT, Ki-67, PCNA, Bax, Bcl-2, P53, Fas, FasL and hTERT in several particular types of neuroendocrine tumors such as pheochromocytomas, paragangliomas, and the adrenocortical carcinomas (ACC), adenomas (ACA), and hyperplasia (ACH) involved with Cushing's syndrome. We provided statistical evidence that higher expression levels of hTERT, PCNA and Ki-67 etc. are associated with a higher risk that the tumors are malignant or borderline as opposed to benign. We also investigated whether higher expression levels of P27KIP1 and FHIT, etc., are associated with a decreased risk of adrenomedullary tumors. While no significant difference was found between cell-arrest antigens such as P27KIP1 for malignant, borderline, and benign tumors, there was a significant difference between expression levels of such antigens in normal adrenal medulla samples and in adrenomedullary tumors. CONCLUSIONS Our frame work focused on not only different classification schemes and feature selection algorithms, but also ensemble methods such as boosting and bagging in an effort to improve upon the accuracy of the individual classifiers. It is evident that when all sorts of machine learning and statistically learning techniques are combined appropriately into one integrated intelligent medical decision system, the prediction power can be enhanced significantly. This research has many potential applications; it might provide an alternative diagnostic tool and a better understanding of the mechanisms involved in malignant transformation as well as information that is useful for treatment planning and cancer prevention.
Collapse
Affiliation(s)
- Jack Y Yang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mary Qu Yang
- Genomic Functional Analysis Laboratory, National Human Genome Research Institute, National Institutes of Health, U.S. Department of Health and Human Services. Bethesda, MD 20852, USA
| | - Zuojie Luo
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Province 530021, China
| | - Yan Ma
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Province 530021, China
| | - Jianling Li
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi Province 530021, China
| | - Youping Deng
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Xudong Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
43
|
Pichiorri F, Trapasso F, Palumbo T, Aqeilan RI, Drusco A, Blaser BW, Iliopoulos D, Caligiuri MA, Huebner K, Croce CM. Preclinical assessment of FHIT gene replacement therapy in human leukemia using a chimeric adenovirus, Ad5/F35. Clin Cancer Res 2007; 12:3494-501. [PMID: 16740775 DOI: 10.1158/1078-0432.ccr-05-2581] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Expression of the FHIT protein is lost or reduced in most solid tumors and a significant fraction of hematopoietic malignancies. Adenovirus 5 (Ad5) virus or adeno-associated viral vectors have been used to study the tumor suppressor function of FHIT in solid tumors, but these tools have not been effective in leukemias. We have generated a chimeric FHIT-containing adenovirus composed of Ad5 and the group B adenovirus called F35 with which we have been able to efficiently infect hematopoietic cells. EXPERIMENTAL DESIGN Infection efficiency of Ad5/F35-FHIT and Ad5/F35-GFP viruses was tested in leukemia cell lines that lacked FHIT expression, and biological effects of successful infection were assessed. An acute myelogenous leukemia, a chronic myelogenous leukemia, and four acute lymphoblastic leukemia human cell lines were examined as well as two EBV-transformed B lymphoblastoid cell lines that expressed endogenous FHIT. RESULTS Two of four acute lymphoblastic leukemia cell lines, Jurkat and MV4;11, which were efficiently infected with Ad5/F35-FHIT, underwent growth suppression and massive induction of apoptosis without apparent activation of caspase-8 or caspase-2 and late activation of caspase-3. Treatment of infected cells with caspase-9 and caspase-3 inhibitors partially blocked FHIT-induced apoptosis. The two remaining infected acute lymphoblastic leukemia cell lines, Molt-3 and RS4;11, were apparently unaffected. Restoration of FHIT expression in the chronic myelogenous leukemia K562 cell line and the acute myelogenous leukemia KG1a cell line also induced apoptosis but at later time points than seen in the acute lymphoblastic leukemia Jurkat and MV4;11 cell lines. I.v. injection of Ad5/F35-FHIT-infected Jurkat cells resulted in abrogation of tumorigenicity in the NOD/SCID xenogeneic engraftment model. CONCLUSION FHIT restoration in some FHIT-deficient leukemia cells induces both antiproliferative and proapoptotic effects involving the intrinsic caspase apoptotic pathway.
Collapse
Affiliation(s)
- Flavia Pichiorri
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jo H, Kang S, Kim JW, Kang GH, Park NH, Song YS, Park SY, Kang SB, Lee HP. Hypermethylation of the COX-2 gene is a potential prognostic marker for cervical cancer. J Obstet Gynaecol Res 2007; 33:236-41. [PMID: 17578348 DOI: 10.1111/j.1447-0756.2007.00517.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM The aim of the present study was to evaluate the DNA hypermethylation profiles of 14 genes known to be associated with tumor behavior and their clinical significance in cervical cancer. METHOD The clinical features of 82 patients with stage IB cervical cancer were analyzed in terms of DNA hypermethylation of 14 genes (hMLH1, p16, COX-2, CDH1, APC, DAPK, MGMT, p14, RASSF1A, RUNX3, TIMP3, FHIT, THBS1, and HLTF). RESULTS Of 14 genes investigated, only hypermethylation of COX-2 showed significant association with poor disease-free survival (P = 0.001). To further investigate an alteration in COX-2 expression by DNA hypermethylation, immunohistochemistry for COX-2 protein was performed in the cervical cancer tissues. We found no significant association between hypermethylation and expression patterns of the COX-2 gene. CONCLUSIONS The present results suggest that DNA hypermethylation of the COX-2 gene may be a potential prognostic marker in early stage cervical cancer, the underlying mechanism of which is independent of gene silencing.
Collapse
Affiliation(s)
- Hoenil Jo
- Department of Obstetrics and Gynecology, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wiencke JK, Zheng S, Jelluma N, Tihan T, Vandenberg S, Tamgüney T, Baumber R, Parsons R, Lamborn KR, Berger MS, Wrensch MR, Haas-Kogan DA, Stokoe D. Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma. Neuro Oncol 2007; 9:271-9. [PMID: 17504928 PMCID: PMC1907411 DOI: 10.1215/15228517-2007-003] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) can present as either de novo or secondary tumors arising from previously diagnosed low-grade gliomas. Although these tumor types are phenotypically indistinguishable, de novo and secondary GBMs are associated with distinct genetic characteristics. PTEN mutations, which result in activation of the phosphoinositide 3-kinase (PI3K) signal transduction pathway, are frequent in de novo but not in secondary GBMs or their antecedent low-grade tumors. Results we present here show that grade II astrocytomas, oligodendrogliomas, and oligoastrocytomas commonly display methylation of the PTEN promoter, a finding that is absent in nontumor brain specimens and rare in de novo GBMs. Methylation of the PTEN promoter correlates with protein kinase B (PKB/Akt) phosphorylation, reflecting functional activation of the PI3K pathway. Our results also demonstrate frequent methylation of the PTEN promoter in grade III astrocytomas and secondary GBMs, consistent with the hypothesis that these tumors arise from lower grade precursors. PTEN methylation is rare in de novo GBMs and is mutually exclusive with PTEN mutations. We conclude that methylation of the PTEN promoter may represent an alternate mechanism by which PI3K signaling is increased in grade II and III gliomas as well as secondary GBMs, a finding that offers new therapeutic approaches in these patients.
Collapse
Affiliation(s)
- John K Wiencke
- Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pui CH, Jeha S. New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov 2007; 6:149-65. [PMID: 17268486 DOI: 10.1038/nrd2240] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although contemporary treatments cure more than 80% of children with acute lymphoblastic leukaemia (ALL), some patients require intensive treatment and many patients still develop serious acute and late complications owing to the side effects of the treatments. Furthermore, the survival rate for adults with ALL remains below 40%. Therefore, new treatment strategies are needed to improve not only the cure rate but also the quality of life of these patients. Here, we discuss emerging new treatments that might improve the clinical outcome of patients with ALL. These include new formulations of existing chemotherapeutic agents, new antimetabolites and nucleoside analogues, monoclonal antibodies against leukaemia-associated antigens, and molecular therapies that target genetic abnormalities of the leukaemic cells and their affected signalling pathways.
Collapse
Affiliation(s)
- Ching-Hon Pui
- Department of Oncology, St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
47
|
Taylor KH, Pena-Hernandez KE, Davis JW, Arthur GL, Duff DJ, Shi H, Rahmatpanah FB, Sjahputera O, Caldwell CW. Large-Scale CpG Methylation Analysis Identifies Novel Candidate Genes and Reveals Methylation Hotspots in Acute Lymphoblastic Leukemia. Cancer Res 2007; 67:2617-25. [PMID: 17363581 DOI: 10.1158/0008-5472.can-06-3993] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examined DNA methylation associated with acute lymphoblastic leukemia (ALL) and showed that selected molecular targets can be pharmacologically modulated to reverse gene silencing. A CpG island (CGI) microarray containing more than 3,400 unique clones that span all human chromosomes was used for large-scale discovery experiments and led to 262 unique CGI loci being statistically identified as methylated in ALL lymphoblasts. The methylation status of 10 clones encompassing 11 genes (DCC, DLC-1, DDX51, KCNK2, LRP1B, NKX6-1, NOPE, PCDHGA12, RPIB9, ABCB1, and SLC2A14) identified as differentially methylated between ALL patients and controls was independently verified. Consequently, the methylation status of DDX51 was found to differentiate patients with B- and T-ALL subtypes (P = 0.011, Fisher's exact test). Next, the relationship between methylation and expression of these genes was examined in ALL cell lines (NALM-6 and Jurkat) before and after treatments with 5-aza-2-deoxycytidine and trichostatin A. More than a 10-fold increase in mRNA expression was observed for two previously identified tumor suppressor genes (DLC-1 and DCC) and also for RPIB9 and PCDHGA12. Although the mechanisms that lead to the CGI methylation of these genes are unknown, bisulfite sequencing of the promoter of RPIB9 suggests that expression is inhibited by methylation within SP1 and AP2 transcription factor binding motifs. Finally, specific chromosomal methylation hotspots were found to be associated with ALL. This study sets the stage for acquiring a better biological understanding of ALL and for the identification of epigenetic biomarkers useful for differential diagnosis, therapeutic monitoring, and the detection of leukemic relapse.
Collapse
Affiliation(s)
- Kristen H Taylor
- Department of Pathology and Anatomical Sciences, Ellis Fischel Cancer Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cantor JP, Iliopoulos D, Rao AS, Druck T, Semba S, Han SY, McCorkell KA, Lakshman TV, Collins JE, Wachsberger P, Friedberg JS, Huebner K. Epigenetic modulation of endogenous tumor suppressor expression in lung cancer xenografts suppresses tumorigenicity. Int J Cancer 2007; 120:24-31. [PMID: 17019711 DOI: 10.1002/ijc.22073] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epigenetic changes involved in cancer development, unlike genetic changes, are reversible. DNA methyltransferase and histone deacetylase inhibitors show antiproliferative effects in vitro, through tumor suppressor reactivation and induction of apoptosis. Such inhibitors have shown activity in the treatment of hematologic disorders but there is little data concerning their effectiveness in treatment of solid tumors. FHIT, WWOX and other tumor suppressor genes are frequently epigenetically inactivated in lung cancers. Lung cancer cell clones carrying conditional FHIT or WWOX transgenes showed significant suppression of xenograft tumor growth after induction of expression of the FHIT or WWOX transgene, suggesting that treatments to restore endogenous Fhit and Wwox expression in lung cancers would result in decreased tumorigenicity. H1299 lung cancer cells, lacking Fhit, Wwox, p16(INK4a) and Rassf1a expression due to epigenetic modifications, were used to assess efficacy of epigenetically targeted protocols in suppressing growth of lung tumors, by injection of 5-aza-2-deoxycytidine (AZA) and trichostatin A (TSA) in nude mice with established H1299 tumors. High doses of intraperitoneal AZA/TSA suppressed growth of small tumors but did not affect large tumors (200 mm(3)); lower AZA doses, administered intraperitoneally or intratumorally, suppressed growth of small tumors without apparent toxicity. Responding tumors showed restoration of Fhit, Wwox, p16(INKa), Rassf1a expression, low mitotic activity, high apoptotic fraction and activation of caspase 3. These preclinical studies show the therapeutic potential of restoration of tumor suppressor expression through epigenetic modulation and the promise of re-expressed tumor suppressors as markers and effectors of the responses.
Collapse
Affiliation(s)
- Joshua P Cantor
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Stam RW, den Boer ML, Passier MMCJ, Janka-Schaub GE, Sallan SE, Armstrong SA, Pieters R. Silencing of the tumor suppressor gene FHIT is highly characteristic for MLL gene rearranged infant acute lymphoblastic leukemia. Leukemia 2006; 20:264-71. [PMID: 16357833 DOI: 10.1038/sj.leu.2404074] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MLL rearranged acute lymphoblastic leukemia (MLL) is an aggressive type of acute lymphoblastic leukemia (ALL), diagnosed predominantly in infants (<1 years of age). Since current chemotherapy fails in >50% of patients with MLL, new therapeutic strategies are desperately needed. For this, understanding the biological features characterizing MLL is necessary. Analysis of gene expression profiles revealed that the expression of the tumor suppressor gene FHIT is reduced in children with MLL rearranged ALL as compared to ALL patients carrying germ line MLL. This finding was confirmed by quantitative real-time PCR. In 100% of the infant MLL cases tested, methylation of the FHIT 5'CpG region was observed, resulting in strongly reduced mRNA and protein expression. In contrast, FHIT methylation in infant and non-infant ALL patients carrying germ line MLL was found in only approximately 60% (P< or =0.004). FHIT expression was restored upon exposing leukemic cells to the demethylating agent decitabine, which induced apoptosis. Likewise and more specifically, leukemic cell death was induced by transfecting MLL rearranged leukemic cells with expression vectors encoding wild-type FHIT, confirming tumor suppressor activity of this gene. These observations imply that suppression of FHIT may be required for the development of MLL, and provide new insights into leukemogenesis and therapeutic possibilities for MLL.
Collapse
Affiliation(s)
- R W Stam
- Erasmus MC/Sophia Children's Hospital, Department of Pediatric Oncology/Hematology, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Smith MT, McHale CM, Wiemels JL, Zhang L, Wiencke JK, Zheng S, Gunn L, Skibola CF, Ma X, Buffler PA. Molecular biomarkers for the study of childhood leukemia. Toxicol Appl Pharmacol 2005; 206:237-45. [PMID: 15967214 DOI: 10.1016/j.taap.2004.11.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 11/22/2004] [Indexed: 02/02/2023]
Abstract
Various specific chromosome rearrangements, including t(8;21), t(15;17), and inv(16), are found in acute myeloid leukemia (AML) and in childhood acute lymphocytic leukemia (ALL), t(12;21) and t(1;19) are common. We sequenced the translocation breakpoints of 56 patients with childhood ALL or AML harboring t(12;21), t(8;21), t(15;17), inv(16), and t(1;19), and demonstrated, with the notable exception of t(1;19), that these rearrangements are commonly detected in the neonatal blood spots (Guthrie cards) of the cases. These findings show that most childhood leukemias begin before birth and that maternal and perinatal exposures such as chemical and infectious agents are likely to be critical. Indeed, we have reported that exposure to indoor pesticides during pregnancy and the first year of life raises leukemia risk, but that later exposures do not. We have also examined aberrant gene methylation in different cytogenetic subgroups and have found striking differences between them, suggesting that epigenetic events are also important in the development of some forms of childhood leukemia. Further, at least two studies now show that the inactivating NAD(P)H:quinone acceptor oxidoreductase (NQO1) C609T polymorphism is positively associated with leukemias arising in the first 1-2 years of life and polymorphisms in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene have been associated with adult and childhood ALL. Thus, low folate intake and compounds that are detoxified by NQO1 may be important in elevating leukemia risk in children. Finally, we are exploring the use of proteomics to subclassify leukemia, because cytogenetic analysis is costly and time-consuming. Several proteins have been identified that may serve as useful biomarkers for rapidly identifying different forms of childhood leukemia.
Collapse
Affiliation(s)
- Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, 140 Warren Hall, Berkeley, CA 94720-7360, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|