1
|
Dallavalasa S, Tulimilli SV, Bettada VG, Karnik M, Uthaiah CA, Anantharaju PG, Nataraj SM, Ramashetty R, Sukocheva OA, Tse E, Salimath PV, Madhunapantula SV. Vitamin D in Cancer Prevention and Treatment: A Review of Epidemiological, Preclinical, and Cellular Studies. Cancers (Basel) 2024; 16:3211. [PMID: 39335182 PMCID: PMC11430526 DOI: 10.3390/cancers16183211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Inhibition of human carcinomas has previously been linked to vitamin D due to its effects on cancer cell proliferation, migration, angiogenesis, and apoptosis induction. The anticancer activity of vitamin D has been confirmed by several studies, which have shown that increased cancer incidence is associated with decreased vitamin D and that dietary supplementation of vitamin D slows down the growth of xenografted tumors in mice. Vitamin D inhibits the growth of cancer cells by the induction of apoptosis as well as by arresting the cells at the G0/G1 (or) G2/M phase of the cell cycle. Aim and Key Scientific Concepts of the Review: The purpose of this article is to thoroughly review the existing information and discuss and debate to conclude whether vitamin D could be used as an agent to prevent/treat cancers. The existing empirical data have demonstrated that vitamin D can also work in the absence of vitamin D receptors (VDRs), indicating the presence of multiple mechanisms of action for this sunshine vitamin. Polymorphism in the VDR is known to play a key role in tumor cell metastasis and drug resistance. Although there is evidence that vitamin D has both therapeutic and cancer-preventive properties, numerous uncertainties and concerns regarding its use in cancer treatment still exist. These include (a) increased calcium levels in individuals receiving therapeutic doses of vitamin D to suppress the growth of cancer cells; (b) hyperglycemia induction in certain vitamin D-treated study participants; (c) a dearth of evidence showing preventive or therapeutic benefits of cancer in clinical trials; (d) very weak support from proof-of-principle studies; and (e) the inability of vitamin D alone to treat advanced cancers. Addressing these concerns, more potent and less toxic vitamin D analogs have been created, and these are presently undergoing clinical trial evaluation. To provide key information regarding the functions of vitamin D and VDRs, this review provided details of significant advancements in the functional analysis of vitamin D and its analogs and VDR polymorphisms associated with cancers.
Collapse
Affiliation(s)
- Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - SubbaRao V Tulimilli
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Vidya G Bettada
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Preethi G Anantharaju
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Suma M Nataraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Rajalakshmi Ramashetty
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Port Rd., Adelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Port Rd., Adelaide, SA 5000, Australia
| | - Paramahans V Salimath
- JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence-ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| |
Collapse
|
2
|
Furci F, Cicero N, Allegra A, Gangemi S. Microbiota, Diet and Acute Leukaemia: Tips and Tricks on Their Possible Connections. Nutrients 2023; 15:4253. [PMID: 37836537 PMCID: PMC10574113 DOI: 10.3390/nu15194253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/15/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Acute leukaemia is probably one of the most recurrent cancers in children and younger adults, with an incidence of acute lymphoblastic leukaemia in 80% of cases and an incidence of acute myeloid leukaemia in 15% of cases. Yet, while incidence is common in children and adolescents, acute leukaemia is a rare disease whose aetiology still requires further analysis. Many studies have investigated the aetiology of acute leukaemia, reporting that the formation of gut microbiota may be modified by the start and development of many diseases. Considering that in patients affected by acute lymphoblastic leukaemia, there is an inherent disequilibrium in the gut microbiota before treatment compared with healthy patients, increasing evidence shows how dysbiosis of the gut microbiota provokes an inflammatory immune response, contributing to the development of cancer. Our analysis suggeststhe key role of gut microbiota in the modulation of the efficacy of leukaemia treatment as well as in the progress of many cancers, such as acute leukaemia. Therefore, in this paper, we present an examination of information found in literature regarding the role of dietary factors and gut microbiota alterations in the development of leukaemia and suggest possible future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Fabiana Furci
- Provincial Healthcare Unit, Section of Allergy, 89900 Vibo Valentia, Italy;
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
3
|
Starska-Kowarska K. Role of Vitamin D in Head and Neck Cancer-Immune Function, Anti-Tumour Effect, and Its Impact on Patient Prognosis. Nutrients 2023; 15:nu15112592. [PMID: 37299554 DOI: 10.3390/nu15112592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) describes a heterogeneous group of human neoplasms of the head and neck with high rates of morbidity and mortality, constituting about 3% of all cancers and ~1.5% of all cancer deaths. HNSCC constituted the seventh most prevalent human malignancy and the most common human cancer in the world in 2020, according to multi-population observations conducted by the GLOBOCAN group. Since approximately 60-70% of patients present with stage III/IV neoplastic disease, HNSCC is still one of the leading causes of death in cancer patients worldwide, with an overall survival rate that is too low, not exceeding 40-60% of these patients. Despite the application of newer surgical techniques and the implementation of modern combined oncological treatment, the disease often follows a fatal course due to frequent nodal metastases and local neoplastic recurrences. The role of micronutrients in the initiation, development, and progression of HNSCC has been the subject of considerable research. Of particular interest has been vitamin D, the pleiotropic biologically active fat-soluble family of secosteroids (vitamin-D-like steroids), which constitutes a key regulator of bone, calcium, and phosphate homeostasis, as well as carcinogenesis and the further development of various neoplasms. Considerable evidence suggests that vitamin D plays a key role in cellular proliferation, angiogenesis, immunity, and cellular metabolism. A number of basic science, clinical, and epidemiological studies indicate that vitamin D has multidirectional biological effects and influences anti-cancer intracellular mechanisms and cancer risk, and that vitamin D dietary supplements have various prophylactic benefits. In the 20th century, it was reported that vitamin D may play various roles in the protection and regulation of normal cellular phenotypes and in cancer prevention and adjunctive therapy in various human neoplasms, including HNSCC, by regulating a number of intracellular mechanisms, including control of tumour cell expansion and differentiation, apoptosis, intercellular interactions, angio- and lymphogenesis, immune function, and tumour invasion. These regulatory properties mainly occur indirectly via epigenetic and transcriptional changes regulating the function of transcription factors, chromatin modifiers, non-coding RNA (ncRNAs), and microRNAs (miRs) through protein-protein interactions and signalling pathways. In this way, calcitriol enhances intercellular communication in cancer biology, restores the connection with the extracellular matrix, and promotes the epithelial phenotype; it thus counteracts the tumour-associated detachment from the extracellular matrix and inhibits the formation of metastases. Furthermore, the confirmation that the vitamin D receptor (VDR) is present in many human tissues confirmed the physiopathological significance of vitamin D in various human tumours. Recent studies indicate quantitative associations between exposure to vitamin D and the incidence of HNC, i.e., cancer risk assessment included circulating calcidiol plasma/serum concentrations, vitamin D intake, the presence of the VDR gene polymorphism, and genes involved in the vitamin D metabolism pathway. Moreover, the chemopreventive efficacy of vitamin D in precancerous lesions of the head and neck and their role as predictors of mortality, survival, and recurrence of head and neck cancer are also widely discussed. As such, it may be considered a promising potential anti-cancer agent for developing innovative methods of targeted therapy. The proposed review discusses in detail the mechanisms regulating the relationship between vitamin D and HNSCC. It also provides an overview of the current literature, including key opinion-forming systematic reviews as well as epidemiological, prospective, longitudinal, cross-sectional, and interventional studies based on in vitro and animal models of HNSCC, all of which are accessible via the PubMed/Medline/EMBASE/Cochrane Library databases. This article presents the data in line with increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
4
|
Hussain S, Yates C, Campbell MJ. Vitamin D and Systems Biology. Nutrients 2022; 14:5197. [PMID: 36558356 PMCID: PMC9782494 DOI: 10.3390/nu14245197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The biological actions of the vitamin D receptor (VDR) have been investigated intensively for over 100 years and has led to the identification of significant insights into the repertoire of its biological actions. These were initially established to be centered on the regulation of calcium transport in the colon and deposition in bone. Beyond these well-known calcemic roles, other roles have emerged in the regulation of cell differentiation processes and have an impact on metabolism. The purpose of the current review is to consider where applying systems biology (SB) approaches may begin to generate a more precise understanding of where the VDR is, and is not, biologically impactful. Two SB approaches have been developed and begun to reveal insight into VDR biological functions. In a top-down SB approach genome-wide scale data are statistically analyzed, and from which a role for the VDR emerges in terms of being a hub in a biological network. Such approaches have confirmed significant roles, for example, in myeloid differentiation and the control of inflammation and innate immunity. In a bottom-up SB approach, current biological understanding is built into a kinetic model which is then applied to existing biological data to explain the function and identify unknown behavior. To date, this has not been applied to the VDR, but has to the related ERα and identified previously unknown mechanisms of control. One arena where applying top-down and bottom-up SB approaches may be informative is in the setting of prostate cancer health disparities.
Collapse
Affiliation(s)
- Shahid Hussain
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Moray J. Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Muñoz A, Grant WB. Vitamin D and Cancer: An Historical Overview of the Epidemiology and Mechanisms. Nutrients 2022; 14:1448. [PMID: 35406059 PMCID: PMC9003337 DOI: 10.3390/nu14071448] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
This is a narrative review of the evidence supporting vitamin D's anticancer actions. The first section reviews the findings from ecological studies of cancer with respect to indices of solar radiation, which found a reduced risk of incidence and mortality for approximately 23 types of cancer. Meta-analyses of observational studies reported the inverse correlations of serum 25-hydroxyvitamin D [25(OH)D] with the incidence of 12 types of cancer. Case-control studies with a 25(OH)D concentration measured near the time of cancer diagnosis are stronger than nested case-control and cohort studies as long follow-up times reduce the correlations due to changes in 25(OH)D with time. There is no evidence that undiagnosed cancer reduces 25(OH)D concentrations unless the cancer is at a very advanced stage. Meta-analyses of cancer incidence with respect to dietary intake have had limited success due to the low amount of vitamin D in most diets. An analysis of 25(OH)D-cancer incidence rates suggests that achieving 80 ng/mL vs. 10 ng/mL would reduce cancer incidence rates by 70 ± 10%. Clinical trials have provided limited support for the UVB-vitamin D-cancer hypothesis due to poor design and execution. In recent decades, many experimental studies in cultured cells and animal models have described a wide range of anticancer effects of vitamin D compounds. This paper will review studies showing the inhibition of tumor cell proliferation, dedifferentiation, and invasion together with the sensitization to proapoptotic agents. Moreover, 1,25-(OH)2D3 and other vitamin D receptor agonists modulate the biology of several types of stromal cells such as fibroblasts, endothelial and immune cells in a way that interferes the apparition of metastases. In sum, the available mechanistic data support the global protective action of vitamin D against several important types of cancer.
Collapse
Affiliation(s)
- Alberto Muñoz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, CIBERONC and IdiPAZ, 28029 Madrid, Spain;
| | - William B. Grant
- Sunlight, Nutrition and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| |
Collapse
|
6
|
Sabatier M, Boet E, Zaghdoudi S, Guiraud N, Hucteau A, Polley N, Cognet G, Saland E, Lauture L, Farge T, Sahal A, Pancaldi V, Chu-Van E, Castelli F, Bertoli S, Bories P, Récher C, Boutzen H, Mansat-De Mas V, Stuani L, Sarry JE. Activation of Vitamin D Receptor Pathway Enhances Differentiating Capacity in Acute Myeloid Leukemia with Isocitrate Dehydrogenase Mutations. Cancers (Basel) 2021; 13:5243. [PMID: 34680392 PMCID: PMC8533831 DOI: 10.3390/cancers13205243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
Relapses and resistance to therapeutic agents are major barriers in the treatment of acute myeloid leukemia (AML) patients. These unfavorable outcomes emphasize the need for new strategies targeting drug-resistant cells. As IDH mutations are present in the preleukemic stem cells and systematically conserved at relapse, targeting IDH mutant cells could be essential to achieve a long-term remission in the IDH mutant AML subgroup. Here, using a panel of human AML cell lines and primary AML patient specimens harboring IDH mutations, we showed that the production of an oncometabolite (R)-2-HG by IDH mutant enzymes induces vitamin D receptor-related transcriptional changes, priming these AML cells to differentiate with pharmacological doses of ATRA and/or VD. This activation occurs in a CEBPα-dependent manner. Accordingly, our findings illuminate potent and cooperative effects of IDH mutations and the vitamin D receptor pathway on differentiation in AML, revealing a novel therapeutic approach easily transferable/immediately applicable to this subgroup of AML patients.
Collapse
Affiliation(s)
- Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
| | - Emeline Boet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
| | - Sonia Zaghdoudi
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
| | - Nathan Guiraud
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
| | - Alexis Hucteau
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
| | - Nathaniel Polley
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
| | - Guillaume Cognet
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
| | - Estelle Saland
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
| | - Laura Lauture
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
| | - Thomas Farge
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
| | - Ambrine Sahal
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
| | - Vera Pancaldi
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
| | - Emeline Chu-Van
- CEA/DSV/iBiTec-S/SPI, Laboratoire d’Etude du Métabolisme des Médicaments, MetaboHUB-Paris, 91191 Gif-sur-Yvette, France; (E.C.-V.); (F.C.)
| | - Florence Castelli
- CEA/DSV/iBiTec-S/SPI, Laboratoire d’Etude du Métabolisme des Médicaments, MetaboHUB-Paris, 91191 Gif-sur-Yvette, France; (E.C.-V.); (F.C.)
| | - Sarah Bertoli
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
- Département d’Hématologie, University of Toulouse, CEDEX 6, 31013 Toulouse, France
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, CEDEX 9, 31059 Toulouse, France
| | - Pierre Bories
- Réseau Régional de Cancérologie Onco-Occitanie, CEDEX 9, 31059 Toulouse, France;
| | - Christian Récher
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
- Département d’Hématologie, University of Toulouse, CEDEX 6, 31013 Toulouse, France
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, CHU de Toulouse, CEDEX 9, 31059 Toulouse, France
| | - Héléna Boutzen
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
| | - Véronique Mansat-De Mas
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
- Département d’Hématologie, University of Toulouse, CEDEX 6, 31013 Toulouse, France
| | - Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, Centre National de Recherche Scientifique, CEDEX 1, 31037 Toulouse, France; (M.S.); (E.B.); (S.Z.); (N.G.); (A.H.); (N.P.); (G.C.); (E.S.); (L.L.); (T.F.); (A.S.); (V.P.); (S.B.); (C.R.); (H.B.); (V.M.-D.M.)
- LabEx Toucan, 31037 Toulouse, France
- Equipe Labellisée Ligue Nationale Contre le Cancer 2018, 31037 Toulouse, France
| |
Collapse
|
7
|
How Macrophages Become Transcriptionally Dysregulated: A Hidden Impact of Antitumor Therapy. Int J Mol Sci 2021; 22:ijms22052662. [PMID: 33800829 PMCID: PMC7961970 DOI: 10.3390/ijms22052662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are the essential components of the tumor microenvironment. TAMs originate from blood monocytes and undergo pro- or anti-inflammatory polarization during their life span within the tumor. The balance between macrophage functional populations and the efficacy of their antitumor activities rely on the transcription factors such as STAT1, NF-κB, IRF, and others. These molecular tools are of primary importance, as they contribute to the tumor adaptations and resistance to radio- and chemotherapy and can become important biomarkers for theranostics. Herein, we describe the major transcriptional mechanisms specific for TAM, as well as how radio- and chemotherapy can impact gene transcription and functionality of macrophages, and what are the consequences of the TAM-tumor cooperation.
Collapse
|
8
|
Fukuta T, Yoshimi S, Kogure K. Leukocyte-Mimetic Liposomes Penetrate Into Tumor Spheroids and Suppress Spheroid Growth by Encapsulated Doxorubicin. J Pharm Sci 2020; 110:1701-1709. [PMID: 33129835 DOI: 10.1016/j.xphs.2020.10.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/11/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022]
Abstract
As leukocytes can penetrate into deep regions of a tumor mass, leukocyte-mimetic liposomes (LM-Lipo) containing leukocyte membrane proteins are also expected to penetrate into tumors by exerting properties of those membrane proteins. The aim of the present study was to examine whether LM-Lipo, which were recently demonstrated to actively pass through inflamed endothelial layers, can penetrate into tumor spheroids, and to investigate the potential of LM-Lipo for use as an anticancer drug carrier. We prepared LM-Lipo via intermembrane protein transfer from human leukemia cells; transfer of leukocyte membrane proteins onto the liposomes was determined by Western blotting. LM-Lipo demonstrated a significantly high association with human lung cancer A549 cells compared with plain liposomes, which contributed to effective anti-proliferative action by encapsulated doxorubicin hydrochloride (DOX). Confocal microscopic images showed that LM-Lipo, but not plain liposomes, could efficiently penetrate into A549 tumor spheroids. Moreover, DOX-encapsulated LM-Lipo significantly suppressed tumor spheroid growth. Thus, leukocyte membrane proteins transferred onto LM-Lipo retained their unique function, which allowed for efficient penetration of the liposomes into tumor spheroids, similar to leukocytes. In conclusion, these results suggest that LM-Lipo could be a useful tumor-penetrating drug delivery system for cancer treatment.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan.
| | - Shintaro Yoshimi
- Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| | - Kentaro Kogure
- Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| |
Collapse
|
9
|
Vitamin D Effects on Cell Differentiation and Stemness in Cancer. Cancers (Basel) 2020; 12:cancers12092413. [PMID: 32854355 PMCID: PMC7563562 DOI: 10.3390/cancers12092413] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
Vitamin D3 is the precursor of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), a pleiotropic hormone that is a major regulator of the human genome. 1,25(OH)2D3 modulates the phenotype and physiology of many cell types by controlling the expression of hundreds of genes in a tissue- and cell-specific fashion. Vitamin D deficiency is common among cancer patients and numerous studies have reported that 1,25(OH)2D3 promotes the differentiation of a wide panel of cultured carcinoma cells, frequently associated with a reduction in cell proliferation and survival. A major mechanism of this action is inhibition of the epithelial–mesenchymal transition, which in turn is largely based on antagonism of the Wnt/β-catenin, TGF-β and EGF signaling pathways. In addition, 1,25(OH)2D3 controls the gene expression profile and phenotype of cancer-associated fibroblasts (CAFs), which are important players in the tumorigenic process. Moreover, recent data suggest a regulatory role of 1,25(OH)2D3 in the biology of normal and cancer stem cells (CSCs). Here, we revise the current knowledge of the molecular and genetic basis of the regulation by 1,25(OH)2D3 of the differentiation and stemness of human carcinoma cells, CAFs and CSCs. These effects support a homeostatic non-cytotoxic anticancer action of 1,25(OH)2D3 based on reprogramming of the phenotype of several cell types.
Collapse
|
10
|
Cheng K, Tang Q, Guo X, Karow NA, Wang C. High dose of dietary vitamin D 3 modulated the yellow catfish (Pelteobagrus fulvidraco) splenic innate immune response after Edwardsiella ictaluri infection. FISH & SHELLFISH IMMUNOLOGY 2020; 100:41-48. [PMID: 32142874 DOI: 10.1016/j.fsi.2020.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Vitamin D3 (VD3) has been shown to modulate the innate immune response in mammals but this has been rarely reported in fish. The current study found that increasing dietary VD3 content can reduce the density of yellow to dark brown pigmented macrophage aggregates (PMAs) in the spleens of yellow catfish infected with Edwardsiella ictaluri. The results of next-generation sequencing showed that a high dose of dietary VD3 (16,600 IU/kg) mainly affected the splenic immune response during Edwardsiella ictaluri infection via negative regulation of 'NF-κΒ transcription factor activity', 'NIK/NF-κΒ signaling' and the 'i-kappab kinase/NF-κΒ signaling' pathways. Follow-up qPCR showed that dietary VD3 increased the expression of NF-κΒ inhibitor iκb-α, decreased the expression of nf-κb p65, il-6, il1-β and tnf-α, and down-regulated the expression of nik, ikks and nf-κb p52 in the NIK/NF-kappaB signaling pathway. The above results indicate that dietary VD3 can modulate the splenic innate immune response of yellow catfish after Edwardsiella ictaluri infection by inhibiting the NF-κB activation signaling pathways.
Collapse
Affiliation(s)
- Ke Cheng
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Tang
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave, Bronx, NY, 10461, USA
| | - Xun Guo
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Niel A Karow
- Department of Animal Biosciences, University of Guelph, ON, N1G 2W1, Canada
| | - Chunfang Wang
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Kim Y, Kim HS, Sohn J, Ji JD. 1,25-Dihydroxyvitamin D 3 induces human myeloid cell differentiation via the mTOR signaling pathway. Biochem Biophys Res Commun 2019; 519:909-915. [PMID: 31563324 DOI: 10.1016/j.bbrc.2019.09.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022]
Abstract
1,25-Dihydroxyvitamin D3 or 1,25(OH)2D3 is known to play an important role in the differentiation of human myeloid cells. However, the molecular mechanism underlying the 1,25(OH)2D3-mediated differentiation of human myeloid cells is incompletely understood. Here, we report that 1,25(OH)2D3 induces differentiation of human myeloid cell lines such as U937 and THP-1 cells via the mammalian target of rapamycin (mTOR) signaling pathway. Both the expression of the differentiation marker CD14 and activation of the mTOR signaling pathway were induced by 1,25(OH)2D3 in phorbol 12-myristate 13-acetate (PMA)-differentiated U937 and THP-1 cells. The 1,25(OH)2D3-induced expression of CD14 in PMA-differentiated U937 and THP-1 cells was prevented by mTOR inhibitors, PP242 and Torin1. The 1,25(OH)2D3-induced morphological changes as characteristics of differentiated myeloid cells were also reversed after PP242 and Torin1 treatment. Silencing of either regulatory-associated protein of mTOR (Raptor) or rapamycin-insensitive companion of mTOR (Rictor) in PMA-differentiated THP-1 cells with small-interfering RNA resulted in the inhibition of CD14 expression and morphological changes induced by 1,25(OH)2D3, indicating that both mTORC1 and mTORC2 were important for the differentiation of myeloid THP-1 cells. Previous studies have shown that phosphatidic acid (PA) maintains the stability of the mTOR complex. Here we found that the attenuation of PA production with 1-butanol or a PLD inhibitor prevented the 1,25(OH)2D3-induced upregulation of CD14. Taken together, our results show that 1,25(OH)2D3 enhances the differentiation of human myeloid cells through the mTOR signaling pathway.
Collapse
Affiliation(s)
- Yongjin Kim
- Department of Biochemistry, College of Medicine, Korea University, Seoul, South Korea
| | - Hee Suk Kim
- Department of Biochemistry, College of Medicine, Korea University, Seoul, South Korea
| | - Jeongwon Sohn
- Department of Biochemistry, College of Medicine, Korea University, Seoul, South Korea.
| | - Jong Dae Ji
- Rheumatology, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
12
|
Medrano M, Carrillo-Cruz E, Montero I, Perez-Simon JA. Vitamin D: Effect on Haematopoiesis and Immune System and Clinical Applications. Int J Mol Sci 2018; 19:ijms19092663. [PMID: 30205552 PMCID: PMC6164750 DOI: 10.3390/ijms19092663] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
Vitamin D is a steroid-like hormone which acts by binding to vitamin D receptor (VDR). It plays a main role in the calcium homeostasis and metabolism. In addition, vitamin D display other important effects called “non-classical actions.” Among them, vitamin D regulates immune cells function and hematopoietic cells differentiation and proliferation. Based on these effects, it is currently being evaluated for the treatment of hematologic malignancies. In addition, vitamin D levels have been correlated with patients’ outcome after allogeneic stem cell transplantation, where it might regulate immune response and, accordingly, might influence the risk of graft-versus-host disease. Here, we present recent advances regarding its clinical applications both in the treatment of hematologic malignancies and in the transplant setting.
Collapse
Affiliation(s)
- Mayte Medrano
- Department of Hematology, University Hospital Virgen del Rocio, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), Universidad de Sevilla, 41013 Sevilla, Spain.
| | - Estrella Carrillo-Cruz
- Department of Hematology, University Hospital Virgen del Rocio, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), Universidad de Sevilla, 41013 Sevilla, Spain.
| | - Isabel Montero
- Department of Hematology, University Hospital Virgen del Rocio, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), Universidad de Sevilla, 41013 Sevilla, Spain.
| | - Jose A Perez-Simon
- Department of Hematology, University Hospital Virgen del Rocio, Instituto de Biomedicina de Sevilla (IBIS/CSIC/CIBERONC), Universidad de Sevilla, 41013 Sevilla, Spain.
| |
Collapse
|
13
|
Novikova SE, Tikhonova OV, Kurbatov LK, Farafonova TE, Vakhrushev IV, Zgoda VG. Application of selected reaction monitoring and parallel reaction monitoring for investigation of HL-60 cell line differentiation. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:202-208. [PMID: 29028392 DOI: 10.1177/1469066717719848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Targeted mass spectrometry represents a powerful tool for investigation of biological processes. The convenient approach of selected reaction monitoring using stable isotope-labeled peptide standard (SIS) is widely applied for protein quantification. Along with this method, high-resolution parallel reaction monitoring has been increasingly used for protein targeted analysis. Here we applied two targeted approaches (selected reaction monitoring with SIS and label-free parallel reaction monitoring) to investigate expression of 11 proteins during all-trans retinoic acid-induced differentiation of HL-60 cells. In our experiments, we have determined the proteins expression ratio at 3, 24, 48, and 96 h after all-trans retinoic acid treatment in comparison with 0 h, respectively. Expression profiles of four proteins (VAV1, PRAM1, LYN, and CEBPB) were highly correlated ( r > 0.75) and FGR expression was detected on proteome level starting from 24 h by both techniques. For prominent differences (fold change ≥ 2) label-free parallel reaction monitoring is not inferior to selected reaction monitoring with isotopically labeled peptide standards. Differentially expressed proteins, that have been determined in our study, can be considered as potential drug targets for acute myeloid leukemia (AML) treatment.
Collapse
|
14
|
Hu J, Zheng L, Shen X, Zhang Y, Li C, Xi T. MicroRNA-125b inhibits AML cells differentiation by directly targeting Fes. Gene 2017; 620:1-9. [PMID: 28389358 DOI: 10.1016/j.gene.2017.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/09/2017] [Accepted: 04/03/2017] [Indexed: 01/05/2023]
Abstract
MicroRNA-125b (miR-125b) has been reported to be upregulated in several kinds of leukemia, suggesting that miR-125b plays a role in Leukemia development. In this study, it was shown that miR-125b expression level decreased in response to 1α, 25-dihydroxy-vitamin D3 (1,25D3) in a dose- and time-dependent manner and miR-125b blocked 1,25D3-induced monocytic differentiation of U937 cells. In addition, miR-125b decreased mRNA expression of myelomonocytic differentiation markers, including CD11c, CD18 and CD64 and arrested the cell cycle at the S phase in U937 and HL60 cells. Fes was identified as a novel direct target of miR-125b and miR-125b could also reduce the expression levels of PU.1 and macrophage colony-stimulating factor receptor (MCSFR). Furthermore, Fes was found to be involved in monocytic differentiation via upregulation of PU.1 and MCSFR and Fes siRNA could also inhibit 1,25D3-induced monocytic differentiation of U937 and HL60 cells and decrease mRNA expression of CD11c, CD18 and CD64. Importantly, the inhibition of Fes siRNA on 1,25D3-induced monocytic differentiation could be rescued by transfection with miR-125b inhibitor. Our data highlights an important role of miR-125b in AML progression, implying the potential application of miR-125b in AML therapy.
Collapse
Affiliation(s)
- Jinhang Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao Shen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yan Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Cheng Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
15
|
Corcoran A, Bermudez MA, Seoane S, Perez-Fernandez R, Krupa M, Pietraszek A, Chodyński M, Kutner A, Brown G, Marcinkowska E. Biological evaluation of new vitamin D 2 analogues. J Steroid Biochem Mol Biol 2016; 164:66-71. [PMID: 26429396 DOI: 10.1016/j.jsbmb.2015.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/07/2015] [Accepted: 09/25/2015] [Indexed: 11/23/2022]
Abstract
1,25-dihydroxyvitamin D3 (1,25D), a steroid hormone which regulates calcium/phosphate homeostasis, has a broad spectrum of anti-cancer activities, including differentiation of acute myeloid leukemia (AML) cells. In order to avoid undesirable side effects such as hypercalcemia, low-calcemic analogues should be produced for therapeutic purposes. In this paper, we describe biological activities of double-point modified analogues of vitamin D2 and we compare them to 1,25D and to paricalcitol, the drug used to treat secondary hyperparathyroidism. In vivo, our new analogues have lower calcemic effects, and lower toxicity in comparison to 1,25D. They have enhanced pro-differentiating and transcription-inducing activities in AML cells. Interestingly, differentiation effects do not correlate with the affinities of the analogues to the vitamin D receptor (VDR).
Collapse
Affiliation(s)
- Aoife Corcoran
- Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Maria A Bermudez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Praza do Obradoiro, Santiago de Compostela 15782, A Coruña, Spain
| | - Samuel Seoane
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Praza do Obradoiro, Santiago de Compostela 15782, A Coruña, Spain
| | - Roman Perez-Fernandez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Praza do Obradoiro, Santiago de Compostela 15782, A Coruña, Spain
| | - Małgorzata Krupa
- Pharmaceutical Research Institute, 8 Rydygiera, 01-793 Warsaw, Poland
| | - Anita Pietraszek
- Pharmaceutical Research Institute, 8 Rydygiera, 01-793 Warsaw, Poland
| | - Michał Chodyński
- Pharmaceutical Research Institute, 8 Rydygiera, 01-793 Warsaw, Poland
| | - Andrzej Kutner
- Pharmaceutical Research Institute, 8 Rydygiera, 01-793 Warsaw, Poland
| | - Geoffrey Brown
- School of Immunity and Infection, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Ewa Marcinkowska
- Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| |
Collapse
|
16
|
Moscarelli L, Antognoli G, Buti E, Dervishi E, Fani F, Caroti L, Tsalouchos A, Romoli E, Ghiandai G, Minetti E. 1,25 Dihydroxyvitamin D circulating levels, calcitriol administration, and incidence of acute rejection, CMV infection, and polyoma virus infection in renal transplant recipients. Clin Transplant 2016; 30:1347-1359. [PMID: 27532453 DOI: 10.1111/ctr.12829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2016] [Indexed: 02/01/2023]
Abstract
Observation that 1,25-Dihydroxyvitamin-D3 has an immunomodulatory effect on innate and adaptive immunity raises the possible effect on clinical graft outcome. Aim of this study was to evaluate the correlation of biopsy-proven acute rejection, CMV infection, BKV infection, with 1,25-Dihydroxyvitamin-D3 deficiency and the benefit of calcitriol supplementation before and during the transplantation. Risk factors and kidney graft function were also evaluated. All RTRs received induction therapy with basiliximab, cyclosporine, mycophenolic acid, and steroids. During the first year, the incidence of BPAR (4% vs 11%, P=.04), CMV infection (3% vs 9%, P=.04), and BKV infection (6% vs 19%, P=.04) was significantly lower in users compared to controls. By multivariate Cox regression analysis, 1,25-Dihydroxyvitamin-D3 deficiency and no calcitriol exposure were independent risk factors for BPAR (HR=4.30, P<.005 and HR=3.25, P<.05), for CMV infection (HR=2.33, P<.05 and HR=2.31, P=.001), and for BKV infection (HR=2.41, P<.05 and HR=2.45, P=.001). After one year, users had a better renal function: eGFR was 62.5±6.7 mL/min vs 51.4±7.6 mL/min (P<.05). Only one user developed polyomavirus-associated nephropathy vs 15 controls. Two users lost their graft vs 11 controls. 1,25(OH)2-D3 deficiency circulating levels increased the risk of BPAR, CMV infection, BKV infection after kidney transplantation. Administration of calcitriol is a way to obtain adequate 1,25(OH)2-D3 circulating levels.
Collapse
Affiliation(s)
| | | | - Elisa Buti
- Renal Unit, Careggi University Hospital, Florence, Italy
| | | | - Filippo Fani
- Renal Unit, Careggi University Hospital, Florence, Italy
| | | | | | - Elena Romoli
- Renal Unit, Careggi University Hospital, Florence, Italy
| | | | - Enrico Minetti
- Renal Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
17
|
Ma Y, Johnson CS, Trump DL. Mechanistic Insights of Vitamin D Anticancer Effects. VITAMIN D HORMONE 2016; 100:395-431. [DOI: 10.1016/bs.vh.2015.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Teske KA, Yu O, Arnold LA. Inhibitors for the Vitamin D Receptor-Coregulator Interaction. VITAMINS AND HORMONES 2015; 100:45-82. [PMID: 26827948 DOI: 10.1016/bs.vh.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The vitamin D receptor (VDR) belongs to the superfamily of nuclear receptors and is activated by the endogenous ligand 1,25-dihydroxyvitamin D3. The genomic effects mediated by VDR consist of the activation and repression of gene transcription, which includes the formation of multiprotein complexes with coregulator proteins. Coregulators bind many nuclear receptors and can be categorized according to their role as coactivators (gene activation) or corepressors (gene repression). Herein, different approaches to develop compounds that modulate the interaction between VDR and coregulators are summarized. This includes coregulator peptides that were identified by creating phage display libraries. Subsequent modification of these peptides including the introduction of a tether or nonhydrolyzable bonds resulted in the first direct VDR-coregulator inhibitors. Later, small molecules that inhibit VDR-coregulator inhibitors were identified using rational drug design and high-throughput screening. Early on, allosteric inhibition of VDR-coregulator interactions was achieved with VDR antagonists that change the conformation of VDR and modulate the interactions with coregulators. A detailed discussion of their dual agonist/antagonist effects is given as well as a summary of their biological effects in cell-based assays and in vivo studies.
Collapse
Affiliation(s)
- Kelly A Teske
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Olivia Yu
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery (MIDD), University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
| |
Collapse
|
19
|
Zheng R, Wang X, Studzinski GP. 1,25-Dihydroxyvitamin D3 induces monocytic differentiation of human myeloid leukemia cells by regulating C/EBPβ expression through MEF2C. J Steroid Biochem Mol Biol 2015; 148:132-7. [PMID: 25448741 PMCID: PMC4361347 DOI: 10.1016/j.jsbmb.2014.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 11/18/2022]
Abstract
Myogenic enhancer factor2 (Mef2) consists of a family of transcription factors involved in morphogenesis of skeletal, cardiac and smooth muscle cells. Among the four isoforms (Mef2A, 2B, 2C, and 2D), Mef2C was also found to play important roles in hematopoiesis. At myeloid progenitor level, Mef2C expression favors monocytic differentiation. Previous studies from our laboratory demonstrated that ERK5 was activated in 1,25-dihydroxyvitamin D3 (1,25D)-induced monocytic differentiation in AML cells and ERK5 activation was accompanied by increased Mef2C phosphorylation. We therefore examined the role of Mef2C in 1,25D-induced monocytic differentiation in AML cell lines (HL60, U937 and THP1) and found that knockdown of Mef2C with small interfering RNA (siRNA) significantly decreases the expression of the monocytic marker, CD14, without affecting the expression of the general myeloid marker, CD11b. CCAAT/enhancer-binding protein (C/EBP) β, which can bind to CD14 promoter and increase its transcription, has been shown to be the downstream effector of 1,25D-induced monocytic differentiation in AML cells. When Mef2C was knocked down, expression of C/EBPβ was reduced at both mRNA and protein levels. The protein expression levels of cell cycle regulators, p27(Kip1) and cyclin D1, were not affected by Mef2C knockdown, nor the monopoiesis related transcription factor, ATF2 (activating transcription factor 2). Thus, we conclude that 1,25D-induced monocytic differentiation, and CD14 expression in particular, are mediated through activation of ERK5-Mef2C-C/EBPβ signaling pathway, and that Mef2C does not seem to modulate cell cycle progression.
Collapse
MESH Headings
- Apoptosis/drug effects
- Blotting, Western
- CCAAT-Enhancer-Binding Protein-beta/genetics
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- Calcitriol/pharmacology
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Cyclin-Dependent Kinase Inhibitor p27/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Flow Cytometry
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- MEF2 Transcription Factors/antagonists & inhibitors
- MEF2 Transcription Factors/genetics
- MEF2 Transcription Factors/metabolism
- Monocytes/drug effects
- Monocytes/metabolism
- Monocytes/pathology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Vitamins/pharmacology
Collapse
Affiliation(s)
- Ruifang Zheng
- UH Cancer Center, Rutgers, New Jersey Medical School, 205 South Orange Ave., Newark, NJ 07103, USA
| | - Xuening Wang
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, 185 South Orange Ave., Newark, NJ 07103, USA
| | - George P Studzinski
- UH Cancer Center, Rutgers, New Jersey Medical School, 205 South Orange Ave., Newark, NJ 07103, USA; Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, 185 South Orange Ave., Newark, NJ 07103, USA.
| |
Collapse
|
20
|
Gocek E, Studzinski GP. The Potential of Vitamin D-Regulated Intracellular Signaling Pathways as Targets for Myeloid Leukemia Therapy. J Clin Med 2015; 4:504-34. [PMID: 26239344 PMCID: PMC4470153 DOI: 10.3390/jcm4040504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/06/2015] [Accepted: 03/06/2015] [Indexed: 02/06/2023] Open
Abstract
The current standard regimens for the treatment of acute myeloid leukemia (AML) are curative in less than half of patients; therefore, there is a great need for innovative new approaches to this problem. One approach is to target new treatments to the pathways that are instrumental to cell growth and survival with drugs that are less harmful to normal cells than to neoplastic cells. In this review, we focus on the MAPK family of signaling pathways and those that are known to, or potentially can, interact with MAPKs, such as PI3K/AKT/FOXO and JAK/STAT. We exemplify the recent studies in this field with specific relevance to vitamin D and its derivatives, since they have featured prominently in recent scientific literature as having anti-cancer properties. Since microRNAs also are known to be regulated by activated vitamin D, this is also briefly discussed here, as are the implications of the emerging acquisition of transcriptosome data and potentiation of the biological effects of vitamin D by other compounds. While there are ongoing clinical trials of various compounds that affect signaling pathways, more studies are needed to establish the clinical utility of vitamin D in the treatment of cancer.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| | - George P Studzinski
- Department of Pathology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Ave., Newark, NJ 17101, USA.
| |
Collapse
|
21
|
Flavonoid 4'-O-Methylkuwanon E from Morus alba Induces the Differentiation of THP-1 Human Leukemia Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:251895. [PMID: 25737734 PMCID: PMC4337268 DOI: 10.1155/2015/251895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/23/2015] [Indexed: 11/29/2022]
Abstract
Aims. In this work we studied cytodifferentiation effects of newly characterized prenyl flavonoid 4′-O-methylkuwanon E (4ME) isolated from white mulberry (Morus alba L.). Main Methods. Cell growth and viability were measured by dye exclusion assay; cell cycle and surface antigen CD11b were monitored by flow cytometry. For the cytodifferentiation of cells the NBT reduction assay was employed. Regulatory proteins were assessed by western blotting. Key Findings. 4ME induced dose-dependent growth inhibition of THP-1 cells, which was not accompanied by toxic effect. Inhibition of cells proliferation caused by 4ME was associated with the accumulation in G1 phase and with downregulation of hyperphosphorylated pRb. Treatment with 4ME led to significant induction of NBT-reducing activity of PMA stimulated THP-1 cells and upregulation expression of differentiation-associated surface antigen CD11b. Our results suggest that monocytic differentiation induced by 4ME is connected with up-regulation of p38 kinase activity. Significance. Our study provides the first evidence that 4ME induces the differentiation of THP-1 human monocytic leukemia cells and thus is a potential cytodifferentiating anticancer agent.
Collapse
|
22
|
Arcidiacono MV, Yang J, Fernandez E, Dusso A. The induction of C/EBPβ contributes to vitamin D inhibition of ADAM17 expression and parathyroid hyperplasia in kidney disease. Nephrol Dial Transplant 2014; 30:423-33. [PMID: 25294851 DOI: 10.1093/ndt/gfu311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In secondary hyperparathyroidism (SHPT), enhanced parathyroid levels of transforming growth factor-α (TGFα) increase EGF receptor (EGFR) activation causing parathyroid hyperplasia, high parathyroid hormone (PTH) and also reductions in vitamin D receptor (VDR) that limit vitamin D suppression of SHPT. Since anti-EGFR therapy is not an option in human SHPT, we evaluated ADAM17 as a therapeutic target to suppress parathyroid hyperplasia because ADAM17 is required to release mature TGFα, the most potent EGFR-activating ligand. METHODS Computer analysis of the ADAM17 promoter identified TGFα and C/EBPβ as potential regulators of the ADAM17 gene. Their regulation of ADAM17 expression, TGFα/EGFR-driven growth and parathyroid gland (PTG) enlargement were assessed in promoter-reporter assays in A431 cells and corroborated in rat and human SHPT, using erlotinib as anti-EGFR therapy to suppress TGFα signals, active vitamin D to induce C/EBPβ or the combination. RESULTS While TGFα induced ADAM17-promoter activity by 2.2-fold exacerbating TGFα/EGFR-driven growth, ectopic C/EBPβ expression completely prevented this vicious synergy. Accordingly, in advanced human SHPT, parathyroid ADAM17 levels correlated directly with TGFα and inversely with C/EBPβ. Furthermore, combined erlotinib + calcitriol treatment suppressed TGFα/EGFR-cell growth and PTG enlargement more potently than erlotinib in part through calcitriol induction of C/EBPβ to inhibit ADAM17-promoter activity, mRNA and protein. Importantly, in rat SHPT, the correction of vitamin D deficiency effectively reversed the resistance to paricalcitol induction of C/EBPβ to suppress ADAM17 expression and PTG enlargement, reducing PTH by 50%. CONCLUSION In SHPT, correction of vitamin D and calcitriol deficiency induces parathyroid C/EBPβ to efficaciously attenuate the severe ADAM17/TGFα synergy, which drives PTG enlargement and high PTH.
Collapse
Affiliation(s)
- Maria Vittoria Arcidiacono
- Renal Division, Washington University School of Medicine, St. Louis, MO, USA Division of Experimental Nephrology, IRB Lleida, Lleida, Spain
| | - Jing Yang
- Renal Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Elvira Fernandez
- Division of Experimental Nephrology, IRB Lleida, Lleida, Spain Renal Division, Hospital Universitari Arnau de Vilanova, Universidad de Lleida, Lleida, Spain
| | - Adriana Dusso
- Renal Division, Washington University School of Medicine, St. Louis, MO, USA Division of Experimental Nephrology, IRB Lleida, Lleida, Spain
| |
Collapse
|
23
|
Hu XT, Zuckerman KS. Role of cell cycle regulatory molecules in retinoic acid- and vitamin D3-induced differentiation of acute myeloid leukaemia cells. Cell Prolif 2014; 47:200-10. [PMID: 24646031 PMCID: PMC6496847 DOI: 10.1111/cpr.12100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/28/2013] [Indexed: 02/06/2023] Open
Abstract
The important role of cell cycle regulatory molecules in all trans-retinoic acid (ATRA)- and vitamin D3-induced growth inhibition and differentiation induction has been intensively studied in both acute myeloid leukaemia primary cells and a variety of leukaemia cell lines. Cyclin-dependent kinases (CDK)-activating kinase has been demonstrated to interact with retinoic acid receptor (RAR)α in acute promyelocytic leukaemia cells, and inhibition of CDK-activating kinase by ATRA causes hypophosphorylation of PML-RARα, leading to myeloid differentiation. In many cases, downregulation of CDK activity by ATRA and vitamin D3 is a result of elevated p21- and p27-bound CDKs. Activation of p21 is regulated at the transcriptional level, whereas elevated p27 results from both (indirectly) transcriptional activation and post-translational modifications. CDK inhibitors (CKIs) of the INK family, such as p15, p16 and p18, are mainly involved in inhibition of cell proliferation, whereas CIP/KIP members, such as p21, regulate both growth arrest and induction of differentiation. ATRA and vitamin D3 can also downregulate expression of G1 CDKs, especially CDK2 and CDK6. Inhibition of cyclin E expression has only been observed in ATRA- but not in vitamin D3-treated leukaemic cells. In vitro, not only dephosphorylation of pRb but also elevation of total pRb is required for ATRA and vitamin D3 to suppress growth and trigger their differentiation. Finally, sharp reduction in c-Myc has been observed in several leukaemia cell lines treated with ATRA, which may regulate expression of CDKs and CKIs.
Collapse
Affiliation(s)
- X. T. Hu
- Department of BiologyCollege of Arts & SciencesBarry UniversityMiami ShoresFL33161USA
| | - K. S. Zuckerman
- Department of Malignant HematologyH. Lee Moffitt Cancer Center and Research InstituteTampaFL33612USA
- Departments of Oncologic Sciences and Internal MedicineUniversity of South FloridaTampaFL33612USA
| |
Collapse
|
24
|
Wang X, Pesakhov S, Harrison JS, Danilenko M, Studzinski GP. ERK5 pathway regulates transcription factors important for monocytic differentiation of human myeloid leukemia cells. J Cell Physiol 2014; 229:856-67. [PMID: 24264602 DOI: 10.1002/jcp.24513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/18/2013] [Indexed: 12/25/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are important transducers of external signals for cell growth, survival, and other cellular responses including cell differentiation. Several MAPK cascades are known with the MEK1/2-ERK1/2, JNK, and p38MAPKs receiving most attention, but the role of MEK5-ERK5 in intracellular signaling deserves more scrutiny, as this pathway transmits signals that can complement ERK/2 signaling. We hypothesized that the ERK5 pathway plays a role in the control of monocytic differentiation, which is disturbed in myeloid leukemia. We therefore examined the cellular phenotype and key molecular events which occur when human myeloid leukemia cells, acute (AML) or chronic (CML), are forced to differentiate by vitamin D derivatives (VDDs). This study was performed using established cell lines HL60 and U937, and primary cultures of blasts from 10 patients with ML. We found that ERK5 and its direct downstream target transcription factor MEF2C are upregulated by 1,25D in parallel with monocytic differentiation. Further, inhibition of ERK5 activity by specific pharmacological agents BIX02189 and XMD8-92 alters the phenotype of these cells by reducing the abundance of the VDD-induced surface monocytic marker CD14, and concomitantly increasing surface expression of the general myeloid marker CD11b. Similar results were obtained when the expression of ERK5 was reduced by siRNA or short hairpin (sh) RNA. ERK5 inhibition resulted in an expected decrease in MEF2C activation. We also found that in AML cells the transcription factor C/EBPβ is positively regulated, while C/EBPα is negatively regulated by ERK5. These findings provide new understanding of dysregulated differentiation in human myeloid leukemia.
Collapse
Affiliation(s)
- Xuening Wang
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | | | | | | | | |
Collapse
|
25
|
He S, Minton AZ, Ma HY, Stankowska DL, Sun X, Krishnamoorthy RR. Involvement of AP-1 and C/EBPβ in upregulation of endothelin B (ETB) receptor expression in a rodent model of glaucoma. PLoS One 2013; 8:e79183. [PMID: 24265756 PMCID: PMC3827153 DOI: 10.1371/journal.pone.0079183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/23/2013] [Indexed: 12/31/2022] Open
Abstract
Previous studies showed that the endothelin B receptor (ETB) expression was upregulated and played a key role in neurodegeneration in rodent models of glaucoma. However, the mechanisms underlying upregulation of ETB receptor expression remain largely unknown. Using promoter-reporter assays, the 1258 bp upstream the human ETB promoter region was found to be essential for constitutive expression of ETB receptor gene in human non-pigmented ciliary epithelial cells (HNPE). The −300 to −1 bp and −1258 to −600 bp upstream promoter regions of the ETB receptor appeared to be the key binding regions for transcription factors. In addition, the crucial AP-1 binding site located at −615 to −624 bp upstream promoter was confirmed by luciferase assays and CHIP assays which were performed following overexpression of c-Jun in HNPE cells. Overexpression of either c-Jun or C/EBPβ enhanced the ETB receptor promoter activity, which was reflected in increased mRNA and protein levels of ETB receptor. Furthermore, knock-down of either c-Jun or C/EBPβ in HNPE cells was significantly correlated to decreased mRNA levels of both ETB and ETA receptor. These observations suggest that c-Jun and C/EBPβ are important for regulated expression of the ETB receptor in HNPE cells. In separate experiments, intraocular pressure (IOP) was elevated in one eye of Brown Norway rats while the corresponding contralateral eye served as control. Two weeks of IOP elevation produced increased expression of c-Jun and C/EBPβ in the retinal ganglion cell (RGC) layer from IOP-elevated eyes. The mRNA levels of c-Jun, ETA and ETB receptor were upregulated by 2.2-, 3.1- and 4.4-fold in RGC layers obtained by laser capture microdissection from retinas of eyes with elevated IOP, compared to those from contralateral eyes. Taken together, these data suggest that transcription factor AP-1 plays a key role in elevation of ETB receptor in a rodent model of ocular hypertension.
Collapse
Affiliation(s)
- Shaoqing He
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| | - Alena Z. Minton
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Hai-Ying Ma
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Dorota L. Stankowska
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Xiangle Sun
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Raghu R. Krishnamoorthy
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
26
|
Lai YH, Fang TC. The pleiotropic effect of vitamin d. ISRN NEPHROLOGY 2013; 2013:898125. [PMID: 24967240 PMCID: PMC4045445 DOI: 10.5402/2013/898125] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/05/2013] [Indexed: 12/19/2022]
Abstract
The novel roles of vitamin D were discovered and valued in this century. In addition to the maintenance of calcium and phosphorus balance, vitamin D regulates the function of the kidneys, heart, and immune system. Moreover, its anti-inflammatory, antiapoptotic, and antifibrotic roles have gained considerable attention. Vitamin D is also important for the maintenance of homeostasis by regulation of hormone secretion, cell proliferation, and differentiation. This paper will review these pleiotropic functions of vitamin D.
Collapse
Affiliation(s)
- Yu-Hsien Lai
- Division of Nephrology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital, No. 707, Section 3, Chung Yang Road, Hualien 97004, Taiwan
| | - Te-Chao Fang
- Division of Nephrology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital, No. 707, Section 3, Chung Yang Road, Hualien 97004, Taiwan ; School of Medicine, Tzu Chi University, Hualien, Taiwan ; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
27
|
Gocek E, Marchwicka A, Baurska H, Chrobak A, Marcinkowska E. Opposite regulation of vitamin D receptor by ATRA in AML cells susceptible and resistant to vitamin D-induced differentiation. J Steroid Biochem Mol Biol 2012; 132:220-6. [PMID: 22789609 DOI: 10.1016/j.jsbmb.2012.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/27/2012] [Accepted: 07/03/2012] [Indexed: 01/02/2023]
Abstract
Some leukemic cell lines can be driven to differentiate to monocyte-like cells by 1,25-dihydroxyvitamin D(3) (1,25D) and to granulocyte-like cells by all-trans retinoic acid (ATRA). Acute myloid leukemias (AMLs) are heterogeneous blood malignancies characterized by a block at various stages of hematopoietic differentiation and there are more than 200 known chromosome translocations and mutations in leukemic cells of patients diagnosed with AML. Because of the multiplicity in the genetic lesions causing the disease, AMLs are particularly difficult to treat successfully. In particular, various AML cells to a variable degree respond to 1,25D-based differentiation and only one type of AML undergoes successfully ATRA-based differentiation therapy. In this paper we describe that AML cell line KG-1 is resistant to 1,25D-induced monocytic differentiation, while sensitive to ATRA-induced granulocytic differentiation. We show that KG-1 cells have very low level of VDR protein and that expression of VDR mRNA is upregulated by ATRA. We show for the first time that this regulation is cell context-specific, because in another AML cell line, HL60, VDR mRNA is downregulated by ATRA. ATRA-induced VDR protein in cytosol of KG-1 cells can be further activated by 1,25D to induce monocytic differentiation of these cells.
Collapse
MESH Headings
- Cell Differentiation/drug effects
- Cytosol/drug effects
- Cytosol/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- HL-60 Cells
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Steroid Hydroxylases/genetics
- Tretinoin/pharmacology
- Tumor Cells, Cultured
- Vitamin D/analogs & derivatives
- Vitamin D/metabolism
- Vitamin D/pharmacology
- Vitamin D3 24-Hydroxylase
Collapse
Affiliation(s)
- Elżbieta Gocek
- Department of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
28
|
BAURSKA HANNA, MARCHWICKA ALEKSANDRA, KŁOPOT ANNA, KUTNER ANDRZEJ, MARCINKOWSKA EWA. Studies on the mechanisms of superagonistic pro-differentiating activities of side-chain modified analogs of vitamin D2. Oncol Rep 2012; 28:1110-6. [DOI: 10.3892/or.2012.1886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/30/2012] [Indexed: 11/05/2022] Open
|
29
|
Regulation of C/EBPβ and resulting functions in cells of the monocytic lineage. Cell Signal 2012; 24:1287-96. [DOI: 10.1016/j.cellsig.2012.02.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/14/2012] [Indexed: 01/10/2023]
|
30
|
Regulation of Leukemic Cell Differentiation through the Vitamin D Receptor at the Levels of Intracellular Signal Transduction, Gene Transcription, and Protein Trafficking and Stability. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:713243. [PMID: 23213549 PMCID: PMC3505923 DOI: 10.1155/2012/713243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/29/2012] [Indexed: 01/03/2023]
Abstract
1α,25-Dihydroxyvitamin D3 (1,25(OH)2D) exerts its biological activities through vitamin D receptor (VDR), which is a member of the superfamily of steroid receptors, that act as ligand-dependent transcription factors. Ligated VDR in complex with retinoid X receptor (RXR) binds to regulatory regions of 1,25(OH)2D-target genes. 1,25(OH)2D is able to induce differentiation of leukemic blasts towards macrophage-like cells. Many different acute myeloid leukemia (AML) cell lines respond to 1,25(OH)2D by increasing CD14 cell surface receptor, some additionally upregulate CD11b and CD11c integrins. In untreated AML cells VDR protein is present in cytosol at a very low level, even though its mRNA is continuously expressed. Ligation of VDR causes protein stabilization and translocation to the cell nuclei, where it regulates transcription of target genes. Several important groups of genes are regulated by 1,25(OH)2D in HL60 cells. These genes include differentiation-related genes involved in macrophage function, as well as a gene regulating degradation of 1,25(OH)2D, namely CYP24A1. We summarize here the data which demonstrate that though some cellular responses to 1,25(OH)2D in AML cells are transcription-dependent, there are many others which depend on intracellular signal transduction, protein trafficking and stabilization. The final effect of 1,25(OH)2D action in leukemic cells requires all these acting together.
Collapse
|
31
|
Abstract
The Caenorhabditis elegans pRb ortholog, LIN-35, functions in a wide range of cellular and developmental processes. This includes a role of LIN-35 in nutrient utilization by the intestine, which it carries out redundantly with SLR-2, a zinc-finger protein. This and other redundant functions of LIN-35 were identified in genetic screens for mutations that display synthetic phenotypes in conjunction with loss of lin-35. To explore the intestinal role of LIN-35, we conducted a genome-wide RNA-interference-feeding screen for suppressors of lin-35; slr-2 early larval arrest. Of the 26 suppressors identified, 17 fall into three functional classes: (1) ribosome biogenesis genes, (2) mitochondrial prohibitins, and (3) chromatin regulators. Further characterization indicates that different categories of suppressors act through distinct molecular mechanisms. We also tested lin-35; slr-2 suppressors, as well as suppressors of the synthetic multivulval phenotype, to determine the spectrum of lin-35-synthetic phenotypes that could be suppressed following inhibition of these genes. We identified 19 genes, most of which are evolutionarily conserved, that can suppress multiple unrelated lin-35-synthetic phenotypes. Our study reveals a network of genes broadly antagonistic to LIN-35 as well as genes specific to the role of LIN-35 in intestinal and vulval development. Suppressors of multiple lin-35 phenotypes may be candidate targets for anticancer therapies. Moreover, screening for suppressors of phenotypically distinct synthetic interactions, which share a common altered gene, may prove to be a novel and effective approach for identifying genes whose activities are most directly relevant to the core functions of the shared gene.
Collapse
|
32
|
Adenanthin targets peroxiredoxin I and II to induce differentiation of leukemic cells. Nat Chem Biol 2012; 8:486-93. [PMID: 22484541 DOI: 10.1038/nchembio.935] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/28/2012] [Indexed: 12/12/2022]
Abstract
Peroxiredoxins (Prxs) are potential therapeutic targets for major diseases such as cancers. However, isotype-specific inhibitors remain to be developed. We report that adenanthin, a diterpenoid isolated from the leaves of Rabdosia adenantha, induces differentiation of acute promyelocytic leukemia (APL) cells. We show that adenanthin directly targets the conserved resolving cysteines of Prx I and Prx II and inhibits their peroxidase activities. Consequently, cellular H(2)O(2) is elevated, leading to the activation of extracellular signal-regulated kinases and increased transcription of CCAAT/enhancer-binding protein β, which contributes to adenanthin-induced differentiation. Adenanthin induces APL-like cell differentiation, represses tumor growth in vivo and prolongs the survival of mouse APL models that are sensitive and resistant to retinoic acid. Thus, adenanthin can serve as what is to our knowledge the first lead natural compound for the development of Prx I- and Prx II-targeted therapeutic agents, which may represent a promising approach to inducing differentiation of APL cells.
Collapse
|
33
|
Wen CL, Teng CL, Chiang CH, Chang CC, Hwang WL, Kuo CL, Hsu SL. Methanol extract of Antrodia cinnamomea mycelia induces phenotypic and functional differentiation of HL60 into monocyte-like cells via an ERK/CEBP-β signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:424-435. [PMID: 22293124 DOI: 10.1016/j.phymed.2011.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 10/05/2011] [Accepted: 11/02/2011] [Indexed: 05/31/2023]
Abstract
Antrodia cinnamomea (named as Niu-chang-chih), a well-known Taiwanese folk medicinal mushroom, has a spectrum of biological activities, especially with anti-tumor property. This study was carried out for the first time to examine the potential role and the underlying mechanisms of A. cinnamomea in the differentiation of human leukemia HL60 cells. We found that the methanol extract of liquid cultured mycelia of A. cinnamomea (MEMAC) inhibited proliferation and induced G1-phase cell cycle arrest in HL60 cells. MEMAC could induce differentiation of HL60 cells into the monocytic lineage, as evaluated by the morphological change, nitroblue tetrazolium reduction assay, non-specific esterase assay, and expression of CD14 and CD11b surface antigens. In addition, MEMAC activated the extracellular signal-regulated kinase (ERK) pathway and increased CCAAT/enhancer-binding protein β (C/EBPβ) expression. Reverse transcriptase polymerase chain reaction analysis showed that MEMAC upregulated the expression of C/EBPβ and CD14 mRNA in HL60 cells. DNA affinity precipitation assay and chromatin immunoprecipitation analyses indicated that MEMAC enhanced the direct binding of C/EBPβ to its response element located at upstream of the CD14 promoter. Furthermore, inhibiting ERK pathway activation with PD98059 markedly blocked MEMAC-induced HL60 monocytic differentiation. Consistently, the MEMAC-mediated upregulation of C/EBPβ and CD14 was also suppressed by PD98059. These findings demonstrate that MEMAC-induced HL60 cell monocytic differentiation is via the activating ERK signaling pathway, and downstream upregulating the transcription factor C/EBPβ and differentiation marker CD14 gene, suggesting that MEMAC might be a potential differentiation-inducing agent for treatment of leukemia.
Collapse
Affiliation(s)
- Chi-Luan Wen
- Taiwan Seed Improvement and Propagation Station, Council of Agriculture, Propagation Technology Section, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Baurska H, Klopot A, Kielbinski M, Chrobak A, Wijas E, Kutner A, Marcinkowska E. Structure-function analysis of vitamin D(2) analogs as potential inducers of leukemia differentiation and inhibitors of prostate cancer proliferation. J Steroid Biochem Mol Biol 2011; 126:46-54. [PMID: 21550403 DOI: 10.1016/j.jsbmb.2011.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 11/25/2022]
Abstract
We characterized a structure-function relationships of four analogs of vitamin D(2) with extended and branched side-chains. We tested their ability to induce differentiation of human acute myeloid leukemia (AML) cells both in vitro and ex vivo. Our experiments on five human cell lines revealed substantial differences among tested analogs. Analogs with side-chains extended by one (PRI-1906) or two carbon units (PRI-1907) displayed similar or elevated cell-differentiating activity in comparison to 1,25-dihydroxyvitamin D(3) (1,25D), whereas further extending side-chain resulted in substantially lower biological activity (PRI-1908 and PRI-1909). Similar pattern of cell-differentiating activities to that observed in human cell lines has also been shown in blast cells isolated from patients diagnosed with AML. The ability of the analogs to activate expression of CYP24A1 gene has been studied in HL60 cell line. The analog PRI-1906 activated expression of CYP24A1 similarly to 1,25D, while PRI-1907 weaker than 1,25D. In addition, the analogs PRI-1906 and PRI-1907 were able to moderately inhibit proliferation and significantly activate expression of CYP24A1 mRNA in prostate cancer cells PC-3. Finally, we examined the molecular actions triggered by these analogs and found that their biological activity was related to their ability to induce expression and nuclear translocation of VDR and C/EBPβ.
Collapse
Affiliation(s)
- H Baurska
- Department of Biotechnology, University of Wroclaw, Tamka, Poland
| | | | | | | | | | | | | |
Collapse
|
35
|
MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia. Oncogene 2011; 31:80-92. [PMID: 21643017 PMCID: PMC3253429 DOI: 10.1038/onc.2011.208] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute myeloblastic leukemia (AML) is characterized by the accumulation of abnormal myeloblasts (mainly granulocyte or monocyte precursors) in the bone marrow and blood. Though great progress has been made for improvement in clinical treatment during the past decades, only minority with AML achieve long-term survival. Therefore, further understanding mechanisms of leukemogenesis and exploring novel therapeutic strategies are still crucial for improving disease outcome. MicroRNA-100 (miR-100), a small non-coding RNA molecule, has been reported as a frequent event aberrantly expressed in patients with AML; however, the molecular basis for this phenotype and the statuses of its downstream targets have not yet been elucidated. In the present study, we found that the expression level of miR-100 in vivo was related to the stage of the maturation block underlying the subtypes of myeloid leukemia. In vitro experiments further demonstrated that miR-100 was required to promote the cell proliferation of promyelocytic blasts and arrest them differentiated to granulocyte/monocyte lineages. Significantly, we identified RBSP3, a phosphatase-like tumor suppressor, as a bona fide target of miR-100 and validated that RBSP3 was involved in cell differentiation and survival in AML. Moreover, we revealed a new pathway that miR-100 regulates G1/S transition and S-phase entry and blocks the terminal differentiation by targeting RBSP3, which partly in turn modulates the cell cycle effectors pRB/E2F1 in AML. These events promoted cell proliferation and blocked granulocyte/monocyte differentiation. Our data highlight an important role of miR-100 in the molecular etiology of AML, and implicate the potential application of miR-100 in cancer therapy.
Collapse
|
36
|
Gutsch R, Kandemir JD, Pietsch D, Cappello C, Meyer J, Simanowski K, Huber R, Brand K. CCAAT/enhancer-binding protein beta inhibits proliferation in monocytic cells by affecting the retinoblastoma protein/E2F/cyclin E pathway but is not directly required for macrophage morphology. J Biol Chem 2011; 286:22716-29. [PMID: 21558273 PMCID: PMC3123039 DOI: 10.1074/jbc.m110.152538] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Monocytic differentiation is orchestrated by complex networks that are not fully understood. This study further elucidates the involvement of transcription factor CCAAT/enhancer-binding protein β (C/EBPβ). Initially, we demonstrated a marked increase in nuclear C/EBPβ-liver-enriched activating protein* (LAP*)/liver-enriched activating protein (LAP) levels and LAP/liver-enriched inhibiting protein (LIP) ratios in phorbol 12-myristate 13-acetate (PMA)-treated differentiating THP-1 premonocytic cells accompanied by reduced proliferation. To directly study C/EBPβ effects on monocytic cells, we generated novel THP-1-derived (low endogenous C/EBPβ) cell lines stably overexpressing C/EBPβ isoforms. Most importantly, cells predominantly overexpressing LAP* (C/EBPβ-long), but not those overexpressing LIP (C/EBPβ-short), exhibited a reduced proliferation, with no effect on morphology. PMA-induced inhibition of proliferation was attenuated in C/EBPβ-short cells. In C/EBPβWT macrophage-like cells (high endogenous C/EBPβ), we measured a reduced proliferation/cycling index compared with C/EBPβKO. The typical macrophage morphology was only observed in C/EBPβWT, whereas C/EBPβKO stayed round. C/EBPα did not compensate for C/EBPβ effects on proliferation/morphology. Serum reduction, an independent approach known to inhibit proliferation, induced macrophage morphology in C/EBPβKO macrophage-like cells but not THP-1. In PMA-treated THP-1 and C/EBPβ-long cells, a reduced phosphorylation of cell cycle repressor retinoblastoma was found. In addition, C/EBPβ-long cells showed reduced c-Myc expression accompanied by increased CDK inhibitor p27 and reduced cyclin D1 levels. Finally, C/EBPβ-long and C/EBPβWT cells exhibited low E2F1 and cyclin E levels, and C/EBPβ overexpression was found to inhibit cyclin E1 promoter-dependent transcription. Our results suggest that C/EBPβ reduces monocytic proliferation by affecting the retinoblastoma/E2F/cyclin E pathway and that it may contribute to, but is not directly required for, macrophage morphology. Inhibition of proliferation by C/EBPβ may be important for coordinated monocytic differentiation.
Collapse
Affiliation(s)
- Romina Gutsch
- Institute of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang X, Studzinski GP. Oncoprotein Cot1 represses kinase suppressors of Ras1/2 and 1,25-dihydroxyvitamin D3-induced differentiation of human acute myeloid leukemia cells. J Cell Physiol 2011; 226:1232-40. [PMID: 20945381 DOI: 10.1002/jcp.22449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Metabolites and derivatives of vitamin D are well-known inducers of monocytic differentiation, but the mechanistic basis for their action is not fully elucidated. Here we show that the product of protooncogene Cot1 represses the monocytic phenotype in human acute myeloid leukemia (AML) cells induced to differentiate by 1,25-dihydroxyvitamin D(3) (1,25D), even though the expression of cellular Cot1 increases early in the process of 1,25D-induced differentiation. Interestingly, the expression of the two members of the Kinase Suppressor of Ras (KSR) family of molecular scaffolds, known to be positive regulators of Ras signaling and of 1,25D-induced differentiation, increases in parallel with Cot1 in 1,25D-treated cells. However, KSR1/2 are negatively regulated by Cot1, as determined by transfection of siCot1, and confirmed by a reverse effect of ectopic expression of Cot1. The effect of Cot1 in AML cells appears to be cell-type specific, as previous reports in other cell types found KSR-2 to be a negative regulator of Cot1, a reverse relationship. Also in contrast to findings in other cells, in AML cells Cot1 exerts negative control on the MAP kinase pathways, since siCot1 increases the levels of activated Raf1, p90RSK, JNK1, c-jun, and p38, though not of MEK/ERK. These findings have implications for therapy of AML, since in AML cells active MAPKs hasten cell differentiation, and specific pharmacological inhibitors of Cot1 kinase activity have recently became available, thus making Cot1 a "druggable" target.
Collapse
Affiliation(s)
- Xuening Wang
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey 07101-1709, USA
| | | |
Collapse
|
38
|
Zhang J, Harrison JS, Uskokovic M, Danilenko M, Studzinski GP. Silibinin can induce differentiation as well as enhance vitamin D3-induced differentiation of human AML cells ex vivo and regulates the levels of differentiation-related transcription factors. Hematol Oncol 2010; 28:124-32. [PMID: 19866452 DOI: 10.1002/hon.929] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Induction of terminal differentiation is a conceptually attractive approach for the therapy of neoplastic diseases. Although vitamin D derivatives (deltanoids) can induce differentiation of AML cells in vitro, so far deltanoids have not been successfully brought to the clinic, due to the likelihood of life-threatening hypercalcemia. Here, we incubated freshly obtained blood cells from patients with AML with a plant antioxidant (PAOx), silibinin (SIL), alone or together with a deltanoid. Twenty patients with AML (all subtypes except M3) were available for this study, and in 14 (70%), SIL (60 µM) either induced differentiation ex vivo, or enhanced differentiation induced by deltanoids, or both. Interestingly, SIL acting alone induced differentiation only in cases in which chromosome aberrations could not be detected. In eleven samples sufficient material was available for a limited analysis of the underlying events. Quantitative RT-PCR showed that differentiation markers were upregulated at the mRNA level by both SIL and deltanoids, suggesting that intracellular signaling pathways upstream of transcription factors (TFs) were activated by these agents. Western analysis for proteins which function as TFs in deltanoid-induced monocytic differentiation, such as members of Jun and C/EBP families, surprisingly demonstrated that SIL upregulated all these TFs in the cases tested. This suggests that although the presence of SIL may not always be sufficient to induce differentiation, it can serve as a differentiation enabling factor for blasts obtained from a large proportion of patients with AML. Thus, SIL/deltanoid combinations warrant further consideration as preventive/therapeutic regimens in human leukaemia.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
39
|
Zhang J, Harrison JS, Studzinski GP. Isoforms of p38MAPK gamma and delta contribute to differentiation of human AML cells induced by 1,25-dihydroxyvitamin D₃. Exp Cell Res 2010; 317:117-30. [PMID: 20804750 DOI: 10.1016/j.yexcr.2010.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 11/18/2022]
Abstract
Inhibition of p38MAPK alpha/beta is known to enhance 1,25-dihydroxyvitamin (1,25D)-induced monocytic differentiation, but the detailed mechanism of this effect was not clear. We now show that the enhancement of differentiation becomes apparent with slow kinetics (12-24 h). Interestingly, the inhibition of p38MAPK alpha/beta by their selective inhibitor SB202190 (SB) leads to an upregulated expression of p38MAPK isoforms gamma and delta in 1,25D-treated AML cells, in cell lines and in primary culture. Although the expression and activating phosphorylations of p38MAPK alpha are also increased by an exposure of the cells to SB, its kinase activity is blocked by SB, as shown by reduced levels of phosphorylated Hsp27, a downstream target of p38MAPK alpha. A positive role of p38MAPKs in 1,25D-induced differentiation is shown by the inhibition of differentiation by antisense oligonucleotides to all p38MAPK isoforms. Other principal branches of MAPK pathways showed early (6 h) activation of MEK/ERK by SB, followed by activation of JNK1/2 pathway and enhanced expression and/or activation of PU.1, ATF-2 differentiation-related transcription factors. Taken together with previous reports, the results indicate that 1,25D-induced differentiation is enhanced by the activation of at least three branches of MAPK pathways (ERK1/2; p38MAPK gamma/delta; JNK1/2). This activation may result from the removal of feedback inhibition of an upstream regulator of those pathways, when p38MAPK alpha and beta are inhibited by SB.
Collapse
MESH Headings
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Calcitriol/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- HL-60 Cells
- Humans
- Imidazoles/pharmacology
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Isoenzymes/physiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mitogen-Activated Protein Kinase 12/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 12/genetics
- Mitogen-Activated Protein Kinase 12/metabolism
- Mitogen-Activated Protein Kinase 12/physiology
- Mitogen-Activated Protein Kinase 13/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 13/genetics
- Mitogen-Activated Protein Kinase 13/metabolism
- Mitogen-Activated Protein Kinase 13/physiology
- Monocytes/drug effects
- Monocytes/metabolism
- Monocytes/physiology
- Protein Kinase Inhibitors/pharmacology
- Pyridines/pharmacology
- Time Factors
- U937 Cells
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey, Medical School, Newark, NJ 07103, USA
| | | | | |
Collapse
|
40
|
Callens C, Coulon S, Naudin J, Radford-Weiss I, Boissel N, Raffoux E, Wang PHM, Agarwal S, Tamouza H, Paubelle E, Asnafi V, Ribeil JA, Dessen P, Canioni D, Chandesris O, Rubio MT, Beaumont C, Benhamou M, Dombret H, Macintyre E, Monteiro RC, Moura IC, Hermine O. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. ACTA ACUST UNITED AC 2010; 207:731-50. [PMID: 20368581 PMCID: PMC2856037 DOI: 10.1084/jem.20091488] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Differentiating agents have been proposed to overcome the impaired cellular differentiation in acute myeloid leukemia (AML). However, only the combinations of all-trans retinoic acid or arsenic trioxide with chemotherapy have been successful, and only in treating acute promyelocytic leukemia (also called AML3). We show that iron homeostasis is an effective target in the treatment of AML. Iron chelating therapy induces the differentiation of leukemia blasts and normal bone marrow precursors into monocytes/macrophages in a manner involving modulation of reactive oxygen species expression and the activation of mitogen-activated protein kinases (MAPKs). 30% of the genes most strongly induced by iron deprivation are also targeted by vitamin D3 (VD), a well known differentiating agent. Iron chelating agents induce expression and phosphorylation of the VD receptor (VDR), and iron deprivation and VD act synergistically. VD magnifies activation of MAPK JNK and the induction of VDR target genes. When used to treat one AML patient refractory to chemotherapy, the combination of iron-chelating agents and VD resulted in reversal of pancytopenia and in blast differentiation. We propose that iron availability modulates myeloid cell commitment and that targeting this cellular differentiation pathway together with conventional differentiating agents provides new therapeutic modalities for AML.
Collapse
Affiliation(s)
- Celine Callens
- Centre National de la Recherche Scientifique UMR 8147, Paris 75015, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, Lee ZW, Lee SH, Kim JM, Jo EK. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 2009; 6:231-43. [PMID: 19748465 DOI: 10.1016/j.chom.2009.08.004] [Citation(s) in RCA: 554] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/07/2009] [Accepted: 08/17/2009] [Indexed: 12/01/2022]
Abstract
Autophagy and vitamin D3-mediated innate immunity have been shown to confer protection against infection with intracellular Mycobacterium tuberculosis. Here, we show that these two antimycobacterial defenses are physiologically linked via a regulatory function of human cathelicidin (hCAP-18/LL-37), a member of the cathelicidin family of antimicrobial proteins. We show that 1,25-dihydroxyvitamin D3 (1,25D3), the active form of vitamin D, induced autophagy in human monocytes via cathelicidin, which activated transcription of the autophagy-related genes Beclin-1 and Atg5. 1,25D3 also induced the colocalization of mycobacterial phagosomes with autophagosomes in human macrophages in a cathelicidin-dependent manner. Furthermore, the antimycobacterial activity in human macrophages mediated by physiological levels of 1,25D3 required autophagy and cathelicidin. These results indicate that human cathelicidin, a protein that has direct antimicrobial activity, also serves as a mediator of vitamin D3-induced autophagy.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hughes PJ, Marcinkowska E, Gocek E, Studzinski GP, Brown G. Vitamin D3-driven signals for myeloid cell differentiation--implications for differentiation therapy. Leuk Res 2009; 34:553-65. [PMID: 19811822 DOI: 10.1016/j.leukres.2009.09.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/05/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
Primitive myeloid leukemic cell lines can be driven to differentiate to monocyte-like cells by 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and, therefore, 1,25(OH)(2)D(3) may be useful in differentiation therapy of myeloid leukemia and myelodysplastic syndromes (MDS). Recent studies have provided important insights into the mechanism of 1,25(OH)(2)D(3)-stimulated differentiation. For myeloid progenitors to complete monocytic differentiation a complex network of intracellular signals has to be activated and/or inactivated in a precise temporal and spatial pattern. 1,25(OH)(2)D(3) achieves this change to the 'signaling landscape' by (i) direct genomic modulation of the level of expression of key regulators of cell signaling and differentiation pathways, and (ii) activation of intracellular signaling pathways. An improved understanding of the mode of action of 1,25(OH)(2)D(3) is facilitating the development of new therapeutic regimens.
Collapse
Affiliation(s)
- Philip J Hughes
- School of Immunity and Infection, College of Medical and Dental Sciences, The University of Birmingham, Vincent Drive, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | | | | | | | | |
Collapse
|
43
|
Abstract
This paper reviews the current understanding of the vitamin D-induced differentiation of neoplastic cells, which results in the generation of cells that acquire near-normal, mature phenotype. Examples of the criteria by which differentiation is recognized in each cell type are provided, and only those effects of 1alpha,25-dihydroxyvitamin D(3) (1,25D) on cell proliferation and survival that are associated with the differentiation process are emphasized. The existing knowledge, often fragmentary, of the signaling pathways that lead to vitamin D-induced differentiation of colon, breast, prostate, squamous cell carcinoma, osteosarcoma, and myeloid leukemia cancer cells is outlined. The important distinctions between the different mechanisms of 1,25D-induced differentiation that are cell-type and cell-context specific are pointed out where known. There is a considerable body of evidence that the principal human cancer cells can be suitable candidates for chemoprevention or differentiation therapy with vitamin D. However, further studies are needed to fully understand the underlying mechanisms in order to improve the therapeutic approaches.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
44
|
5-Lipoxygenase inhibitors potentiate 1alpha,25-dihydroxyvitamin D3-induced monocytic differentiation by activating p38 MAPK pathway. Mol Cell Biochem 2009; 330:229-38. [PMID: 19415458 DOI: 10.1007/s11010-009-0138-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 04/17/2009] [Indexed: 01/06/2023]
Abstract
The treatment of human promyelocytic leukemia cell lines HL-60, and to some extent NB-4, with 1alpha,25-dihydroxyvitamin D(3) (VD3) induces differentiation toward the monocytic/macrophage lineage, demonstrated by the increased expression of CD11b and CD14, and the production of opsonized zymosan particles (OZP)-stimulated reactive oxygen species (ROS). Moreover, in more sensitive HL-60 cells, increased expression of 5-lipoxygenase (5-LPO), Mcl-1, IkappaB, and c-Jun, accompanied by the activation of p38 MAPK, was detected. These VD3 effects on HL-60 cell differentiation were significantly potentiated by 5-LPO inhibitors MK-886 and AA-861 and were inverted by SB202190 (SB), a p38 MAPK inhibitor. The inhibition of differentiation by SB was demonstrated by a reduction of CD14 expression and by a decrease in OZP-activated ROS production. These results indicated that p38 MAPK pathway is involved in 5-LPO inhibitors-dependent potentiation of VD3-induced monocytic differentiation.
Collapse
|
45
|
c-Jun N-terminal kinase 2 (JNK2) antagonizes the signaling of differentiation by JNK1 in human myeloid leukemia cells resistant to vitamin D. Leuk Res 2009; 33:1372-8. [PMID: 19339050 DOI: 10.1016/j.leukres.2009.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 02/24/2009] [Accepted: 03/04/2009] [Indexed: 01/31/2023]
Abstract
1,25-Dihydroxyvitamin D3 (1,25D) induces differentiation of myeloid leukemia cells, but resistant cells are also encountered. We studied the mechanistic basis for the resistance in a model system using enhancers of 1,25D, the antioxidant carnosic acid and a kinase inhibitor SB202190. Knock-down (KD) of JNK2p54 unexpectedly increased the intensity of differentiation induced by the 1,25D, carnosic acid and SB202190 (DCS) combination. This was associated with upregulation of activated JNK1p46, and the transcription factors regulated by the JNK pathway, c-Jun, ATF2 and JunB, as well as C/EBP beta. In contrast, KD of JNK1p46 reduced the intensity of DCS-induced differentiation, and partially abrogated activation of c-Jun/AP-1 transcription factors.
Collapse
|
46
|
van Etten E, Stoffels K, Gysemans C, Mathieu C, Overbergh L. Regulation of vitamin D homeostasis: implications for the immune system. Nutr Rev 2009; 66:S125-34. [PMID: 18844839 DOI: 10.1111/j.1753-4887.2008.00096.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vitamin D homeostasis in the immune system is the focus of this review. The production of both the activating (25- and 1alpha-hydroxylase) and the metabolizing (24-hydroxylase) enzymes by cells of the immune system itself, indicates that 1,25(OH)(2)D(3) can be produced locally in immune reaction sites. Moreover, the strict regulation of these enzymes by immune signals is highly suggestive for an autocrine/paracrine role in the immune system, and opens new treatment possibilities.
Collapse
Affiliation(s)
- Evelyne van Etten
- The Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven , Leuven, Belgium
| | | | | | | | | |
Collapse
|
47
|
Richer E, Campion CG, Dabbas B, White JH, Cellier MFM. Transcription factors Sp1 and C/EBP regulate NRAMP1 gene expression. FEBS J 2008; 275:5074-89. [PMID: 18786141 DOI: 10.1111/j.1742-4658.2008.06640.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The natural resistance-associated macrophage protein 1 (Nramp1), which belongs to a conserved family of membrane metal transporters, contributes to phagocyte-autonomous antimicrobial defense mechanisms. Genetic polymorphisms in the human NRAMP1 gene predispose to susceptibility to infectious or inflammatory diseases. To characterize the transcriptional mechanisms controlling NRAMP1 expression, we previously showed that a 263 bp region upstream of the ATG drives basal promoter activity, and that a 325 bp region further upstream confers myeloid specificity and activation during differentiation of HL-60 cells induced by vitamin D. Herein, the major transcription start site was mapped in the basal region by S1 protection assay, and two cis-acting elements essential for myeloid transactivation were characterized by in vitro DNase footprinting, electrophoretic mobility shift experiments, in vivo transfection assays using linker-mutated constructs, and chromatin immunoprecipitation assays in differentiated monocytic cells. One distal cis element binds Sp1 and is required for NRAMP1 myeloid regulation. Another site in the proximal region binds CCAAT enhancer binding proteins alpha or beta and is crucial for transcription. This study implicates Sp1 and C/EBP factors in regulating the expression of the NRAMP1 gene in myeloid cells.
Collapse
Affiliation(s)
- Etienne Richer
- Institut national de la recherche scientifique, INRS-Institut Armand-Frappier, Laval, Canada
| | | | | | | | | |
Collapse
|
48
|
Wang J, Lian H, Zhao Y, Kauss MA, Spindel S. Vitamin D3 induces autophagy of human myeloid leukemia cells. J Biol Chem 2008; 283:25596-25605. [PMID: 18628207 DOI: 10.1074/jbc.m801716200] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vitamin D3 causes potent suppression of various cancer cells; however, significant supraphysiological concentrations of this compound are required for antineoplastic effects. Current combinatorial therapies with vitamin D3 are restricted to differentiation effects. It remains uncertain if autophagy is involved in vitamin D3 inhibition on leukemia cells. Here we show that besides triggering differentiation and inhibiting apoptosis, which was previously known, vitamin D3 triggers autophagic death in human myeloid leukemia cells. Inhibiting differentiation does not efficiently diminish vitamin D3 suppression on leukemia cells. Vitamin D3 up-regulates Beclin1, which binds to class III phosphatidylinositol 3-kinase to trigger autophagy. Vitamin D3 phosphorylates Bad in its BH3 domain, resulting in disassociation of the apoptotic Bad-Bcl-xL complex and association of Bcl-xL with Beclin1 and ultimate suppression of apoptotic signaling. Knockdown of Beclin1 eliminates vitamin D3-induced autophagy and inhibits differentiation but activates apoptosis, suggesting that Beclin1 is required for both autophagy and differentiation, and autophagy cooperates with differentiation but excludes apoptosis, in which Beclin1 acts as an interface for these three different cascades. Moreover, additional up-regulation of autophagy, but not apoptosis, dramatically improves vitamin D3 inhibition on leukemia cells. These findings extend our understanding of the action of vitamin D3 in antineoplastic effects and the role of Beclin1 in regulating multiple cellular cascades and suggest a potentially promising strategy with a significantly better antileukemia effect.
Collapse
Affiliation(s)
- Jianrong Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853; Treman Research Institute, Ithaca, New York 14850.
| | - Huiqin Lian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853; Treman Research Institute, Ithaca, New York 14850
| | - Ying Zhao
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Mara A Kauss
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Samantha Spindel
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| |
Collapse
|
49
|
Xu Y, Tabe Y, Jin L, Watt J, McQueen T, Ohsaka A, Andreeff M, Konopleva M. TGF-beta receptor kinase inhibitor LY2109761 reverses the anti-apoptotic effects of TGF-beta1 in myelo-monocytic leukaemic cells co-cultured with stromal cells. Br J Haematol 2008; 142:192-201. [PMID: 18492113 DOI: 10.1111/j.1365-2141.2008.07130.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transforming growth factor beta1 (TGF-beta1) is an essential regulator of cell proliferation, survival and apoptosis, depending on the cellular context. TGF-beta1 is also known to affect cell-to-cell interactions between tumour cells and stromal cells. We investigated the role of TGF-beta1 in the survival of myelo-monocytic leukaemia cell lines co-cultured with bone marrow (BM)-derived mesenchymal stem cells (MSC). Treatment with recombinant human (rh)TGF-beta1 inhibited spontaneous and cytarabine-induced apoptosis in U937 cells, most prominently in U937 cells directly attached to MSCs. Conversely, the pro-survival effects of TGF-beta1 were inhibited by LY2109761 or TGF-beta1 neutralizing antibody. rhTGF-beta1 increased pro-survival phosphorylation of Akt, which was inhibited by LY2109761. The combination of rhTGF-beta1 and MSC co-culture induced significant upregulation of C/EBPbeta gene (CEBPB) and protein expression along with increased C/EBPbeta liver-enriched activating protein: liver-enriched inhibitory protein ratio, suggesting the novel role of C/EBPbeta in TGF-beta1-mediated U937 cell survival in the context of stromal cell support. In summary, these results indicate that TGF-beta1 produced by BM stromal cells promotes the survival and chemoresistance of leukaemia cells under the direct cell-to-cell interactions. The blockade of TGF-beta signalling by LY2109761, which effectively inhibited the pro-survival signalling, may enhance the efficacy of chemotherapy against myelo-monocytic leukaemic cells in the BM microenvironment.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Clinical Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Arcidiacono MV, Sato T, Alvarez-Hernandez D, Yang J, Tokumoto M, Gonzalez-Suarez I, Lu Y, Tominaga Y, Cannata-Andia J, Slatopolsky E, Dusso AS. EGFR activation increases parathyroid hyperplasia and calcitriol resistance in kidney disease. J Am Soc Nephrol 2008; 19:310-20. [PMID: 18216322 DOI: 10.1681/asn.2007040406] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Calcitriol, acting through vitamin D receptors (VDR) in the parathyroid, suppresses parathyroid hormone synthesis and cell proliferation. In secondary hyperparathyroidism (SH), VDR content is reduced as hyperplasia becomes more severe, limiting the efficacy of calcitriol. In a rat model of SH, activation of the EGF receptor (EGFR) by TGF-alpha is required for the development of parathyroid hyperplasia, but the relationship between EGFR activation and reduced VDR content is unknown. With the use of the same rat model, it was found that pharmacologic inhibition of EGFR activation with erlotinib prevented the upregulation of parathyroid TGF-alpha, the progression of growth, and the reduction of VDR. Increased TGF-alpha/EGFR activation induced the synthesis of liver-enriched inhibitory protein, a potent mitogen and the dominant negative isoform of the transcription factor CCAAT enhancer binding protein-beta, in human hyperplastic parathyroid glands and in the human epidermoid carcinoma cell line A431, which mimics hyperplastic parathyroid cells. Increases in liver-enriched inhibitory protein directly correlated with proliferating activity and, in A431 cells, reduced VDR expression by antagonizing CCAAT enhancer binding protein-beta transactivation of the VDR gene. Similarly, in nodular hyperplasia, which is the most severe form of SH and the most resistant to calcitriol therapy, higher TGF-alpha activation of the EGFR was associated with an 80% reduction in VDR mRNA levels. Thus, in SH, EGFR activation is the cause of both hyperplastic growth and VDR reduction and therefore influences the efficacy of therapy with calcitriol.
Collapse
Affiliation(s)
- Maria Vittoria Arcidiacono
- Renal Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|