1
|
Wei L, Li Y, Chen J, Wang Y, Wu J, Yang H, Zhang Y. Alternative splicing in ovarian cancer. Cell Commun Signal 2024; 22:507. [PMID: 39425166 PMCID: PMC11488268 DOI: 10.1186/s12964-024-01880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024] Open
Abstract
Ovarian cancer is the second leading cause of gynecologic cancer death worldwide, with only 20% of cases detected early due to its elusive nature, limiting successful treatment. Most deaths occur from the disease progressing to advanced stages. Despite advances in chemo- and immunotherapy, the 5-year survival remains below 50% due to high recurrence and chemoresistance. Therefore, leveraging new research perspectives to understand molecular signatures and identify novel therapeutic targets is crucial for improving the clinical outcomes of ovarian cancer. Alternative splicing, a fundamental mechanism of post-transcriptional gene regulation, significantly contributes to heightened genomic complexity and protein diversity. Increased awareness has emerged about the multifaceted roles of alternative splicing in ovarian cancer, including cell proliferation, metastasis, apoptosis, immune evasion, and chemoresistance. We begin with an overview of altered splicing machinery, highlighting increased expression of spliceosome components and associated splicing factors like BUD31, SF3B4, and CTNNBL1, and their relationships to ovarian cancer. Next, we summarize the impact of specific variants of CD44, ECM1, and KAI1 on tumorigenesis and drug resistance through diverse mechanisms. Recent genomic and bioinformatics advances have enhanced our understanding. By incorporating data from The Cancer Genome Atlas RNA-seq, along with clinical information, a series of prognostic models have been developed, which provided deeper insights into how the splicing influences prognosis, overall survival, the immune microenvironment, and drug sensitivity and resistance in ovarian cancer patients. Notably, novel splicing events, such as PIGV|1299|AP and FLT3LG|50,941|AP, have been identified in multiple prognostic models and are associated with poorer and improved prognosis, respectively. These novel splicing variants warrant further functional characterization to unlock the underlying molecular mechanisms. Additionally, experimental evidence has underscored the potential therapeutic utility of targeting alternative splicing events, exemplified by the observation that knockdown of splicing factor BUD31 or antisense oligonucleotide-induced BCL2L12 exon skipping promotes apoptosis of ovarian cancer cells. In clinical settings, bevacizumab, a humanized monoclonal antibody that specifically targets the VEGF-A isoform, has demonstrated beneficial effects in the treatment of patients with advanced epithelial ovarian cancer. In conclusion, this review constitutes the first comprehensive and detailed exposition of the intricate interplay between alternative splicing and ovarian cancer, underscoring the significance of alternative splicing events as pivotal determinants in cancer biology and as promising avenues for future diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Liwei Wei
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Yisheng Li
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
| | - Jiawang Chen
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, 325101, China
| | - Yuanmei Wang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huanming Yang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
| | - Yi Zhang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310030, China.
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
2
|
Zhu Y, Yang X, Yang Y, Yan X, Li C, Chen S. Identification and Functional Analysis of Ras-Related Associated with Diabetes Gene ( rrad) in Edwardsiella piscicida-Resistant Individuals of Japanese Flounder ( Paralichthys olivaceus). Int J Mol Sci 2024; 25:10532. [PMID: 39408905 PMCID: PMC11476895 DOI: 10.3390/ijms251910532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Ras-related associated with diabetes (RRAD) is a member of the Ras GTPase superfamily that plays a role in several cellular functions, such as cell proliferation and differentiation. In particular, the superfamily acts as an NF-κB signaling pathway inhibitor and calcium regulator to participate in the immune response pathway. A recent transcriptome study revealed that rrad was expressed in the spleen of disease-resistant Japanese flounder (Paralichthys olivaceus) individuals compared with disease-susceptible individuals, and the results were also verified by qPCR. Thus, the present study aimed to explore how rrad regulates antimicrobial immunity via the NF-κB pathway. First, the coding sequence of P. olivaceus rrad was identified. The sequence was 1092 bp in length, encoding 364 amino acids. Based on phylogenetic and structural relationship analyses, P. olivaceus rrad appeared to be more closely related to teleosts. Next, rrad expression differences between disease-resistant and disease-susceptible individuals in immune-related tissues were evaluated, and the results revealed that rrad was expressed preferentially in the spleen of disease-resistant individuals. In response to Edwardsiella piscicida infection, rrad expression in the spleen changed. In vitro, co-culture was carried out to assess the hypo-methylated levels of the rrad promoter in the disease-resistant spleen, which was consistent with the high mRNA expression. The siRNA-mediated knockdown of rrad performed with the gill cell line of P. olivaceus affected many rrad-network-related genes, i.e., dcp1b, amagt, rus1, rapgef1, ralbp1, plce1, rasal1, nckipsd, prkab2, cytbc-1, sh3, and others, as well as some inflammation-related genes, such as bal2 and Il-1β. In addition, flow cytometry analysis showed that rrad overexpression was more likely to induce cell apoptosis, with establishing a link between rrad's function and its potential roles in regulating the NF-κB pathway. Thus,. the current study provided some clarity in terms of understanding the immune response about rrad gene differences between disease-resistant and disease-susceptible P. olivaceus individuals. This study provides a molecular basis for fish rrad gene functional analysis and may serve as a reference for in-depth of bacterial disease resistance of teleost.
Collapse
Affiliation(s)
- Ying Zhu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.Y.); (C.L.)
| | - Xinsheng Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.Y.); (C.L.)
| | - Yingming Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.Y.); (X.Y.); (S.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xu Yan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.Y.); (X.Y.); (S.C.)
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.Y.); (C.L.)
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.Y.); (X.Y.); (S.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Chen R, Huang Y, Sun K, Dong F, Wang X, Guan J, Yang L, Fei H. Construction of a prognostic model for ovarian cancer based on a comprehensive bioinformatics analysis of cuproptosis-associated long non-coding RNA signatures. Heliyon 2024; 10:e35004. [PMID: 39170367 PMCID: PMC11336372 DOI: 10.1016/j.heliyon.2024.e35004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Ovarian cancer (OCa) is a common malignancy in women, and the role of cuproptosis and its related genes in OCa is unclear. Using the GSE14407 dataset, we analyzed the expression and correlation of cuproptosis-related genes (CRGs) between tumor and normal groups. From the TCGA-OV dataset, we identified 20 cuproptosis-related long non-coding RNAs (CuLncs) associated with patient survival through univariate Cox analysis. OCa patients were divided into early-stage and late-stage groups to analyze CuLncs expression. Cluster analysis classified patients into two clusters, with Cluster1 having a poorer prognosis. Significant differences in "Lymphatic Invasion" and "Cancer status" were observed between clusters. Seven CRGs showed significant expression differences, validated using the human protein atlas (HPA) databases. Immune analysis revealed a higher ImmuneScore in Cluster1. GSEA identified associated signaling pathways. LASSO regression included 11 CuLncs to construct and validate a survival prediction model, classifying patients into high-risk and low-risk groups. Correlations between riskScore, Cluster phenotype, ImmuneScore, and immune cell infiltration were explored. Cell experiments showed that knocking down AC023644.1 decreases OCa cell viability. In conclusion, we constructed an accurate prognostic model for OCa based on 11 CuLncs, providing a basis for prognosis assessment and potential immunotherapy targets.
Collapse
Affiliation(s)
- Rujun Chen
- Department of Gynecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, PR China
| | - Yating Huang
- Department of Gynecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, PR China
| | - Ke Sun
- Department of Gynecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, PR China
| | - Fuyun Dong
- Department of Gynecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, PR China
| | - Xiaoqin Wang
- Department of Gynecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, PR China
| | - Junhua Guan
- Department of Gynecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, PR China
| | - Lina Yang
- Department of Gynecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, PR China
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, PR China
| | - He Fei
- Department of Gynecology and Obstetrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, PR China
| |
Collapse
|
4
|
Zuo J, Zheng A, Wang X, Luo Z, Chen Y, Cheng X, Zhao Y, Zhou X, Tang KF, Du X. Upregulation of CELSR1 expression promotes ovarian cancer cell proliferation, migration, and invasion. Med Oncol 2023; 41:10. [PMID: 38070011 DOI: 10.1007/s12032-023-02232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Cadherin epidermal growth factor and laminin-G seven-pass G-type receptor 1 (CELSR1) is a planar cell polarity protein involved in the transmission of directional cues to align either individual cells within an epithelial sheet or multicellular clusters. CELSR1 has been suggested to play a role in glioma, breast cancer, and chronic lymphocytic leukemia development; however, whether it has a role in the pathogenesis of ovarian cancer remains unknown. The aim of this study was to determine the role of CELSR1 in ovarian cancer and elucidate its underlying molecular mechanisms. By analyzing gene expression data downloaded from the Cancer Genome Atlas database, we found that CELSR1 expression was upregulated in ovarian cancer tissues compared to that in normal ovarian tissues. High CELSR1 expression levels were associated with poor prognosis in patients with ovarian cancer. Cell proliferation, scratch, and transwell assays revealed that CELSR1 promoted the proliferation, migration, and invasion of ovarian cancer cells in vitro. In addition, transcriptome sequencing analysis revealed that CELSR1 knockdown in T29H cells resulted in the dysregulation of the expression of 1320 genes. Further analysis revealed that genes involved in proliferation- and migration-associated signaling pathways were regulated by CELSR1. Our study demonstrates that CELSR1 is highly expressed in ovarian cancer cells and regulates their proliferation and migration, suggesting its potential as a diagnostic marker and therapeutic target.
Collapse
Affiliation(s)
- Jiwei Zuo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Anqi Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Xingyue Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Zhicheng Luo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Yueming Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Xiaoxiao Cheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Yuemei Zhao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Xian Zhou
- Department of Radiation Oncology, Chongqing University Cancer Hospital, 181, Hanyu Road, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Kai-Fu Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China.
- Key Laboratory of Molecular Biology On Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Xing Du
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
5
|
El Baba R, Haidar Ahmad S, Monnien F, Mansar R, Bibeau F, Herbein G. Polyploidy, EZH2 upregulation, and transformation in cytomegalovirus-infected human ovarian epithelial cells. Oncogene 2023; 42:3047-3061. [PMID: 37634008 PMCID: PMC10555822 DOI: 10.1038/s41388-023-02813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Human cytomegalovirus (HCMV) infection has been implicated in epithelial ovarian cancer (OC). Polyploidy giant cancer cells (PGCCs) have been observed in high-grade serous ovarian carcinoma (HGSOC); they possess cancer stem cell-like characteristics and give rise to progeny cells expressing epithelial-mesenchymal transition (EMT) markers. EZH2 plays a potential oncogenic role, correlating with high proliferative index and tumor grade in OC. Herein, we present the experimental evidence for HCMV as a reprogramming vector that elicited human ovarian epithelial cells (OECs) transformation leading to the generation of "CMV-transformed Ovarian cells" (CTO). The infection with the two high-risk clinical strains, namely HCMV-DB and BL provoked a distinct cellular and molecular mechanisms in infected OECs. EZH2 upregulation and cellular proliferation were curtailed by using EZH2 inhibitors. The HGSOC biopsies were characterized by an elevated EZH2 expression, possessing a strong positive correlation between the aforementioned marker and HCMV. From HGSOC biopsies, we isolated three HCMV clinical strains that transformed OECs generating CTO cells which displayed proliferative potentials in addition to EZH2 upregulation and PGCCs generation; these features were reduced upon EZH2 inhibition. High-risk HCMV strains transformed OECs confirming an HCMV-induced epithelial ovarian cancer model and highlighting EZH2 tumorigenic properties. Our findings might be highly relevant in the pathophysiology of ovarian tumors thereby nominating new targeted therapeutics.
Collapse
Affiliation(s)
- Ranim El Baba
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | - Sandy Haidar Ahmad
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | | | - Racha Mansar
- Department of Pathology, CHU Besançon, Besançon, France
| | | | - Georges Herbein
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France.
- Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
6
|
Liu TT, Chen YK, Adil M, Almehmadi M, Alshabrmi FM, Allahyani M, Alsaiari AA, Liu P, Khan MR, Peng Q. In Silico Identification of Natural Product-Based Inhibitors Targeting IL-1β/IL-1R Protein-Protein Interface. Molecules 2023; 28:4885. [PMID: 37446547 DOI: 10.3390/molecules28134885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
IL-1β mediates inflammation and regulates immune responses, cell proliferation, and differentiation. Dysregulation of IL-1β is linked to inflammatory and autoimmune diseases. Elevated IL-1β levels are found in patients with severe COVID-19, indicating its excessive production may worsen the disease. Also, dry eye disease patients show high IL-1β levels in tears and conjunctival epithelium. Therefore, IL-1β signaling is a potential therapeutic targeting for COVID-19 and aforementioned diseases. No small-molecule IL-1β inhibitor is clinically approved despite efforts. Developing such inhibitors is highly desirable. Herein, a docking-based strategy was used to screen the TCM (Traditional Chinese Medicine) database to identify possible IL-1β inhibitors with desirable pharmacological characteristics by targeting the IL-1β/IL-1R interface. Primarily, the docking-based screening was performed by selecting the crucial residues of IL-1β interface to retrieve the potential compounds. Afterwards, the compounds were shortlisted on the basis of binding scores and significant interactions with the crucial residues of IL-1β. Further, to gain insights into the dynamic behavior of the protein-ligand interactions, MD simulations were performed. The analysis suggests that four selected compounds were stabilized in an IL-1β pocket, possibly blocking the formation of an IL-1β/IL-1R complex. This indicates their potential to interfere with the immune response, making them potential therapeutic agents to investigate further.
Collapse
Affiliation(s)
- Ting-Ting Liu
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, China
| | - Yan-Kun Chen
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, China
| | - Muhammad Adil
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi 46000, Pakistan
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Pei Liu
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, China
| | - Muhammad Raheel Khan
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. Sklodowskiej-Curie 34, 41-819 Zabrze, Poland
- Department of Chemical Sciences, Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Qinghua Peng
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, China
| |
Collapse
|
7
|
Sczelecki S, Pitman JL. The Validation of a Precursor Lesion of Epithelial Ovarian Cancer in Fancd2-KO Mice. Cancers (Basel) 2023; 15:cancers15092595. [PMID: 37174061 PMCID: PMC10177028 DOI: 10.3390/cancers15092595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate of all gynaecological malignancies. The asymptomatic nature and limited understanding of early disease hamper research into early-stage OC. Therefore, there is an urgent need for models of early-stage OC to be characterised to improve the understanding of early neoplastic transformations. This study sought to validate a unique mouse model for early OC development. The homozygous Fanconi anaemia complementation group D2 knock-out mice (Fancd2-/-) develop multiple ovarian tumour phenotypes in a sequential manner as they age. Using immunohistochemistry, our group previously identified purported initiating precursor cells, termed 'sex cords', that are hypothesised to progress into epithelial OC in this model. To validate this hypothesis, the sex cords, tubulostromal adenomas and equivalent controls were isolated using laser capture microdissection for downstream multiplexed gene expression analyses using the Genome Lab GeXP Genetic Analysis System. Principal component analysis and unbiased hierarchical clustering of the resultant expression data from approximately 90 OC-related genes determined that cells from the sex cords and late-stage tumours clustered together, confirming the identity of the precursor lesion in this model. This study, therefore, provides a novel model for the investigation of initiating neoplastic events that can accelerate progress in understanding early OC.
Collapse
Affiliation(s)
- Sarah Sczelecki
- The School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, Wellington 6012, New Zealand
| | - Janet L Pitman
- The School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
8
|
Wang X, Zhao J, Zhang Y, Liu Y, Wang J, Shi R, Yuan J, Meng K. Molecular mechanism of Wilms' tumor (Wt1) (+/-KTS) variants promoting proliferation and migration of ovarian epithelial cells by bioinformatics analysis. J Ovarian Res 2023; 16:46. [PMID: 36829196 PMCID: PMC9951437 DOI: 10.1186/s13048-023-01124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a gynecological disease with the highest mortality. With the lack of understanding of its pathogenesis, no accurate early diagnosis and screening method has been established for EOC. Studies revealed the multi-faceted function of Wilms' tumor (Wt1) genes in cancer, which may be related to the existence of multiple alternative splices. Our results show that Wt1 (+KTS) or Wt1 (-KTS) overexpression can significantly promote the proliferation and migration of human ovarian epithelial cells HOSEpiC, and Wt1 (+KTS) effects were more evident. To explore the Wt1 (+/-KTS) variant mechanism in HOSEpiC proliferation and migration and ovarian cancer (OC) occurrence and development, this study explored the differential regulation of Wt1 (+/-KTS) in HOSEpiC proliferation and migration by transcriptome sequencing. OC-related hub genes were screened by bioinformatics analysis to further explore the differential molecular mechanism of Wt1 (+/-KTS) in the occurrence of OC. Finally, we found that the regulation of Wt1 (+/-KTS) variants on the proliferation and migration of HOSEpiC may act through different genes and signaling pathways and screened out key genes and differentially regulated genes that regulate the malignant transformation of ovarian epithelial cells. The implementation of this study will provide new clues for the early diagnosis and precise treatment of OC.
Collapse
Affiliation(s)
- Xiaomei Wang
- grid.449428.70000 0004 1797 7280College of Basic Medicine, Jining Medical University, Jining, China
| | - Jingyu Zhao
- grid.449428.70000 0004 1797 7280Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China ,grid.449428.70000 0004 1797 7280College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- grid.449428.70000 0004 1797 7280Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China ,grid.449428.70000 0004 1797 7280College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuxin Liu
- grid.449428.70000 0004 1797 7280Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China ,grid.449428.70000 0004 1797 7280College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Jinzheng Wang
- grid.449428.70000 0004 1797 7280Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China ,grid.449428.70000 0004 1797 7280College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Ruoxi Shi
- grid.449428.70000 0004 1797 7280Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China ,grid.449428.70000 0004 1797 7280College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China. .,Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China. .,Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
9
|
Sers C, Schäfer R. Silencing effects of mutant RAS signalling on transcriptomes. Adv Biol Regul 2023; 87:100936. [PMID: 36513579 DOI: 10.1016/j.jbior.2022.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Mutated genes of the RAS family encoding small GTP-binding proteins drive numerous cancers, including pancreatic, colon and lung tumors. Besides the numerous effects of mutant RAS gene expression on aberrant proliferation, transformed phenotypes, metabolism, and therapy resistance, the most striking consequences of chronic RAS activation are changes of the genetic program. By performing systematic gene expression studies in cellular models that allow comparisons of pre-neoplastic with RAS-transformed cells, we and others have estimated that 7 percent or more of all transcripts are altered in conjunction with the expression of the oncogene. In this context, the number of up-regulated transcripts approximates that of down-regulated transcripts. While up-regulated transcription factors such as MYC, FOSL1, and HMGA2 have been identified and characterized as RAS-responsive drivers of the altered transcriptome, the suppressed factors have been less well studied as potential regulators of the genetic program and transformed phenotype in the breadth of their occurrence. We therefore have collected information on downregulated RAS-responsive factors and discuss their potential role as tumor suppressors that are likely to antagonize active cancer drivers. To better understand the active mechanisms that entail anti-RAS function and those that lead to loss of tumor suppressor activity, we focus on the tumor suppressor HREV107 (alias PLAAT3 [Phospholipase A and acyltransferase 3], PLA2G16 [Phospholipase A2, group XVI] and HRASLS3 [HRAS-like suppressor 3]). Inactivating HREV107 mutations in tumors are extremely rare, hence epigenetic causes modulated by the RAS pathway are likely to lead to down-regulation and loss of function.
Collapse
Affiliation(s)
- Christine Sers
- Laboratory of Molecular Tumor Pathology and systems Biology, Institute of Pathology, Charité Universitätstmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany; German Cancer Consortium, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Reinhold Schäfer
- Comprehensive Cancer Center, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany; German Cancer Consortium, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Borzdziłowska P, Bednarek I. Alpha Mangostin and Cisplatin as Modulators of Exosomal Interaction of Ovarian Cancer Cell with Fibroblasts. Int J Mol Sci 2022; 23:8913. [PMID: 36012171 PMCID: PMC9408324 DOI: 10.3390/ijms23168913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
The diversity of exosomes and their role in the microenvironment make them an important point of interest in the development of cancer. In our study, we evaluated the effect of exosomes derived from ovarian cancer cells on gene expression in fibroblasts, including genes involved in metastasis. We also attempted to evaluate the indirect effect of cisplatin and/or α-mangostin on metastasis. In this aspect, we verified the changes induced by the drugs we tested on vesicular transfer associated with the release of exosomes by cells. We isolated exosomes from ovarian cancer cells treated and untreated with drugs, and then normal human fibroblasts were treated with the isolated exosomes. Changes in the expression of genes involved in the metastasis process were then examined. In our study, we observed altered expression of genes involved in various steps of the metastasis process (including genes related to cell adhesion, genes related to the interaction with the extracellular matrix, the cell cycle, cell growth and proliferation, and apoptosis). We have shown that α-mangostin and/or cisplatin, as chemotherapeutic agents, not only directly affect tumor cells but may also indirectly (via exosomes) contribute to delaying metastasis development.
Collapse
Affiliation(s)
- Paulina Borzdziłowska
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | | |
Collapse
|
11
|
Cedeno-Rosario L, Honda D, Sunderland AM, Lewandowski MD, Taylor WR, Chadee DN. Phosphorylation of mixed lineage kinase MLK3 by cyclin-dependent kinases CDK1 and CDK2 controls ovarian cancer cell division. J Biol Chem 2022; 298:102263. [PMID: 35843311 PMCID: PMC9399292 DOI: 10.1016/j.jbc.2022.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022] Open
Abstract
Mixed lineage kinase 3 (MLK3) is a serine/threonine mitogen-activated protein kinase kinase kinase that promotes the activation of multiple mitogen-activated protein kinase pathways and is required for invasion and proliferation of ovarian cancer cells. Inhibition of MLK activity causes G2/M arrest in HeLa cells; however, the regulation of MLK3 during ovarian cancer cell cycle progression is not known. Here, we found that MLK3 is phosphorylated in mitosis and that inhibition of cyclin-dependent kinase 1 (CDK1) prevented MLK3 phosphorylation. In addition, we observed that c-Jun N-terminal kinase, a downstream target of MLK3 and a direct target of MKK4 (SEK1), was activated in G2 phase when CDK2 activity is increased and then inactivated at the beginning of mitosis concurrent with the increase in CDK1 and MLK3 phosphorylation. Using in vitro kinase assays and phosphomutants, we determined that CDK1 phosphorylates MLK3 on Ser548 and decreases MLK3 activity during mitosis, whereas CDK2 phosphorylates MLK3 on Ser770 and increases MLK3 activity during G1/S and G2 phases. We also found that MLK3 inhibition causes a reduction in cell proliferation and a cell cycle arrest in ovarian cancer cells, suggesting that MLK3 is required for ovarian cancer cell cycle progression. Taken together, our results suggest that phosphorylation of MLK3 by CDK1 and CDK2 is important for the regulation of MLK3 and c-Jun N-terminal kinase activities during G1/S, G2, and M phases in ovarian cancer cell division.
Collapse
Affiliation(s)
- Luis Cedeno-Rosario
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - David Honda
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - Autumn M Sunderland
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - Mark D Lewandowski
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - William R Taylor
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA
| | - Deborah N Chadee
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
12
|
Stejskalová A, Vankelecom H, Sourouni M, Ho MY, Götte M, Almquist BD. In vitro modelling of the physiological and diseased female reproductive system. Acta Biomater 2021; 132:288-312. [PMID: 33915315 DOI: 10.1016/j.actbio.2021.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
The maladies affecting the female reproductive tract (FRT) range from infections to endometriosis to carcinomas. In vitro models of the FRT play an increasingly important role in both basic and translational research, since the anatomy and physiology of the FRT of humans and other primates differ significantly from most of the commonly used animal models, including rodents. Using organoid culture to study the FRT has overcome the longstanding hurdle of maintaining epithelial phenotype in culture. Both ECM-derived and engineered materials have proved critical for maintaining a physiological phenotype of FRT cells in vitro by providing the requisite 3D environment, ligands, and architecture. Advanced materials have also enabled the systematic study of factors contributing to the invasive metastatic processes. Meanwhile, microphysiological devices make it possible to incorporate physical signals such as flow and cyclic exposure to hormones. Going forward, advanced materials compatible with hormones and optimised to support FRT-derived cells' long-term growth, will play a key role in addressing the diverse array of FRT pathologies and lead to impactful new treatments that support the improvement of women's health. STATEMENT OF SIGNIFICANCE: The female reproductive system is a crucial component of the female anatomy. In addition to enabling reproduction, it has wide ranging influence on tissues throughout the body via endocrine signalling. This intrinsic role in regulating normal female biology makes it susceptible to a variety of female-specific diseases. However, the complexity and human-specific features of the reproductive system make it challenging to study. This has spurred the development of human-relevant in vitro models for helping to decipher the complex issues that can affect the reproductive system, including endometriosis, infection, and cancer. In this Review, we cover the current state of in vitro models for studying the female reproductive system, and the key role biomaterials play in enabling their development.
Collapse
|
13
|
Extracellular matrix protein-1 secretory isoform promotes ovarian cancer through increasing alternative mRNA splicing and stemness. Nat Commun 2021; 12:4230. [PMID: 34244494 PMCID: PMC8270969 DOI: 10.1038/s41467-021-24315-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Extracellular matrix protein-1 (ECM1) promotes tumorigenesis in multiple organs but the mechanisms associated to ECM1 isoform subtypes have yet to be clarified. We report in this study that the secretory ECM1a isoform induces tumorigenesis through the GPR motif binding to integrin αXβ2 and the activation of AKT/FAK/Rho/cytoskeleton signaling. The ATP binding cassette subfamily G member 1 (ABCG1) transduces the ECM1a-integrin αXβ2 interactive signaling to facilitate the phosphorylation of AKT/FAK/Rho/cytoskeletal molecules and to confer cancer cell cisplatin resistance through up-regulation of the CD326-mediated cell stemness. On the contrary, the non-secretory ECM1b isoform binds myosin and blocks its phosphorylation, impairing cytoskeleton-mediated signaling and tumorigenesis. Moreover, ECM1a induces the expression of the heterogeneous nuclear ribonucleoprotein L like (hnRNPLL) protein to favor the alternative mRNA splicing generating ECM1a. ECM1a, αXβ2, ABCG1 and hnRNPLL higher expression associates with poor survival, while ECM1b higher expression associates with good survival. These results highlight ECM1a, integrin αXβ2, hnRNPLL and ABCG1 as potential targets for treating cancers associated with ECM1-activated signaling. Extracellular matrix protein 1 (ECM1) has been associated with cancer but the underlying molecular mechanisms are not clear. Here, the authors show that while ECM1b isoform is a tumour suppressor, the secreted isoform ECM1a promotes tumourigenesis and chemoresistance through increasing stemness and alternative mRNA splicing in ovarian cancer.
Collapse
|
14
|
Kasturirangan S, Mehdi B, Chadee DN. LATS1 Regulates Mixed-Lineage Kinase 3 (MLK3) Subcellular Localization and MLK3-Mediated Invasion in Ovarian Epithelial Cells. Mol Cell Biol 2021; 41:e0007821. [PMID: 33875576 PMCID: PMC8224236 DOI: 10.1128/mcb.00078-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
Mixed-lineage kinase 3 (MLK3) activates mammalian mitogen-activated protein kinase (MAPK) signaling pathways in response to cytokines and stress stimuli. MLK3 is important for proliferation, migration, and invasion of different types of human tumor cells. We observed that endogenous MLK3 was localized to both the cytoplasm and the nucleus in immortalized ovarian epithelial (T80) and ovarian cancer cells, and mutation of arginines 474 and 475 within a putative MLK3 nuclear localization sequence (NLS) resulted in exclusion of MLK3 from the nucleus. The large tumor suppressor (LATS) Ser/Thr kinase regulates cell proliferation, morphology, apoptosis, and mitotic exit in response to cell-cell contact. RNA interference (RNAi)-mediated knockdown of LATS1 increased nuclear, endogenous MLK3 in T80 cells. LATS1 phosphorylated MLK3 on Thr477, which is within the putative NLS, and LATS1 expression enhanced the association between MLK3 and the adapter protein 14-3-3ζ. Thr477 is essential for MLK3-14-3-3ζ association and MLK3 retention in the cytoplasm, and a T477A MLK3 mutant had predominantly nuclear localization and significantly increased invasiveness of SKOV3 ovarian cancer cells. This study identified a novel link between the MAPK and Hippo/LATS1 signaling pathways. Our results reveal LATS1 as a novel regulator of MLK3 that controls MLK3 nuclear/cytoplasmic localization and MLK3-dependent ovarian cancer cell invasion.
Collapse
Affiliation(s)
| | - Batool Mehdi
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Deborah N. Chadee
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
15
|
Zhao Y, Tao F, Jiang J, Chen L, Du J, Cheng X, He Q, Zhong S, Chen W, Wu X, Ou R, Xu Y, Tang KF. Tryptophan 2, 3‑dioxygenase promotes proliferation, migration and invasion of ovarian cancer cells. Mol Med Rep 2021; 23:445. [PMID: 33846800 PMCID: PMC8060793 DOI: 10.3892/mmr.2021.12084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/01/2021] [Indexed: 11/24/2022] Open
Abstract
Tryptophan 2,3-dioxygenase (TDO2) is a key rate-limiting enzyme in the kynurenine pathway and promotes tumor growth and escape from immune surveillance in different types of cancer. The present study aimed to investigate whether TDO2 serves a role in the development of ovarian cancer. Reverse transcription-quantitative PCR and western blotting were used to detect the expression of TDO2 in different cell lines. The effects of TDO2 overexpression, TDO2 knockdown and TDO2 inhibitor on ovarian cancer cell proliferation, migration and invasion were determined by MTS, colony formation and Transwell assays. The expression of TDO2 in ovarian cancer tissues, normal ovarian tissues and fallopian tube tissues were analyzed using the gene expression data from The Cancer Genome Atlas and Genotype-Tissue Expression project. Immune cell infiltration in cancer tissues was evaluated using the single sample gene set enrichment analysis algorithm. The present study found that RasV12-mediated oncogenic transformation was accompanied by the upregulation of TDO2. In addition, it was demonstrated that TDO2 was upregulated in ovarian cancer tissues compared with normal ovarian tissues. TDO2 overexpression promoted proliferation, migration and invasion of ovarian cancer cells, whereas TDO2 knockdown repressed these phenotypes. Treatment with LM10, a TDO2 inhibitor, also repressed the proliferation, migration and invasion of ovarian cancer cells. The present study indicated that TDO2 can be used as a new target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yuemei Zhao
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Fengxing Tao
- Department of Dermato‑Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Jiayu Jiang
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Lina Chen
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Jizao Du
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Xiaoxiao Cheng
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Qin He
- Department of Medical Ultrasonics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shouhui Zhong
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Wei Chen
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Xiaoli Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Rongying Ou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Yunsheng Xu
- Department of Dermato‑Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Kai-Fu Tang
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| |
Collapse
|
16
|
Liu M, Wang D, Luo Y, Hu L, Bi Y, Ji J, Huang H, Wang G, Zhu L, Ma J, Kim E, Luo CK, Abbruzzese JL, Li X, Yang VW, Li Z, Lu W. Selective killing of cancer cells harboring mutant RAS by concomitant inhibition of NADPH oxidase and glutathione biosynthesis. Cell Death Dis 2021; 12:189. [PMID: 33594044 PMCID: PMC7887267 DOI: 10.1038/s41419-021-03473-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/28/2022]
Abstract
Oncogenic RAS is a critical driver for the initiation and progression of several types of cancers. However, effective therapeutic strategies by targeting RAS, in particular RASG12D and RASG12V, and associated downstream pathways have been so far unsuccessful. Treatment of oncogenic RAS-ravaged cancer patients remains a currently unmet clinical need. Consistent with a major role in cancer metabolism, oncogenic RAS activation elevates both reactive oxygen species (ROS)-generating NADPH oxidase (NOX) activity and ROS-scavenging glutathione biosynthesis. At a certain threshold, the heightened oxidative stress and antioxidant capability achieve a higher level of redox balance, on which cancer cells depend to gain a selective advantage on survival and proliferation. However, this prominent metabolic feature may irrevocably render cancer cells vulnerable to concurrent inhibition of both NOX activity and glutathione biosynthesis, which may be exploited as a novel therapeutic strategy. In this report, we test this hypothesis by treating the HRASG12V-transformed ovarian epithelial cells, mutant KRAS-harboring pancreatic and colon cancer cells of mouse and human origins, as well as cancer xenografts, with diphenyleneiodonium (DPI) and buthionine sulfoximine (BSO) combination, which inhibit NOX activity and glutathione biosynthesis, respectively. Our results demonstrate that concomitant targeting of NOX and glutathione biosynthesis induces a highly potent lethality to cancer cells harboring oncogenic RAS. Therefore, our studies provide a novel strategy against RAS-bearing cancers that warrants further mechanistic and translational investigation.
Collapse
Affiliation(s)
- Muyun Liu
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
- Department of Gastroenterology, No. 905 Hospital, Shanghai, China
| | - Dan Wang
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yongde Luo
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
- School of Pharmaceutical Sciences & The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Yawei Bi
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Juntao Ji
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Guoqiang Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Liang Zhu
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jianjia Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Eunice Kim
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Catherine K Luo
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - James L Abbruzzese
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Xiaokun Li
- School of Pharmaceutical Sciences & The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Vincent W Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Shanghai, China.
| | - Weiqin Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
17
|
Elliot A, Myllymäki H, Feng Y. Inflammatory Responses during Tumour Initiation: From Zebrafish Transgenic Models of Cancer to Evidence from Mouse and Man. Cells 2020; 9:cells9041018. [PMID: 32325966 PMCID: PMC7226149 DOI: 10.3390/cells9041018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
The zebrafish is now an important model organism for cancer biology studies and provides unique and complementary opportunities in comparison to the mammalian equivalent. The translucency of zebrafish has allowed in vivo live imaging studies of tumour initiation and progression at the cellular level, providing novel insights into our understanding of cancer. Here we summarise the available transgenic zebrafish tumour models and discuss what we have gleaned from them with respect to cancer inflammation. In particular, we focus on the host inflammatory response towards transformed cells during the pre-neoplastic stage of tumour development. We discuss features of tumour-associated macrophages and neutrophils in mammalian models and present evidence that supports the idea that these inflammatory cells promote early stage tumour development and progression. Direct live imaging of tumour initiation in zebrafish models has shown that the intrinsic inflammation induced by pre-neoplastic cells is tumour promoting. Signals mediating leukocyte recruitment to pre-neoplastic cells in zebrafish correspond to the signals that mediate leukocyte recruitment in mammalian tumours. The activation state of macrophages and neutrophils recruited to pre-neoplastic cells in zebrafish appears to be heterogenous, as seen in mammalian models, which provides an opportunity to study the plasticity of innate immune cells during tumour initiation. Although several potential mechanisms are described that might mediate the trophic function of innate immune cells during tumour initiation in zebrafish, there are several unknowns that are yet to be resolved. Rapid advancement of genetic tools and imaging technologies for zebrafish will facilitate research into the mechanisms that modulate leukocyte function during tumour initiation and identify targets for cancer prevention.
Collapse
Affiliation(s)
| | | | - Yi Feng
- Correspondence: ; Tel.: +44-(0)131-242-6685
| |
Collapse
|
18
|
Chen FY, Li X, Zhu HP, Huang W. Regulation of the Ras-Related Signaling Pathway by Small Molecules Containing an Indole Core Scaffold: A Potential Antitumor Therapy. Front Pharmacol 2020; 11:280. [PMID: 32231571 PMCID: PMC7082308 DOI: 10.3389/fphar.2020.00280] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/27/2020] [Indexed: 12/29/2022] Open
Abstract
The Ras-Related signaling pathway plays an important role in cell development and differentiation. A growing body of evidence collected in recent years has shown that the aberrant activation of Ras is associated with tumor-related processes. Several studies have indicated that indole and its derivatives can target regulatory factors and interfere with or even block the aberrant Ras-Related pathway to treat or improve malignant tumors. In this review, we summarize the roles of indole and its derivatives in the isoprenylcysteine carboxyl methyltransferase-participant Ras membrane localization signaling pathway and Ras-GTP/Raf/MAPK signaling pathway through their regulatory mechanisms. Moreover, we briefly discuss the current treatment strategies that target these pathways. Our review will help guide the further study of the application of Ras-Related signaling pathway inhibitors.
Collapse
Affiliation(s)
- Fei-Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Zhu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Meng J, Liu K, Shao Y, Feng X, Ji Z, Chang B, Wang Y, Xu L, Yang G. ID1 confers cancer cell chemoresistance through STAT3/ATF6-mediated induction of autophagy. Cell Death Dis 2020; 11:137. [PMID: 32080166 PMCID: PMC7033197 DOI: 10.1038/s41419-020-2327-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
Chemoresistance is one of the major reasons leading to ovarian cancer high mortality and poor survival. Studies have shown that the alteration of cellular autophagy is associated with cancer cell chemoresistance. Here, we investigated whether the ovarian cancer chemoresistance is associated with the autophagy induced by the inhibitor of DNA binding 1 (ID1). By using gene overexpression or silencing, luciferase assay and human specimens, we show that ID1 induces high autophagy and confers cancer cell chemoresistance. The mechanistic study demonstrates that ID1 first activates the NF-κB signaling through facilitating the nuclear translocation of NF-κB p65, which strengthens the expression and secretion of IL-6 from cancer cells to subsequently activate the signal transducer and activator of transcription 3 (STAT3) through the protein phosphorylation at Y705. We further identified that STAT3 functions to promote the transcription of the activating transcription factor 6 (ATF6), which induces endoplasmic reticulum stress to promote cellular autophagy, granting cancer cell resistance to both cisplatin and paclitaxel treatment. Moreover, we found a significant correlation between the expression of ID1 and ATF6 in 1104 high grade serous ovarian cancer tissues, and that patients with the high expression of ID1 or ATF6 were resistant to platinum treatment and had the poor overall survival and progression-free survival. Thus, we have uncovered a mechanism in which ID1 confers cancer cell chemoresistance largely through the STAT3/ATF6-induced autophagy. The involved molecules, including ID1, STAT3, and ATF6, may have a potential to be targeted in combination with chemotherapeutic agents to improve ovarian cancer survival.
Collapse
Affiliation(s)
- Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Kaiyi Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pediatrics, Children's Hospital, Fudan University, Shanghai, 201102, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xu Feng
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhaodong Ji
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bin Chang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yan Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Ling Xu
- Department of Obstetrics and Gynecology, Minhang Hospital, Fudan University, Shanghai, 201199, China.
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200140, China.
| |
Collapse
|
20
|
Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol 2019; 17:1-12. [PMID: 31611651 DOI: 10.1038/s41423-019-0306-1] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023] Open
Abstract
Tumor-promoting inflammation and the avoidance of immune destruction are hallmarks of cancer. While innate immune cells, such as neutrophils, monocytes, and macrophages, are critical mediators for sterile and nonsterile inflammation, persistent inflammation, such as that which occurs in cancer, is known to disturb normal myelopoiesis. This disturbance leads to the generation of immunosuppressive myeloid cells, such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). Due to their potent suppressive activities against effector lymphocytes and their abundance in the tumor microenvironment, immunosuppressive myeloid cells act as a major barrier to cancer immunotherapy. Indeed, various therapeutic approaches directed toward immunosuppressive myeloid cells are actively being tested in preclinical and clinical studies. These include anti-inflammatory agents, therapeutic blockade of the mobilization and survival of myeloid cells, and immunostimulatory adjuvants. More recently, immune checkpoint molecules expressed on tumor-infiltrating myeloid cells have emerged as potential therapeutic targets to redirect these cells to eliminate tumor cells. In this review, we discuss the complex crosstalk between cancer-related inflammation and immunosuppressive myeloid cells and possible therapeutic strategies to harness antitumor immune responses.
Collapse
|
21
|
Wang Y, Chen S, Yan Z, Pei M. A prospect of cell immortalization combined with matrix microenvironmental optimization strategy for tissue engineering and regeneration. Cell Biosci 2019; 9:7. [PMID: 30627420 PMCID: PMC6321683 DOI: 10.1186/s13578-018-0264-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell lines for research and clinical use, strategies have been applied including internal genomic or external matrix microenvironment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix (dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortalization and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized cells as well as a potential rejuvenation strategy through combination with the dECM approach.
Collapse
Affiliation(s)
- Yiming Wang
- 1Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA.,2Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Song Chen
- 3Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083 Sichuan China
| | - Zuoqin Yan
- 2Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Pei
- 1Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA.,4WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
22
|
Fontana J, Zima M, Vetvicka V. Biological Markers of Oxidative Stress in Cardiovascular Diseases: After so Many Studies, What do We Know? Immunol Invest 2018; 47:823-843. [DOI: 10.1080/08820139.2018.1523925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Josef Fontana
- Center for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Michal Zima
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY USA
| |
Collapse
|
23
|
Austria T, Marion C, Yu V, Widschwendter M, Hinton DR, Dubeau L. Mechanism of cytokinesis failure in ovarian cystadenomas with defective BRCA1 and P53 pathways. Int J Cancer 2018; 143:2932-2942. [PMID: 29978915 DOI: 10.1002/ijc.31659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/23/2018] [Accepted: 06/07/2018] [Indexed: 11/09/2022]
Abstract
We previously described an in vitro model in which serous ovarian cystadenomas were transfected with SV40 large T antigen, resulting in loss of RB and P53 functions and thus mimicking genetic defects present in early high-grade serous extra-uterine Müllerian (traditionally called high-grade serous ovarian) carcinomas including those associated with the BRCA1 mutation carrier state. We showed that replicative aging in this cell culture model leads to a mitotic arrest at the spindle assembly checkpoint. Here we show that this arrest is due to a reduction in microtubule anchoring that coincides with decreased expression of the BUB1 kinase and of the phosphorylated form of its substrate, BUB3. The ensuing prolonged mitotic arrest leads to cohesion fatigue resulting in cell death or, in cells that recover from this arrest, in cytokinesis failure and polyploidy. Down-regulation of BRCA1 to levels similar to those present in BRCA1 mutation carriers leads to increased and uncontrolled microtubule anchoring to the kinetochore resulting in overcoming the spindle assembly checkpoint. Progression to anaphase under those conditions is associated with formation of chromatin bridges between chromosomal plates due to abnormal attachments to the kinetochore, significantly increasing the risk of cytokinesis failure. The dependence of this scenario on accelerated replicative aging can, at least in part, account for the site specificity of the cancers associated with the BRCA1 mutation carrier state, as epithelia of the mammary gland and of the reproductive tract are targets of cell-nonautonomous consequences of this carrier state on cellular proliferation associated with menstrual cycle progressions.
Collapse
Affiliation(s)
- Theresa Austria
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Christine Marion
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Vanessa Yu
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Martin Widschwendter
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - David R Hinton
- Department of Pathology and Ophthalmology, Roski Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Louis Dubeau
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
24
|
The Role of Inflammation and Inflammatory Mediators in the Development, Progression, Metastasis, and Chemoresistance of Epithelial Ovarian Cancer. Cancers (Basel) 2018; 10:cancers10080251. [PMID: 30061485 PMCID: PMC6116184 DOI: 10.3390/cancers10080251] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Inflammation plays a role in the initiation and development of many types of cancers, including epithelial ovarian cancer (EOC) and high grade serous ovarian cancer (HGSC), a type of EOC. There are connections between EOC and both peritoneal and ovulation-induced inflammation. Additionally, EOCs have an inflammatory component that contributes to their progression. At sites of inflammation, epithelial cells are exposed to increased levels of inflammatory mediators such as reactive oxygen species, cytokines, prostaglandins, and growth factors that contribute to increased cell division, and genetic and epigenetic changes. These exposure-induced changes promote excessive cell proliferation, increased survival, malignant transformation, and cancer development. Furthermore, the pro-inflammatory tumor microenvironment environment (TME) contributes to EOC metastasis and chemoresistance. In this review we will discuss the roles inflammation and inflammatory mediators play in the development, progression, metastasis, and chemoresistance of EOC.
Collapse
|
25
|
Momeny M, Yousefi H, Eyvani H, Moghaddaskho F, Salehi A, Esmaeili F, Alishahi Z, Barghi F, Vaezijoze S, Shamsaiegahkani S, Zarrinrad G, Sankanian G, Sabourinejad Z, Hamzehlou S, Bashash D, Aboutorabi ES, Ghaffari P, Dehpour AR, Tavangar SM, Tavakkoly-Bazzaz J, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Blockade of nuclear factor-κB (NF-κB) pathway inhibits growth and induces apoptosis in chemoresistant ovarian carcinoma cells. Int J Biochem Cell Biol 2018; 99:1-9. [DOI: 10.1016/j.biocel.2018.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/18/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023]
|
26
|
Li S, Yang L, Wang J, Liang F, Chang B, Gu H, Wang H, Yang G, Chen Y. Analysis of the chemotherapeutic effects of a propadiene compound on malignant ovarian cancer cells. Oncotarget 2018; 7:57145-57159. [PMID: 27494891 PMCID: PMC5302979 DOI: 10.18632/oncotarget.11012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022] Open
Abstract
Epithelial ovarian cancer is most lethal in female reproductive carcinomas owing to the high chemoresistance and metastasis, so more efficient therapeutic agents are terribly needed. A propadiene compound: 1-phenylpropadienyl phosphine oxide (PHPO), was employed to test the chemotherapeutic efficacy against ovarian cancer cell lines. MTT assay showed that PHPO displayed a much lower IC50 than cisplatin and paclitaxel, while combination treatment of cells with PHPO + cisplatin induced more apoptosis than with PHPO + paclitaxel or with cisplatin + paclitaxel (p < 0.05). Animal assays demonstrated that subcutaneous tumor growth was highly inhibited by PHPO + cisplatin, compared with that inhibited by PHPO or by cisplatin treatment alone, indicating PHPO and cisplatin may have synergistic effects against ovarian cancer growth. We also found that PHPO induced few side effects on animals, compared with cisplatin. Mechanistic studies suggested that treatment of cells with PHPO or with PHPO + cisplatin differentially inhibited the PI3K/Akt, MAPK and ATM/Chk2 pathways, which consequently suppressed the anti-apoptotic factors Bcl-xL, Bcl-2 and XIAP, but activated the pro-apoptotic factors Bad, Bax, p53, caspase 9, caspase 8, caspase 7 and PARP. Taken together, PHPO may induce cell apoptosis through multiple signal pathways, especially when used along with cisplatin. Therefore, PHPO may be explored as a prospective agent to effectively treat ovarian cancer.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Lina Yang
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Jingshu Wang
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Fan Liang
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Bin Chang
- Department of Pathology, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huafen Gu
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Honglin Wang
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Central laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Yaping Chen
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| |
Collapse
|
27
|
Expression and function of nuclear receptor coactivator 4 isoforms in transformed endometriotic and malignant ovarian cells. Oncotarget 2017; 9:5344-5367. [PMID: 29435183 PMCID: PMC5797054 DOI: 10.18632/oncotarget.23747] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/22/2017] [Indexed: 01/10/2023] Open
Abstract
Iron is proposed to contribute to the transition from endometriosis to specific subtypes of ovarian cancers (OVCAs). Regulation of intracellular iron occurs via a ferritinophagic process involving NCOA4 (Nuclear Receptor Coactivator 4), represented by two major isoforms (NCOA4α and NCOA4β), whose contribution to ovarian cancer biology remains uninvestigated. We thus generated transformed endometriotic cells (via HRASV12A, c-MYCT58A, and p53 inactivation) whose migratory potential was increased in response to conditioned media from senescent endometriotic cells. We identified elevated NCOA4 mRNA in transformed endometriotic cells (relative to non-transformed). Knockdown of NCOA4 increased ferritin heavy chain (FTH1) and p21 protein which was accompanied by reduced cell survival while NCOA4β overexpression reduced colony formation. NCOA4α and NCOA4β mRNA were elevated in malignant versus non-malignant gynecological cells; NCOA4α protein was increased in the assessed malignant cell lines as well as in a series of OVCA subtypes (relative to normal adjacent tissues). Further, NCOA4 protein expression was regulated in a proteasome- and autophagy-independent manner. Collectively, our results implicate NCOA4 in ovarian cancer biology in which it could be involved in the transition from precursors to OVCA.
Collapse
|
28
|
Loss of HDAC-Mediated Repression and Gain of NF-κB Activation Underlie Cytokine Induction in ARID1A- and PIK3CA-Mutation-Driven Ovarian Cancer. Cell Rep 2017; 17:275-288. [PMID: 27681437 DOI: 10.1016/j.celrep.2016.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/08/2016] [Accepted: 08/30/2016] [Indexed: 12/14/2022] Open
Abstract
ARID1A is frequently mutated in ovarian clear cell carcinoma (OCCC) and often co-exists with activating mutations of PIK3CA. Although induction of pro-inflammatory cytokines has been observed in this cancer, the mechanism by which the two mutations synergistically activate cytokine genes remains elusive. Here, we established an in vitro model of OCCC by introducing ARID1A knockdown and mutant PIK3CA into a normal human ovarian epithelial cell line, resulting in cell transformation and cytokine gene induction. We demonstrate that loss of ARID1A impairs the recruitment of the Sin3A-HDAC complex, while the PIK3CA mutation releases RelA from IκB, leading to cytokine gene activation. We show that an NF-κB inhibitor partly attenuates the proliferation of OCCC and improves the efficacy of carboplatin both in cell culture and in a mouse model. Our study thus reveals the mechanistic link between ARID1A/PIK3CA mutations and cytokine gene induction in OCCC and suggests that NF-κB inhibition could be a potential therapeutic option.
Collapse
|
29
|
Zhang X, Li X, Tan F, Yu N, Pei H. STAT1 Inhibits MiR-181a Expression to Suppress Colorectal Cancer Cell Proliferation Through PTEN/Akt. J Cell Biochem 2017; 118:3435-3443. [PMID: 28322462 DOI: 10.1002/jcb.26000] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/17/2017] [Indexed: 11/08/2022]
Abstract
Signal transducers and activators of transcription 1 (STAT1) exhibits tumor-suppressor properties by inhibiting oncogenic pathways and promoting tumor immunosurveillance. MicroRNAs, a group of non-coding endogenous ones, may regulate gene expression and plays specific roles in tumorigenesis. Recently, miR-181a has been reported to be associated with poor prognosis of colorectal cancer (CRC). Using human colorectal cancer cell lines, we demonstrated that STAT1 suppresses both LoVo and SW480 cell growth by down-regulating miR-181a. STAT1 regulates the expression of miR-181a through binding to the elements in the miR-181a's promoter region. Further, we revealed that miR-181a accelerates CRC cell proliferation through phosphatase and tensin homolog on chromosome ten (PTEN). In addition, PTEN protein was upregulated in response to STAT1 overexpression or miR-181a inhibition, downregulated in response to STAT1 knockdown or miR-181a overexpression. Without changes on the AKT protein level, p-AKT was downregulated by STAT1 overexpression or miR-181a inhibition while upregulated by STAT1 knockdown or miR-181a overexpression, indicating PTEN/Akt pathway activated in STAT1/miR-181a regulation of CRC cell proliferation. Taken together, our findings shed new light on the STAT1/miR-181a/PTEN pathway in colorectal cancer and add new insight regarding the carcinogenesis of colorectal cancer. J. Cell. Biochem. 118: 3435-3443, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xingwen Zhang
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Department of Emergency, Hunan Provincial People's Hospital, P.R. China
| | - Xiang Li
- Department of Emergency, Hunan Provincial People's Hospital, P.R. China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Nanhui Yu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Haiping Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| |
Collapse
|
30
|
Gupta I, Burney I, Al-Moundhri MS, Tamimi Y. Molecular genetics complexity impeding research progress in breast and ovarian cancers. Mol Clin Oncol 2017; 7:3-14. [PMID: 28685067 PMCID: PMC5492732 DOI: 10.3892/mco.2017.1275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Breast and ovarian cancer are heterogeneous diseases. While breast cancer accounts for 25% of cancers worldwide, ovarian cancer accounts for 3.5% of all cancers and it is considered to be the most lethal type of cancer among women. In Oman, breast cancer accounts for 25% and ovarian cancer for 4.5% of all cancer cases. Various risk factors, including variable biological and clinical traits, are involved in the onset of breast and ovarian cancer. Although highly developed diagnostic and therapeutic methods have paved the way for better management, targeted therapy against specific biomarkers has not yet shown any significant improvement, particularly in triple-negative breast cancer and epithelial ovarian cancer, which are associated with high mortality rates. Thus, elucidating the mechanisms underlying the pathology of these diseases is expected to improve their prevention, prognosis and management. The aim of the present study was to provide a comprehensive review and updated information on genomics and proteomics alterations associated with cancer pathogenesis, as reported by several research groups worldwide. Furthermore, molecular research in our laboratory, aimed at identifying new pathways involved in the pathogenesis of breast and ovarian cancer using microarray and chromatin immunoprecipitation (ChIP), is discussed. Relevant candidate genes were found to be either up- or downregulated in a cohort of breast cancer cases. Similarly, ChIP analysis revealed that relevant candidate genes were regulated by the E2F5 transcription factor in ovarian cancer tissue. An ongoing study aims to validate these genes with a putative role as biological markers that may contribute to the development of targeted therapies for breast and ovarian cancer.
Collapse
Affiliation(s)
- Ishita Gupta
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Ikram Burney
- Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mansour S Al-Moundhri
- Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
31
|
Yang Y, Yang R, Roth M, Piperdi S, Zhang W, Dorfman H, Rao P, Park A, Tripathi S, Freeman C, Zhang Y, Sowers R, Rosenblum J, Geller D, Hoang B, Gill J, Gorlick R. Genetically transforming human osteoblasts to sarcoma: development of an osteosarcoma model. Genes Cancer 2017; 8:484-494. [PMID: 28435520 PMCID: PMC5396624 DOI: 10.18632/genesandcancer.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor in children and young adults. Although histologically defined by the presence of malignant osteoid, the tumor possesses lineage multipotency suggesting it could be derived from a cell anywhere on the differentiation pathway between a mesenchymal stem cell (MSC) and a mature osteoblast. To determine if preosteoblasts (pOB) could be the cell of origin differentiated MSCs were transformed with defined genetic elements. MSCs and pOB differentiated from the same MSCs were serially transformed with the oncogenes hTERT, SV40 large T antigen and H-Ras. Assays were performed to determine their tumorigenic properties, differentiation capacity and histologic appearance. When subcutaneously implanted in immunocompromised mice, cell lines derived from transformed MSC and pOB formed tumors in 4 weeks. In contrast to the transformed MSC, the pOB tumors demonstrated a histological appearance characteristic of osteosarcoma. The cell lines derived from the transformed pOB only had osteogenic and chondrogenic differentiation potential, but not adipogenic ones. However, the transformed MSC cells and standard osteosarcoma cell lines maintained their tri-lineage differentiation capacity. The inability of the transformed pOB cell line to undergo adipogenic differentiation, may suggest that osteosarcoma is derived from a cell intermediate in differentiation between an MSC and a pOB, with partial commitment to the osteoblastic lineage.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA.,Current affiliations: Department of Orthopaedic Surgery, Musculoskeletal Tumor Center, People's Hospital, Peking University, Beijing, China
| | - Rui Yang
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center, Bronx, NY, USA
| | - Michael Roth
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sajida Piperdi
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wendong Zhang
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Howard Dorfman
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center, Bronx, NY, USA.,Department of Pathology, Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center, Bronx, NY, USA
| | - Pulivarthi Rao
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Amy Park
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sandeep Tripathi
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carrie Freeman
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yunjia Zhang
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rebecca Sowers
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeremy Rosenblum
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Geller
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center, Bronx, NY, USA
| | - Bang Hoang
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center, Bronx, NY, USA
| | - Jonathan Gill
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Richard Gorlick
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.,Current affiliations: Pediatrics Administration, The University of Texas MD Anderson Cancer Center, Children's Cancer Hospital, Houston, TX, USA
| |
Collapse
|
32
|
Nakamura K, Smyth MJ. Targeting cancer-related inflammation in the era of immunotherapy. Immunol Cell Biol 2017; 95:325-332. [PMID: 27999432 DOI: 10.1038/icb.2016.126] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/24/2016] [Accepted: 11/26/2016] [Indexed: 02/07/2023]
Abstract
Recent advances in cancer immunotherapy, particularly immune checkpoint blockade therapy have dramatically changed the therapeutic strategy against advanced malignancies. Still, only a subset of patients shows a good response to any single therapy. Moreover, it remains largely unsolved how we can maintain durable clinical responses, or how we can successfully treat a broader range of cancers by immunotherapy. Growing evidence suggests that the major barrier to more successful cancer immunotherapy is the tumour microenvironment (TME), where chronic inflammation has a predominant role in tumour survival and proliferation, angiogenesis and immunosuppression. Over the past decades, our understanding of cancer-related inflammation has significantly evolved, and now we have various therapeutic options tailored to the TME. These therapeutic strategies include inhibiting inflammatory mediators or their downstream signalling molecules, blocking the recruitment of myeloid cells, modulating immunosuppressive functions in myeloid cells and re-educating the TME. In this review, we discuss the role of cancer-related inflammation as a potential target in the era of immunotherapy.
Collapse
Affiliation(s)
- Kyohei Nakamura
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical, Research Institute, Herston, QLD, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical, Research Institute, Herston, QLD, Australia.,School of Medicine, University of Queensland, Herston, QLD, Australia
| |
Collapse
|
33
|
Wei S, Juan C, Xiurong L, Jie Y. Study on the expression of MMP-9 and NF-κB proteins in epithelial ovarian cancer tissue and their clinical value. BIO WEB OF CONFERENCES 2017. [DOI: 10.1051/bioconf/20170801059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Kim J, Lee GR, Kim H, Jo YJ, Hong SE, Lee J, Lee HI, Jang YS, Oh SH, Lee HJ, Lee JS, Jeong W. Effective killing of cancer cells and regression of tumor growth by K27 targeting sulfiredoxin. Free Radic Biol Med 2016; 101:384-392. [PMID: 27825965 DOI: 10.1016/j.freeradbiomed.2016.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 01/23/2023]
Abstract
Cancer cells have been suggested to be more susceptible to oxidative damages and highly dependent on antioxidant capacity in comparison with normal cells, and thus targeting antioxidant enzymes has been a strategy for effective cancer treatment. Sulfiredoxin (Srx) is an enzyme that catalyzes the reduction of sulfinylated peroxiredoxins and thereby reactivates them. In this study we developed a Srx inhibitor, K27 (N-[7-chloro-2-(4-fluorophenyl)-4-quinazolinyl]-N-(2-phenylethyl)-β-alanine), and showed that it induces the accumulation of sulfinylated peroxiredoxins and oxidative stress, which leads to mitochondrial damage and apoptotic death of cancer cells. The effects of K27 were significantly reversed by ectopic expression of Srx or antioxidant N-acetyl cysteine. In addition, K27 led to preferential death of tumorigenic cells over non-tumorigenic cells, and suppressed the growth of xenograft tumor without acute toxicity. Our results suggest that targeting Srx might be an effective therapeutic strategy for cancer treatment through redox-mediated cell death.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Gong-Rak Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Hojin Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - You-Jin Jo
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Seong-Eun Hong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Jiae Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Hye In Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Yeong-Su Jang
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 406-840, South Korea
| | - Seung-Hyun Oh
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 406-840, South Korea
| | - Hwa Jeong Lee
- College of Pharmacy, Ewha Womans University, Seoul 120-750, South Korea
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Woojin Jeong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea.
| |
Collapse
|
35
|
Pang X, Liu M. A combination therapy for KRAS-mutant lung cancer by targeting synthetic lethal partners of mutant KRAS. CHINESE JOURNAL OF CANCER 2016; 35:92. [PMID: 27793187 PMCID: PMC5086049 DOI: 10.1186/s40880-016-0154-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/15/2016] [Indexed: 11/10/2022]
Abstract
The KRAS gene is frequently mutated in multiple cancer types, but it fell off the drug discovery radar for many years because of its inherent "undruggable" structure and undefined biological properties. As reported in the paper entitled "Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK" in Nature Communications, we performed a synthetic lethal screening with a combinatorial strategy on a panel of clinical drugs; we found that combined inhibition of polo-like kinase 1 and RhoA/Rho kinase markedly suppressed tumor growth in mice. An increase in the expression of the tumor suppressor P21WAF1/CIP1 contributed to the synergistic mechanism of the combination therapy. These findings open a novel avenue for the treatment of KRAS-mutant lung cancer.
Collapse
Affiliation(s)
- Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
- Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, 2121W. Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
36
|
The Fra-1-miR-134-SDS22 feedback loop amplifies ERK/JNK signaling and reduces chemosensitivity in ovarian cancer cells. Cell Death Dis 2016; 7:e2384. [PMID: 27685628 PMCID: PMC5059884 DOI: 10.1038/cddis.2016.289] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/04/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
The Fra-1 transcription factor is frequently upregulated in multiple types of tumors. Here we found that Fra-1 promotes miR-134 expression. miR-134 activates JNK and ERK by targeting SDS22, which in turn induces Fra-1 expression and leads to miR-134 upregulation. In addition, miR-134 augmented H2AX S139 phosphorylation by activating JNK and promoted non-homologous end joining (NHEJ)-mediated DNA repair. Therefore, ectopic miR-134 expression reduced chemosensitivity in ovarian cancer cells. Furthermore, miR-134 promotes cell proliferation, migration and invasion of ovarian cancer cells, and enhances tumor growth in vivo. Of particular significance, both Fra-1 and miR-134 are upregulated in ovarian cancer tissues, and Fra-1 and miR-134 expression is positively correlated. High levels of miR-134 expression were associated with a reduced median survival of ovarian cancer patients. Our study revealed that a Fra-1-miR-134 axis drives a positive feedback loop that amplifies ERK/JNK signaling and reduces chemosensitivity in ovarian cancer cells.
Collapse
|
37
|
Rajanayake KK, Taylor WR, Isailovic D. The comparison of glycosphingolipids isolated from an epithelial ovarian cancer cell line and a nontumorigenic epithelial ovarian cell line using MALDI-MS and MALDI-MS/MS. Carbohydr Res 2016; 431:6-14. [DOI: 10.1016/j.carres.2016.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/26/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022]
|
38
|
Zhang S, Mercado-Uribe I, Sood A, Bast RC, Liu J. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells. Genes Cancer 2016; 7:60-72. [PMID: 27382431 PMCID: PMC4918945 DOI: 10.18632/genesandcancer.102] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Stromal cells are generally considered to be derived primarily from the host's normal mesenchymal stromal cells or bone marrow. However, the origins of stromal cells have been quite controversial. To determine the role of polyploidy in tumor development, we examined the fate of normal mullerian epithelial cells during the immortalization and transformation process by tracing the expression of SV40 large T antigen. Here we show that immortalized or HRAS-transformed mullerian epithelial cells contain a subpopulation of polyploid giant cells that grow as multicellular spheroids expressing hematopoietic markers in response to treatment with CoCl2. The immortalized or transformed epithelial cells can transdifferentiate into stromal cells when transplanted into nude mice. Immunofluorescent staining revealed expression of stem cell factors OCT4, Nanog, and SOX-2 in spheroid, whereas expression of embryonic stem cell marker SSEA1 was increased in HRAS-transformed cells compared with their immortalized isogenic counterparts. These results suggest that normal mullerian epithelial cells are intrinsically highly plastic, via the formation of polyploid giant cells and activation of embryonic stem-like program, which work together to promote the coevolution of neoplastic epithelial cells and multiple lineage stromal cells.
Collapse
Affiliation(s)
- Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China; Department of Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Imelda Mercado-Uribe
- Department of Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Anil Sood
- Department of Gynecologic Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA; Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA; Department of Center for RNA Interference and Non-Coding RNA, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert C Bast
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Jinsong Liu
- Department of Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA; Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
39
|
Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang W, Lu W, Liu J, Pang X, Liu M. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun 2016; 7:11363. [PMID: 27193833 PMCID: PMC4873974 DOI: 10.1038/ncomms11363] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/17/2016] [Indexed: 02/05/2023] Open
Abstract
No effective targeted therapies exist for cancers with somatic KRAS mutations. Here we develop a synthetic lethal chemical screen in isogenic KRAS-mutant and wild-type cells to identify clinical drug pairs. Our results show that dual inhibition of polo-like kinase 1 and RhoA/Rho kinase (ROCK) leads to the synergistic effects in KRAS-mutant cancers. Microarray analysis reveals that this combinatory inhibition significantly increases transcription and activity of cyclin-dependent kinase inhibitor p21(WAF1/CIP1), leading to specific G2/M phase blockade in KRAS-mutant cells. Overexpression of p21(WAF1/CIP1), either by cDNA transfection or clinical drugs, preferentially impairs the growth of KRAS-mutant cells, suggesting a druggable synthetic lethal interaction between KRAS and p21(WAF1/CIP1). Co-administration of BI-2536 and fasudil either in the LSL-KRAS(G12D) mouse model or in a patient tumour explant mouse model of KRAS-mutant lung cancer suppresses tumour growth and significantly prolongs mouse survival, suggesting a strong synergy in vivo and a potential avenue for therapeutic treatment of KRAS-mutant cancers.
Collapse
Affiliation(s)
- Jieqiong Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kewen Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiawei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Feixiong Cheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
- Bioinformatics and Systems Medicine Laboratory, Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Jing Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenhao Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
40
|
Zhang F, Cheong JK. The renewed battle against RAS-mutant cancers. Cell Mol Life Sci 2016; 73:1845-58. [PMID: 26892781 PMCID: PMC11108322 DOI: 10.1007/s00018-016-2155-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/13/2022]
Abstract
The RAS genes encode for members of a large superfamily of guanosine-5'-triphosphate (GTP)-binding proteins that control diverse intracellular signaling pathways to promote cell proliferation. Somatic mutations in the RAS oncogenes are the most common activating lesions found in human cancers. These mutations invariably result in the gain-of-function of RAS by impairing GTP hydrolysis and are frequently associated with poor responses to standard cancer therapies. In this review, we summarize key findings of past and present landmark studies that have deepened our understanding of the RAS biology in the context of oncogenesis. We also discuss how emerging areas of research could further bolster a renewed global effort to target the largely undruggable oncogenic RAS and/or its activated downstream effector signaling cascades to achieve better treatment outcomes for RAS-mutant cancer patients.
Collapse
Affiliation(s)
- Fuquan Zhang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jit Kong Cheong
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
41
|
Nuclear factor-κB–dependent microRNA-130a upregulation promotes cervical cancer cell growth by targeting phosphatase and tensin homolog. Arch Biochem Biophys 2016; 598:57-65. [DOI: 10.1016/j.abb.2016.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 12/13/2022]
|
42
|
Yang YJ, Baek JY, Goo J, Shin Y, Park JK, Jang JY, Wang SB, Jeong W, Lee HJ, Um HD, Lee SK, Choi Y, Rhee SG, Chang TS. Effective Killing of Cancer Cells Through ROS-Mediated Mechanisms by AMRI-59 Targeting Peroxiredoxin I. Antioxid Redox Signal 2016; 24:453-69. [PMID: 26528922 DOI: 10.1089/ars.2014.6187] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS The intrinsic increase of reactive oxygen species (ROS) production in cancer cells after malignant transformation frequently induces redox adaptation, leading to enhanced antioxidant capacity. Peroxiredoxin I (PrxI), an enzyme responsible for eliminating hydrogen peroxide, has been found to be elevated in many types of cancer cells. Since overexpression of PrxI promoted cancer cells' survival and resistance to chemotherapy and radiotherapy, PrxI has been proposed as a therapeutic target for anticancer drugs. In this study, we aimed to investigate the anticancer efficacy of a small molecule inhibitor of PrxI. RESULTS By a high-throughput screening approach, we identified AMRI-59 as a potent inhibitor of PrxI. AMRI-59 increased cellular ROS, leading to the activation of both mitochondria- and apoptosis signal-regulated kinase-1-mediated signaling pathways, resulting in apoptosis of A549 human lung adenocarcinoma. AMRI-59 caused no significant changes in ROS level, proliferation, and apoptosis of PrxI-knockdown A549 cells by RNA interference. PrxI overexpression or N-acetylcysteine pretreatment abrogated AMRI-59-induced cytotoxicity in A549 cells. AMRI-59 rendered tumorigenic ovarian cells more susceptible to ROS-mediated death compared with nontumorigenic cells. Moreover, significant antitumor activity of AMRI-59 was observed in mouse tumor xenograft model implanted with A549 cells with no apparent acute toxicity. INNOVATION This study offers preclinical proof-of-concept for AMRI-59, a lead small molecule inhibitor of PrxI, as an anticancer agent. CONCLUSIONS Our results highlight a promising strategy for cancer therapy that preferentially eradicates cancer cells by targeting the PrxI-mediated redox-dependent survival pathways.
Collapse
Affiliation(s)
- Yeon Ju Yang
- 1 Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul, Republic of Korea.,2 Brain Korea 21 PLUS Project for Medical Science, Yonsei University , Seoul, Republic of Korea
| | - Jin Young Baek
- 1 Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul, Republic of Korea
| | - Jail Goo
- 3 College of Life Sciences and Biotechnology, Korea University , Seoul, Republic of Korea
| | - Yoonho Shin
- 4 College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Jong Kuk Park
- 5 Laboratory of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences , Seoul, Republic of Korea
| | - Ji Yong Jang
- 1 Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul, Republic of Korea
| | - Su Bin Wang
- 1 Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul, Republic of Korea
| | - Woojin Jeong
- 6 Division of Life Sciences, Ewha Womans University , Seoul, Republic of Korea
| | - Hwa Jeong Lee
- 1 Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul, Republic of Korea.,7 College of Pharmacy, Ewha Womans University , Seoul, Republic of Korea
| | - Hong-Duck Um
- 5 Laboratory of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences , Seoul, Republic of Korea
| | - Sang Kook Lee
- 4 College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Yongseok Choi
- 3 College of Life Sciences and Biotechnology, Korea University , Seoul, Republic of Korea
| | - Sue Goo Rhee
- 8 Yonsei Biomedical Research Institute, Yonsei University College of Medicine , Seoul, Republic of Korea
| | - Tong-Shin Chang
- 1 Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul, Republic of Korea.,7 College of Pharmacy, Ewha Womans University , Seoul, Republic of Korea
| |
Collapse
|
43
|
Kim H, Lee GR, Kim J, Baek JY, Jo YJ, Hong SE, Kim SH, Lee J, Lee HI, Park SK, Kim HM, Lee HJ, Chang TS, Rhee SG, Lee JS, Jeong W. Sulfiredoxin inhibitor induces preferential death of cancer cells through reactive oxygen species-mediated mitochondrial damage. Free Radic Biol Med 2016; 91:264-74. [PMID: 26721593 DOI: 10.1016/j.freeradbiomed.2015.12.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/05/2015] [Accepted: 12/19/2015] [Indexed: 01/08/2023]
Abstract
Recent studies have shown that many types of cancer cells have increased levels of reactive oxygen species (ROS) and enhance antioxidant capacity as an adaptation to intrinsic oxidative stress, suggesting that cancer cells are more vulnerable to oxidative insults and are more dependent on antioxidant systems compared with normal cells. Thus, disruption of redox homeostasis caused by a decline in antioxidant capacity may provide a method for the selective death of cancer cells. Here we show that ROS-mediated selective death of tumor cells can be caused by inhibiting sulfiredoxin (Srx), which reduces hyperoxidized peroxiredoxins, leading to their reactivation. Srx inhibitor increased the accumulation of sulfinic peroxiredoxins and ROS, which led to oxidative mitochondrial damage and caspase activation, resulting in the death of A549 human lung adenocarcinoma cells. Srx depletion also inhibited the growth of A549 cells like Srx inhibition, and the cytotoxic effects of Srx inhibitor were considerably reversed by Srx overexpression or antioxidants such as N-acetyl cysteine and butylated hydroxyanisol. Moreover, Srx inhibitor rendered tumorigenic ovarian cells more susceptible to ROS-mediated death compared with nontumorigenic cells and significantly suppressed the growth of A549 xenografts without acute toxicity. Our results suggest that Srx might serve as a novel therapeutic target for cancer treatment based on ROS-mediated cell death.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Gong-Rak Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Jiwon Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Jin Young Baek
- College of Pharmacy, Ewha Womans University, Seoul 120-750, South Korea
| | - You-Jin Jo
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Seong-Eun Hong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Sung Hoon Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Jiae Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Hye In Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, Sejong 339-700, South Korea
| | - Hwan Mook Kim
- College of Pharmacy, Gachon University of Medicine and Science, Incheon 406-799, South Korea
| | - Hwa Jeong Lee
- College of Pharmacy, Ewha Womans University, Seoul 120-750, South Korea
| | - Tong-Shin Chang
- College of Pharmacy, Ewha Womans University, Seoul 120-750, South Korea
| | - Sue Goo Rhee
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Woojin Jeong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, South Korea.
| |
Collapse
|
44
|
MIR494 reduces renal cancer cell survival coinciding with increased lipid droplets and mitochondrial changes. BMC Cancer 2016; 16:33. [PMID: 26794413 PMCID: PMC4722626 DOI: 10.1186/s12885-016-2053-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/06/2016] [Indexed: 12/19/2022] Open
Abstract
Background miRNAs can regulate cellular survival in various cancer cell types. Recent evidence implicates the formation of lipid droplets as a hallmark event during apoptotic cell death response. It is presently unknown whether MIR494, located at 14q32 which is deleted in renal cancers, reduces cell survival in renal cancer cells and if this process is accompanied by changes in the number of lipid droplets. Methods 769-P renal carcinoma cells were utilized for this study. Control or MIR494 mimic was expressed in these cells following which cell viability (via crystal violet) and apoptotic cell numbers (via Annexin V/PI staining) were assessed. By western blotting, MIR494 cellular responses were validated using MIR494 antagomir and Argonaute 2 siRNA. Transmission electron microscopy (TEM) was performed in MIR494-transfected 769-P cells to identify ultrastructural changes. LipidTOX green neutral lipid staining and cholesterol measurements were conducted to assess accumulation of lipids droplets and total cholesterol levels, respectively, in MIR494 expressing 769-P cells. Indirect immunofluorescence and western analyses were also performed to examine changes in mitochondria organization. Co-transfection of MIR494 mimic with siRNA targeting LC3B and ATG7 was conducted to assess their contribution to formation of lipid droplets in MIR494-expressing cells. Results MIR494 expression reduces viability of 769-P renal cancer cells; this was accompanied by increased cleaved PARP (an apoptotic marker) and LC3B protein. Further, expression of MIR494 increased LC3B mRNA levels and LC3B promoter activity (2.01-fold; 50 % increase). Interestingly, expression of MIR494 markedly increased multilamellar bodies and lipid droplets (by TEM and validated by LipidTOX immunostaining) while reducing total cholesterol levels. Via immunocytochemistry, we observed increased LC3B-associated endogenous punctae upon MIR494 expression. In contrast to ATG7 siRNA, knockdown of LC3B reduced the numbers of lipid droplets in MIR494-expressing cells. Our results also identified that MIR494 expression altered the organization of mitochondria which was accompanied by co-localization with LC3B punctae, decreased PINK1 protein, and altered Drp1 intracellular distribution. Conclusion Collectively, our findings indicate that MIR494 reduces cell survival in 769-P renal cancer cells which is accompanied by increased lipid droplet formation (which occurs in a LC3B-dependent manner) and mitochondrial changes.
Collapse
|
45
|
Cai W, Mao F, Teng H, Cai T, Zhao F, Wu J, Sun ZS. MBRidge: an accurate and cost-effective method for profiling DNA methylome at single-base resolution. J Mol Cell Biol 2015; 7:299-313. [PMID: 26078362 DOI: 10.1093/jmcb/mjv037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/19/2015] [Indexed: 11/14/2022] Open
Abstract
Organisms and cells, in response to environmental influences or during development, undergo considerable changes in DNA methylation on a genome-wide scale, which are linked to a variety of biological processes. Using MethylC-seq to decipher DNA methylome at single-base resolution is prohibitively costly. In this study, we develop a novel approach, named MBRidge, to detect the methylation levels of repertoire CpGs, by innovatively introducing C-hydroxylmethylated adapters and bisulfate treatment into the MeDIP-seq protocol and employing ridge regression in data analysis. A systematic evaluation of DNA methylome in a human ovarian cell line T29 showed that MBRidge achieved high correlation (R > 0.90) with much less cost (∼10%) in comparison with MethylC-seq. We further applied MBRidge to profiling DNA methylome in T29H, an oncogenic counterpart of T29's. By comparing methylomes of T29H and T29, we identified 131790 differential methylation regions (DMRs), which are mainly enriched in carcinogenesis-related pathways. These are substantially different from 7567 DMRs that were obtained by RRBS and related with cell development or differentiation. The integrated analysis of DMRs in the promoter and expression of DMR-corresponding genes revealed that DNA methylation enforced reverse regulation of gene expression, depending on the distance from the proximal DMR to transcription starting sites in both mRNA and lncRNA. Taken together, our results demonstrate that MBRidge is an efficient and cost-effective method that can be widely applied to profiling DNA methylomes.
Collapse
Affiliation(s)
- Wanshi Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbiao Mao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Cai
- Experimental Medicine Section, NIDCR, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinyu Wu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
46
|
Wang G, Li X, Tian W, Wang Y, Wu D, Sun Z, Zhao E. Promoter DNA methylation is associated withKLF11expression in epithelial ovarian cancer. Genes Chromosomes Cancer 2015; 54:453-62. [PMID: 25931269 DOI: 10.1002/gcc.22257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/09/2015] [Indexed: 01/19/2023] Open
Affiliation(s)
- Guan Wang
- Department of Obstetrics and Gynecology; Tianjin Central Hospital of Obstetrics and Gynecology; Tianjin 300100 China
| | - Xianfeng Li
- State Key Laboratory of Medical Genetics; Central South University; Changsha Hunan 410078 China
| | - Weiping Tian
- Tianjin Research Center of Basic Medical Science; Tianjin Medical University; Tianjin 300070 China
| | - Yan Wang
- Institute of Psychology, Chinese Academy of Sciences; Beijing 100101 China
| | - Dandan Wu
- Department of Obstetrics and Gynecology; Tianjin Central Hospital of Obstetrics and Gynecology; Tianjin 300100 China
| | - Zhongsheng Sun
- Beijing Institute of Life Science, Chinese Academy of Science; Beijing 100101 China
| | - Enfeng Zhao
- Department of Obstetrics and Gynecology; Chinese PLA General Hospital; Beijing 100853 China
| |
Collapse
|
47
|
Hawkridge AM. The chicken model of spontaneous ovarian cancer. Proteomics Clin Appl 2015; 8:689-99. [PMID: 25130871 DOI: 10.1002/prca.201300135] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/24/2014] [Accepted: 08/07/2014] [Indexed: 12/24/2022]
Abstract
The chicken is a unique experimental model for studying the spontaneous onset and progression of ovarian cancer (OVC). The prevalence of OVC in chickens can range from 5 to 35% depending on age, genetic strain, reproductive history, and diet. Furthermore, the chicken presents epidemiological, morphological, and molecular traits that are similar to human OVC making it a relevant experimental model for translation research. Similarities to humans include associated increased risk of OVC with the number of ovulations, common histopathological subtypes including high-grade serous, and molecular-level markers or pathways such as CA-125 expression and p53 mutation frequency. Collectively, the similarities between chicken and human OVC combined with a tightly controlled genetic background and predictable onset window provides an outstanding experimental model for studying the early events and progression of spontaneous OVC tumors under controlled environmental conditions. This review will cover the existing literature on OVC in the chicken and highlight potential opportunities for further exploitation (e.g. biomarkers, prevention, treatment, and genomics).
Collapse
Affiliation(s)
- Adam M Hawkridge
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
48
|
YAP forms autocrine loops with the ERBB pathway to regulate ovarian cancer initiation and progression. Oncogene 2015; 34:6040-54. [PMID: 25798835 PMCID: PMC4580488 DOI: 10.1038/onc.2015.52] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
Mechanisms underlying ovarian cancer initiation and progression are unclear. Herein, we report that the Yes-associated protein (YAP), a major effector of the Hippo tumor suppressor pathway, interacts with ERBB signaling pathways to regulate the initiation and progression of ovarian cancer. Immunohistochemistry studies indicate that YAP expression is associated with poor clinical outcomes in patients. Overexpression or constitutive activation of YAP leads to transformation and tumorigenesis in human ovarian surface epithelial cells, and promotes growth of cancer cells in vivo and in vitro. YAP induces the expression of epidermal growth factor (EGF) receptors (EGFR, ERBB3) and production of EGF-like ligands (HBEGF, NRG1 and NRG2). HBEGF or NRG1, in turn, activates YAP and stimulates cancer cell growth. Knockdown of ERBB3 or HBEGF eliminates YAP effects on cell growth and transformation, whereas knockdown of YAP abrogates NRG1- and HBEGF-stimulated cell proliferation. Collectively, our study demonstrates the existence of HBEGF & NRGs/ERBBs/YAP/HBEGF & NRGs autocrine loop that controls ovarian cell tumorigenesis and cancer progression.
Collapse
|
49
|
Luo LY, Kim E, Cheung HW, Weir BA, Dunn GP, Shen RR, Hahn WC. The Tyrosine Kinase Adaptor Protein FRS2 Is Oncogenic and Amplified in High-Grade Serous Ovarian Cancer. Mol Cancer Res 2015; 13:502-9. [PMID: 25368431 PMCID: PMC4369154 DOI: 10.1158/1541-7786.mcr-14-0407] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
UNLABELLED High-grade serous ovarian cancers (HGSOC) are characterized by widespread recurrent regions of copy-number gain and loss. Here, we interrogated 50 genes that are recurrently amplified in HGSOC and essential for cancer proliferation and survival in ovarian cancer cell lines. FRS2 is one of the 50 genes located on chromosomal region 12q15 that is focally amplified in 12.5% of HGSOC. We found that FRS2-amplified cancer cell lines are dependent on FRS2 expression, and that FRS2 overexpression in immortalized human cell lines conferred the ability to grow in an anchorage-independent manner and as tumors in immunodeficient mice. FRS2, an adaptor protein in the FGFR pathway, induces downstream activation of the Ras-MAPK pathway. These observations identify FRS2 as an oncogene in a subset of HGSOC that harbor FRS2 amplifications. IMPLICATIONS These studies identify FRS2 as an amplified oncogene in a subset of HGSOC. FRS2 expression is essential to ovarian cancer cells that harbor 12q15 amplification.
Collapse
Affiliation(s)
- Leo Y Luo
- Health Sciences and Technology Program, Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eejung Kim
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hiu Wing Cheung
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Barbara A Weir
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gavin P Dunn
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Rhine R Shen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Astellas Pharma U.S. Inc., Santa Monica, California
| | - William C Hahn
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
50
|
Kodigepalli KM, Nanjundan M. Induction of PLSCR1 in a STING/IRF3-dependent manner upon vector transfection in ovarian epithelial cells. PLoS One 2015; 10:e0117464. [PMID: 25658875 PMCID: PMC4320088 DOI: 10.1371/journal.pone.0117464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/23/2014] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptors (TLRs) are the primary sensors of the innate immune system that recognize pathogenic nucleic acids including double-stranded plasmid DNA (dsDNA). TLR signaling activates multiple pathways including IRF3 which is involved in transcriptional induction of inflammatory cytokines (i.e. interferons (IFNs)). Phospholipid scramblase 1, PLSCR1, is a highly inducible IFN-regulated gene mediating anti-viral properties of IFNs. Herein, we report a novel finding that dsDNA transfection in T80 immortalized normal ovarian surface epithelial cell line leads to a marked increase in PLSCR1 mRNA and protein. We also noted a comparable response in primary mammary epithelial cells (HMECs). Similar to IFN-2α treated cells, de novo synthesized PLSCR1 was localized predominantly to the plasma membrane. dsDNA transfection, in T80 and HMEC cells, led to activation of MAPK and IRF3. Although inhibition of MAPK (using U0126) did not modulate PLSCR1 mRNA and protein, IRF3 knockdown (using siRNA) significantly ablated the PLSCR1 induction. In prior studies, the activation of IRF3 was shown to be mediated by cGAS-STING pathway. To investigate the contribution of STING to PLSCR1 induction, we utilized siRNA to reduce STING expression and observed that PLSCR1 protein was markedly reduced. In contrast to normal T80/HMECs, the phosphorylation of IRF3 as well as induction of STING and PLSCR1 were absent in ovarian cancer cells (serous, clear cell, and endometrioid) suggesting that the STING/IRF3 pathway may be dysregulated in these cancer cells. However, we also noted induction of different TLR and IFN mRNAs between the T80 and HEY (serous epithelial ovarian carcinoma) cell lines upon dsDNA transfection. Collectively, these results indicate that the STING/IRF3 pathway, activated following dsDNA transfection, contributes to upregulation of PLSCR1 in ovarian epithelial cells.
Collapse
Affiliation(s)
- Karthik M. Kodigepalli
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, 33620, United States of America
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, 33620, United States of America
- * E-mail:
| |
Collapse
|