1
|
Kim S, Thapa I, Ali H. A novel computational approach for the mining of signature pathways using species co-occurrence networks in gut microbiomes. BMC Microbiol 2024; 24:490. [PMID: 39574009 PMCID: PMC11580338 DOI: 10.1186/s12866-024-03633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/05/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Advances in metagenome sequencing data continue to enable new methods for analyzing biological systems. When handling microbial profile data, metagenome sequencing has proven to be far more comprehensive than traditional methods such as 16s rRNA data, which rely on partial sequences. Microbial community profiling can be used to obtain key biological insights that pave the way for more accurate understanding of complex systems that are critical for advancing biomedical research and healthcare. However, such attempts have mostly used partial or incomplete data to accurately capture those associations. METHODS This study introduces a novel computational approach for the identification of co-occurring microbial communities using the abundance and functional roles of species-level microbiome data. The proposed approach is then used to identify signature pathways associated with inflammatory bowel disease (IBD). Furthermore, we developed a computational pipeline to identify microbial species co-occurrences from metagenome data at various granularity levels. RESULTS When comparing the IBD group to a control group, we show that certain co-occurring communities of species are enriched for potential pathways. We also show that the identified co-occurring microbial species operate as a community to facilitate pathway enrichment. CONCLUSIONS The obtained findings suggest that the proposed network model, along with the computational pipeline, provide a valuable analytical tool to analyze complex biological systems and extract pathway signatures that can be used to diagnose certain health conditions.
Collapse
Affiliation(s)
- Suyeon Kim
- College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Ishwor Thapa
- College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Hesham Ali
- College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| |
Collapse
|
2
|
Marques AVL, Ruginsk BE, Prado LDO, de Lima DE, Daniel IW, Moure VR, Valdameri G. The association of ABC proteins with multidrug resistance in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1872:119878. [PMID: 39571941 DOI: 10.1016/j.bbamcr.2024.119878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Multidrug resistance (MDR) poses one of the primary challenges for cancer treatment, especially in cases of metastatic disease. Various mechanisms contribute to MDR, including the overexpression of ATP-binding cassette (ABC) proteins. In this context, we reviewed the literature to establish a correlation between the overexpression of ABC proteins and MDR in cancer, considering both in vitro and clinical studies. Initially, we presented an overview of the seven subfamilies of ABC proteins, along with the subcellular localization of each protein. Subsequently, we identified a panel of 20 ABC proteins (ABCA1-3, ABCA7, ABCB1-2, ABCB4-6, ABCC1-5, ABCC10-11, ABCE1, ABCF2, ABCG1, and ABCG2) associated with MDR. We also emphasize the significance of drug sequestration by certain ABC proteins into intracellular compartments. Among the anticancer drugs linked to MDR, 29 were definitively identified as substrates for at least one of the three most crucial ABC transporters: ABCB1, ABCC1, and ABCG2. We further discussed that the most commonly used drugs in standard regimens for mainly breast cancer, lung cancer, and acute lymphoblastic leukemia could be subject to MDR mediated by ABC transporters. Collectively, these insights will aid in conducting new studies aimed at a deeper understanding of the clinical MDR mediated by ABC proteins and in designing more effective pharmacological treatments to enhance the objective response rate in cancer patients.
Collapse
Affiliation(s)
- Andrezza Viviany Lourenço Marques
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Bruna Estelita Ruginsk
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Larissa de Oliveira Prado
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Diogo Eugênio de Lima
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Isabelle Watanabe Daniel
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| |
Collapse
|
3
|
Mu X, Zhou Y, Yu Y, Zhang M, Liu J. The roles of cancer stem cells and therapeutic implications in melanoma. Front Immunol 2024; 15:1486680. [PMID: 39611156 PMCID: PMC11602477 DOI: 10.3389/fimmu.2024.1486680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Melanoma is a highly malignant skin tumor characterized by high metastasis and poor prognosis. Recent studies have highlighted the pivotal role of melanoma stem cells (MSCs)-a subpopulation of cancer stem cells (CSCs)-in driving tumor growth, metastasis, therapeutic resistance, and recurrence. Similar to CSCs in other cancers, MSCs possess unique characteristics, including specific surface markers, dysregulated signaling pathways, and the ability to thrive within complex tumor microenvironment (TME). This review explored the current landscape of MSC research, discussing the identification of MSC-specific surface markers, the role of key signaling pathways such as Wnt/β-catenin, Notch, and Hedgehog (Hh), and how interactions within the TME, including hypoxia and immune cells, contribute to MSC-mediated drug resistance and metastatic behavior. Furthermore, we also investigated the latest therapeutic strategies targeting MSCs, such as small-molecule inhibitors, immune-based approaches, and novel vaccine developments, with an emphasis on their potential to overcome melanoma progression and improve clinical outcomes. This review aims to provide valuable insights into the complex roles of MSCs in melanoma biology and offers perspectives for future research and therapeutic advances against this challenging disease.
Collapse
Affiliation(s)
- Xiaoli Mu
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yixin Zhou
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongxin Yu
- The Department of Plastic and Reconstructive Surgery, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingyi Zhang
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiyan Liu
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Liu W, Cui Z, Wan Q, Liu Y, Chen M, Cheng Y, Sang X, Su Y, Gu S, Li C, Liu C, Chen S, Wang Z, Wang X. The BET inhibitor JQ1 suppresses tumor survival by ABCB5-mediated autophagy in uveal melanoma. Cell Signal 2024; 125:111483. [PMID: 39442901 DOI: 10.1016/j.cellsig.2024.111483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Uveal melanoma (UM), the most common adult ocular tumor, is aggressive and resistant to treatment, posing threat to patients' lives. The novel, effective therapies and the exploration of chemosensitizer for UM are imperative. The anticancer efficacy was evaluated with and without JQ1 treatment or ABCB5 gene silencing or overexpression. RNA sequencing identified downstream effectors in JQ1-treated cells. Integrated analysis of The Cancer Genome Atlas data (TCGA) and immunohistochemistry (IHC) revealed the oncogenic role of ABCB5. Functional analyses of JQ1 and defective ABCB5 were conducted using flow cytometry, transmission electron microscopy (TEM), IHC and western blot. The effects of JQ1 were validated in a heterotopic tumor model derived from OCM-1 cells. JQ1 inhibited cell proliferation, migration and invasion, induced cell cycle arrest and promoted apoptosis. JQ1 also suppressed the survival of UM in heterotopic tumor model. RNA sequencing indicated that JQ1 down-regulated the expressions of ABCB5 and autophagy-related genes, which was confirmed in vitro and in vivo by western blot. ABCB5, a marker associated with cancer stem cells and chemo-resistance, exhibited heightened expression in UM tissues, linked to immune infiltration. Notably, disrupting ABCB5 expression impeded UM cell proliferation and interfered with autophagy. Moreover, the overexpression of ABCB5 promoted cell proliferation, migration and invasion, and rescued autophagy related gene expression. Of note, JQ1 enhanced the sensitivity of OCM-1 cells to chemotherapy. Thus JQ1 inhibits UM survival via ABCB5-mediated autophagy and enhances chemo-sensitivity, suggesting potential for BET-based approaches in UM clinical management.
Collapse
Affiliation(s)
- Weiqin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Zedu Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Qi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China; West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Minghao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yaqi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yaru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Simin Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Chang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Shuxia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Pathology Department, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat- Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| |
Collapse
|
5
|
Escobar-Sierra C, Cañedo-Argüelles M, Vinyoles D, Lampert KP. Unraveling the molecular mechanisms of fish physiological response to freshwater salinization: A comparative multi-tissue transcriptomic study in a river polluted by potash mining. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124400. [PMID: 38906407 DOI: 10.1016/j.envpol.2024.124400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Freshwater salinization is an escalating global environmental issue that threatens freshwater biodiversity, including fish populations. This study aims to uncover the molecular basis of salinity physiological responses in a non-native minnow species (Phoxinus septimaniae x P. dragarum) exposed to saline effluents from potash mines in the Llobregat River, Barcelona, Spain. Employing high-throughput mRNA sequencing and differential gene expression analyses, brain, gills, and liver tissues collected from fish at two stations (upstream and downstream of saline effluent discharge) were examined. Salinization markedly influenced global gene expression profiles, with the brain exhibiting the most differentially expressed genes, emphasizing its unique sensitivity to salinity fluctuations. Pathway analyses revealed the expected enrichment of ion transport and osmoregulation pathways across all tissues. Furthermore, tissue-specific pathways associated with stress, reproduction, growth, immune responses, methylation, and neurological development were identified in the context of salinization. Rigorous validation of RNA-seq data through quantitative PCR (qPCR) underscored the robustness and consistency of our findings across platforms. This investigation unveils intricate molecular mechanisms steering salinity physiological response in non-native minnows confronting diverse environmental stressors. This comprehensive analysis sheds light on the underlying genetic and physiological mechanisms governing fish physiological response in salinity-stressed environments, offering essential knowledge for the conservation and management of freshwater ecosystems facing salinization.
Collapse
Affiliation(s)
- Camilo Escobar-Sierra
- Institute of Zoology, Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät, Zülpicher Str. 47b, Köln, NRW, 50674, Germany.
| | - Miguel Cañedo-Argüelles
- FEHM-Lab, Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Dolors Vinyoles
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Avda. Diagonal 643, Barcelona, 08028, Catalonia, Spain
| | - Kathrin P Lampert
- Institute of Zoology, Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät, Zülpicher Str. 47b, Köln, NRW, 50674, Germany
| |
Collapse
|
6
|
Gerard L, Gillet JP. The uniqueness of ABCB5 as a full transporter ABCB5FL and a half-transporter-like ABCB5β. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:29. [PMID: 39267923 PMCID: PMC11391348 DOI: 10.20517/cdr.2024.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024]
Abstract
The ABCB5 gene encodes several isoforms, including two transporters (i.e., ABCB5FL, ABCB5β) and several soluble proteins, such as ABCB5α which has been hypothesized to have a regulatory function. ABCB5FL is a full ABC transporter and is expressed in the testis and prostate, whereas ABCB5β is an atypical half-transporter with a ubiquitous expression pattern. ABCB5β has been shown to mark cancer stem cells in several cancer types. In addition, ABCB5β and ABCB5FL have been shown to play a role in tumorigenesis and multidrug resistance. However, ABCB5β shares its entire protein sequence with ABCB5FL, making them difficult to distinguish. It cannot be excluded that some biological effects described for one transporter may be mediated by the other isoform. Therefore, it is difficult to interpret the available data and some controversies remain regarding their function in cancer cells. In this review, we discuss the data collected on ABCB5 isoforms over the last 20 years and propose a common ground on which we can build further to unravel the pathophysiological roles of ABCB5 transporters.
Collapse
Affiliation(s)
- Louise Gerard
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur 5000, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur 5000, Belgium
| |
Collapse
|
7
|
Khosroshahi EM, Maghsoudloo M, Fahimi H, Mokhtari K, Entezari M, Peymani M, Hashemi M, Wan R. Determining expression changes of ANO7 and SLC38A4 membrane transporters in colorectal cancer. Heliyon 2024; 10:e34464. [PMID: 39114022 PMCID: PMC11305260 DOI: 10.1016/j.heliyon.2024.e34464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/21/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Membrane transporters are proteins responsible for facilitating the movement of molecules within biological membranes. They play a vital role in maintaining cellular homeostasis by regulating the transport of nutrients, ions, and other molecules into and out of cells. Our aim is to identify biomarkers in colorectal cancer using membrane transporter proteins. We utilized COAD TCGA data for this purpose. Subsequently, we conducted differential gene analysis and feature selection using membrane transporter proteins. Furthermore, we identified two potential genes, including ANO7 and SLC38A4. To validate the expression profiles of ANO7 and SLC38A4, key genes in this context, RT-qPCR was employed on colorectal cancer samples and adjacent normal tissues. Additionally, utilizing GEPIA2, Kaplan-Meier survival analysis, and cBioPortal, we assessed the status of these genes in various cancers, examining their methylation and mutation patterns. In conclusion, we suggest that ANO7 and SLC38A4 serve as prognostic biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
8
|
Chen YC, Gowda K, Amin S, Schell TD, Sharma AK, Robertson GP. Pharmacological agents targeting drug-tolerant persister cells in cancer. Pharmacol Res 2024; 203:107163. [PMID: 38569982 DOI: 10.1016/j.phrs.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Current cancer therapy can be effective, but the development of drug resistant disease is the usual outcome. These drugs can eliminate most of the tumor burden but often fail to eliminate the rare, "Drug Tolerant Persister" (DTP) cell subpopulations in residual tumors, which can be referred to as "Persister" cells. Therefore, novel therapeutic agents specifically targeting or preventing the development of drug-resistant tumors mediated by the remaining persister cells subpopulations are needed. Since approximately ninety percent of cancer-related deaths occur because of the eventual development of drug resistance, identifying, and dissecting the biology of the persister cells is essential for the creation of drugs to target them. While there remains uncertainty surrounding all the markers identifying DTP cells in the literature, this review summarizes the drugs and therapeutic approaches that are available to target the persister cell subpopulations expressing the cellular markers ATP-binding cassette sub-family B member 5 (ABCB5), CD133, CD271, Lysine-specific histone demethylase 5 (KDM5), and aldehyde dehydrogenase (ALDH). Persister cells expressing these markers were selected as the focus of this review because they have been found on cells surviving following drug treatments that promote recurrent drug resistant cancer and are associated with stem cell-like properties, including self-renewal, differentiation, and resistance to therapy. The limitations and obstacles facing the development of agents targeting these DTP cell subpopulations are detailed, with discussion of potential solutions and current research areas needing further exploration.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Krishne Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Todd D Schell
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Arun K Sharma
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, USA; The Pennsylvania State University Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
9
|
Shi Y, Reker D, Byrne JD, Kirtane AR, Hess K, Wang Z, Navamajiti N, Young CC, Fralish Z, Zhang Z, Lopes A, Soares V, Wainer J, von Erlach T, Miao L, Langer R, Traverso G. Screening oral drugs for their interactions with the intestinal transportome via porcine tissue explants and machine learning. Nat Biomed Eng 2024; 8:278-290. [PMID: 38378821 DOI: 10.1038/s41551-023-01128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 10/01/2023] [Indexed: 02/22/2024]
Abstract
In vitro systems that accurately model in vivo conditions in the gastrointestinal tract may aid the development of oral drugs with greater bioavailability. Here we show that the interaction profiles between drugs and intestinal drug transporters can be obtained by modulating transporter expression in intact porcine tissue explants via the ultrasound-mediated delivery of small interfering RNAs and that the interaction profiles can be classified via a random forest model trained on the drug-transporter relationships. For 24 drugs with well-characterized drug-transporter interactions, the model achieved 100% concordance. For 28 clinical drugs and 22 investigational drugs, the model identified 58 unknown drug-transporter interactions, 7 of which (out of 8 tested) corresponded to drug-pharmacokinetic measurements in mice. We also validated the model's predictions for interactions between doxycycline and four drugs (warfarin, tacrolimus, digoxin and levetiracetam) through an ex vivo perfusion assay and the analysis of pharmacologic data from patients. Screening drugs for their interactions with the intestinal transportome via tissue explants and machine learning may help to expedite drug development and the evaluation of drug safety.
Collapse
Affiliation(s)
- Yunhua Shi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Reker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - James D Byrne
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Ameya R Kirtane
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kaitlyn Hess
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhuyi Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Natsuda Navamajiti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Cameron C Young
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary Fralish
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Zilu Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aaron Lopes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vance Soares
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob Wainer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas von Erlach
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lei Miao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Sito H, Tan SC. Genetic polymorphisms as potential pharmacogenetic biomarkers for platinum-based chemotherapy in non-small cell lung cancer. Mol Biol Rep 2024; 51:102. [PMID: 38217759 DOI: 10.1007/s11033-023-08915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/08/2023] [Indexed: 01/15/2024]
Abstract
Platinum-based chemotherapy (PBC) is a widely used treatment for various solid tumors, including non-small cell lung cancer (NSCLC). However, its efficacy is often compromised by the emergence of drug resistance in patients. There is growing evidence that genetic variations may influence the susceptibility of NSCLC patients to develop resistance to PBC. Here, we provide a comprehensive overview of the mechanisms underlying platinum drug resistance and highlight the important role that genetic polymorphisms play in this process. This paper discussed the genetic variants that regulate DNA repair, cellular movement, drug transport, metabolic processing, and immune response, with a focus on their effects on response to PBC. The potential applications of these genetic polymorphisms as predictive indicators in clinical practice are explored, as are the challenges associated with their implementation.
Collapse
Affiliation(s)
- Hilary Sito
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Justo-Garrido M, López-Saavedra A, Alcaraz N, Cortés-González CC, Oñate-Ocaña LF, Caro-Sánchez CHS, Castro-Hernández C, Arriaga-Canon C, Díaz-Chávez J, Herrera LA. Association of SLC12A1 and GLUR4 Ion Transporters with Neoadjuvant Chemoresistance in Luminal Locally Advanced Breast Cancer. Int J Mol Sci 2023; 24:16104. [PMID: 38003293 PMCID: PMC10670992 DOI: 10.3390/ijms242216104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Chemoresistance to standard neoadjuvant treatment commonly occurs in locally advanced breast cancer, particularly in the luminal subtype, which is hormone receptor-positive and represents the most common subtype of breast cancer associated with the worst outcomes. Identifying the genes associated with chemoresistance is crucial for understanding the underlying mechanisms and discovering effective treatments. In this study, we aimed to identify genes linked to neoadjuvant chemotherapy resistance in 62 retrospectively included patients with luminal breast cancer. Whole RNA sequencing of 12 patient biopsies revealed 269 differentially expressed genes in chemoresistant patients. We further validated eight highly correlated genes associated with resistance. Among these, solute carrier family 12 member 1 (SLC12A1) and glutamate ionotropic AMPA type subunit 4 (GRIA4), both implicated in ion transport, showed the strongest association with chemoresistance. Notably, SLC12A1 expression was downregulated, while protein levels of glutamate receptor 4 (GLUR4), encoded by GRIA4, were elevated in patients with a worse prognosis. Our results suggest a potential link between SLC12A1 gene expression and GLUR4 protein levels with chemoresistance in luminal breast cancer. In particular, GLUR4 protein could serve as a potential target for drug intervention to overcome chemoresistance.
Collapse
Affiliation(s)
- Montserrat Justo-Garrido
- Cancer Research Unit, Institute of Biomedical Research, National Autonomous University of Mexico (UNAM)-National Institute of Cancerology, San Fernando Av #22, XVI Section, Mexico City 14080, Mexico; (M.J.-G.); (A.L.-S.); (C.C.C.-G.); (C.C.-H.); (C.A.-C.)
| | - Alejandro López-Saavedra
- Cancer Research Unit, Institute of Biomedical Research, National Autonomous University of Mexico (UNAM)-National Institute of Cancerology, San Fernando Av #22, XVI Section, Mexico City 14080, Mexico; (M.J.-G.); (A.L.-S.); (C.C.C.-G.); (C.C.-H.); (C.A.-C.)
| | - Nicolás Alcaraz
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark;
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Carlo C. Cortés-González
- Cancer Research Unit, Institute of Biomedical Research, National Autonomous University of Mexico (UNAM)-National Institute of Cancerology, San Fernando Av #22, XVI Section, Mexico City 14080, Mexico; (M.J.-G.); (A.L.-S.); (C.C.C.-G.); (C.C.-H.); (C.A.-C.)
| | - Luis F. Oñate-Ocaña
- Department of Gastroenterology, National Cancer Institute (INCan), Tlalpan, Mexico City 14080, Mexico;
| | | | - Clementina Castro-Hernández
- Cancer Research Unit, Institute of Biomedical Research, National Autonomous University of Mexico (UNAM)-National Institute of Cancerology, San Fernando Av #22, XVI Section, Mexico City 14080, Mexico; (M.J.-G.); (A.L.-S.); (C.C.C.-G.); (C.C.-H.); (C.A.-C.)
| | - Cristian Arriaga-Canon
- Cancer Research Unit, Institute of Biomedical Research, National Autonomous University of Mexico (UNAM)-National Institute of Cancerology, San Fernando Av #22, XVI Section, Mexico City 14080, Mexico; (M.J.-G.); (A.L.-S.); (C.C.C.-G.); (C.C.-H.); (C.A.-C.)
| | - José Díaz-Chávez
- Cancer Research Unit, Institute of Biomedical Research, National Autonomous University of Mexico (UNAM)-National Institute of Cancerology, San Fernando Av #22, XVI Section, Mexico City 14080, Mexico; (M.J.-G.); (A.L.-S.); (C.C.C.-G.); (C.C.-H.); (C.A.-C.)
| | - Luis A. Herrera
- Cancer Research Unit, Institute of Biomedical Research, National Autonomous University of Mexico (UNAM)-National Institute of Cancerology, San Fernando Av #22, XVI Section, Mexico City 14080, Mexico; (M.J.-G.); (A.L.-S.); (C.C.C.-G.); (C.C.-H.); (C.A.-C.)
- School of Medicine and Health Sciences-Tecnológico de Monterrey, Mexico City 14380, Mexico
| |
Collapse
|
12
|
Ruffinatti FA, Scarpellino G, Chinigò G, Visentin L, Munaron L. The Emerging Concept of Transportome: State of the Art. Physiology (Bethesda) 2023; 38:0. [PMID: 37668550 DOI: 10.1152/physiol.00010.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
The array of ion channels and transporters expressed in cell membranes, collectively referred to as the transportome, is a complex and multifunctional molecular machinery; in particular, at the plasma membrane level it finely tunes the exchange of biomolecules and ions, acting as a functionally adaptive interface that accounts for dynamic plasticity in the response to environmental fluctuations and stressors. The transportome is responsible for the definition of membrane potential and its variations, participates in the transduction of extracellular signals, and acts as a filter for most of the substances entering and leaving the cell, thus enabling the homeostasis of many cellular parameters. For all these reasons, physiologists have long been interested in the expression and functionality of ion channels and transporters, in both physiological and pathological settings and across the different domains of life. Today, thanks to the high-throughput technologies of the postgenomic era, the omics approach to the study of the transportome is becoming increasingly popular in different areas of biomedical research, allowing for a more comprehensive, integrated, and functional perspective of this complex cellular apparatus. This article represents a first effort for a systematic review of the scientific literature on this topic. Here we provide a brief overview of all those studies, both primary and meta-analyses, that looked at the transportome as a whole, regardless of the biological problem or the models they used. A subsequent section is devoted to the methodological aspect by reviewing the most important public databases annotating ion channels and transporters, along with the tools they provide to retrieve such information. Before conclusions, limitations and future perspectives are also discussed.
Collapse
Affiliation(s)
- Federico Alessandro Ruffinatti
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Scarpellino
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgia Chinigò
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luca Visentin
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luca Munaron
- Turin Cell Physiology Laboratory (TCP-Lab), Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Zhang W, Fan Y, Zhang J, Shi D, Yuan J, Ashrafizadeh M, Li W, Hu M, Abd El-Aty AM, Hacimuftuoglu A, Linnebacher M, Cheng Y, Li W, Fang S, Gong P, Zhang X. Cell membrane-camouflaged bufalin targets NOD2 and overcomes multidrug resistance in pancreatic cancer. Drug Resist Updat 2023; 71:101005. [PMID: 37647746 DOI: 10.1016/j.drup.2023.101005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
AIMS Multidrug resistance in pancreatic cancer poses a significant challenge in clinical treatment. Bufalin (BA), a compound found in secretions from the glands of toads, may help overcome this problem. However, severe cardiotoxicity thus far has hindered its clinical application. Hence, the present study aimed to develop a cell membrane-camouflaged and BA-loaded polylactic-co-glycolic acid nanoparticle (CBAP) and assess its potential to counter chemoresistance in pancreatic cancer. METHODS The toxicity of CBAP was evaluated by electrocardiogram, body weight, distress score, and nesting behavior of mice. In addition, the anticarcinoma activity and underlying mechanism were investigated both in vitro and in vivo. RESULTS CBAP significantly mitigated BA-mediated acute cardiotoxicity and enhanced the sensitivity of pancreatic cancer to several clinical drugs, such as gemcitabine, 5-fluorouracil, and FOLFIRINOX. Mechanistically, CBAP directly bound to nucleotide-binding and oligomerization domain containing protein 2 (NOD2) and inhibited the expression of nuclear factor kappa-light-chain-enhancer of activated B cells. This inhibits the expression of ATP-binding cassette transporters, which are responsible for chemoresistance in cancer cells. CONCLUSIONS Our findings indicate that CBAP directly inhibits NOD2. Combining CBAP with standard-of-care chemotherapeutics represents a safe and efficient strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China
| | - Yibao Fan
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jinze Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Dan Shi
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Jiahui Yuan
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Wei Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25070, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25070, Turkey
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock 18059, Germany
| | - Yongxian Cheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Weiguang Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China.
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Peng Gong
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
14
|
Anteghini M, Santos VAMD, Saccenti E. PortPred: Exploiting deep learning embeddings of amino acid sequences for the identification of transporter proteins and their substrates. J Cell Biochem 2023; 124:1803-1824. [PMID: 37877557 DOI: 10.1002/jcb.30490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
The physiology of every living cell is regulated at some level by transporter proteins which constitute a relevant portion of membrane-bound proteins and are involved in the movement of ions, small and macromolecules across bio-membranes. The importance of transporter proteins is unquestionable. The prediction and study of previously unknown transporters can lead to the discovery of new biological pathways, drugs and treatments. Here we present PortPred, a tool to accurately identify transporter proteins and their substrate starting from the protein amino acid sequence. PortPred successfully combines pre-trained deep learning-based protein embeddings and machine learning classification approaches and outperforms other state-of-the-art methods. In addition, we present a comparison of the most promising protein sequence embeddings (Unirep, SeqVec, ProteinBERT, ESM-1b) and their performances for this specific task.
Collapse
Affiliation(s)
- Marco Anteghini
- LifeGlimmer GmbH, Berlin, Germany
- Department of Systems and Synthetic Biology, Wageningen University & Research, Wageningen WE, The Netherlands
- Department of Visual and Data-Centric Computing, Zuse Institute Berlin, Berlin, Germany
| | - Vitor Ap Martins Dos Santos
- LifeGlimmer GmbH, Berlin, Germany
- Department of Bioprocess Engineering, Wageningen University & Research, Wageningen WE, The Netherlands
| | - Edoardo Saccenti
- Department of Systems and Synthetic Biology, Wageningen University & Research, Wageningen WE, The Netherlands
| |
Collapse
|
15
|
You S, Han X, Xu Y, Yao Q. Research progress on the role of cationic amino acid transporter (CAT) family members in malignant tumors and immune microenvironment. Amino Acids 2023; 55:1213-1222. [PMID: 37572157 DOI: 10.1007/s00726-023-03313-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Amino acids are essential for the survival of all living organisms and living cells. Amino acid transporters mediate the transport and absorption of amino acids, and the dysfunction of these proteins can induce human diseases. Cationic amino acid transporters (CAT family, SLC7A1-4, and SLC7A14) are considered to be a group of transmembrane transporters, of which SLC7A1-3 are essential for arginine transport in mammals. Numerous studies have shown that CAT family-mediated arginine transport is involved in signal crosstalk between malignant tumor cells and immune cells, especially T cells. The modulation of extracellular arginine concentration has entered a number of clinical trials and achieved certain therapeutic effects. Here, we review the role of CAT family on tumor cells and immune infiltrating cells in malignant tumors and explore the therapeutic strategies to interfere with extracellular arginine concentration, to elaborate its application prospects. CAT family members may be used as biomarkers for certain cancer entities and might be included in new ideas for immunotherapy of malignant tumors.
Collapse
Affiliation(s)
- Shijing You
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Xiahui Han
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Yuance Xu
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Qin Yao
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
| |
Collapse
|
16
|
Kagan AB, Garrison DA, Anders NM, Webster J, Baker SD, Yegnasubramanian S, Rudek MA. DNA methyltransferase inhibitor exposure-response: Challenges and opportunities. Clin Transl Sci 2023; 16:1309-1322. [PMID: 37345219 PMCID: PMC10432879 DOI: 10.1111/cts.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Although DNA methyltransferase inhibitors (DNMTis), such as azacitidine and decitabine, are used extensively in the treatment of myelodysplastic syndromes and acute myeloid leukemia, there remain unanswered questions about DNMTi's mechanism of action and predictors of clinical response. Because patients often remain on single-agent DNMTis or DNMTi-containing regimens for several months before knowing whether clinical benefit can be achieved, the development and clinical validation of response-predictive biomarkers represents an important unmet need in oncology. In this review, we will summarize the clinical studies that led to the approval of azacitidine and decitabine, as well as the real-world experience with these drugs. We will then focus on biomarker development for DNMTis-specifically, efforts at determining exposure-response relationships and challenges that remain impacting the broader clinical translation of these methods. We will highlight recent progress in liquid-chromatography tandem mass spectrometry technology that has allowed for the simultaneous measurement of decitabine genomic incorporation and global DNA methylation, which has significant potential as a mechanism-of-action based biomarker in patients on DNMTis. Last, we will cover important research questions that need to be addressed in order to optimize this potential biomarker for clinical use.
Collapse
Affiliation(s)
- Amanda B. Kagan
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dominique A. Garrison
- Department of Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Nicole M. Anders
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Jonathan A. Webster
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Michelle A. Rudek
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
17
|
Sadee W, Wang D, Hartmann K, Toland AE. Pharmacogenomics: Driving Personalized Medicine. Pharmacol Rev 2023; 75:789-814. [PMID: 36927888 PMCID: PMC10289244 DOI: 10.1124/pharmrev.122.000810] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Personalized medicine tailors therapies, disease prevention, and health maintenance to the individual, with pharmacogenomics serving as a key tool to improve outcomes and prevent adverse effects. Advances in genomics have transformed pharmacogenetics, traditionally focused on single gene-drug pairs, into pharmacogenomics, encompassing all "-omics" fields (e.g., proteomics, transcriptomics, metabolomics, and metagenomics). This review summarizes basic genomics principles relevant to translation into therapies, assessing pharmacogenomics' central role in converging diverse elements of personalized medicine. We discuss genetic variations in pharmacogenes (drug-metabolizing enzymes, drug transporters, and receptors), their clinical relevance as biomarkers, and the legacy of decades of research in pharmacogenetics. All types of therapies, including proteins, nucleic acids, viruses, cells, genes, and irradiation, can benefit from genomics, expanding the role of pharmacogenomics across medicine. Food and Drug Administration approvals of personalized therapeutics involving biomarkers increase rapidly, demonstrating the growing impact of pharmacogenomics. A beacon for all therapeutic approaches, molecularly targeted cancer therapies highlight trends in drug discovery and clinical applications. To account for human complexity, multicomponent biomarker panels encompassing genetic, personal, and environmental factors can guide diagnosis and therapies, increasingly involving artificial intelligence to cope with extreme data complexities. However, clinical application encounters substantial hurdles, such as unknown validity across ethnic groups, underlying bias in health care, and real-world validation. This review address the underlying science and technologies germane to pharmacogenomics and personalized medicine, integrated with economic, ethical, and regulatory issues, providing insights into the current status and future direction of health care. SIGNIFICANCE STATEMENT: Personalized medicine aims to optimize health care for the individual patients with use of predictive biomarkers to improve outcomes and prevent adverse effects. Pharmacogenomics drives biomarker discovery and guides the development of targeted therapeutics. This review addresses basic principles and current trends in pharmacogenomics, with large-scale data repositories accelerating medical advances. The impact of pharmacogenomics is discussed, along with hurdles impeding broad clinical implementation, in the context of clinical care, ethics, economics, and regulatory affairs.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Danxin Wang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Katherine Hartmann
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| |
Collapse
|
18
|
Montalbo RCK, Tu HL. Micropatterning of functional lipid bilayer assays for quantitative bioanalysis. BIOMICROFLUIDICS 2023; 17:031302. [PMID: 37179590 PMCID: PMC10171888 DOI: 10.1063/5.0145997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Interactions of the cell with its environment are mediated by the cell membrane and membrane-localized molecules. Supported lipid bilayers have enabled the recapitulation of the basic properties of cell membranes and have been broadly used to further our understanding of cellular behavior. Coupled with micropatterning techniques, lipid bilayer platforms have allowed for high throughput assays capable of performing quantitative analysis at a high spatiotemporal resolution. Here, an overview of the current methods of the lipid membrane patterning is presented. The fabrication and pattern characteristics are briefly described to present an idea of the quality and notable features of the methods, their utilizations for quantitative bioanalysis, as well as to highlight possible directions for the advanced micropatterning lipid membrane assays.
Collapse
|
19
|
Solute Carrier Family 29A1 Mediates In Vitro Resistance to Azacitidine in Acute Myeloid Leukemia Cell Lines. Int J Mol Sci 2023; 24:ijms24043553. [PMID: 36834962 PMCID: PMC9965596 DOI: 10.3390/ijms24043553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Azacitidine (AZA) is commonly used hypomethylating agent for higher risk myelodysplastic syndromes and acute myeloid leukemia (AML). Although some patients achieve remission, eventually most patients fail AZA therapy. Comprehensive analysis of intracellular uptake and retention (IUR) of carbon-labeled AZA (14C-AZA), gene expression, transporter pump activity with or without inhibitors, and cytotoxicity in naïve and resistant cell lines provided insight into the mechanism of AZA resistance. AML cell lines were exposed to increasing concentrations of AZA to create resistant clones. 14C-AZA IUR was significantly lower in MOLM-13- (1.65 ± 0.08 ng vs. 5.79 ± 0.18 ng; p < 0.0001) and SKM-1- (1.10 ± 0.08 vs. 5.08 ± 0.26 ng; p < 0.0001) resistant cells compared to respective parental cells. Importantly, 14C-AZA IUR progressively reduced with downregulation of SLC29A1 expression in MOLM-13- and SKM-1-resistant cells. Furthermore, nitrobenzyl mercaptopurine riboside, an SLC29A inhibitor, reduced 14C-AZA IUR in MOLM-13 (5.79 ± 0.18 vs. 2.07 ± 0.23, p < 0.0001) and SKM-1-naive cells (5.08 ± 2.59 vs. 1.39 ± 0.19, p = 0.0002) and reduced efficacy of AZA. As the expression of cellular efflux pumps such as ABCB1 and ABCG2 did not change in AZA-resistant cells, they are unlikely contribute to AZA resistance. Therefore, the current study provides a causal link between in vitro AZA resistance and downregulation of cellular influx transporter SLC29A1.
Collapse
|
20
|
Zhou C, Lu P. De novo
design of membrane transport proteins. Proteins 2022; 90:1800-1806. [DOI: 10.1002/prot.26336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Chen Zhou
- Westlake Laboratory of Life Sciences and Biomedicine Hangzhou Zhejiang China
- Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences, Westlake University Hangzhou Zhejiang China
- Institute of Biology Westlake Institute for Advanced Study Hangzhou Zhejiang China
| | - Peilong Lu
- Westlake Laboratory of Life Sciences and Biomedicine Hangzhou Zhejiang China
- Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences, Westlake University Hangzhou Zhejiang China
- Institute of Biology Westlake Institute for Advanced Study Hangzhou Zhejiang China
| |
Collapse
|
21
|
Zhao J, Li M, Xu J, Cheng W. The modulation of ion channels in cancer chemo-resistance. Front Oncol 2022; 12:945896. [PMID: 36033489 PMCID: PMC9399684 DOI: 10.3389/fonc.2022.945896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Ion channels modulate the flow of ions into and out of a cell or intracellular organelle, leading to generation of electrical or chemical signals and regulating ion homeostasis. The abundance of ion channels in the plasma and intracellular membranes are subject to physiological and pathological regulations. Abnormal and dysregulated expressions of many ion channels are found to be linked to cancer and cancer chemo-resistance. Here, we will summarize ion channels distribution in multiple tumors. And the involvement of ion channels in cancer chemo-resistance will be highlighted.
Collapse
|
22
|
Saeed MEM, Boulos JC, Machel K, Andabili N, Marouni T, Roth W, Efferth T. Expression of the Stem Cell Marker ABCB5 in Normal and Tumor Tissues. In Vivo 2022; 36:1651-1666. [PMID: 35738589 DOI: 10.21873/invivo.12877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIM The ATP-binding cassette subfamily B member 5 (ABCB5) transporter plays a pivotal role in melanocyte progenitor cell fusion and has been identified as a tumor-initiating cell marker. In this study, we determined ABCB5 expression in normal tissues among various species, i.e., Homo sapiens, Mus musculus (mouse), Rattus norvegicus (rat), Sus scrofa domesticus (pig), Gallus gallus (chicken), Anser anser (goose), Poecilia reticulata (Guppy fish), and Lumbricus terrestris (earthworm), as well as 426 biopsies of different human tumor types (colorectal, cervical, endometrium, vaginal, nasopharyngeal, kidney, breast, colon, prostate, pancreas, lung, gallbladder, bladder, brain, liver, skin, small intestine, testis, tonsil, uterus, thyroid, stomach, esophagus, fallopian, parotid, and ovary). MATERIALS AND METHODS Using immunohistochemical staining, ABCB5 expression was detected and evaluated in formalin-fixed, paraffin-embedded sections. RESULTS High ABCB5 expression was found in normal tissues in specialized cells with secretory and excretory functions, chorionic villi of the placenta, hepatocytes, and blood-tissue barrier sites in the brain and testis. Besides, heterogeneous expression of ABCB5 was also observed in many different tumor types derived from breast, endometrium, ovary, uterus, cervix, prostate, lung, brain, colon, liver, nasopharynx, and others. CONCLUSION The localization of ABCB5 in different normal tissues suggests that this protein has an excretory pumping role for physiological metabolites and xenobiotics. This physiological role highlighted its possible impact on the development of multidrug resistance in tumors. Further studies are required to establish the possible clinical significance of ABCB5 as a predictive marker for drug resistance and as a prognostic marker for patient survival.
Collapse
Affiliation(s)
- Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Kevin Machel
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Nasim Andabili
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Thamail Marouni
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany;
| |
Collapse
|
23
|
Djamgoz MBA. Ion Transporting Proteins and Cancer: Progress and Perspectives. Rev Physiol Biochem Pharmacol 2022; 183:251-277. [PMID: 35018530 DOI: 10.1007/112_2021_66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ion transporting proteins (ITPs) comprise a wide range of ion channels, exchangers, pumps and ionotropic receptors many of which are expressed in tumours and contribute dynamically to the different components and stages of the complex cancer process, from initiation to metastasis. In this promising major field of biomedical research, several candidate ITPs have emerged as clinically viable. Here, we consider a series of general issues concerning the oncological potential of ITPs focusing on voltage-gated sodium channels as a 'case study'. First, we outline some key properties of 'cancer' as a whole. These include epigenetics, stemness, metastasis, heterogeneity, neuronal characteristics and bioelectricity. Cancer specificity of ITP expression is evaluated in relation to tissue restriction, splice variance, functional specificity and macro-molecular complexing. As regards clinical potential, diagnostics is covered with emphasis on enabling early detection. For therapeutics, we deal with molecular approaches, drug repurposing and combinations. Importantly, we emphasise the need for carefully designed clinical trials. We highlight also the area of 'social responsibility' and the need to involve the public (cancer patients and healthy individuals) in the work of cancer research professionals as well as clinicians. In advising patients how best to manage cancer, and live with it, we offer the following four principles: Awareness and prevention, early detection, specialist, integrated care, and psychological support. Finally, we highlight four key prerequisites for commercialisation of ITP-based technologies against cancer. We conclude that ITPs offer significant potential as regards both understanding the intricacies of the complex process of cancer and for developing much needed novel therapies.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK. .,Biotechnology Research Centre, Cyprus International University, Nicosia, Mersin, Turkey.
| |
Collapse
|
24
|
Chen L, Tian B, Liu W, Liang H, You Y, Liu W. Molecular Biomarker of Drug Resistance Developed From Patient-Derived Organoids Predicts Survival of Colorectal Cancer Patients. Front Oncol 2022; 12:855674. [PMID: 35425715 PMCID: PMC9004628 DOI: 10.3389/fonc.2022.855674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/10/2022] [Indexed: 12/24/2022] Open
Abstract
The drug 5-fluorouracil (5-Fu) is the critical composition of colorectal cancer (CRC) treatments. Prognostic and predictive molecular biomarkers for CRC patients (CRCpts) treated with 5-Fu-based chemotherapy can provide assistance for tailoring treatment approach. Here, we established a molecular biomarker of 5-Fu resistance derived from colorectal cancer organoids (CRCOs) for predicting the survival of CRCpts. Forty-one CRCO cultures were generated from 50 CRC tumor tissues after surgery (82%). The following experiments revealed a great diversity in drug sensitivity for 10 μM 5-Fu treatment tested by using organoid size change. Fourteen cases (34.1%) were 5-Fu sensitive and the other 27 (65.9%) were resistant. Then, differentially expressed genes (DEGs) associated with 5-Fu resistance were outputted by transcriptome sequencing. In particular, DEGs were generated in two comparison groups: 1) 5-Fu sensitive and resistant untreated CRCOs; 2) CRCOs before 5-Fu treatment and surviving CRCOs after 5-Fu treatment. Some molecules and most of the pathways that have been reported to be involved in 5-Fu resistance were identified in the current research. By using DEGs correlated with 5-Fu resistance and survival of CRCpts, the gene signature and drug-resistant score model (DRSM) containing five molecules were established in The Cancer Genome Atlas (TCGA)-CRC cohort by least absolute shrinkage and selection operator (LASSO) regression analysis and 5-fold cross-validation. Multivariate analysis revealed that drug-resistant score (DRS) was an independent prognostic factor for overall survival (OS) in CRCpts in TCGA-CRC cohort (P < 0.001). Further validation results from four Gene Expression Omnibus (GEO) cohorts elucidated that the DRSM based on five genes related to 5-Fu chemosensitivity and developed from patient-derived organoids can predict survival of CRCpts. Meanwhile, our model could predict the survival of CRCpts in different subgroups. Besides, the difference of molecular pathways, tumor mutational burden (TMB), immune response-related pathways, immune score, stromal score, and immune cell proportion were dissected between DRS-high and DRS-low patients in TCGA-CRC cohort.
Collapse
Affiliation(s)
- Lifeng Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Tian
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen Liu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haitao Liang
- Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen, China
| | - Yong You
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Capdeville C, Russo L, Penton D, Migliavacca J, Zecevic M, Gries A, Neuhauss SC, Grotzer MA, Baumgartner M. Spatial proteomics finds CD155 and Endophilin-A1 as mediators of growth and invasion in medulloblastoma. Life Sci Alliance 2022; 5:5/6/e202201380. [PMID: 35296518 PMCID: PMC8926928 DOI: 10.26508/lsa.202201380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
The composition of the plasma membrane (PM)-associated proteome of tumor cells determines cell-cell and cell-matrix interactions and the response to environmental cues. Whether the PM-associated proteome impacts the phenotype of Medulloblastoma (MB) tumor cells and how it adapts in response to growth factor cues is poorly understood. Using a spatial proteomics approach, we observed that hepatocyte growth factor (HGF)-induced activation of the receptor tyrosine kinase c-MET in MB cells changes the abundance of transmembrane and membrane-associated proteins. The depletion of MAP4K4, a pro-migratory effector kinase downstream of c-MET, leads to a specific decrease of the adhesion and immunomodulatory receptor CD155 and of components of the fast-endophilin-mediated endocytosis (FEME) machinery in the PM-associated proteome of HGF-activated MB cells. The decreased surface expression of CD155 or of the fast-endophilin-mediated endocytosis effector endophilin-A1 reduces growth and invasiveness of MB tumor cells in the tissue context. These data thus describe a novel function of MAP4K4 in the control of the PM-associated proteome of tumor cells and identified two downstream effector mechanisms controlling proliferation and invasiveness of MB cells.
Collapse
Affiliation(s)
- Charles Capdeville
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Linda Russo
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - David Penton
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Jessica Migliavacca
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Milica Zecevic
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Alexandre Gries
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Stephan Cf Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Michael A Grotzer
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Lab, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
26
|
Šimoničová K, Janotka Ľ, Kavcová H, Sulová Z, Breier A, Messingerova L. Different mechanisms of drug resistance to hypomethylating agents in the treatment of myelodysplastic syndromes and acute myeloid leukemia. Drug Resist Updat 2022; 61:100805. [DOI: 10.1016/j.drup.2022.100805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/11/2022]
|
27
|
Role of Transportome in the Gills of Chinese Mitten Crabs in Response to Salinity Change: A Meta-Analysis of RNA-Seq Datasets. BIOLOGY 2021; 10:biology10010039. [PMID: 33430106 PMCID: PMC7827906 DOI: 10.3390/biology10010039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Chinese mitten crab (CMC) or Eriocheir sinensis is a strong osmoregulator that can keep rigorous cellular homeostasis. CMC can flourish in freshwater, as well as seawater, habitats and represents the most important species for freshwater aquaculture. Salt stress can have direct effects on several stages (e.g., reproduction, molting, growth, etc.) of the CMC life cycle. To get a better overview of the genes involved in the gills of CMC under different salinity conditions, we conducted an RNA-Seq meta-analysis on the transcriptomes of four publicly available datasets. The meta-analysis identified 405 differentially expressed transcripts (DETs), of which 40% were classified into various transporter classes, including accessory factors and primary active transporters as the major transport classes. A network analysis of the DETs revealed that adaptation to salinity is a highly regulated mechanism in which different functional modules play essential roles. To the best of our knowledge, this study is the first to conduct a transcriptome meta-analysis of gills from crab RNA-Seq datasets under salinity. Additionally, this study is also the first to focus on the differential expression of diverse transporters and channels (transportome) in CMC. Our meta-analysis opens new avenues for a better understanding of the osmoregulation mechanism and the selection of potential transporters associated with salinity change.
Collapse
|
28
|
Van Campenhout R, Muyldermans S, Vinken M, Devoogdt N, De Groof TW. Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor. Biomolecules 2021; 11:63. [PMID: 33418902 PMCID: PMC7825061 DOI: 10.3390/biom11010063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
Cell plasma membrane proteins are considered as gatekeepers of the cell and play a major role in regulating various processes. Transport proteins constitute a subclass of cell plasma membrane proteins enabling the exchange of molecules and ions between the extracellular environment and the cytosol. A plethora of human pathologies are associated with the altered expression or dysfunction of cell plasma membrane transport proteins, making them interesting therapeutic drug targets. However, the search for therapeutics is challenging, since many drug candidates targeting cell plasma membrane proteins fail in (pre)clinical testing due to inadequate selectivity, specificity, potency or stability. These latter characteristics are met by nanobodies, which potentially renders them eligible therapeutics targeting cell plasma membrane proteins. Therefore, a therapeutic nanobody-based strategy seems a valid approach to target and modulate the activity of cell plasma membrane transport proteins. This review paper focuses on methodologies to generate cell plasma membrane transport protein-targeting nanobodies, and the advantages and pitfalls while generating these small antibody-derivatives, and discusses several therapeutic nanobodies directed towards transmembrane proteins, including channels and pores, adenosine triphosphate-powered pumps and porters.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| | - Timo W.M. De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| |
Collapse
|
29
|
Weng CH, Wu CS, Wu JC, Kung ML, Wu MH, Tai MH. Cisplatin-Induced Giant Cells Formation Is Involved in Chemoresistance of Melanoma Cells. Int J Mol Sci 2020; 21:ijms21217892. [PMID: 33114317 PMCID: PMC7660656 DOI: 10.3390/ijms21217892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/03/2023] Open
Abstract
Melanoma is notoriously resistant to current cancer therapy. However, the chemoresistance mechanism of melanoma remains unclear. The present study unveiled that chemotherapy drug cisplatin induced the formation of giant cells, which exhibited enlargement in cell diameter and nucleus in mice and human melanoma cells. Giant cells were positive with melanoma maker S100 and cancer stem cell markers including ABCB5 and CD133 in vitro and in vivo. Moreover, giant cells retained the mitotic ability with expression of proliferation marker Ki-67 and exhibited multiple drug resistance to doxorubicin and actinomycin D. The mitochondria genesis/activities and cellular ATP level were significantly elevated in giant cells, implicating the demand for energy supply. Application of metabolic blockers such as sodium azide or 2-deoxy glucose abolished the cisplatin-induced giant cells formation and expression of cancer stemness markers. The present study unveils a novel chemoresistance mechanism of melanoma cells via size alteration and the anti-neoplastic strategy by targeting giant cells.
Collapse
Affiliation(s)
- Chien-Hui Weng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan;
| | - Chieh-Shan Wu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Department of Dermatology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jian-Ching Wu
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
| | - Ming-Hsiu Wu
- Department of Nutrition and Health Science, Fooyin University, Kaohsiung 83102, Taiwan
- Correspondence: (M.-H.W.); (M.-H.T.)
| | - Ming-Hong Tai
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan;
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Correspondence: (M.-H.W.); (M.-H.T.)
| |
Collapse
|
30
|
Leung ICY, Chong CCN, Cheung TT, Yeung PC, Ng KKC, Lai PBS, Chan SL, Chan AWH, Tang PMK, Cheung ST. Genetic variation in ABCB5 associates with risk of hepatocellular carcinoma. J Cell Mol Med 2020; 24:10705-10713. [PMID: 32783366 PMCID: PMC7521249 DOI: 10.1111/jcmm.15691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 01/05/2023] Open
Abstract
Expression of ATP‐binding cassette B5 (ABCB5) has been demonstrated to confer chemoresistance, enhance cancer stem cell properties and associate with poor prognosis in hepatocellular carcinoma (HCC). The aim of this study was to evaluate the genetic variations of ABCB5 in HCC patients with reference to healthy individuals and the clinicopathological significance. A pilot study has examined 20 out of 300 pairs HCC and paralleled blood samples using conventional sequencing method to cover all exons and exon/intron regions to investigate whether there will be novel variant sequence and mutation event. A total of 300 HCC and 300 healthy blood DNA samples were then examined by Sequenom MassARRAY genotyping and pyrosequencing for 38 SNP and 1 INDEL in ABCB5. Five novel SNPs were identified in ABCB5. Comparison of DNA from blood samples of HCC and healthy demonstrated that ABCB5 SNPs rs75494098, rs4721940 and rs10254317 were associated with HCC risk. Specific ABCB5 variants were associated with aggressive HCC features. SNP rs17143212 was significantly associated with ABCB5 expression level. Nonetheless, the paralleled blood and tumour DNA sequences from HCC patients indicated that ABCB5 mutation in tumours was not common and corroborated the TCGA data sets. In conclusion, ABCB5 genetic variants had significant association with HCC risk and aggressive tumour properties.
Collapse
Affiliation(s)
- Idy C-Y Leung
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | - Charing C-N Chong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Tan T Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | - Philip C Yeung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Kelvin K-C Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Paul B-S Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Stephen L Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Anthony W-H Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Patrick M-K Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Siu T Cheung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
31
|
Almasi S, El Hiani Y. Exploring the Therapeutic Potential of Membrane Transport Proteins: Focus on Cancer and Chemoresistance. Cancers (Basel) 2020; 12:cancers12061624. [PMID: 32575381 PMCID: PMC7353007 DOI: 10.3390/cancers12061624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Improving the therapeutic efficacy of conventional anticancer drugs represents the best hope for cancer treatment. However, the shortage of druggable targets and the increasing development of anticancer drug resistance remain significant problems. Recently, membrane transport proteins have emerged as novel therapeutic targets for cancer treatment. These proteins are essential for a plethora of cell functions ranging from cell homeostasis to clinical drug toxicity. Furthermore, their association with carcinogenesis and chemoresistance has opened new vistas for pharmacology-based cancer research. This review provides a comprehensive update of our current knowledge on the functional expression profile of membrane transport proteins in cancer and chemoresistant tumours that may form the basis for new cancer treatment strategies.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON KIH 8M5, Canada;
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
32
|
Visuomotor deficiency in panx1a knockout zebrafish is linked to dopaminergic signaling. Sci Rep 2020; 10:9538. [PMID: 32533080 PMCID: PMC7293225 DOI: 10.1038/s41598-020-66378-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Pannexin 1 (Panx1) forms ATP-permeable membrane channels that play roles in the nervous system. The analysis of roles in both standard and pathological conditions benefits from a model organism with rapid development and early onset of behaviors. Such a model was developed by ablating the zebrafish panx1a gene using TALEN technology. Here, RNA-seq analysis of 6 days post fertilization larvae were confirmed by Real-Time PCR and paired with testing visual-motor behavior and in vivo electrophysiology. Results demonstrated that loss of panx1a specifically affected the expression of gene classes representing the development of the visual system and visual processing. Abnormal swimming behavior in the dark and the expression regulation of pre-and postsynaptic biomarkers suggested changes in dopaminergic signaling. Indeed, altered visuomotor behavior in the absence of functional Panx1a was evoked through D1/D2-like receptor agonist treatment and rescued with the D2-like receptor antagonist Haloperidol. Local field potentials recorded from superficial areas of the optic tectum receiving input from the retina confirmed abnormal responses to visual stimuli, which resembled treatments with a dopamine receptor agonist or pharmacological blocking of Panx1a. We conclude that Panx1a functions are relevant at a time point when neuronal networks supporting visual-motor functions undergo modifications preparing for complex behaviors of freely swimming fish.
Collapse
|
33
|
The Novel Phospholipid Mimetic KPC34 Is Highly Active Against Acute Myeloid Leukemia with Activated Protein Kinase C. Transl Oncol 2020; 13:100780. [PMID: 32428837 PMCID: PMC7232109 DOI: 10.1016/j.tranon.2020.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 12/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy with poor outcomes. Nucleoside analogs are subject to resistance mechanisms including downregulation of equilibrative nucleoside transporter (ENT1) and deoxycytidine kinase (dCK). KPC34 is a novel phospholipid mimetic that when cleaved by phospholipase C (PLC) liberates gemcitabine monophosphate and a diacylglycerol mimetic that inhibits the classical isoforms of protein kinase C (PKC). KPC34 acts independently of ENT1 and dCK. KPC34 was active against all AML cell lines tested with IC50s in the nanomolar range. Enforced expression of PLC increased response to KPC34 in vivo. In an orthotopic, xenograft model, KPC34 treatment resulted in a significant increase in survival compared to control animals and those treated with high-dose cytarabine. In a PDX model with activated PKC, there was a significant survival benefit with KPC34, and at progression, there was attenuation of PKC activation in the resistant cells. In contrast, KPC34 was ineffective against a syngeneic, orthotopic AML model without activated PKC. However, when cells from that model were forced to express PKC, there were significantly increased sensitivity in vitro and survival benefit in vivo. These data suggest that KPC34 is active against AML and that the presence of activated PKC can be a predictive biomarker.
Collapse
|
34
|
Elahi M, Ali S, Tahir HM, Mushtaq R, Bhatti MF. Sericin and fibroin nanoparticles—natural product for cancer therapy: a comprehensive review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1706515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mehreen Elahi
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Rabia Mushtaq
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Farooq Bhatti
- Department of Zoology, Government College University, Lahore, Pakistan
- Sericulture Wing, Forest Department, Lahore, Pakistan
| |
Collapse
|
35
|
Klicks J, Maßlo C, Kluth A, Rudolf R, Hafner M. A novel spheroid-based co-culture model mimics loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced selection of ABCB5-expressing cells. BMC Cancer 2019; 19:402. [PMID: 31035967 PMCID: PMC6489189 DOI: 10.1186/s12885-019-5606-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/12/2019] [Indexed: 01/18/2023] Open
Abstract
Background Different 3D-cell culture approaches with varying degrees of complexity have been developed to serve as melanoma models for drug testing or mechanistic studies. While these 3D-culture initiatives are already often superior to classical 2D approaches, they are either composed of only melanoma cells or they are so complex that the behavior of individual cell types is hard to understand, and often they are difficult to establish and expensive. Methods This study used low-attachment based generation of spheroids composed of up to three cell types. Characterization of cells and spheroids involved cryosectioning, immunofluorescence, FACS, and quantitative analyses. Statistical evaluation used one-way ANOVA with post-hoc Tukey test or Student’s t-test. Results The tri-culture model allowed to track cellular behavior in a cell-type specific manner and recapitulated different characteristics of early melanoma stages. Cells arranged into a collagen-IV rich fibroblast core, a ring of keratinocytes, and groups of highly proliferating melanoma cells on the outside. Regularly, some melanoma cells were also found to invade the fibroblast core. In the absence of melanoma cells, the keratinocyte ring stratified into central basal-like and peripheral, more differentiated cells. Conversely, keratinocyte differentiation was clearly reduced upon addition of melanoma cells. Treatment with the cytostatic drug, docetaxel, restored keratinocyte differentiation and induced apoptosis of external melanoma cells. Remaining intact external melanoma cells showed a significantly increased amount of ABCB5-immunoreactivity. Conclusions In the present work, a novel, simple spheroid-based melanoma tri-culture model composed of fibroblasts, keratinocytes, and melanoma cells was described. This model mimicked features observed in early melanoma stages, including loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced increase of ABCB5 expression in external melanoma cells. Electronic supplementary material The online version of this article (10.1186/s12885-019-5606-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Klicks
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163, Mannheim, Germany.,Institute of Medical Technology, Mannheim University of Applied Sciences and Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christoph Maßlo
- RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Andreas Kluth
- TICEBA GmbH, Im Neuenheimer Feld 517, 69120, Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163, Mannheim, Germany. .,Institute of Medical Technology, Mannheim University of Applied Sciences and Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163, Mannheim, Germany.,Institute of Medical Technology, Mannheim University of Applied Sciences and Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
36
|
Chen Y, Gera L, Zhang S, Li X, Yang Y, Mamouni K, Wu AY, Liu H, Kucuk O, Wu D. Small molecule BKM1972 inhibits human prostate cancer growth and overcomes docetaxel resistance in intraosseous models. Cancer Lett 2019; 446:62-72. [PMID: 30660650 PMCID: PMC6361683 DOI: 10.1016/j.canlet.2019.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/15/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022]
Abstract
Bone metastasis is a major cause of prostate cancer (PCa) mortality. Although docetaxel chemotherapy initially extends patients' survival, in most cases PCa becomes chemoresistant and eventually progresses without a cure. In this study, we developed a novel small-molecule compound BKM1972, which exhibited potent in vitro cytotoxicity in PCa and other cancer cells regardless of their differences in chemo-responsiveness. Mechanistic studies demonstrated that BKM1972 effectively inhibited the expression of anti-apoptotic protein survivin and membrane-bound efflux pump ATP binding cassette B 1 (ABCB1, p-glycoprotein), presumably via signal transducer and activator of transcription 3 (Stat3). BKM1972 was well tolerated in mice and as a monotherapy, significantly inhibited the intraosseous growth of chemosensitive and chemoresistant PCa cells. These results indicate that BKM1972 is a promising small-molecule lead to treat PCa bone metastasis and overcome docetaxel resistance.
Collapse
Affiliation(s)
- Yanhua Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lajos Gera
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Shumin Zhang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xin Li
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yang Yang
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kenza Mamouni
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Alyssa Y Wu
- Chamblee Charter High School, Atlanta, GA, USA
| | - HongYan Liu
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Omer Kucuk
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Daqing Wu
- Molecular Oncology and Biomarkers Program, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; MetCure Therapeutics LLC, Atlanta, GA, USA.
| |
Collapse
|
37
|
Ion Channels: New Actors Playing in Chemotherapeutic Resistance. Cancers (Basel) 2019; 11:cancers11030376. [PMID: 30884858 PMCID: PMC6468599 DOI: 10.3390/cancers11030376] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/23/2023] Open
Abstract
In the battle against cancer cells, therapeutic modalities are drastically limited by intrinsic or acquired drug resistance. Resistance to therapy is not only common, but expected: if systemic agents used for cancer treatment are usually active at the beginning of therapy (i.e., 90% of primary breast cancers and 50% of metastases), about 30% of patients with early-stage breast cancer will have recurrent disease. Altered expression of ion channels is now considered as one of the hallmarks of cancer, and several ion channels have been linked to cancer cell resistance. While ion channels have been associated with cell death, apoptosis and even chemoresistance since the late 80s, the molecular mechanisms linking ion channel expression and/or function with chemotherapy have mostly emerged in the last ten years. In this review, we will highlight the relationships between ion channels and resistance to chemotherapy, with a special emphasis on the underlying molecular mechanisms.
Collapse
|
38
|
Goldman SL, Hassan C, Khunte M, Soldatenko A, Jong Y, Afshinnekoo E, Mason CE. Epigenetic Modifications in Acute Myeloid Leukemia: Prognosis, Treatment, and Heterogeneity. Front Genet 2019; 10:133. [PMID: 30881380 PMCID: PMC6405641 DOI: 10.3389/fgene.2019.00133] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/08/2019] [Indexed: 01/09/2023] Open
Abstract
Leukemia, specifically acute myeloid leukemia (AML), is a common malignancy that can be differentiated into multiple subtypes based on leukemogenic history and etiology. Although genetic aberrations, particularly cytogenetic abnormalities and mutations in known oncogenes, play an integral role in AML development, epigenetic processes have been shown as a significant and sometimes independent dynamic in AML pathophysiology. Here, we summarize how tumors evolve and describe AML through an epigenetic lens, including discussions on recent discoveries that include prognostics from epialleles, changes in RNA function for hematopoietic stem cells and the epitranscriptome, and novel epigenetic treatment options. We further describe the limitations of treatment in the context of the high degree of heterogeneity that characterizes acute myeloid leukemia.
Collapse
Affiliation(s)
- Samantha L Goldman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,University of Maryland, College Park, MD, United States
| | - Ciaran Hassan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Mihir Khunte
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Arielle Soldatenko
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Yunji Jong
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States.,The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
39
|
Pavlovic S, Kotur N, Stankovic B, Zukic B, Gasic V, Dokmanovic L. Pharmacogenomic and Pharmacotranscriptomic Profiling of Childhood Acute Lymphoblastic Leukemia: Paving the Way to Personalized Treatment. Genes (Basel) 2019; 10:E191. [PMID: 30832275 PMCID: PMC6471971 DOI: 10.3390/genes10030191] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Personalized medicine is focused on research disciplines which contribute to the individualization of therapy, like pharmacogenomics and pharmacotranscriptomics. Acute lymphoblastic leukemia (ALL) is the most common malignancy of childhood. It is one of the pediatric malignancies with the highest cure rate, but still a lethal outcome due to therapy accounts for 1%⁻3% of deaths. Further improvement of treatment protocols is needed through the implementation of pharmacogenomics and pharmacotranscriptomics. Emerging high-throughput technologies, including microarrays and next-generation sequencing, have provided an enormous amount of molecular data with the potential to be implemented in childhood ALL treatment protocols. In the current review, we summarized the contribution of these novel technologies to the pharmacogenomics and pharmacotranscriptomics of childhood ALL. We have presented data on molecular markers responsible for the efficacy, side effects, and toxicity of the drugs commonly used for childhood ALL treatment, i.e., glucocorticoids, vincristine, asparaginase, anthracyclines, thiopurines, and methotrexate. Big data was generated using high-throughput technologies, but their implementation in clinical practice is poor. Research efforts should be focused on data analysis and designing prediction models using machine learning algorithms. Bioinformatics tools and the implementation of artificial i Lack of association of the CEP72 rs924607 TT genotype with intelligence are expected to open the door wide for personalized medicine in the clinical practice of childhood ALL.
Collapse
Affiliation(s)
- Sonja Pavlovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Nikola Kotur
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Biljana Stankovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Branka Zukic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Lidija Dokmanovic
- University Children's Hospital, 11000 Belgrade, Serbia.
- University of Belgrade, Faculty of Medicine, 11000 Belgrade, Serbia.
| |
Collapse
|
40
|
Al-Abdulla R, Perez-Silva L, Abete L, Romero MR, Briz O, Marin JJG. Unraveling ‘The Cancer Genome Atlas’ information on the role of SLC transporters in anticancer drug uptake. Expert Rev Clin Pharmacol 2019; 12:329-341. [DOI: 10.1080/17512433.2019.1581605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ruba Al-Abdulla
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Laura Perez-Silva
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Lorena Abete
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
41
|
Sato K, Miyamoto M, Takano M, Furuya K, Tsuda H. Significant relationship between the LAT1 expression pattern and chemoresistance in ovarian clear cell carcinoma. Virchows Arch 2019; 474:701-710. [PMID: 30637450 DOI: 10.1007/s00428-019-02520-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
L-type amino acid transporter 1 (LAT1) is a Na+-independent neutral amino acid transporter that plays a key role in cancer cell growth and survival. To determine the significance of LAT1 in prognosis and resistance to chemotherapy in ovarian carcinoma, we investigated the LAT1 expression in 245 ovarian carcinoma patients by immunohistochemistry using tissue microarray. High expression of LAT1 was detected in 85 (34.7%) patients. The ratio of high expression of LAT1 was significantly high in clear cell carcinoma and low in serous carcinoma compared to other histological types (P < 0.0001). High expression of LAT1 in ovarian carcinoma was associated with poorer prognosis as per log-rank test (P = 0.008). Cox's univariate and multivariate analysis revealed that high expression of LAT1 is an independent marker indicating poor prognosis (hazard ratio = 2.810, P < 0.0001) as well as the FIGO stage III/IV (vs. I/II) and suboptimal surgery. High LAT1 expression was also found to be associated with resistance to chemotherapy (P = 0.016) notably in clear cell carcinoma. In conclusion, we demonstrate that LAT1 is not only associated with poor prognosis of ovarian carcinoma, but also associated with chemoresistance in ovarian carcinoma.
Collapse
Affiliation(s)
- Kimiya Sato
- Department of Basic Pathology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Morikazu Miyamoto
- Department of Obstetrics and Gynecology, National Defense Medical College, Tokorozawa, Japan
| | - Masashi Takano
- Department of Clinical Oncology, National Defense Medical College, Tokorozawa, Japan
| | - Kenichi Furuya
- Department of Obstetrics and Gynecology, National Defense Medical College, Tokorozawa, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
42
|
Liu Z, Peng Q, Li Y, Gao Y. Resveratrol enhances cisplatin-induced apoptosis in human hepatoma cells via glutamine metabolism inhibition. BMB Rep 2018. [PMID: 30103844 PMCID: PMC6177506 DOI: 10.5483/bmbrep.2018.51.9.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cisplatin is one of the most effective chemotherapeutic drugs used in the treatment of HCC, but many patients will ultimately relapse with cisplatin-resistant disease. Used in combination with cisplatin, resveratrol has synergistic effect of increasing chemosensitivity of cisplatin in various cancer cells. However, the mechanisms of resveratrol enhancing cisplatin-induced toxicity have not been well characterized. Our study showed that resveratrol enhances cisplatin toxicity in human hepatoma cells via an apoptosis-dependent mechanism. Further studies reveal that resveratrol decreases the absorption of glutamine and glutathione content by reducing the expression of glutamine transporter ASCT2. Flow cytometric analyses demonstrate that resveratrol and cisplatin combined treatment leads to a significant increase in ROS production compared to resveratrol or cisplatin treated hepatoma cells alone. Phosphorylated H2AX (γH2AX) foci assay demonstrate that both resveratrol and cisplatin treatment result in a significant increase of γH2AX foci in hepatoma cells, and the resveratrol and cisplatin combined treatment results in much more γH2AX foci formation than either resveratrol or cisplatin treatment alone. Furthermore, our studies show that over-expression of ASCT2 can attenuate cisplatin-induced ROS production, γH2AX foci formation and apoptosis in human hepatoma cells. Collectively, our studies suggest resveratrol may sensitize human hepatoma cells to cisplatin chemotherapy via glutamine metabolism inhibition.
Collapse
Affiliation(s)
- Zhaoyuan Liu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qing Peng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
43
|
Jones SK, Douglas K, Shields AF, Merkel OM. Correlating quantitative tumor accumulation and gene knockdown using SPECT/CT and bioluminescence imaging within an orthotopic ovarian cancer model. Biomaterials 2018; 178:183-192. [PMID: 29935386 PMCID: PMC6056733 DOI: 10.1016/j.biomaterials.2018.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/27/2018] [Accepted: 06/11/2018] [Indexed: 10/28/2022]
Abstract
Using an orthotopic model of ovarian cancer, we studied the delivery of siRNA in nanoparticles of tri-block copolymers consisting of hyperbranched polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) (hyPEI-g-PCL-b-PEG) with and without a folic acid targeting ligand. A SKOV-3/LUC FRα overexpressing cell line was employed to mimic the clinical manifestations of ovarian cancer. Both targeted and non-targeted micelleplexes were able to effectively deliver siRNA to the primary tumor and its metastases, as measured by gamma scintillation counting and confocal microscopy. Stability of the micelleplexes was demonstrated with a serum albumin binding study. Regarding biodistribution, intravenous (I.V.) administration showed a slight advantage of FRα targeted over non-targeted micelleplex accumulation within the tumor. However, both formulations displayed significant liver uptake. On the other hand, intraperitoneally (I.P.) injected mice showed a modest 6% of the injected dose per gram (ID/g) uptake within the primary and most interestingly also in the metastatic lesions which subsequently resulted in a 62% knockdown of firefly luciferase expression in the tumor after a single injection. While this is, to the best of our knowledge, the first paper that correlates quantitative tumor accumulation in an orthotopic tumor model with in vivo gene silencing, these data demonstrate that PEI-g-PCL-b-PEG-Fol conjugates are a promising option for gene knockdown in ovarian cancer.
Collapse
Affiliation(s)
- Steven K Jones
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kirk Douglas
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Anthony F Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Olivia M Merkel
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA; Department of Pharmaceutical Sciences, Wayne State University School of Pharmacy and Health Sciences, Detroit, MI, USA; Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
44
|
Xiao J, Egger ME, McMasters KM, Hao H. Differential expression of ABCB5 in BRAF inhibitor-resistant melanoma cell lines. BMC Cancer 2018; 18:675. [PMID: 29929490 PMCID: PMC6014033 DOI: 10.1186/s12885-018-4583-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/12/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND More than 50% of metastatic melanoma patients have a specific mutation in the serine/threonine kinase BRAF. This results in constitutive activation of the RAS-RAF-MEK-ERK-MAP kinase pathway, which causes uncontrolled cell growth. Vemurafenib (PLX4032) is an oral chemotherapeutic agent that targets the specific mutation V600E in the BRAF protein. Initial response rates are high in patients with BRAF mutant melanoma treated with a BRAF inhibitor such as vemurafenib, but resistance nearly always develops and disease progression ensues. There are several different mechanisms by which melanoma develops BRAF inhibitor resistance. One potential component of resistance is increased drug efflux. Overexpressed ABCB5 (ATP-binding cassette transporter, subfamily B, member 5) has been shown to efflux anti-cancer drugs from cancer cells. The purpose of this study is to determine whether ABCB5 is highly expressed in BRAF inhibitor-resistant melanoma cells and to evaluate whether ABCB5 is involved in the development of resistance to BRAF inhibitors in cutaneous melanoma. METHODS We established three BRAF inhibitor-resistant melanoma cell lines with BRAF mutation. The expression level of ABCB5 in PLX-resistant cell lines was checked by real-time PCR and Western blot analysis. SK-MEL-2 melanoma cells with wild-type BRAF were used for comparison. The association of different levels of ABCB5 with the changes of ERK, p-ERK, Akt and p-Akt was also assessed by Western blotting. Re-sensitization of melanoma cells to PLX was tested by p-ERK inhibitor PD58059 and ABCB5 knockdown by ABCB5 siRNA, respectively. RESULTS We showed that ABCB5 was overexpressed in SK-MEL-28PLXr and A2058PLXr cells but not in A375PLXr cells. ABCB5 overexpression is associated with activation of p-ERK status but not Akt. Inhibition of p-ERK re-sensitized SK-MEL-28PLXr and A2058PLXr cells to PLX treatment, but knockdown of ABCB5 did not re-sensitize A2058 PLXr and SK-MEL-28 PLXr cells to PLX treatment. CONCLUSION These results confirm that, even though ABCB5 was overexpressed in SK-MEL-28 and A2058 melanoma cells that develop resistance to BRAF inhibitors, ABCB5 may not be a major targetable contributor to BRAF resistance. p-ERK inhibition may play important roles in BRAF resistance in these two melanoma cell lines.
Collapse
Affiliation(s)
- Jingjing Xiao
- The Hiram C. Polk, Jr MD Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292 USA
| | - Michael E. Egger
- The Hiram C. Polk, Jr MD Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292 USA
| | - Kelly M. McMasters
- The Hiram C. Polk, Jr MD Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292 USA
| | - Hongying Hao
- The Hiram C. Polk, Jr MD Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292 USA
| |
Collapse
|
45
|
Bohl SR, Bullinger L, Rücker FG. Epigenetic therapy: azacytidine and decitabine in acute myeloid leukemia. Expert Rev Hematol 2018. [PMID: 29543073 DOI: 10.1080/17474086.2018.1453802] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION The majority of patients with acute myeloid leukemia (AML) are older and exhibit a poor prognosis even after intensive therapy. Inducing differentiation and apoptosis of leukemic blasts by DNA-hypomethylating agents, like e.g. azacytidine (AZA) and decitabine (DAC), represent well-tolerated alternative treatment approaches. Both agents show convincing response as single agents in AML. However, there is a lack of knowledge regarding molecular mechanisms and predictive biomarkers for these agents. Areas covered: This review will (i) provide an overview of the current knowledge of molecular mechanisms underlying the action of these drugs, (ii) report promising predictive biomarkers, (iii) elude on new combined treatment options, and (iv) discuss novel approaches to improve outcomes. A literature search was performed using PubMed to find recent major publications, which provide biological and clinical research about epigenetic therapy in AML patients. Expert commentary: Numerous studies have demonstrated that HMA therapy with AZA or DAC may lead to significant response rates, even in pre-treated patients. Nevertheless, there is still an unmet need to further improve outcome in elderly AML patients. Therefore, novel treatment combinations are needed and some of them, such as AZA plus venetoclax, already show promising results.
Collapse
Affiliation(s)
- Stephan R Bohl
- a Department of Internal Medicine III , University Hospital Ulm , Ulm , Germany
| | - Lars Bullinger
- a Department of Internal Medicine III , University Hospital Ulm , Ulm , Germany.,b Department of Hematology, Oncology and Tumorimmunology , Charité University Medicine Berlin , Berlin , Germany
| | - Frank G Rücker
- a Department of Internal Medicine III , University Hospital Ulm , Ulm , Germany
| |
Collapse
|
46
|
Tarasewicz E, Oakes RS, Aviles MO, Straehla J, Chilton KM, Decker JT, Wu J, Shea LD, Jeruss JS. Embryonic stem cell secreted factors decrease invasiveness of triple-negative breast cancer cells through regulome modulation. Cancer Biol Ther 2018; 19:271-281. [PMID: 29053396 DOI: 10.1080/15384047.2017.1385681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem cell microenvironments decrease the invasiveness of cancer cells, and elucidating the mechanisms associated with disease regression could further the development of targeted therapies for aggressive cancer subtypes. To this end, we applied an emerging technology, TRanscriptional Activity CEll aRray (TRACER), to investigate the reprogramming of triple-negative breast cancer (TNBC) cells in conditions that promoted a less aggressive phenotype. The repressive environment was established through exposure to mouse embryonic stem cell conditioned media (mESC CM). Assessment of carcinogenic phenotypes indicated that mESC CM exposure decreased proliferation, invasion, migration, and stemness in TNBC cells. Protein expression analysis revealed that mESC CM exposure increased expression of the epithelial protein E-cadherin and decreased the mesenchymal protein MMP9. Gene expression analysis showed that mESC CM decreased epithelial to mesenchymal transition (EMT) markers fibronectin, vimentin, and Snail. Over a period of 6 d, TRACER quantified changes in activity of 11 transcription factors (TFs) associated with oncogenic progression. The EMT profile was decreased in association with the activity of 7 TFs (Smad3, NF-κΒ, MEF2, GATA, Hif1, Sp1, and RXR). Further examination of Smad3 and GATA expression and phosphorylation revealed that mESC CM exposure decreased noncanonical Smad3 phosphorylation and Smad3-mediated gene expression, increased GATA3 expression and phosphorylation, and resulted in a synergistic decrease in migration of GATA3 overexpressing MDA-MB-231 cells. Collectively, the application of TRACER to examine TF activity associated with the transition of cancer cells to a less aggressive phenotype, as directed by mESC CM, identified novel mechanistic events linking the embryonic microenvironment to both favorable changes and cellular plasticity in TNBC cell phenotypes.
Collapse
Affiliation(s)
- Elizabeth Tarasewicz
- a Department of Surgery , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Robert S Oakes
- b Department of Biomedical Engineering , University of Michigan , Ann Arbor , MI , USA
| | - Misael O Aviles
- c Department of Chemical and Biological Engineering , Northwestern University , Evanston , IL , USA
| | - Joelle Straehla
- a Department of Surgery , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Kathryn M Chilton
- a Department of Surgery , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Joseph T Decker
- b Department of Biomedical Engineering , University of Michigan , Ann Arbor , MI , USA
| | - Jia Wu
- c Department of Chemical and Biological Engineering , Northwestern University , Evanston , IL , USA
| | - Lonnie D Shea
- b Department of Biomedical Engineering , University of Michigan , Ann Arbor , MI , USA.,c Department of Chemical and Biological Engineering , Northwestern University , Evanston , IL , USA
| | - Jacqueline S Jeruss
- b Department of Biomedical Engineering , University of Michigan , Ann Arbor , MI , USA.,d Department of Surgery , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
47
|
Leveraging Epigenetics to Enhance the Cellular Response to Chemotherapies and Improve Tumor Immunogenicity. Adv Cancer Res 2018; 138:1-39. [PMID: 29551125 DOI: 10.1016/bs.acr.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer chemotherapeutic drugs have greatly advanced our ability to successfully treat a variety of human malignancies. The different forms of stress produced by these agents in cancer cells result in both cell autonomous and cell nonautonomous effects. Desirable cell autonomous effects include reduced proliferative potential, cellular senescence, and cell death. More recently recognized cell nonautonomous effects, usually in the form of stimulating an antitumor immune response, have significant roles in therapeutic efficiency for a select number of chemotherapies. Unfortunately, the success of these therapeutics is not universal as not all tumors respond to treatment, and those that do respond will frequently relapse into therapy-resistant disease. Numerous strategies have been developed to sensitize tumors toward chemotherapies as a means to either improve initial responses, or serve as a secondary treatment strategy for therapy-resistant disease. Recently, targeting epigenetic regulators has emerged as a viable method of sensitizing tumors to the effects of chemotherapies, many of which are cytotoxic. In this review, we summarize these strategies and propose a path for future progress.
Collapse
|
48
|
LC-MS/MS Analysis of Erythrocyte Thiopurine Nucleotides and Their Association With Genetic Variants in Patients With Neuromyelitis Optica Spectrum Disorders Taking Azathioprine. Ther Drug Monit 2017; 39:5-12. [PMID: 27941536 DOI: 10.1097/ftd.0000000000000362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Azathioprine is a first-line drug in treating neuromyelitis optica spectrum disorders (NMOSD). To exhibit its bioactivity, azathioprine needs to be converted to thiopurine nucleotides (TPNs) including 6-thioguanine nucleotides (6-TGNs) and 6-methylmercaptopurine nucleotides (6-MMPNs) that are affected by genetic polymorphisms. This study aims to develop an LC-MS/MS method for the analysis of erythrocyte concentrations of TPNs and to evaluate their associations with variants of various genes (MTHFR, TPMT, HLA, SLC29A1, SLC28A2, SLC28A3, ABCB1, and ABCC4) in patients with NMOSD. METHODS Erythrocyte 6-TGNs and 6-MMPNs were converted to their free bases 6-thioguanine and 6-methylmercaptopurine derivative by 1-hour acid hydrolysis at 95°C. An LC-MS/MS method was developed, validated, and used to study 32 patients with NMOSD to determine these free bases. Genetic variants were identified by MassARRAY (Sequenom) and multiple SNaPshot techniques. The associations between genetic variants and the concentrations of TPNs or the 6-MMPNs:6-TGNs ratio were evaluated by PLINK software using linear regression. RESULTS Methanol and water were used for separation with a total run time of 6.5 minutes. The lowest limit of quantification was 0.1 μmol/L with an injection volume of 10 μL. rs10868138 (SLC28A3) was associated with a higher erythrocyte concentration of 6-TGNs (P = 0.031), whereas rs12378361 (SLC28A3) was associated with a lower erythrocyte concentration of 6-TGNs (P = 0.0067). rs507964 (SLC29A1) was significantly associated with a lower erythrocyte concentration of 6-MMPNs (P = 0.024) and a lower 6-MMPNs:6-TGNs ratio (P = 0.029). CONCLUSIONS An LC-MS/MS method for the analysis of erythrocyte TPNs was developed, validated, and used to study 32 patients with NMOSD. SLC29A1 and SLC28A3 were associated with the erythrocyte concentrations of TPNs and 6-MMPNs:6-TGNs ratio. Further studies are needed to confirm these results.
Collapse
|
49
|
Begicevic RR, Falasca M. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. Int J Mol Sci 2017; 18:E2362. [PMID: 29117122 PMCID: PMC5713331 DOI: 10.3390/ijms18112362] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
The efficacy of chemotherapy is one of the main challenges in cancer treatment and one of the major obstacles to overcome in achieving lasting remission and a definitive cure in patients with cancer is the emergence of cancer resistance. Indeed, drug resistance is ultimately accountable for poor treatment outcomes and tumour relapse. There are various molecular mechanisms involved in multidrug resistance, such as the change in the activity of membrane transporters primarily belonging to the ATP binding cassette (ABC) transporter family. In addition, it has been proposed that this common feature could be attributed to a subpopulation of slow-cycling cancer stem cells (CSCs), endowed with enhanced tumorigenic potential and multidrug resistance. CSCs are characterized by the overexpression of specific surface markers that vary in different cancer cell types. Overexpression of ABC transporters has been reported in several cancers and more predominantly in CSCs. While the major focus on the role played by ABC transporters in cancer is polarized by their involvement in chemoresistance, emerging evidence supports a more active role of these proteins, in which they release specific bioactive molecules in the extracellular milieu. This review will outline our current understanding of the role played by ABC transporters in CSCs, how their expression is regulated and how they support the malignant metabolic phenotype. To summarize, we suggest that the increased expression of ABC transporters in CSCs may have precise functional roles and provide the opportunity to target, particularly these cells, by using specific ABC transporter inhibitors.
Collapse
Affiliation(s)
- Romana-Rea Begicevic
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia.
| |
Collapse
|
50
|
Urtasun N, Boces-Pascual C, Boix L, Bruix J, Pastor-Anglada M, Pérez-Torras S. Role of drug-dependent transporter modulation on the chemosensitivity of cholangiocarcinoma. Oncotarget 2017; 8:90185-90196. [PMID: 29163820 PMCID: PMC5685741 DOI: 10.18632/oncotarget.21624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/27/2017] [Indexed: 12/22/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with limited therapeutic options. Curative therapy is limited to surgery whereas chemotherapy treatments are the election option for unresectable or metastatic cholangiocarcinoma. Cisplatin plus gemcitabine is the reference chemotherapy regimen, albeit the contribution to the median overall survival barely reaches one year. Drug transporters are undoubtedly a limiting step for drug bioavailability and have been clearly related to chemoresistance. Several members of the SoLute Carrier (SLC) superfamily involved in the uptake of anticancer drugs used to treat cholangiocarcinoma are downregulated in these tumors. This study shows the increase in the expression of specific drug transporters exerted by cisplatin treatment thereby enhancing their transport activity. Combination treatments of cisplatin with selected drugs as gemcitabine and sorafenib take in by these transporters at the desired combination schedule induced synergy. These data support the concept that proper administration pattern could favor treatment outcome.
Collapse
Affiliation(s)
- Nerea Urtasun
- Molecular Pharmacology and Experimental Therapeutics (MPET), Section Biochemistry and Molecular Pharmacology, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, CIBER ehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Clara Boces-Pascual
- Molecular Pharmacology and Experimental Therapeutics (MPET), Section Biochemistry and Molecular Pharmacology, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Loreto Boix
- Oncology Program, CIBER ehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona, Spain.,Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Jordi Bruix
- Oncology Program, CIBER ehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona, Spain.,Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics (MPET), Section Biochemistry and Molecular Pharmacology, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, CIBER ehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics (MPET), Section Biochemistry and Molecular Pharmacology, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, CIBER ehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|