1
|
Lin ST, Wang CH, Chen AL, Andrew Wang TS. Utilizing Alkyne-Nitrone Cycloaddition for the Convenient Multi-Component Assembly of Protein Degraders and Biological Probes. Chemistry 2024:e202403184. [PMID: 39642057 DOI: 10.1002/chem.202403184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/08/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have become a popular therapeutic strategy, and the development of multi-functional PROTACs has added complexity to their synthetic process. Although click reactions have been widely applied to prepare highly functionalized biomolecules, most of them are limited to two-component reactions, restricting the creation of more complex structures. Here, we developed a convenient multi-component assembly strategy via strain-promoted alkyne-nitrone cycloaddition (SPANC), which can be extended to a 3-component reaction when combined with nitrone formation. Using the 2-component assembly, we demonstrated the targeted protein degradation with both preassembled and in-cell assembled PROTACs. This strategy was also applied to facilitate the screening of E3 ligases in PROTACs and the preparation of various biological probes. Moreover, the 3-component assembly, via sequential nitrone formation and SPANC, enabled the synthesis of trifunctional 3-component PROTACs. The N-substituent, serving as an additional functional moiety, was designed as a photocage for sterically controlling PROTAC activity. The 3-component assembly can be further modified to provide additional control or enhance the cell-targeting ability of PROTACs. In short, our multi-component SPANC assembly strategy offers a modular and versatile synthetic platform for creating multi-functional PROTACs and biological probes.
Collapse
Affiliation(s)
- Shiou-Ting Lin
- Department of Chemistry, National Taiwan University, Taipei, 106319, Taiwan, R.O.C
| | - Chien-Hua Wang
- Department of Chemistry, National Taiwan University, Taipei, 106319, Taiwan, R.O.C
| | - Ai-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei, 106319, Taiwan, R.O.C
| | - Tsung-Shing Andrew Wang
- Department of Chemistry, National Taiwan University, Taipei, 106319, Taiwan, R.O.C
- Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 106319, Taiwan, R.O.C
| |
Collapse
|
2
|
Xu J, Huang Z, Duan H, Li W, Zhuang J, Xiong L, Tang Y, Liu G. In Silico Prediction of ERRα Agonists Based on Combined Features and Stacking Ensemble Method. ChemMedChem 2024; 19:e202400298. [PMID: 38923819 DOI: 10.1002/cmdc.202400298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Estrogen-related receptor α (ERRα) is considered a very promising target for treating metabolic diseases such as type 2 diabetes. Development of a prediction model to quickly identify potential ERRα agonists can significantly reduce the time spent on virtual screening. In this study, 298 ERRα agonists and numerous nonagonists were collected from various sources to build a new dataset of ERRα agonists. Then a total of 90 models were built using a combination of different algorithms, molecular characterization methods, and data sampling techniques. The consensus model with optimal performance was also validated on the test set (AUC=0.876, BA=0.816) and external validation set (AUC=0.867, BA=0.777) based on five selected baseline models. Furthermore, the model's applicability domain and privileged substructures were examined, and the feature importance was analyzed using the SHAP method to help interpret the model. Based on the above, it's hoped that our publicly accessible data, models, codes, and analytical techniques will prove valuable in quick screening and rational designing more novel and potent ERRα agonists.
Collapse
Affiliation(s)
- Jiahao Xu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zejun Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Duan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingyan Zhuang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Le Xiong
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Muduli K, Pradhan J, Prusty M, Samal AP, Reddy KS, Elangovan S. Estrogen-related receptor alpha (ERRα) promotes the migration, invasion and angiogenesis of breast cancer stem cell-like cells. Med Oncol 2024; 41:78. [PMID: 38393411 DOI: 10.1007/s12032-024-02329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Breast cancer progression, metastasis and recurrence are largely driven by breast cancer stem cells (BCSCs), which constitute a subset of tumor cells exhibiting stem cell characteristics. In this study, we evaluated the role of estrogen-related receptor alpha (ERRα) in the migration, invasion and angiogenesis of BCSCs. The inhibition of ERRα using XCT790 or knockdown of ERRα using shRNA inhibited the mammosphere formation efficiency, as well as the migration and invasion of BCSCs derived from the mammospheres of MCF7 and MDA-MB-231 (MB231) cells. Conversely, the overexpression of ERRα significantly increased the migration and invasion of BCSCs derived from the mammosphere. In addition, the XCT790 treatment or shERRα significantly downregulated the epithelial-mesenchymal transition (EMT), as evidenced by the downregulation in the expression of vimentin, Snail, Slug and N-cadherin in the mammospheres of MCF7 and MB231 cells. The chorioallantoic membrane assay showed that the conditioned media from XCT790-treated and shERRα cells significantly inhibited blood vessel formation and vessel length. Furthermore, XCT790 treatment or shERRα also downregulated the expression of molecular markers of angiogenesis, such as VEGF-A and Ang-2 in the mammospheres. Conversely, the overexpression of ERRα in MCF7 cells significantly increased both EMT and angiogenesis. These findings suggest that ERRα inhibits the migration, invasion and angiogenesis of BCSCs, suggesting as a potential target for breast cancer therapy.
Collapse
Affiliation(s)
- Kartik Muduli
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Jagannath Pradhan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Monica Prusty
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Archana Priyadarshini Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
4
|
Vanacker JM, Forcet C. ERRα: unraveling its role as a key player in cell migration. Oncogene 2024; 43:379-387. [PMID: 38129506 DOI: 10.1038/s41388-023-02899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Cell migration is essential throughout the life of multicellular organisms, and largely depends on the spatial and temporal regulation of cytoskeletal dynamics, cell adhesion and signal transduction. Interestingly, Estrogen-related receptor alpha (ERRα) has been identified as a major regulator of cell migration in both physiological and pathological conditions. ERRα is an orphan member of the nuclear hormone receptor superfamily of transcription factors and displays many biological functions. ERRα is a global regulator of energy metabolism, and it is also highly involved in bone homeostasis, development, differentiation, immunity and cancer progression. Importantly, in some instances, the regulation of these biological processes relies on the ability to orchestrate cell movements. Therefore, this review describes how ERRα-mediated cell migration contributes not only to tissue homeostasis but also to tumorigenesis and metastasis, and highlights the molecular and cellular mechanisms by which ERRα finely controls the cell migratory potential.
Collapse
Affiliation(s)
- Jean-Marc Vanacker
- Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Inserm U1052, Université de Lyon, Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
5
|
Muduli K, Prusty M, Pradhan J, Samal AP, Sahu B, Roy DS, Reddy KS, Elangovan S. Estrogen-Related Receptor Alpha (ERRα) Promotes Cancer Stem Cell-Like Characteristics in Breast Cancer. Stem Cell Rev Rep 2023; 19:2807-2819. [PMID: 37584854 DOI: 10.1007/s12015-023-10605-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
Cancer stem cells drive tumor initiation, invasion, metastasis and recurrence. In the present study, we have evaluated the role of ERRα in the maintenance of breast cancer stem cells (BCSCs) using breast cancer cell lines. The inhibition of ERRα with the inverse agonist, XCT-790, or the knockdown of ERRα in breast cancer cells significantly reduced the mammosphere formation efficiency and mammosphere size along with a significant reduction in the CD44+/CD24- BCSCs. Treatment with XCT-790 significantly downregulated expression of the transcription factors involved in stem cell maintenance such as Oct4, Klf4, Sox2, Nanog and c-Myc in the mammosphere forming stem cells of MCF7 and MDA-MB-231. In addition, XCT-790 induced cell cycle arrest and apoptosis in the mammosphere-forming cells. The knockdown or inhibition of ERRα downregulated the expression of Notch1 and β-catenin, whereas the overexpression of ERRα in MCF7 cells upregulated the expression of these proteins. Moreover, the inhibition of ERRα synergistically enhanced the efficacy of paclitaxel in inhibiting the BCSCs. These results show that ERRα is crucial for the maintenance of BCSCs and suggest that ERRα could be a potential target for breast cancer treatment.
Collapse
Affiliation(s)
- Kartik Muduli
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Monica Prusty
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Jagannath Pradhan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Archana Priyadarshini Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Bikash Sahu
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Debanjan Singha Roy
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
6
|
Ganesan K, Xu C, Liu Q, Sui Y, Chen J. Unraveling the Role of Hepatic PGC1α in Breast Cancer Invasion: A New Target for Therapeutic Intervention? Cells 2023; 12:2311. [PMID: 37759533 PMCID: PMC10529029 DOI: 10.3390/cells12182311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is the most common cancer among women worldwide and the main cause of cancer deaths in women. Metabolic components are key risk factors for the development of non-alcoholic fatty liver disease (NAFLD), which may promote BC. Studies have reported that increasing PGC1α levels increases mitochondrial biogenesis, thereby increasing cell proliferation and metastasis. Moreover, the PGC1α/ERRα axis is a crucial regulator of cellular metabolism in various tissues, including BC. However, it remains unclear whether NAFLD is closely associated with the risk of BC. Therefore, the present study aimed to determine whether hepatic PGC1α promotes BC cell invasion via ERRα. Various assays, including ELISA, western blotting, and immunoprecipitation, have been employed to explore these mechanisms. According to the KM plot and TCGA data, elevated PGC1α expression was highly associated with a shorter overall survival time in patients with BC. High concentrations of palmitic acid (PA) promoted PGC1α expression, lipogenesis, and inflammatory processes in hepatocytes. Conditioned medium obtained from PA-treated hepatocytes significantly increased BC cell proliferation. Similarly, recombinant PGC1α in E0771 and MCF7 cells promoted cell proliferation, migration, and invasion in vitro. However, silencing PGC1α in both BC cell lines resulted in a decrease in this trend. As determined by immunoprecipitation assay, PCG1a interacted with ERRα, thereby facilitating the proliferation of BC cells. This outcome recognizes the importance of further investigations in exploring the full potential of hepatic PGC1α as a prognostic marker for BC development.
Collapse
Affiliation(s)
- Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; (K.G.); (C.X.); (Q.L.); (Y.S.)
| | - Cong Xu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; (K.G.); (C.X.); (Q.L.); (Y.S.)
| | - Qingqing Liu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; (K.G.); (C.X.); (Q.L.); (Y.S.)
| | - Yue Sui
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; (K.G.); (C.X.); (Q.L.); (Y.S.)
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; (K.G.); (C.X.); (Q.L.); (Y.S.)
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
7
|
He Q, Yu C, Li Y, Hao P, Mai H, Guo R, Zhong G, Zhang K, Wong C, Chen Q, Chen Y. ERRα contributes to HDAC6-induced chemoresistance of osteosarcoma cells. Cell Biol Toxicol 2023; 39:813-825. [PMID: 34524571 DOI: 10.1007/s10565-021-09651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Chemotherapy resistance is an important problem for clinical therapy of osteosarcoma (OS). The potential effects of histone deacetylases (HDACs) on OS chemoresistance are studied. The expression of HDACs in OS cells resistance to doxorubicin (Dox) and cisplatin (CDDP) is checked. Among 11 members of HDACs, levels of HDAC6 are significantly upregulated in OS cells resistance to Dox and CDDP. Inhibition of HDAC6 via its specific inhibitor ACY1215 restores chemosensitivity of OS-resistant cells. Further, HDAC6 directly binds with estrogen-related receptors alpha (ERRα) to regulate its acetylation and protein stability. Inhibition of ERRα further strengthens ACY1215-increased chemosensitivity of OS-resistant cells. Mechanistically, K129 acetylation is the key residue for HDAC6-regulated protein levels of ERRα. Collectively, we find that ERRα contributes to HDAC6-induced chemoresistance of OS cells. Inhibition of HDAC6/ERRα axis might be a potential approach to overcome chemoresistance and improve therapy efficiency for OS treatment. 1. HDAC6 was significantly upregulated in Dox and CDDP resistant OS cells; 2. Inhibition of HDAC6 can restore chemosensitivity of OS cells; 3. HDAC6 binds with ERRα at K129 to decrease its acetylation and increase protein stability; 4. ERRα contributes to HDAC6-induced chemoresistance of OS cells.
Collapse
Affiliation(s)
- Qing He
- Department of Surgical Intensive Care Unit, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Changzhi Yu
- Department of Chinese Traditional Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Li
- Pediatric Hematology and Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Peng Hao
- Department of Surgical Intensive Care Unit, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hantao Mai
- Department of Surgical Intensive Care Unit, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruilian Guo
- Department of Surgical Intensive Care Unit, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guifang Zhong
- Department of Surgical Intensive Care Unit, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kelin Zhang
- Department of Surgical Intensive Care Unit, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chipiu Wong
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, China
| | - Qian Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, China
| | - Yantao Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107, Yanjiang West Road, Yuexiu District, Guangzhou, 510120, China.
| |
Collapse
|
8
|
Chaltel-Lima L, Domínguez F, Domínguez-Ramírez L, Cortes-Hernandez P. The Role of the Estrogen-Related Receptor Alpha (ERRa) in Hypoxia and Its Implications for Cancer Metabolism. Int J Mol Sci 2023; 24:ijms24097983. [PMID: 37175690 PMCID: PMC10178695 DOI: 10.3390/ijms24097983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Under low oxygen conditions (hypoxia), cells activate survival mechanisms including metabolic changes and angiogenesis, which are regulated by HIF-1. The estrogen-related receptor alpha (ERRα) is a transcription factor with important roles in the regulation of cellular metabolism that is overexpressed in hypoxia, suggesting that it plays a role in cell survival in this condition. This review enumerates and analyses the recent evidence that points to the role of ERRα as a regulator of hypoxic genes, both in cooperation with HIF-1 and through HIF-1- independent mechanisms, in invertebrate and vertebrate models and in physiological and pathological scenarios. ERRα's functions during hypoxia include two mechanisms: (1) direct ERRα/HIF-1 interaction, which enhances HIF-1's transcriptional activity; and (2) transcriptional activation by ERRα of genes that are classical HIF-1 targets, such as VEGF or glycolytic enzymes. ERRα is thus gaining recognition for its prominent role in the hypoxia response, both in the presence and absence of HIF-1. In some models, ERRα prepares cells for hypoxia, with important clinical/therapeutic implications.
Collapse
Affiliation(s)
- Leslie Chaltel-Lima
- Segal Cancer Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Fabiola Domínguez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco 74360, Mexico
| | - Lenin Domínguez-Ramírez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco 74360, Mexico
| | - Paulina Cortes-Hernandez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco 74360, Mexico
| |
Collapse
|
9
|
Brindisi M, Frattaruolo L, Fiorillo M, Dolce V, Sotgia F, Lisanti MP, Cappello AR. New insights into cholesterol-mediated ERRα activation in breast cancer progression and pro-tumoral microenvironment orchestration. FEBS J 2023; 290:1481-1501. [PMID: 36237175 DOI: 10.1111/febs.16651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 01/31/2023]
Abstract
Breast cancer remains the greatest cause of cancer-related death in women worldwide. Its aggressiveness and progression derive from intricate processes that occur simultaneously both within the tumour itself and in the neighbouring cells that make up its microenvironment. The aim of the present work was firstly to study how elevated cholesterol levels increase tumour aggressiveness. Herein, we demonstrate that cholesterol, by activating ERRα pathway, promotes epithelium-mesenchymal transition (EMT) in breast cancer cells (MCF-7 and MDA-MB-231) as well as the release of pro-inflammatory factors able to orchestrate the tumour microenvironment. A further objective of this work was to study the close symbiosis between tumour cells and the microenvironment. Our results allow us to highlight, for the first time, that breast cancer cells exposed to high cholesterol levels promote (a) greater macrophages infiltration with induction of an M2 phenotype, (b) angiogenesis and endothelial branching, as well as (c) a cancer-associated fibroblasts (CAFs) phenotype. The effects observed could be due to direct activation of the ERRα pathway by high cholesterol levels, since the simultaneous inhibition of this pathway subverts such effects. Overall, these findings enable us to identify the cholesterol-ERRα synergy as an interesting target for breast cancer treatment.
Collapse
Affiliation(s)
- Matteo Brindisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Cell Adhesion Unit, Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester, UK
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester, UK
| | - Michael P Lisanti
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester, UK
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
10
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
11
|
Utilizing MALDI-TOF MS and LC-MS/MS to access serum peptidome-based biomarkers in canine oral tumors. Sci Rep 2022; 12:21641. [PMID: 36517562 PMCID: PMC9750994 DOI: 10.1038/s41598-022-26132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Tumors frequently found in dogs include canine oral tumors, either cancerous or noncancerous. The bloodstream is an important route for tumor metastasis, particularly for late-stage oral melanoma (LOM) and late-stage oral squamous cell carcinoma (LOSCC). The present study aimed to investigate serum peptidome-based biomarkers of dogs with early-stage oral melanoma, LOM, LOSCC, benign oral tumors, chronic periodontitis and healthy controls, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography tandem mass spectrometry. A principal component analysis plot showed distinct clusters among all groups. Four peptides were identified, including peptidyl-prolyl cis-trans isomerase FKBP4 isoform X2 (FKBP4), steroid hormone receptor ERR1 (ESRRA or ERRA), immunoglobulin superfamily member 10 (IGSF10) and ATP-binding cassette subfamily B member 5 (ABCB5). FKBP4, ESRRA and ABCB5 were found to be overexpressed in both LOM and LOSCC, whereas IGSF10 expression was markedly increased in LOSCC only. These four proteins also played a crucial role in numerous pathways of cancer metastasis and showed a strong relationship with chemotherapy drugs. In conclusion, this study showed rapid screening of canine oral tumors using serum and MALDI-TOF MS. In addition, potential serum peptidome-based biomarker candidates for LOM and LOSCC were identified.
Collapse
|
12
|
Kranz J, Hoffmann M, Krauß K, Stickeler E, Saar M. [Prostate and breast cancer: similarities and differences]. UROLOGIE (HEIDELBERG, GERMANY) 2022; 61:1068-1075. [PMID: 36038785 DOI: 10.1007/s00120-022-01913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Prostate and breast carcinomas are amongst the most common new diseases in men and women, with steadily rising incidences. In addition to the significant health consequences, both diseases also lead to a significantly reduced quality of life due to their influence on sexual function. The aim of this work is to identify scientific approaches and research priorities that in the future might lead to synergies in both disciplines by specifically considering the similarities and differences between the two diseases. For this purpose, clinically relevant aspects such as risk factors, treatment options, as well as scientific similarities and differences that offer direct joint research approaches in the areas of cultivation and modeling of both tumor entities were analyzed. Through this approach, we were able to demonstrate that due to the comparable biology of the two diseases and the underlying mechanisms, scientific synergies may certainly lead to targeted research. Clinical similarities also indicate that close collaboration between the two disciplines could lead to improved treatment of our patients. Evidence deficiencies in both diseases (e.g. the metastasis mechanisms of both tumor entities) and controversially discussed aspects such as risk factors clearly show that further scientific projects for a more detailed understanding of both diseases are necessary to ensure future success in the treatment of our patients.
Collapse
Affiliation(s)
- Jennifer Kranz
- Klinik für Urologie und Kinderurologie, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
- Universitätsklinik und Poliklinik für Urologie, Universitätsklinikum Halle (Saale), Halle (Saale), Deutschland
| | - Marco Hoffmann
- Klinik für Urologie und Kinderurologie, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Katja Krauß
- Klinik für Gynäkologie und Geburtsmedizin, Uniklinik RWTH Aachen, Aachen, Deutschland
| | - Elmar Stickeler
- Klinik für Gynäkologie und Geburtsmedizin, Uniklinik RWTH Aachen, Aachen, Deutschland
| | - Matthias Saar
- Klinik für Urologie und Kinderurologie, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| |
Collapse
|
13
|
Li CL, Moi SH, Lin HS, Hou MF, Chen FM, Shih SL, Kan JY, Kao CN, Wu YC, Kao LC, Chen YH, Lee YC, Chiang CP. Comprehensive Transcriptomic and Proteomic Analyses Identify a Candidate Gene Set in Cross-Resistance for Endocrine Therapy in Breast Cancer. Int J Mol Sci 2022; 23:ijms231810539. [PMID: 36142451 PMCID: PMC9501051 DOI: 10.3390/ijms231810539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Endocrine therapy (ET) of selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs) has been used as the gold standard treatment for hormone-receptor-positive (HR+) breast cancer. Despite its clinical benefits, approximately 30% of patients develop ET resistance, which remains a major clinical challenge in patients with HR+ breast cancer. The mechanisms of ET resistance mainly focus on mutations in the ER and related pathways; however, other targets still exist from ligand-independent ER reactivation. Moreover, mutations in the ER that confer resistance to SERMs or AIs seldom appear in SERDs. To date, little research has been conducted to identify a critical target that appears in both SERMs/SERDs and AIs. In this study, we conducted comprehensive transcriptomic and proteomic analyses from two cohorts of The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) to identify the critical targets for both SERMs/SERDs and AIs of ET resistance. From a treatment response cohort with treatment response for the initial ET regimen and an endocrine therapy cohort with survival outcomes, we identified candidate gene sets that appeared in both SERMs/SERDs and AIs of ET resistance. The candidate gene sets successfully differentiated progress/resistant groups (PD) from complete response groups (CR) and were significantly correlated with survival outcomes in both cohorts. In summary, this study provides valuable clinical implications for the critical roles played by candidate gene sets in the diagnosis, mechanism, and therapeutic strategy for both SERMs/SERDs and AIs of ET resistance for the future.
Collapse
Affiliation(s)
- Chung-Liang Li
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Sin-Hua Moi
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Huei-Shan Lin
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Fang-Ming Chen
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Shen-Liang Shih
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Jung-Yu Kan
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chieh-Ni Kao
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Chia Wu
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Surgery, Division of Plastic Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Li-Chun Kao
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ying-Hsuan Chen
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chih-Po Chiang
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
- Correspondence: or ; Tel.: +886-7-312-1101 (ext. 2260)
| |
Collapse
|
14
|
Estrogen Related Receptor Alpha (ERRα) a Bridge between Metabolism and Adrenocortical Cancer Progression. Cancers (Basel) 2022; 14:cancers14163885. [PMID: 36010877 PMCID: PMC9406166 DOI: 10.3390/cancers14163885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Adrenocortical carcinoma (ACC) is a rare and highly aggressive tumor associated with a very poor prognosis, mostly due to a high risk of recurrence and limited therapeutic options. The identification of “master regulators” of the metabolic changes occurring in cancer cells could offer new targets for innovative therapies. Such a strategy has never been used against ACC progression. In this study, we identify ERRα as key player in ACC metabolism and its targeting can prevent progression to a more aggressive phenotype. The development of new therapeutic strategies to selectively target ERRα in the adrenal with a selective antagonist would hinder ACC progression, avoiding off-target effects. Abstract The aim of this study was to investigate the metabolic changes that occur in adrenocortical cancer (ACC) cells in response to the modulation of Estrogen Related Receptor (ERR)α expression and the impact on ACC progression. Proteomics analysis and metabolic profiling highlighted an important role for ERRα in the regulation of ACC metabolism. Stable ERRα overexpression in H295R cells promoted a better mitochondrial fitness and prompted toward a more aggressive phenotype characterized by higher Vimentin expression, enhanced cell migration and spheroids formation. By contrast, a decrease in ERRα protein levels, by molecular (short hairpin RNA) and pharmacological (inverse agonist XCT790) approaches modified the energetic status toward a low energy profile and reduced Vimentin expression and ability to form spheroids. XCT790 produced similar effects on two additional ACC cell lines, SW13 and mitotane-resistant MUC-1 cells. Our findings show that ERRα is able to modulate the metabolic profile of ACC cells, and its inhibition can strongly prevent the growth of mitotane-resistant ACC cells and the progression of ACC cell models to a highly migratory phenotype. Consequently, ERRα can be considered an important target for the design of new therapeutic strategies to fight ACC progression.
Collapse
|
15
|
MicroRNA-766-3p-mediated downregulation of HNF4G inhibits proliferation in colorectal cancer cells through the PI3K/AKT pathway. Cancer Gene Ther 2022; 29:803-813. [PMID: 34158627 DOI: 10.1038/s41417-021-00362-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are a class of transcription factors that play a pivotal role in carcinogenesis, but their function in colorectal cancer (CRC) remains unclear. Here, we investigate the role NRs play in CRC pathogenesis. We found that hepatocyte nuclear factor 4 gamma (HNF4G; NR2A2), hepatocyte nuclear factor 4α (HNF4A; NR2A1), and retinoid-related orphan receptor γ (RORC; NR1F3) were significantly upregulated in CRC tissues analyzed by GEPIA bioinformatics tool. The expression of HNF4G was examined in CRC samples and cell lines by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry. Increased expression of HNF4G was strongly associated with high tumor-node-metastasis stage and poor prognosis. Moreover, overexpression of HNF4G significantly promoted the proliferation of CRC cells in vitro. Next, we found that HNF4G promoted CRC proliferation via the PI3K/AKT pathway through targeting of GNG12 and PTK2. In addition, HNF4G was verified as a direct target of microRNA-766-3p (miR-766-3p). miR-766-3p inhibited the proliferation of CRC cells by targeting HNF4G in vitro and in vivo. Collectively, our study indicates that miR-766-3p reduces the proliferation of CRC cells by targeting HNF4G expression and thus inhibits the PI3K/AKT pathway. Therefore, development of therapies which target the miR-766-3p/HNF4G axis may aid in the treatment of CRC.
Collapse
|
16
|
Shatnawi A, Ayoub NM, Alkhalifa AE, Ibrahim DR. Estrogen-Related Receptors Gene Expression and Copy Number Alteration Association With the Clinicopathologic Characteristics of Breast Cancer. BREAST CANCER: BASIC AND CLINICAL RESEARCH 2022; 16:11782234221086713. [PMID: 35359609 PMCID: PMC8961373 DOI: 10.1177/11782234221086713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: It has been suggested that dysregulation of transcription factors expression
or activity plays significant roles in breast cancer (BC) severity and poor
prognosis. Therefore, our study aims to thoroughly evaluate the
estrogen-related receptor isoforms (ESRRs) expression and copy number
alteration (CNA) status and their association with clinicopathologic
characteristics in BC. Methods: A METABRIC dataset consist of 2509 BC patients’ samples was obtained from the
cBioPortal public domain. The gene expression, putative CNA, and relevant
tumor information of ESRRs were retrieved. ESRRs messenger RNA (mRNA)
expression in BC cell lines was obtained from the Cancer Cell Line
Encyclopedia (CCLE). Association and correlation analysis of ESRRs
expression with BC clinicopathologic characteristics and molecular subtype
were performed. Kaplan–Meier survival analysis was conducted to evaluate the
prognostic value of ESRRs expression on patient survival. Results: ESRRα expression correlated negatively with patients’ age and overall
survival, whereas positively correlated with tumor size, the number of
positive lymph nodes, and Nottingham prognostic index (NPI). Conversely,
ESRRγ expression was positively correlated with patients’ age and negatively
correlated with NPI. ESRRα and ESRRγ expression were significantly
associated with tumor grade, expression of hormone receptors, human
epidermal growth factor receptor 2 (HER2), and molecular subtype, whereas
ESRRβ was only associated with tumor stage. A significant and distinct
association of each of ESRRs CNA with various clinicopathologic and
prognostic factors was also observed. Kaplan–Meier survival analysis
demonstrated no significant difference for survival curves among BC patients
with high or low expression of ESRRα, β, or γ. On stratification, high ESRRα
expression significantly reduced survival among premenopausal patients,
patients with grade I/II, and early-stage disease. In BC cell lines, only
ESRRα expression was significantly higher in HER2-positive cells. No
significant association was observed between ESRRβ expression and any of the
clinicopathologic characteristics examined. Conclusions: In this clinical dataset, ESRRα and ESRRγ mRNA expression and CNA show a
significant correlation and association with distinct clinicopathologic and
prognostic parameters known to influence treatment outcomes; however, ESRRβ
failed to show a robust role in BC pathogenesis. ESRRα and ESRRγ can be
employed as therapeutic targets in BC-targeted therapy. However, the role of
ESRRβ in BC pathogenesis remains unclear.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, University of Charleston, Charleston, WV, USA
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Amer E Alkhalifa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Dalia R Ibrahim
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
17
|
Kamada S, Takeiwa T, Ikeda K, Horie K, Inoue S. Emerging Roles of COX7RP and Mitochondrial Oxidative Phosphorylation in Breast Cancer. Front Cell Dev Biol 2022; 10:717881. [PMID: 35178385 PMCID: PMC8844363 DOI: 10.3389/fcell.2022.717881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolic alterations are critical events in cancers, which often contribute to tumor pathophysiology. While aerobic glycolysis is a known characteristic of cancer-related metabolism, recent studies have shed light on mitochondria-related metabolic pathways in cancer biology, including oxidative phosphorylation (OXPHOS), amino acid and lipid metabolism, nucleic acid metabolism, and redox regulation. Breast cancer is the most common cancer in women; thus, elucidation of breast cancer-related metabolic alteration will help to develop cancer drugs for many patients. We here aim to define the contribution of mitochondrial metabolism to breast cancer biology. The relevance of OXPHOS in breast cancer has been recently defined by the discovery of COX7RP, which promotes mitochondrial respiratory supercomplex assembly and glutamine metabolism: the latter is also shown to promote nucleic acid and fatty acid biosynthesis as well as ROS defense regulation. In this context, the estrogen-related receptor (ERR) family nuclear receptors and collaborating coactivators peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) are essential transcriptional regulators for both energy production and cancer-related metabolism. Summarizing recent findings of mitochondrial metabolism in breast cancer, this review will aim to provide a clue for the development of alternative clinical management by modulating the activities of responsible molecules involved in disease-specific metabolic alterations.
Collapse
Affiliation(s)
- Shuhei Kamada
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kuniko Horie
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Satoshi Inoue
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
18
|
Hyldgaard JM, Jensen JB. The Inequality of Females in Bladder Cancer. APMIS 2021; 129:694-699. [PMID: 34582047 DOI: 10.1111/apm.13183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
Urinary bladder cancer is worldwide one of the most diagnosed and costly types of cancer. One puzzle in the bladder cancer diagnosis is the disproportional relationship between genders. Males are more likely to be diagnosed with bladder cancer whereas females typically are diagnosed with more adverse disease and worse prognosis, which has led to speculation of the potential role of sex hormones and their receptors in this disease. Estrogen receptors are present in the human bladder, and their role in bladder cancer oncogenesis is increasingly becoming a focus for researchers around the world. This mini-review aims to give a brief overview of the status of female bladder cancer, and to which extend the sex hormones receptors play a role in this. A literature search was performed and included all female original studies on bladder cancer and hormone receptors. Estrogen-receptor alpha seems to be anti-oncogenic whereas estrogen-receptor beta is exhibiting its function pro-oncogenic. The receptor functions may be exercised through mRNA transcriptions and enzymes. Epidemiological studies indicate a potential increase in incidence of bladder cancer for females with earlier age at menopause, and clinical trials are investigating Tamoxifen as a potential treatment in bladder cancer. Increasing evidence supports the theory of bladder cancer development and progression as being partly hormone-dependent. This can lead to a change in conceptual background of bladder cancer etiology and development in the future. Further studies are required to more precise map the use of anti-hormonal drugs in the treatment of this cancer.
Collapse
|
19
|
Subcellular dynamics of estrogen-related receptors involved in transrepression through interactions with scaffold attachment factor B1. Histochem Cell Biol 2021; 156:239-251. [PMID: 34129097 DOI: 10.1007/s00418-021-01998-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
Estrogen-related receptor (ERR), a member of the nuclear receptor superfamily, consists of three subtypes (α, β, γ) and has strong homology with estrogen receptor. No endogenous ligands have been identified for ERRs, but they play key roles in metabolic, hormonal, and developmental processes as transcription factors without ligand binding. Although subnuclear dynamics are essential for nuclear events including nuclear receptor-mediated transcriptional regulation, the dynamics of ERRs are poorly understood. Here, we report that ERRs show subcellular kinetic changes in response to diethylstilbestrol (DES), a synthetic estrogen that represses the transactivity of all three ERR subtypes, using live-cell imaging with fluorescent protein labeling. Upon DES treatment, all ERR subtypes formed discrete clusters in the nucleus, with ERRγ also displaying nuclear export. Fluorescence recovery after photobleaching analyses revealed significant reductions in the intranuclear mobility of DES-bound ERRα and ERRβ, and a slight reduction in the intranuclear mobility of DES-bound ERRγ. After DES treatment, colocalization of all ERR subtypes with scaffold attachment factor B1 (SAFB1), a nuclear matrix-associated protein, was observed in dot-like subnuclear clusters, suggesting interactions of the ERRs with the nuclear matrix. Consistently, co-immunoprecipitation analyses confirmed enhanced interactions between ERRs and SAFB1 in the presence of DES. SAFB1 was clarified to repress the transactivity of all ERR subtypes through the ERR-response element. These results demonstrate ligand-dependent cluster formation of ERRs in the nucleus that is closely associated with SAFB1-mediated transrepression. Taken together, the present findings provide a new understanding of the pathophysiology regulated by ERR/SAFB1 signaling pathways and their subcellular dynamics.
Collapse
|
20
|
Cholesterol-Induced Metabolic Reprogramming in Breast Cancer Cells Is Mediated via the ERRα Pathway. Cancers (Basel) 2021; 13:cancers13112605. [PMID: 34073320 PMCID: PMC8198778 DOI: 10.3390/cancers13112605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary There is increasing evidence that obesity and high circulating cholesterol levels are associated with an increased risk of recurrence and a higher mortality rate in breast cancer patients via altering the metabolic programming in breast cancer cells. However, the underlying molecular mechanism by which high cholesterol levels reprogram the metabolic pathways in breast cancer cells is not well-understood. We have previously demonstrated that cholesterol acts as an endogenous agonist of estrogen-related receptor α (ERRα), a strong regulator of cellular metabolism. The aim of the current study is to demonstrate whether cholesterol/obesity mediates its pathogenic effect in breast cancer cells via altering metabolic pathways in an ERRα-dependent manner. The findings of this study provide mechanistic insights into the link between cholesterol/obesity and metabolic reprogramming in breast cancer patients and reveal the metabolic vulnerabilities in such breast cancer patients that could be therapeutically targeted. Abstract The molecular mechanism underlying the metabolic reprogramming associated with obesity and high blood cholesterol levels is poorly understood. We previously reported that cholesterol is an endogenous ligand of the estrogen-related receptor alpha (ERRα). Using functional assays, metabolomics, and genomics, here we show that exogenous cholesterol alters the metabolic pathways in estrogen receptor-positive (ER+) and triple-negative breast cancer (TNBC) cells, and that this involves increased oxidative phosphorylation (OXPHOS) and TCA cycle intermediate levels. In addition, cholesterol augments aerobic glycolysis in TNBC cells although it remains unaltered in ER+ cells. Interestingly, cholesterol does not alter the metabolite levels of glutaminolysis, one-carbon metabolism, or the pentose phosphate pathway, but increases the NADPH levels and cellular proliferation, in both cell types. Importantly, we show that the above cholesterol-induced modulations of the metabolic pathways in breast cancer cells are mediated via ERRα. Furthermore, analysis of the ERRα metabolic gene signature of basal-like breast tumours of overweight/obese versus lean patients, using the GEO database, shows that obesity may modulate ERRα gene signature in a manner consistent with our in vitro findings with exogenous cholesterol. Given the close link between high cholesterol levels and obesity, our findings provide a mechanistic explanation for the association between cholesterol/obesity and metabolic reprogramming in breast cancer patients.
Collapse
|
21
|
Li Z, Jiang J, Yi X, Wang G, Wang S, Sun X. miR-18b regulates the function of rabbit ovary granulosa cells. Reprod Fertil Dev 2021; 33:363-371. [PMID: 33641714 DOI: 10.1071/rd20237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/17/2021] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) have been determined to participate in the process of oestradiol production. Generally, there are two pathways by which oestradiol levels change, one being the state of cells (i.e. the status of enzymes involved in the synthesis of hormones such as oestradiol) and the other being the number of cells that secrete oestradiol. It is known that oestrogens are the main steroids produced by granulosa cells (GCs) of mature ovarian follicles. In this study we explored the function of miR-18b in rabbit GCs by overexpressing or inhibiting its activity. We found that miR-18b silencing promoted the secretion of oestradiol by significantly affecting the expression of steroidogenesis-related genes. Thus, miR-18b may act as a negative regulator of the production of enzymes related to oestradiol synthesis and affect oestradiol production. Furthermore, the effects of miR-18b on the proliferation, cell cycle and apoptosis of GCs were investigated using a cell counting kit (CCK-8) proliferation assay, detection of annexin V-fluorescein isothiocyanate apoptosis, flow cytometry and quantitative polymerase chain reaction. The results showed that miR-18b upregulated GC apoptosis (miR-18b overexpression decreases cell growth and stimulates apoptosis). These findings suggest that miR-18b and the oestrogen receptor 1 (ESR1) gene may be attractive targets to further explore the molecular regulation of GCs. The miR-18b may also explain, in part, the abnormal folliculogenesis in mammals caused by conditions such as polycystic ovary syndrome, primary ovarian insufficiency, and others.
Collapse
Affiliation(s)
- Ze Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Junyi Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Guoyan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, PR China; and Corresponding author.
| |
Collapse
|
22
|
Zhong Y, He K, Shi L, Chen L, Zhou B, Ma R, Yu H, Zhang J, Shuai Y, Fei Y, Lu J. Down-regulation of estrogen-related receptor alpha (ERRα) inhibits gastric cancer cell migration and invasion in vitro and in vivo. Aging (Albany NY) 2021; 13:5845-5857. [PMID: 33591949 PMCID: PMC7950300 DOI: 10.18632/aging.202508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the correlation between estrogen-related receptor a (ERRα) expression level and gastric cancer (GC). METHODS We collected GC and adjacent normal tissues from 50 patients. The parameters of the patients were summarized, and correlation with the expression level of ERRα was calculated. Downregulated ERRα using lentivirus was designed and transfected to SGC-7901 and MGC-803 cells. Cell migration, invasion and wound assays were conducted to determine the correlation between ERRα and capacity for cell migration and invasion. The expression level of the genes involved in epithelial-mesenchymal transition, including E-cadherin, γ-catenin, N-cadherin and vimentin, was determined via real-time or quantitative polymerase chain reaction(qPCR) and Western blot analysis. RESULTS The expression of ERRα tends to be higher in GC tissues than in adjacent normal tissues. Analyses ofthe expression level of ERRα and patient parameters show that the ERRα level is significantly correlated with TNM staging and patient survival (P<0.05). The downregulation of ERRα can inhibit cell invasion and migration, which was proven by Transwell and cell wound assays. The levels of E-cadherin and γ-catenin increased by conducting qPCR and Western blot analysis. Meanwhile, the levels of N-cadherin and vimentin decreased when ERRα expression was reduced. CONCLUSION ERRα is highly expressed in GC tissues and can promote the migration and invasion of cancer cells. It can be a potential marker for GC diagnosis.
Collapse
Affiliation(s)
- Yuejiao Zhong
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Kang He
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Lin Shi
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
- Department of Oncology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, Jiangsu Province, China
| | - Lingxiang Chen
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Bin Zhou
- Department of General Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Rong Ma
- Department of Central Lab, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Hui Yu
- Department of Invasive Technology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Jia Zhang
- Department of Imaging, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Yan Fei
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, Jiangsu Province, China
- Department of Oncology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, Jiangsu Province, China
| |
Collapse
|
23
|
Treeck O, Schüler-Toprak S, Ortmann O. Estrogen Actions in Triple-Negative Breast Cancer. Cells 2020; 9:cells9112358. [PMID: 33114740 PMCID: PMC7692567 DOI: 10.3390/cells9112358] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) lacks estrogen receptor (ER) α, but the expression of estrogen receptors ERβ and G protein-coupled estrogen receptor 1 (GPER-1) is able to trigger estrogen-responsivity in TNBC. Estrogen signaling in TNBC can also be activated and modulated by the constitutively active estrogen-related receptors (ERRs). In this review article, we discuss the role of ERβ and GPER-1 as mediators of E2 action in TNBC as well as the function of ERRs as activators and modulators of estrogen signaling in this cancer entity. For this purpose, original research articles on estrogen actions in TNBC were considered, which are listed in the PubMed database. Additionally, we performed meta-analyses of publicly accessible integrated gene expression and survival data to elucidate the association of ERβ, GPER-1, and ERR expression levels in TNBC with survival. Finally, options for endocrine therapy strategies for TNBC were discussed.
Collapse
|
24
|
Park SA, Sung NJ, Choi BJ, Kim W, Kim SH, Surh YJ. Gremlin-1 augments the oestrogen-related receptor α signalling through EGFR activation: implications for the progression of breast cancer. Br J Cancer 2020; 123:988-999. [PMID: 32572171 PMCID: PMC7493948 DOI: 10.1038/s41416-020-0945-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 02/04/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Gremlin-1 (GREM1), one of the bone morphogenetic protein antagonists, is involved in organogenesis, tissue differentiation and kidney development. However, the role of GREM1 in cancer progression and its underlying mechanisms remain poorly understood. METHODS The role of GREM1 in breast cancer progression was assessed by measuring cell viability, colony formation, 3D tumour spheroid formation/invasion and xenograft tumour formation. Chromatin immunoprecipitation, a luciferase reporter assay and flow cytometry were performed to investigate the molecular events in which GREM1 is involved. RESULTS GREM1 expression was elevated in breast cancer cells and tissues obtained from breast cancer patients. Its overexpression was associated with poor prognosis in breast cancer patients, especially those with oestrogen receptor (ER)-negative tumours. GREM1 knockdown inhibited the proliferation of breast cancer cells and xenograft mammary tumour growth, while its overexpression enhanced their viability, growth and invasiveness. Oestrogen-related receptor α (ERRα), an orphan nuclear hormone receptor, directly interacted with the GREM1 promoter and increased the expression of GREM1. GREM1 also enhanced the promoter activity of ESRRA encoding ERRα, comprising a positive feedback loop. Notably, GREM1 bound to and activated EGFR, a well-known upstream regulator of ERRα. CONCLUSIONS Our study suggests that the GREM1-ERRα axis can serve as a potential therapeutic target in the management of cancer, especially ER-negative tumour.
Collapse
Affiliation(s)
- Sin-Aye Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, South Korea
| | - Nam Ji Sung
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, 31538, South Korea
| | - Bae-Jung Choi
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Wonki Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Seung Hyeon Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|
25
|
Brindisi M, Fiorillo M, Frattaruolo L, Sotgia F, Lisanti MP, Cappello AR. Cholesterol and Mevalonate: Two Metabolites Involved in Breast Cancer Progression and Drug Resistance through the ERRα Pathway. Cells 2020; 9:E1819. [PMID: 32751976 PMCID: PMC7465765 DOI: 10.3390/cells9081819] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the second greatest cause of cancer-related death in women. Resistance to endocrine treatments or chemotherapy is a limiting drawback. In this context, this work aims to evaluate the effects of cholesterol and mevalonate during tumor progression and their contribution in the onset of resistance to clinical treatments in use today. In this study, we demonstrated that cholesterol and mevalonate treatments were able to activate the estrogen-related receptor alpha (ERRα) pathway, increasing the expression levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), ERbB2/human epithelial receptor (HER2), tumor protein D52 (TPD52), and NOTCH2 proteins in breast cancer cells. The activation of this pathway is shown to be responsible for intense metabolic switching, higher proliferation rates, sustained motility, the propagation of cancer stem-like cells (CSCs), and lipid droplet formation. All of these events are related to greater tumor propagation, aggressiveness, and drug resistance. Furthermore, the activation and expression of proteins induced by the treatment with cholesterol or mevalonate are consistent with those obtained from the MCF-7/TAMr cell line, which is largely used as a breast cancer model of acquired endocrine therapy resistance. Altogether, our data indicate that cholesterol and mevalonate are two metabolites implicated in breast cancer progression, aggressiveness, and drug resistance, through the activation of the ERRα pathway. Our findings enable us to identify the ERRα receptor as a poor prognostic marker in patients with breast carcinoma, suggesting the correlation between cholesterol/mevalonate and ERRα as a new possible target in breast cancer treatment.
Collapse
Affiliation(s)
- Matteo Brindisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (M.B.); (M.F.); (L.F.)
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (M.B.); (M.F.); (L.F.)
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester M5 4WT, UK
| | - Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (M.B.); (M.F.); (L.F.)
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester M5 4WT, UK
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and the Environment (SEE), University of Salford, Greater Manchester M5 4WT, UK
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (M.B.); (M.F.); (L.F.)
| |
Collapse
|
26
|
Ghanbari F, Mader S, Philip A. Cholesterol as an Endogenous Ligand of ERRα Promotes ERRα-Mediated Cellular Proliferation and Metabolic Target Gene Expression in Breast Cancer Cells. Cells 2020; 9:E1765. [PMID: 32717915 PMCID: PMC7463712 DOI: 10.3390/cells9081765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/26/2020] [Accepted: 07/15/2020] [Indexed: 01/20/2023] Open
Abstract
Breast cancer is the 2nd leading cause of cancer-related death among women. Increased risk of breast cancer has been associated with high dietary cholesterol intake. However, the underlying mechanisms are not known. The nuclear receptor, estrogen-related receptor alpha (ERRα), plays an important role in breast cancer cell metabolism, and its overexpression has been linked to poor survival. Here we identified cholesterol as an endogenous ligand of ERRα by purification from human pregnancy serum using a GST-ERRα affinity column and liquid chromatography-tandem mass spectrometry (LC-MS/MS). We show that cholesterol interacts with ERRα and induces its transcriptional activity in estrogen receptor positive (ER+) and triple negative breast cancer (TNBC) cells. In addition, we show that cholesterol enhances ERRα-PGC-1α interaction, induces ERRα expression itself, augments several metabolic target genes of ERRα, and increases cell proliferation and migration in both ER+ and TNBC cells. Furthermore, the stimulatory effect of cholesterol on metabolic gene expression, cell proliferation, and migration requires the ERRα pathway. These findings provide a mechanistic explanation for the increased breast cancer risk associated with high dietary cholesterol and possibly the pro-survival effect of statins in breast cancer patients, highlighting the clinical relevance of lowering cholesterol levels in breast cancer patients overexpressing ERRα.
Collapse
Affiliation(s)
- Faegheh Ghanbari
- Division of Plastic Surgery, Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC H3G 1A4, Canada;
| | - Sylvie Mader
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3C 1J7, Canada;
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC H3G 1A4, Canada;
| |
Collapse
|
27
|
Zheng ZG, Cheng HM, Zhou YP, Zhu ST, Thu PM, Li HJ, Li P, Xu X. Dual targeting of SREBP2 and ERRα by carnosic acid suppresses RANKL-mediated osteoclastogenesis and prevents ovariectomy-induced bone loss. Cell Death Differ 2020; 27:2048-2065. [PMID: 31907393 PMCID: PMC7308277 DOI: 10.1038/s41418-019-0484-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Osteoporosis develops because of impaired bone formation and/or excessive bone resorption. Several pharmacological treatment of osteoporosis has been developed; however, new treatments are still necessary. Cholesterol and estrogen receptor-related receptor alpha (ERRα) promote osteoclasts formation, survival, and cellular fusion and thus become high risk factors of osteoporosis. In this study, we identified that carnosic acid (CA) suppressed bone loss by dual-targeting of sterol regulatory element-binding protein 2 (SREBP2, a major regulator that regulates cholesterol synthesis) and ERRα. Mechanistically, CA reduced nuclear localization of mature SREBP2 and suppressed de novo biogenesis of cholesterol. CA subsequently decreased the interaction between ERRα and peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1β), resulting in decreased the transcription activity of ERRα and its target genes expression. Meanwhile, CA directly bound to the ligand-binding domain of ERRα and significantly promoted its ubiquitination and proteasomal degradation. Subsequently, STUB1 was identified as the E3 ligase of ERRα. The lysine residues (K51 and K68) are essential for ubiquitination and proteasomal degradation of ERRα by CA. In conclusion, CA dually targets SREBP2 and ERRα, thus inhibits the RANKL-induced osteoclast formation and improves OVX-induced bone loss. CA may serve as a lead compound for pharmacological control of osteoporosis.
Collapse
Affiliation(s)
- Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hui-Min Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ya-Ping Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Si-Tong Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Pyone Myat Thu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
28
|
Simond AM, Muller WJ. In vivo modeling of the EGFR family in breast cancer progression and therapeutic approaches. Adv Cancer Res 2020; 147:189-228. [PMID: 32593401 DOI: 10.1016/bs.acr.2020.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modeling breast cancer through the generation of genetically engineered mouse models (GEMMs) has become the gold standard in the study of human breast cancer. Notably, the in vivo modeling of the epidermal growth factor receptor (EGFR) family has been key to the development of therapeutics and has helped better understand the signaling pathways involved in cancer initiation, progression and metastasis. The HER2/ErbB2 receptor is a member of the EGFR family and 20% of breast cancers are found to belong in the HER2-positive histological subtype. Historical and more recent advances in the field have shaped our understanding of HER2-positive breast cancer signaling and therapeutic approaches.
Collapse
Affiliation(s)
- Alexandra M Simond
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada; Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
29
|
Wang L, Yang M, Guo X, Yang Z, Liu S, Ji Y, Jin H. Estrogen-related receptor-α promotes gallbladder cancer development by enhancing the transcription of Nectin-4. Cancer Sci 2020; 111:1514-1527. [PMID: 32030850 PMCID: PMC7226197 DOI: 10.1111/cas.14344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 01/01/2023] Open
Abstract
Estrogen-related receptor-α (ERRα) is a nuclear receptor of transcription factor that binds to estrogen responsive elements and estrogen-related responsive elements. Estrogen-related receptor-α is involved in metabolic processes and implicated in the progression and growth of several human malignancies. However, the biologic role and clinical significance of ERRα in gallbladder cancer (GBC) remains to be clarified. Here, we reported that ERRα protein expression was notably higher in GBC tissues than in cholecystitis tissues, and that the aberrantly higher ERRα expression was positively correlated with advanced TNM stage and indicated dismal prognosis of GBC (P < .01). In GBC cell lines NOZ and OCUG, the targeted depletion of ERRα retarded the growth and suppressed the migration and invasive capabilities of GBC cells, and inhibited epithelial-mesenchymal transition by decreasing the expression of mesenchymal markers and elevating the expression of epithelial markers. Moreover, ERRα knockdown inhibited tumor growth in nude mice and led to decreased expression levels of Nectin-4, p-PI3K p85α, and p-AKT. Overexpression of ERRα in the GBC-SD cell line showed exactly the opposite effect. The targeted inhibition of Nectin-4 antagonized GBC cell proliferation and invasion, which were induced by ERRα upregulation. Moreover, Nectin-4 depletion inhibited the ERRα-induced activation of the PI3K/AKT pathway. Chromatin immunoprecipitation analysis and dual-luciferase reporter gene assays showed that ERRα enhanced the transcription of Nectin-4 by binding to the promoter of Nectin-4. In conclusion, our data indicated that ERRα could be a potential target for the genetic treatment of GBC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Hepatopancreatobiliary SurgeryThe Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical UniversityWuxiChina
| | - MengMeng Yang
- Jiangsu Provincial Key Laboratory on Parasite and Vector Control TechnologyJiangsu Institute of Parasitic DiseasesWuxiChina
| | - Xingmei Guo
- Department of Hepatopancreatobiliary SurgeryThe Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical UniversityWuxiChina
| | - Ziyi Yang
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shilei Liu
- Department of General Surgery and Laboratory of General SurgeryXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuan Ji
- Department of Hepatopancreatobiliary SurgeryThe Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical UniversityWuxiChina
| | - Huihan Jin
- Department of Hepatopancreatobiliary SurgeryThe Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical UniversityWuxiChina
| |
Collapse
|
30
|
Long W, Wu J, Shen G, Zhang H, Liu H, Xu Y, Gu J, Jia L, Lin Y, Xia Q. Estrogen-related receptor participates in regulating glycolysis and influences embryonic development in silkworm Bombyx mori. INSECT MOLECULAR BIOLOGY 2020; 29:160-169. [PMID: 31566836 DOI: 10.1111/imb.12619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/04/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Estrogen-related receptors (ERRs) play indispensable roles in development, energy metabolism, and cancers and are metabolic switches in Drosophila. However, the mechanism underlying their metabolic role is unknown in insects. This study analysed the expression profiles of Bombyx mori ERR (BmERR), hexokinase (BmHK), pyruvate kinase (BmPK) and phosphofructokinase (BmPFK) during embryonic development. The expression of BmERR tended to be similar to that of the other genes. We observed a regulatory association between BmERR and glycolytic rate-limiting enzymes by BmERR overexpression, RNA interference (RNAi), and ERR inhibitors in B. mori embryo cells. Subsequently, ERR cis-regulation elements (ERREs) were predicted and identified in the BmPFK promoter. Transfection assays, electrophoretic mobility shift assays and chromatin immunoprecipitation showed that BmERR can bind to one of these elements to regulate the expression of BmPFK. ERREs were also predicted in the BmHK and BmPK promoters. In the eggs, the expression of glycolytic rate-limiting enzyme genes was suppressed when the expression of BmERR was interference by double-stranded BmERR, the glucose levels also was increased. Meanwhile, the development of silkworm embryos was delayed by about 1 day. These results indicate that BmERR can bind to the ERREs of glycolytic gene promoters and regulate the expression of glycolytic genes, ultimately affecting embryonic development in silkworms.
Collapse
Affiliation(s)
- W Long
- Biological Science Research Center Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
| | - J Wu
- Biological Science Research Center Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
| | - G Shen
- Biological Science Research Center Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - H Zhang
- Biological Science Research Center Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
| | - H Liu
- Biological Science Research Center Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
| | - Y Xu
- Biological Science Research Center Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
| | - J Gu
- Biological Science Research Center Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
| | - L Jia
- Biological Science Research Center Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
| | - Y Lin
- Biological Science Research Center Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Q Xia
- Biological Science Research Center Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| |
Collapse
|
31
|
Li X, Zhang K, Hu Y, Luo N. ERRα activates SHMT2 transcription to enhance the resistance of breast cancer to lapatinib via modulating the mitochondrial metabolic adaption. Biosci Rep 2020; 40:BSR20192465. [PMID: 31894856 PMCID: PMC6970080 DOI: 10.1042/bsr20192465] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Lapatinib, a tyrosine kinase inhibitor, can initially benefit the patients with breast tumors but fails in later treatment due to the inevitable development of drug resistance. Estrogen-related receptor α (ERRα) modulates the metabolic adaptations in lapatinib-resistant cancer cells; however, the underlying mechanism remains unclear. ERRα was predicted to bind to the serine hydroxymethyltransferase 2 (SHMT2) transcription initiation site in the ER- and HER2-positive cell line BT-474; thus, we hypothesize that ERRα might modulate the resistance of breast cancer to lapatinib via regulating SHMT2. In the present study, we revealed that 2.5 and 5 µM lapatinib treatment could significantly decrease the expression and protein levels of ERRα and SHMT2; ERRα and SHMT2 expression and protein levels were significantly up-regulated in breast cancer cells, in particularly in breast cancer cells with resistance to lapatinib. ERRα knockdown restored the inhibitory effects of lapatinib on the BT-474R cell viability and migration; in the meantime, ERRα knockdown rescued the production of reactive oxygen species (ROS) whereas decreased the ratio of glutathione (GSH)/oxidized glutathione (GSSG) upon lapatinib treatment. Via targeting SHMT2 promoter region, ERRα activated the transcription of SHMT2. The effects of ERRα knockdown on BT-474R cells under lapatinib treatment could be significantly reversed by SHMT2 overexpression. In conclusion, ERRα knockdown suppresses the detoxification and the mitochondrial metabolic adaption in breast cancer resistant to lapatinib; ERRα activates SHMT2 transcription via targeting its promoter region, therefore enhancing breast cancer resistance to lapatinib.
Collapse
Affiliation(s)
- Xin Li
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kejing Zhang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yu Hu
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Na Luo
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
32
|
Karnati KR, Wang Y, Du Y. Exploring the binding mode and thermodynamics of inverse agonists against estrogen-related receptor alpha. RSC Adv 2020; 10:16659-16668. [PMID: 35498853 PMCID: PMC9053173 DOI: 10.1039/c9ra10697a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Since estrogen-related receptor alpha (ERRα), one of three estrogen-related receptors, displays constitutively active transcriptional activities and important implications in both physiological and pathological processes of breast cancers, ERRα was recently recognized as a new target to fight breast cancers, and regulating the activity of ERRα with inverse agonists has thus become a promising new therapeutic strategy. A few inverse agonists cyclohexylmethyl-(1-p-tolyl-1H-indol-3-ylmethyl)-amine (compound 1), thiadiazoacrylamide (XCT790), and 1-(2,5-diethoxy-benzyl)-3-phenyl-area analogues (compounds 2 and 3) were reported to be capable of targeting ERRα. However, the detailed mechanism by which the inverse agonists deactivate ERRα remains unclear, especially in the aspects of quantitative binding and hot spot residues. Therefore, to gain insights into the interaction modes between inverse agonists and ERRα ligand binding domain, all-atom molecular dynamics (MD) simulations were firstly carried out for the complexes of inverse agonists and ERRα. The binding free energies were then calculated with MM-PBSA method to quantitatively discuss the binding of the inverse agonists with ERRα. The binding affinities were finally decomposed to per-residue contributions to identify the hot spot residues as well as assess their role in the binding mechanism. MD simulations show that the inverse agonists stretch downwards into the ERRα ligand binding pocket (LBP) formed by H3 and H11 helices, and upon the binding H12 adopts a well-defined position in the coactivator groove, where PGC-1α binds to ERRα. Binding energy analysis indicates that compound 3 and XCT790 bind more tightly to ERRα than compounds 1 and 2, and the energy difference mainly results from the contribution of van der Waals interaction. Both binding mode analysis and affinity decomposition per-residue indicate that compound 1, XCT790, and compound 3 have similar binding spectra to ERRα, primarily interacting with the residues of H3, H5, H6/H7 loop, and H11 helix, while compound 2 lacks a significant interaction with the H5 region. The hot spot residues significantly binding to the three inverse agonists in common include Leu324, Phe328, Phe382, Leu398, Phe495, and Leu500. It is essential for an effective inverse agonist to strongly bind with the aromatic ring cluster consisting of Phe328(H3), Phe495(H11), and Phe382(H5/H6 loop) as well as Leu500. All-atom MD simulations were for the first time carried out for the complexes of inverse agonists and ERRα, and their binding free energies were also calculated with MM-PBSA to quantitatively discuss the binding of the inverse agonists with ERRα.![]()
Collapse
Affiliation(s)
- Konda Reddy Karnati
- Department of Chemistry and Forensic Science
- Albany State University
- Albany
- USA
| | - Yixuan Wang
- Department of Chemistry and Forensic Science
- Albany State University
- Albany
- USA
| | - Yongli Du
- School of Chemical and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan
- China
| |
Collapse
|
33
|
Thouennon E, Delfosse V, Bailly R, Blanc P, Boulahtouf A, Grimaldi M, Barducci A, Bourguet W, Balaguer P. Insights into the activation mechanism of human estrogen-related receptor γ by environmental endocrine disruptors. Cell Mol Life Sci 2019; 76:4769-4781. [PMID: 31127318 PMCID: PMC11105698 DOI: 10.1007/s00018-019-03129-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022]
Abstract
The estrogen-related receptor γ (ERRγ, NR3B3) is a constitutively active nuclear receptor which has been proposed to act as a mediator of the low-dose effects of a number of environmental endocrine-disrupting chemicals (EDCs) such as the xenoestrogen bisphenol-A (BPA). To better characterize the ability of exogenous compounds to bind and activate ERRγ, we used a combination of cell-based, biochemical, structural and computational approaches. A purposely created stable cell line allowed for the determination of the EC50s for over 30 environmental ERRγ ligands, including previously unknown ones. Interestingly, affinity constants (Kds) of the most potent compounds measured by isothermal titration calorimetry were in the 50-500 nM range, in agreement with their receptor activation potencies. Crystallographic analysis of the interaction between the ERRγ ligand-binding domain (LBD) and compounds of the bisphenol, alkylphenol and naphthol families revealed a partially shared binding mode and minimal alterations of the receptor conformation upon ligand binding. Further biophysical characterizations coupled to molecular dynamics simulations suggested a mechanism through which ERRγ ligands would exhibit their agonistic properties by preserving the transcriptionally active form of the receptor while rigidifying some loop regions with associated functions. This unique mechanism contrasts with the classical one involving a ligand-induced repositioning and stabilization of the C-terminal activation helix H12.
Collapse
Affiliation(s)
- Erwan Thouennon
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm, Univ Montpellier, ICM, Montpellier, France
| | - Vanessa Delfosse
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Rémy Bailly
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Pauline Blanc
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm, Univ Montpellier, ICM, Montpellier, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm, Univ Montpellier, ICM, Montpellier, France
| | - Alessandro Barducci
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - William Bourguet
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Univ Montpellier, Montpellier, France.
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm, Univ Montpellier, ICM, Montpellier, France.
| |
Collapse
|
34
|
Li P, Wang J, Wu D, Ren X, Wu W, Zuo R, Zeng Q, Wang B, He X, Yuan J, Xie N. ERRα is an aggressive factor in lung adenocarcinoma indicating poor prognostic outcomes. Cancer Manag Res 2019; 11:8111-8123. [PMID: 31564971 PMCID: PMC6730612 DOI: 10.2147/cmar.s204732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose Lung cancer is one of the most life-threatening cancer worldwide with poor prognosis attributed to the lack of early diagnosis and proper therapy. The estrogen-related receptor alpha (ERRα) is a multifunctional protein not limited to bind ligands and has been reported to be associated with numerous cancers. This study aimed to investigate the potential role of ERRα in lung cancer and to provide a novel perspective for lung cancer early diagnosis, targeted therapy, and prognosis assessment. Methods The correlation between ERRα mRNA expression and survival time of the online clinical data about lung cancer was analyzed by using Kaplan–Meier (KM) plotter. A mouse model of lung adenocarcinoma (LUAD) was constructed to detect the expression level of ERRα in tumor tissues. ERRα-knockdown LUAD cells were generated and the impacts of ERRα on cell proliferation, invasion, and metastasis were further analyzed. Cancerous and paracancerous tissues were collected to semi-quantitative the levels of ERRα in LUAD clinical samples (n=88), combined with clinical information for prognostic analysis. Results The KM plotter analysis suggested that ERRα is correlated with poor prognosis in LUAD (n=720) rather than in lung squamous cell carcinoma (LSCC) (n=524). ERRα is also upregulated in tumor tissues obtained from LUAD model mice. Quantitative analysis suggested an abnormal elevation of ERRα in LUAD cells rather than in LSCC cells. The results demonstrated that downregulation of ERRα impairs proliferation, invasion and migration abilities (P<0.01). The prognostic analysis showed that the overexpressed ERRα in LUAD was positively correlated with low survival rates (HR=1.597). The results indicate that the death risk of ERRα high expression is 1.597 times higher than ERRα low level in LUAD patients. Conclusion In summary, our findings suggest that ERRα is a potential aggressive factor of LUAD which implies poor prognosis.
Collapse
Affiliation(s)
- Ping Li
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People's Republic of China.,Department of Medicine, University of South China, Hengyang 421001, People's Republic of China.,Department of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518035, People's Republic of China
| | - Jian Wang
- Department of Thoracic Surgery, The Shenzhen People's Hospital, Shenzhen 518020, People's Republic of China
| | - Desheng Wu
- Department of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518035, People's Republic of China
| | - Xiaohu Ren
- Department of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518035, People's Republic of China
| | - Wen Wu
- Department of Medicine, University of South China, Hengyang 421001, People's Republic of China.,Department of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518035, People's Republic of China
| | - Ran Zuo
- Department of Medicine, University of South China, Hengyang 421001, People's Republic of China
| | - Qingbo Zeng
- Department of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518035, People's Republic of China
| | - Bingyu Wang
- Department of Medicine, University of South China, Hengyang 421001, People's Republic of China
| | - Xi He
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People's Republic of China
| | - Jianhui Yuan
- Department of Medicine, University of South China, Hengyang 421001, People's Republic of China.,Department of Occupational Health, Shenzhen Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, People's Republic of China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People's Republic of China.,Department of Medicine, University of South China, Hengyang 421001, People's Republic of China
| |
Collapse
|
35
|
Ye X, Guo J, Zhang H, Meng Q, Ma Y, Lin R, Yi X, Lu H, Bai X, Cheng J. The enhanced expression of estrogen-related receptor α in human bladder cancer tissues and the effects of estrogen-related receptor α knockdown on bladder cancer cells. J Cell Biochem 2019; 120:13841-13852. [PMID: 30977157 DOI: 10.1002/jcb.28657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 01/15/2023]
Abstract
Estrogen-related receptor α (ERRα) belongs to the superfamily of nuclear orphan receptors. However, the role of ERRα in bladder cancer remains unknown. This study examined the expression of ERRα in bladder cancer tissues and explored the molecular mechanisms of ERRα in bladder cancer progression. The expression of ERRα in bladder cancer tissues from 61 patients was determined by immunohistochemistry. We performed quantitative real-time polymerase chain reaction assay to detect the gene expression levels and carried out Western blot assay to measure protein levels. In vitro functional assays, including colony formation, Cell Counting Kit-8, Transwell invasion, and migration assays, were performed to detect bladder cancer cell growth, proliferation, invasion, and migration, respectively. Flow cytometry was used to determine the cell apoptotic rate of bladder cancer cells. Among the 61 detected bladder cancer tissues, 39 bladder cancer tissues showed positive ERRα immunoreactivity. Higher ERRα immunoreactivity score was significantly associated with TNM stage, tumor grade, distant metastasis, and poor survival in patients with bladder cancer. Univariate and multivariate analyses showed that ERRα immunoreactivity was an independent prognostic factor for overall survival in patients with bladder cancer. ERRα was found to be upregulated in bladder cancer cell lines, and knockdown of ERRα suppressed bladder cancer cell growth, proliferation, invasion, and migration; promoted bladder cancer cell apoptosis; and inhibited the epithelial-mesenchymal transition of bladder cancer cells. On the other hand, bladder cancer cell proliferation, invasion, and migration were significantly enhanced after cells were transfected with an ERRα-overexpressing vector. In vivo tumor growth and metastasis assays showed that ERRα knockdown resulted in remarkable inhibition of tumor growth and tumor metastasis in nude mice. Collectively, our results suggest that the enhanced expression of ERRα may play a key role in the development and progression of bladder cancer and ERRα may serve as an important prognostic factor for bladder cancer.
Collapse
Affiliation(s)
- Xinqing Ye
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen Minimally Invasive Engineering Center, Shenzhen, China
- Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Hongxiang Zhang
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qinggui Meng
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Ma
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rui Lin
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xianlin Yi
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haoyuan Lu
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xianzhong Bai
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiwen Cheng
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
36
|
Dattilo MA, Benzo Y, Herrera LM, Prada JG, Castillo AF, Orlando UD, Podesta EJ, Maloberti PM. Regulatory mechanisms leading to differential Acyl-CoA synthetase 4 expression in breast cancer cells. Sci Rep 2019; 9:10324. [PMID: 31311992 PMCID: PMC6635356 DOI: 10.1038/s41598-019-46776-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Acyl-CoA synthetase 4 (ACSL4) overexpression plays a causal role in the aggressiveness of triple negative breast cancer. In turn, a negative correlation has been established between ACSL4 and estrogen receptor alpha (ERα) expression. However, the upstream regulatory mechanisms leading to differential ACSL4 expression between triple negative breast cancer and ERα-positive cells remained unknown. We performed the characterization of the human ACSL4 promoter and the identification of transcription factors involved. Deletional analysis demonstrated the proximal 43 base pairs of the promoter are involved in overexpression. By site directed mutagenesis we describe that retinoid-related orphan receptor alpha (RORα), Sp1 and E2F elements are involved in the promoter activity. We established for the first time that estrogen-related receptor alpha (ERRα) is a transcription factor involved in the higher activation of the human ACSL4 promoter in breast cancer cells. Furthermore, a combination of inhibitors of ACSL4 and ERRα produced a synergistic decrease in MDA-MB-231 cell proliferation. We also demonstrated that ERα restoration in triple negative breast cancer cells downregulates ACSL4 expression. The results presented in this manuscript demonstrated transcriptional mechanism is involved in the different expression of ACSL4 in human breast cancer cell lines of different aggressiveness.
Collapse
Affiliation(s)
- Melina A Dattilo
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine, University of Buenos Aires, CABA, Buenos Aires, Argentina
| | - Yanina Benzo
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine, University of Buenos Aires, CABA, Buenos Aires, Argentina
| | - Lucía M Herrera
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine, University of Buenos Aires, CABA, Buenos Aires, Argentina
| | - Jesica G Prada
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine, University of Buenos Aires, CABA, Buenos Aires, Argentina
| | - Ana F Castillo
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine, University of Buenos Aires, CABA, Buenos Aires, Argentina
| | - Ulises D Orlando
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine, University of Buenos Aires, CABA, Buenos Aires, Argentina
| | - Ernesto J Podesta
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine, University of Buenos Aires, CABA, Buenos Aires, Argentina
| | - Paula M Maloberti
- Biomedical Research Institute, INBIOMED, Department of Biochemistry, School of Medicine, University of Buenos Aires, CABA, Buenos Aires, Argentina.
| |
Collapse
|
37
|
Reina J, Zhou L, Fontes MRM, Panté N, Cella N. Identification of a putative nuclear localization signal in the tumor suppressor maspin sheds light on its nuclear import regulation. FEBS Open Bio 2019; 9:1174-1183. [PMID: 31144423 PMCID: PMC6609763 DOI: 10.1002/2211-5463.12626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor activity of maspin (mammary serine protease inhibitor) has been associated with its nuclear localization. In this study we explore the regulation of maspin nuclear translocation. An in vitro nuclear import assay suggested that maspin can passively enter the nucleus. However, in silico analysis identified a putative maspin nuclear localization signal (NLS), which was able to mediate the nuclear translocation of a chimeric protein containing this NLS fused to five green fluorescent protein molecules in tandem (5GFP). Dominant‐negative Ran‐GTPase mutants RanQ69L or RanT24N suppressed this process. Unexpectedly, the full‐length maspin fused to 5GFP failed to enter the nucleus. As maspin's putative NLS is partially hidden in its three‐dimensional structure, we suggest that maspin nuclear transport could be conformationally regulated. Our results suggest that maspin nuclear translocation involves both passive and active mechanisms.
Collapse
Affiliation(s)
- Jeffrey Reina
- Department of Cell and Developmental Biology, Institute of Biomedical Science of University of São Paulo, Brazil
| | - Lixin Zhou
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Marcos R M Fontes
- Department of Physics and Biophysics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Nelly Panté
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Nathalie Cella
- Department of Cell and Developmental Biology, Institute of Biomedical Science of University of São Paulo, Brazil
| |
Collapse
|
38
|
Peng L, Zhang Z, Lei C, Li S, Zhang Z, Ren X, Chang Y, Zhang Y, Xu Y, Ding K. Identification of New Small-Molecule Inducers of Estrogen-related Receptor α (ERRα) Degradation. ACS Med Chem Lett 2019; 10:767-772. [PMID: 31097997 DOI: 10.1021/acsmedchemlett.9b00025] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
A series of (E)-3-(4-((2,4-bis(trifluoromethyl)benzyl)oxy)-3-methoxyphenyl)-2-cyanoacrylamide derivatives were designed and synthesized as new estrogen-related receptor α (ERRα) degraders based on the proteolysis targeting chimera (PROTAC) concept. One of the representative compounds 6c is capable of specifically degrading ERRα protein by >80% at a relatively low concentration of 30 nM, becoming one of the most potent and selective ERRα degraders to date. Compound 6c could be utilized as a new powerful research tool for further biological investigation of ERRα.
Collapse
Affiliation(s)
- Lijie Peng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhensheng Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chong Lei
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shan Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaomei Ren
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yu Chang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yan Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yong Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
39
|
Yoriki K, Mori T, Kokabu T, Matsushima H, Umemura S, Tarumi Y, Kitawaki J. Estrogen-related receptor alpha induces epithelial-mesenchymal transition through cancer-stromal interactions in endometrial cancer. Sci Rep 2019; 9:6697. [PMID: 31040369 PMCID: PMC6491648 DOI: 10.1038/s41598-019-43261-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023] Open
Abstract
Estrogen-related receptor alpha (ERRα), which shares structural similarities with estrogen receptors, is associated with tumor progression in endometrial cancer, but little is known about the detailed underlying mechanism. We investigated whether ERRα, in cooperation with peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), could participate in epithelial-mesenchymal transition (EMT) in endometrial cancer through cancer-stromal interactions. Two endometrial cancer cell lines, Ishikawa and HEC-1A, transfected with ERRα/PGC-1α expression plasmids or silenced for ERRα expression, were co-cultured with telomerase-transformed human endometrial stromal cells (T-HESCs). We found that EMT-associated factors including vimentin, Snail, and zinc finger E-box binding homeobox 1 were upregulated in cancer cells overexpressing ERRα/PGC-1α and that transforming growth factor-beta (TGF-β) was induced in T-HESCs in the same conditions. In contrast, ERRα knockdown suppressed EMT-associated factors in cancer cells and TGF-β in T-HESCs. ERRα/PGC-1α overexpression increased the expression of EMT-associated factors after TGF-β exposure; however, it decreased E-cadherin at protein level. ERRα knockdown suppressed EMT-associated factors in the presence of TGF-β, whereas E-cadherin remained unchanged. Matrigel invasion assays revealed that ERRα knockdown attenuated the stimulation of migration and invasion by TGF-β. These findings suggest that ERRα is a potential target for inhibiting TGF-β-induced EMT through cancer-stromal interactions in endometrial cancer.
Collapse
Affiliation(s)
- Kaori Yoriki
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Tetsuya Kokabu
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hiroshi Matsushima
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shiori Umemura
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yosuke Tarumi
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
40
|
Manerba M, Govoni M, Manet I, Leale A, Comparone A, Di Stefano G. Metabolic activation triggered by cAMP in MCF-7 cells generates lethal vulnerability to combined oxamate/etomoxir. Biochim Biophys Acta Gen Subj 2019; 1863:1177-1186. [PMID: 30981740 DOI: 10.1016/j.bbagen.2019.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Altered energy metabolism is a biochemical fingerprint of cancer cells, widely recognized as one of the "hallmarks of cancer". Cancer cells show highly increased rates of glucose uptake and glycolysis, after which the resulting pyruvate is converted to lactate. The maintenance of this metabolic asset is warranted by lactate dehydrogenase A (LDH-A) and for this reason the development of novel LDH-targeted anticancer therapeutics is underway. However, possible interference in cancer cell metabolism could also arise from cAMP signaling pathway, which could be activated by either oncogenic induction or exogenously, as a result of microenvironment-derived stimuli, increasing cellular cAMP levels. This study aimed at evaluating the impact of activated cAMP signaling pathway on the efficacy of an LDH-targeted anticancer approach. METHODS We exogenously activated cAMP signaling in MCF-7 human breast cancer cells and explored the metabolic interplay between LDH-A and cAMP pathway. RESULTS In cAMP-activated cells, we evidenced changes in energy metabolism which reduced their response to LDH inhibition. Interestingly, these experiments also highlighted a potential vulnerability state of treated cells. CONCLUSIONS cAMP-induced metabolic changes made MCF-7 cells a preferential target of a drug combination treatment which should not affect normal cell viability. GENERAL SIGNIFICANCE cAMP is a well-recognized second messenger of the pro-inflammatory cascade. The obtained results are relevant in consideration of the crucial role played by inflammation in normal breast cell transformation and in cancer progression. Furthermore, they corroborate the idea of exploiting the metabolic changes observed in cancer cells to obtain a therapeutic advantage.
Collapse
Affiliation(s)
- Marcella Manerba
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy
| | - Marzia Govoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy
| | - Ilse Manet
- Institute for Organic Synthesis and Photoreactivity (ISOF), CNR, Bologna, Italy
| | - Antoniofrancesco Leale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy
| | - Antonietta Comparone
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy
| | - Giuseppina Di Stefano
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Italy.
| |
Collapse
|
41
|
Kiniwa Y, Yasuda J, Saito S, Saito R, Motoike IN, Danjoh I, Kinoshita K, Fuse N, Yamamoto M, Okuyama R. Identification of genetic alterations in extramammary Paget disease using whole exome analysis. J Dermatol Sci 2019; 94:229-235. [DOI: 10.1016/j.jdermsci.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
|
42
|
De Vitto H, Bode AM, Dong Z. The PGC-1/ERR network and its role in precision oncology. NPJ Precis Oncol 2019; 3:9. [PMID: 30911677 PMCID: PMC6428848 DOI: 10.1038/s41698-019-0081-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Transcriptional regulators include a superfamily of nuclear proteins referred to as co-activators and co-repressors, both of which are involved in controlling the functions of several nuclear receptors (NRs). The Nuclear Receptor Signaling Atlas (NURSA) has cataloged the composition of NRs, co-regulators, and ligands present in the human cell and their effort has been identified in more than 600 potential molecules. Given the importance of co-regulators in steroid, retinoid, and thyroid hormone signaling networks, hypothesizing that NRs/co-regulators are implicated in a wide range of pathologies are tempting. The co-activators known as peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1) and their key nuclear partner, the estrogen-related receptor (ERR), are emerging as pivotal transcriptional signatures that regulate an extremely broad repertoire of mitochondrial and metabolic genes, making them very attractive drug targets for cancer. Several studies have provided an increased understanding of the functional and structural biology of nuclear complexes. However, more comprehensive work is needed to create different avenues to explore the therapeutic potential of NRs/co-activators in precision oncology. Here, we discuss the emerging data associated with the structure, function, and molecular biology of the PGC-1/ERR network and address how the concepts evolving from these studies have deepened our understanding of how to develop more effective treatment strategies. We present an overview that underscores new biological insights into PGC-1/ERR to improve cancer outcomes against therapeutic resistance. Finally, we discuss the importance of exploiting new technologies such as single-particle cryo-electron microscopy (cryo-EM) to develop a high-resolution biological structure of PGC-1/ERR, focusing on novel drug discovery for precision oncology.
Collapse
Affiliation(s)
- Humberto De Vitto
- The Hormel Institute, University of Minnesota, 801 16th Avenue, Austin, NE 55912 USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Avenue, Austin, NE 55912 USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801 16th Avenue, Austin, NE 55912 USA
| |
Collapse
|
43
|
Gong W, Song J, Chen X, Li S, Yu J, Xia W, Ding G, Zhang Y, Jia Z, Zhang A, Huang S. Estrogen-related receptor-α mediates puromycin aminonucleoside-induced mesangial cell apoptosis and inflammatory injury. Am J Physiol Renal Physiol 2019; 316:F906-F913. [PMID: 30698047 DOI: 10.1152/ajprenal.00507.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomerular diseases are the leading cause of chronic kidney disease, and mesangial cells (MCs) have been demonstrated to be involved in the pathogenesis. Puromycin aminonucleoside (PAN) is a nephrotoxic drug that induces glomerular injury with elusive mechanisms. The present study was undertaken to investigate the role of PAN in MC apoptosis, as well as the underlying mechanism. Here we found that PAN induced MC apoptosis accompanied by declined cell viability and enhanced inflammatory response. The apoptosis was further evidenced by increments of apoptosis regulator BAX (BAX) and caspase-3 expression. In line with the apoptotic response in MCs following PAN treatment, we also found a remarkable induction of estrogen-related receptor-α (ERRα), an orphan nuclear receptor, at both mRNA and protein levels. Interestingly, ERRα silencing by an siRNA approach resulted in an attenuation of the apoptosis and inflammatory response caused by PAN. More importantly, overexpression of ERRα in MCs significantly triggered MC apoptosis in line with increased BAX and caspase-3 expression. In PAN-treated MCs, ERRα overexpression further aggravated PAN-induced apoptosis. In agreement with the in vitro study, we also observed increased ERRα expression in line with enhanced apoptotic response in renal cortex from PAN-treated rats. These data suggest a detrimental effect of ERRα on PAN-induced MC apoptosis and inflammatory response, which could help us to better understand the pathogenic mechanism of MC injury in PAN nephropathy.
Collapse
Affiliation(s)
- Wei Gong
- Department of Nephrology, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University , Nanjing , People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China
| | - Jiayu Song
- Department of Nephrology, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University , Nanjing , People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China
| | - Xi Chen
- Department of Nephrology, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University , Nanjing , People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China
| | - Shuzhen Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University , Nanjing , People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China
| | - Jing Yu
- Department of Nephrology, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University , Nanjing , People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China
| | - Weiwei Xia
- Department of Nephrology, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University , Nanjing , People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University , Nanjing , People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University , Nanjing , People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University , Nanjing , People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University , Nanjing , People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University , Nanjing , People's Republic of China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University , Nanjing , People's Republic of China
| |
Collapse
|
44
|
Huang B, Luo N, Wu X, Xu Z, Wang X, Pan X. The modulatory role of low concentrations of bisphenol A on tamoxifen-induced proliferation and apoptosis in breast cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2353-2362. [PMID: 30467747 DOI: 10.1007/s11356-018-3780-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Selective estrogen receptor modulators such as tamoxifen (TAM) significantly reduce the risks of developing estrogen receptor-positive (ER+) breast cancer. Low concentrations (nanomolar range) of bisphenol A (BPA) shows estrogenic effects and further promotes the proliferation of hormone-dependent breast cancer cells. However, whether or not BPA can influence TAM-treatment resistance in breast cancer has not drawn much attention. In the current study, low concentrations of BPA reduced TAM-induced cytotoxicity of MCF-7 cells, which was proved by the suppression of cell apoptosis, transition of cell cycle from G1 to S phase, and upregulation of cyclin D1 and ERα. Simultaneously, the mRNA levels of estrogen-related receptor γ (ERRγ) and its coactivators, peroxisome proliferation-activated receptor γ coactivator-1α (PGC-1α), and PGC-1β, were increased. However, the similar effects were not observed in MDA-MB-231 cells. Our results indicated that low concentrations of BPA decreased the sensitivity of TAM in MCF-7 cells rather than in MDA-MB-231 cells. These different actions likely involved the interaction of relative receptors and coactivators. This study provided a possible support that the exposure of BPA in environmental media may potentially induce TAM resistance to breast cancer treatment.
Collapse
Affiliation(s)
- Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Nao Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xinhao Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xiaoxia Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
45
|
Méndez-García LA, Nava-Castro KE, Ochoa-Mercado TDL, Palacios-Arreola MI, Ruiz-Manzano RA, Segovia-Mendoza M, Solleiro-Villavicencio H, Cázarez-Martínez C, Morales-Montor J. Breast Cancer Metastasis: Are Cytokines Important Players During Its Development and Progression? J Interferon Cytokine Res 2018; 39:39-55. [PMID: 30321090 DOI: 10.1089/jir.2018.0024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In breast cancer, an uncontrolled cell proliferation leads to tumor formation and development of a multifactorial disease. Metastasis is a complex process that involves tumor spread to distant parts of the body from its original site. Metastatic dissemination represents the main physiopathology of cancer. Inter- and intracellular communication in all systems in vertebrates is mediated by cytokines, which are highly inducible, secretory proteins, produced not only by immune system cells, but also by endocrine and nervous system cells. It has become clear in recent years that cytokines, as well as their receptors are produced in the organisms under physiological and pathological conditions; recently, they have been closely related to breast cancer metastasis. The exact initiation process of breast cancer metastasis is unknown, although several hypotheses have emerged. In this study, we thoroughly reviewed the role of several cytokines in breast cancer metastasis. Data reviewed suggest that cytokines and growth factors are key players in the breast cancer metastasis induction. This knowledge must be considered with the aim to development of new therapeutic approaches to counter breast cancer metastasis.
Collapse
Affiliation(s)
| | - Karen Elizabeth Nava-Castro
- 2 Laboratorio de Genotoxicología y Medicina Ambientales, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, México DF, México
| | - Tania de Lourdes Ochoa-Mercado
- 3 Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Margarita Isabel Palacios-Arreola
- 2 Laboratorio de Genotoxicología y Medicina Ambientales, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, México DF, México
| | - Rocío Alejandra Ruiz-Manzano
- 3 Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mariana Segovia-Mendoza
- 3 Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Helena Solleiro-Villavicencio
- 4 Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, México DF, Mexico
| | - Cinthia Cázarez-Martínez
- 2 Laboratorio de Genotoxicología y Medicina Ambientales, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, México DF, México
| | - Jorge Morales-Montor
- 3 Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
46
|
Zhou S, Xia H, Xu H, Tang Q, Nie Y, Gong QY, Bi F. ERRα suppression enhances the cytotoxicity of the MEK inhibitor trametinib against colon cancer cells. J Exp Clin Cancer Res 2018; 37:218. [PMID: 30185207 PMCID: PMC6125878 DOI: 10.1186/s13046-018-0862-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/01/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND ERRα, a constitutive transcription factor that regulates energy metabolism, plays an important role in the progression of various tumours. However, its role in cell survival and proliferation and its implication in targeted therapy in colon cancer remains elusive. METHODS The expression of ERRα in colon cancer tissues and cell lines was detected by using western blotting and immunohistochemistry. A wound healing assay and a transwell assay were performed to examine the migration and invasion of the colon cancer cells. A cell viability assay, clonogenic assay, western blot assay and the dual-luciferase reporter assay were employed to study the interaction between trametinib (inhibitor of MEK) and EGF treatment. Flow cytometry, western blotting, quantitative reverse-transcription polymerase chain reaction and xenograft studies were used to identify whether the combination of trametinib and simvastatin had a synergistic effect. RESULTS ERRα positively regulated the cell proliferation, migration and invasion of colon cancer cells, and the suppression of ERRα completely reduced the EGF treatment-induced proliferation of colon cancer cells. Further investigation showed that trametinib partially restrained the up-regulation of ERRα induced by the EGF treatment, and ERRα inhibition increased the sensitivity of colon cancer cells to trametinib. At last, we combined trametinib with simvastatin, a common clinically used drug with a new reported function of transcriptional activity inhibition of ERRα, and found that this combination produced a synergistic effect in inhibiting the proliferation and survival of colon cancer cells in vitro as well as in vivo. CONCLUSIONS The present data indicated that ERRα acted as an oncogene in colon cancer cells, and the combined targeting of ERRα and MEK might be a promising therapeutic strategy for colon cancer treatment.
Collapse
Affiliation(s)
- Sheng Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Collaborative Innovation Center for Biotherapy, Sichuan Province, Chengdu, China
| | - Hongwei Xia
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Collaborative Innovation Center for Biotherapy, Sichuan Province, Chengdu, China
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Collaborative Innovation Center for Biotherapy, Sichuan Province, Chengdu, China
| | - Qiulin Tang
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Collaborative Innovation Center for Biotherapy, Sichuan Province, Chengdu, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digest Diseases, Fourth Military Medical University, Xi’an, Shanxi Province China
| | - Qi yong Gong
- Department of Radiology, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Laboratory of Molecular Targeted Therapy in Oncology/Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041 China
| |
Collapse
|
47
|
Zhang W, Wu M, Chong QY, Zhang M, Zhang X, Hu L, Zhong Y, Qian P, Kong X, Tan S, Li G, Ding K, Lobie PE, Zhu T. Loss of Estrogen-Regulated MIR135A1 at 3p21.1 Promotes Tamoxifen Resistance in Breast Cancer. Cancer Res 2018; 78:4915-4928. [PMID: 29945962 DOI: 10.1158/0008-5472.can-18-0069] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/11/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022]
Abstract
The dysregulation of miRNAs has been increasingly recognized as a critical mediator of cancer development and progression. Here, we show that frequent deletion of the MIR135A1 locus is associated with poor prognosis in primary breast cancer. Forced expression of miR-135a decreased breast cancer progression, while inhibition of miR-135a with a specific miRNA sponge elicited opposing effects, suggestive of a tumor suppressive role of miR-135a in breast cancer. Estrogen receptor alpha (ERα) bound the promoter of MIR135A1 for its transcriptional activation, whereas tamoxifen treatment inhibited expression of miR-135a in ERα+ breast cancer cells. miR-135a directly targeted ESR1, ESRRA, and NCOA1, forming a negative feedback loop to inhibit ERα signaling. This regulatory feedback between miR-135a and ERα demonstrated that miR-135a regulated the response to tamoxifen. The tamoxifen-mediated decrease in miR-135a expression increased the expression of miR-135a targets to reduce tamoxifen sensitivity. Consistently, miR-135a expression was downregulated in ERα+ breast cancer cells with acquired tamoxifen resistance, while forced expression of miR-135a partially resensitized these cells to tamoxifen. Tamoxifen resistance mediated by the loss of miR-135a was shown to be partially dependent on the activation of the ERK1/2 and AKT pathways by miR-135a-targeted genes. Taken together, these results indicate that deletion of the MIR135A1 locus and decreased miR-135a expression promote ERα+ breast cancer progression and tamoxifen resistance.Significance: Loss of miR-135a in breast cancer disrupts an estrogen receptor-induced negative feedback loop, perpetuating disease progression and resistance to therapy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/17/4915/F1.large.jpg Cancer Res; 78(17); 4915-28. ©2018 AACR.
Collapse
Affiliation(s)
- Weijie Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingming Wu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore
| | - Min Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiao Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lan Hu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yanghao Zhong
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences and Institute of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangjun Kong
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Sheng Tan
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Gaopeng Li
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Keshuo Ding
- Department of Pathology, Anhui Medical University, Hefei, Anhui, China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore.
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
48
|
Senga S, Kawaguchi K, Kobayashi N, Ando A, Fujii H. A novel fatty acid-binding protein 5-estrogen-related receptor α signaling pathway promotes cell growth and energy metabolism in prostate cancer cells. Oncotarget 2018; 9:31753-31770. [PMID: 30167092 PMCID: PMC6114981 DOI: 10.18632/oncotarget.25878] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/21/2018] [Indexed: 01/16/2023] Open
Abstract
Epidermal or cutaneous fatty acid-binding protein is an intracellular lipid-binding protein, also known as FABP5, and its expression level is closely related to cancer cell proliferation and metastatic activities in various types of carcinoma. However, the molecular mechanisms of FABP5 in cancer cell proliferation and its other functions have remained unclear. In the present study, we have clearly revealed that FABP5 activated expression of metabolic genes (ATP5B, LCHAD, ACO2, FH and MFN2) via a novel signaling pathway in an ERRα (estrogen-related receptor α)-dependent manner in prostate cancer cell lines. To clarify the novel function of FABP5, we examined the activation mechanisms of the ERRα target genes via FABP5. A direct protein-protein interaction between FABP5 and ERRα was demonstrated by immunoprecipitation and GST pull-down assays. We have clearly revealed that FABP5 interacted directly with transcriptional complex containing ERRα and its co-activator PGC-1β to increase expression of the ERRα target genes. In addition, we have shown that FABP5 knockdown induced high energy stress leading to induction of apoptosis and cell cycle arrest via AMPK-FOXO3A signaling pathway in prostate cancer cells, suggesting that FABP5 plays an important role in cellular energy status directing metabolic adaptation to support cellular proliferation and survival.
Collapse
Affiliation(s)
- Shogo Senga
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Koichiro Kawaguchi
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Narumi Kobayashi
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Akira Ando
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| | - Hiroshi Fujii
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting-Edge Research, Shinshu University, Minami-minowa, Kami-ina, Nagano, 399-4598, Japan
| |
Collapse
|
49
|
Zhang J, Guan X, Liang N, Li S. Estrogen-related receptor alpha triggers the proliferation and migration of human non-small cell lung cancer via interleukin-6. Cell Biochem Funct 2018; 36:255-262. [PMID: 29862528 DOI: 10.1002/cbf.3337] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/23/2018] [Accepted: 05/11/2018] [Indexed: 12/27/2022]
Abstract
Human non-small cell lung cancer (NSCLC) is one of the leading causes of cancer deaths worldwide. Estrogenic signals have been suggested to be important for the growth and metastasis of NSCLC cells. Our present data showed that estrogen-related receptor alpha (ERRα), while not ERRβ or ERRγ, was significantly elevated in NSCLC cell lines as compared with that in normal bronchial epithelial cell line BEAS-2B. The expression of ERRα in clinical NSCLC tissues was significantly greater than that in their matched normal adjacent tissues. Over expression of ERRα can trigger the proliferation, migration, and invasion of NSCLC cells, while si-ERRα or ERRα inhibitor showed opposite effects. ERRα can increase the mRNA and protein expression of IL-6, while not IL-8, IL-10, IL-22, VEGF, TGF-β, or TNF-α, in NSCLC cells. Silence of IL-6 attenuated ERRα induced proliferation and cell invasion. Furthermore, our data revealed the inhibition of NF-κB, while not ERK1/2 or PI3K/Akt, abolished ERRα induced production of IL-6. This might be due to that overexpression of ERRα can increase the expression and nuclear translocation of p65 in NSCLC cells. Collectively, our data showed that activation of NF-κB/IL-6 is involved in ERRα induced migration and invasion of NSCLC cells. It suggested that ERRα might be a potential target for NSCLC treatment.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology in First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xiangqian Guan
- Laboratory of the First Affiliated Hospital of University of Science and Technology of China, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
50
|
Huang X, Wang X, Shang J, Zhaang Z, Cui B, Lin Y, Yang Y, Song Y, Yu S, Xia J. Estrogen related receptor alpha triggers the migration and invasion of endometrial cancer cells via up regulation of TGFB1. Cell Adh Migr 2018; 12:538-547. [PMID: 29781387 PMCID: PMC6363028 DOI: 10.1080/19336918.2018.1477901] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022] Open
Abstract
Estrogenic signals have been suggested to be important for the tumorigenesis and progression of endometrial cancer (EC) cells. Our present data showed that estrogen related receptor alpha (ERRα), while not ERRβ or ERRγ, was significantly elevated in EC cells and tissues when compared to their controls. Targeted inhibition of ERRα by siRNA or its inverse agonist XCT-790 can suppress the migration and invasion of EC cells. Both si-ERRα and XCT-790 decreased the expression of transforming growth factor-beta (TGF-β). ERRα can directly bind with the promoter of TGFB1 and then increase its transcription. Further, ERRα was involved in the positive self-feedback loop of TGF-β in EC cells. Targeted inhibition of ERRα/TGF-β can synergistically suppress the in vitro invasion of EC cells. Collectively, our data suggested that ERRα can trigger the cell migration and invasion via increasing the positive self-feedback regulation of TGF-β.
Collapse
Affiliation(s)
- Xiumin Huang
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Xuelian Wang
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Jing Shang
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Zhiqin Zhaang
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Binbin Cui
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Yanzhen Lin
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Ying Yang
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Youyi Song
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Shengnan Yu
- Department of Gynecology and Obstetrics, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Junjie Xia
- Organ Transplantation Institute, Xiamen University, No. 308, Xiang'an South Road, Xiamen City, Fujian Province, China
| |
Collapse
|