1
|
Lee JH, Jung KH, Kim M, Lee KH. Cysteine-specific 89Zr-labeled anti-CD25 IgG allows immuno-PET imaging of interleukin-2 receptor-α on T cell lymphomas. Front Immunol 2022; 13:1017132. [PMID: 36591250 PMCID: PMC9797992 DOI: 10.3389/fimmu.2022.1017132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Positron emission tomography (PET) using radiolabeled Abs as imaging tracer is called immuno-PET. Immuno-PET can verify therapeutic Ab delivery and can noninvasively quantify global levels of target expression in tumors of living subjects. The interleukin-2 receptor α chain (IL-2Rα; CD25) is a promising target for immune therapy and radioimmunotherapy of lymphomas. Immuno-PET could facilitate this approach by visualizing CD25 expression in vivo. Methods We prepared 89Zr-anti-CD25 IgG specifically labeled to sulfhydryl moieties by maleimide-deferoxamine conjugation. Results and Discussion CD25(+) SUDHL1 human T-cell lymphoma cells showed high anti-human 89Zr-CD25 IgG binding that reached 32-fold of that of CD25(-) human lymphoma cells and was completely blocked by excess unlabeled Ab. In SUDHL1 tumor-bearing nude mice, pharmacokinetic studies demonstrated exponential reductions of whole blood and plasma activity following intravenous 89Zr-anti-CD25 IgG injection, with half-lives of 26.0 and 23.3 h, respectively. SUDHL1 tumor uptake of 89Zr-CD25 IgG was lower per weight in larger tumors, but blood activity did not correlate with tumor size or blood level of human CD25, indicating minimal influence by circulating soluble CD25 protein secreted from the lymphoma cells. 89Zr-CD25 IgG PET allowed high-contrast SUDHL1 lymphoma visualization at five days. Biodistribution studies confirmed high tumor 89Zr-CD25 IgG uptake (8.7 ± 0.9%ID/g) that was greater than blood (5.2 ± 1.6%ID/g) and organ uptakes (0.7 to 3.5%ID/g). Tumor CD25-specific targeting was confirmed by suppression of tumor uptake to 4.3 ± 0.2%ID by excess unlabeled CD25 IgG, as well as by low tumor uptake of 89Zr-labeled IgG2a isotype control Ab (3.6 ± 0.9%ID). Unlike CD25(+) lymphocytes from mouse thymus that showed specific uptake of anti-mouse 89Zr-CD25 IgG, EL4 mouse lymphoma cells had low CD25 expression and showed low uptake. In immunocompetent mice bearing EL4 tumors, anti-mouse 89Zr-CD25 IgG displayed low uptakes in normal organs as well as in the tumor. Furthermore, the biodistribution was not influenced by Ab blocking, indicating that specific uptake in nontumor tissues was minimal. 89Zr-CD25 IgG immuno-PET may thus be useful for imaging of T-cell lymphomas and noninvasive assessment of CD25 expression on target cells in vivo.
Collapse
Affiliation(s)
- Jin Hee Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mina Kim
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea,*Correspondence: Kyung-Han Lee,
| |
Collapse
|
2
|
Salkeni MA, Rizvi W, Hein K, Higa GM. Neu Perspectives, Therapies, and Challenges for Metastatic HER2-Positive Breast Cancer. BREAST CANCER-TARGETS AND THERAPY 2021; 13:539-557. [PMID: 34602823 PMCID: PMC8481821 DOI: 10.2147/bctt.s288344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022]
Abstract
Even though gene amplification or protein overexpression occurs in approximately one-fifth of all breast cancers, the discovery of HER2 has, nevertheless, had profound implications for the disease. Indeed, the characterization of the receptor resulted in a number of significant advances. Structurally, unique features provided avenues for the development of numerous compounds with target-specificity; molecularly, biological constructs revealed a highly complex, internal signal transduction pathway with regulatory effects on tumor proliferation, survival, and perhaps, even resistance; and clinically, disease outcomes manifested its predictive and prognostic value. Yet despite the receptor’s utility, the beneficial effects are diminished by tumor recurrence after neo- or adjuvant therapy as well as losses resulting from the inability to cure patients with metastatic disease. What these observations suggest is that while tumor response may be partially linked to uncoupling cell surface message reception and nuclear gene expression, as well as recruitment of the innate immune system, disease progression and/or resistance may involve a reprogrammable signaling mainframe that elicits alternative growth and survival signals. This review attempts to meld current perceptions related to HER2-positive metastatic breast cancer with particular attention to current biological insights and therapeutic challenges.
Collapse
Affiliation(s)
- Mohamad Adham Salkeni
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wajeeha Rizvi
- Department of Internal Medicine, West Virginia University, Morgantown, WV, USA
| | - Kyaw Hein
- Department of Business, Lamar University, Houston, TX, USA
| | - Gerald M Higa
- Departments of Clinical Pharmacy and Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
3
|
Wang TT, Ravetch JV. Functional diversification of IgGs through Fc glycosylation. J Clin Invest 2020; 129:3492-3498. [PMID: 31478910 DOI: 10.1172/jci130029] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
IgG antibodies are secreted from B cells and bind to a variety of pathogens to control infections as well as contribute to inflammatory diseases. Many of the functions of IgGs are mediated through Fcγ receptors (FcγRs), which transduce interactions with immune complexes, leading to a variety of cellular outcomes depending on the FcγRs and cell types engaged. Which FcγRs and cell types will be engaged during an immune response depends on the structure of Fc domains within immune complexes that are formed when IgGs bind to cognate antigen(s). Recent studies have revealed an unexpected degree of structural variability in IgG Fc domains among people, driven primarily by differences in IgG subclasses and N-linked glycosylation of the CH2 domain. This translates, in turn, to functional immune diversification through type I and type II FcγR-mediated cellular functions. For example, Fc domain sialylation triggers conformational changes of IgG1 that enable interactions with type II FcγRs; these receptors mediate cellular functions including antiinflammatory activity or definition of thresholds for B cell selection based on B cell receptor affinity. Similarly, presence or absence of a core fucose alters type I FcγR binding of IgG1 by modulating the Fc's affinity for FcγRIIIa, thereby altering its proinflammatory activity. How heterogeneity in IgG Fc domains contributes to human immune diversity is now being elucidated, including impacts on vaccine responses and susceptibility to disease and its sequelae during infections. Here, we discuss how Fc structures arising from sialylation and fucosylation impact immunity, focusing on responses to vaccination and infection. We also review work defining individual differences in Fc glycosylation, regulation of Fc glycosylation, and clinical implications of these pathways.
Collapse
Affiliation(s)
- Taia T Wang
- Department of Medicine, Division of Infectious Diseases, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
4
|
Kerntke C, Nimmerjahn F, Biburger M. There Is (Scientific) Strength in Numbers: A Comprehensive Quantitation of Fc Gamma Receptor Numbers on Human and Murine Peripheral Blood Leukocytes. Front Immunol 2020; 11:118. [PMID: 32117269 PMCID: PMC7013094 DOI: 10.3389/fimmu.2020.00118] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Antibodies are essential mediators of immunological defense mechanisms, are clinically used as therapeutic agents, but are also functionally involved in various immune-mediated disorders. Whereas IgG antibodies accomplish some of their biological tasks autonomously, many functions depend on their binding to activating and inhibitory Fcγ receptors (FcγR). From a qualitative point of view expression patterns of FcγR on immunologically relevant cell types are well-characterized both for mice and humans. Surprisingly, however, there is only quite limited information available on actual quantities of FcγR expressed by the different leukocyte populations. In this study we provide a comprehensive data set assessing quantitatively how many individual human and mouse FcγRs are expressed on B cells, NK cells, eosinophils, neutrophils, basophils and both classical, and non-classical monocytes under steady state conditions. Moreover, among human donors we found two groups with different expression levels of the inhibitory FcγRIIb on monocytes which appears to correlate with haplotypes of the activating FcγRIIIa.
Collapse
Affiliation(s)
- Christina Kerntke
- Division of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Biburger
- Division of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci U S A 2018; 115:E10915-E10924. [PMID: 30373815 DOI: 10.1073/pnas.1811615115] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The goal of cancer immunotherapy is to stimulate the host immune system to attack malignant cells. Antibody-dependent cellular cytotoxicity (ADCC) is a pivotal mechanism of antitumor action of clinically employed antitumor antibodies. IL-15 administered to patients with metastatic malignancy by continuous i.v. infusion at 2 μg/kg/d for 10 days was associated with a 38-fold increase in the number and activation status of circulating natural killer (NK) cells and activation of macrophages which together are ADCC effectors. We investigated combination therapy of IL-15 with rituximab in a syngeneic mouse model of lymphoma transfected with human CD20 and with alemtuzumab (Campath-1H) in a xenograft model of human adult T cell leukemia (ATL). IL-15 greatly enhanced the therapeutic efficacy of both rituximab and alemtuzumab in tumor models. The additivity/synergy was shown to be associated with augmented ADCC. Both NK cells and macrophages were critical elements in the chain of interacting effectors involved in optimal therapeutic responses mediated by rituximab with IL-15. We provide evidence supporting the hypothesis that NK cells interact with macrophages to augment the NK-cell activation and expression of FcγRIV and the capacity of these cells to become effectors of ADCC. The present study supports clinical trials of IL-15 combined with tumor-directed monoclonal antibodies.
Collapse
|
6
|
Moodad S, Akkouche A, Hleihel R, Darwiche N, El-Sabban M, Bazarbachi A, El Hajj H. Mouse Models That Enhanced Our Understanding of Adult T Cell Leukemia. Front Microbiol 2018; 9:558. [PMID: 29643841 PMCID: PMC5882783 DOI: 10.3389/fmicb.2018.00558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
Adult T cell Leukemia (ATL) is an aggressive lymphoproliferative malignancy secondary to infection by the human T-cell leukemia virus type I (HTLV-I) and is associated with a dismal prognosis. ATL leukemogenesis remains enigmatic. In the era of precision medicine in oncology, mouse models offer one of the most efficient in vivo tools for the understanding of the disease biology and developing novel targeted therapies. This review provides an up-to-date and comprehensive account of mouse models developed in the context of ATL and HTLV-I infection. Murine ATL models include transgenic animals for the viral proteins Tax and HBZ, knock-outs for key cellular regulators, xenografts and humanized immune-deficient mice. The first two groups provide a key understanding of the role of viral and host genes in the development of ATL, as well as their relationship with the immunopathogenic processes. The third group represents a valuable platform to test new targeted therapies against ATL.
Collapse
Affiliation(s)
- Sara Moodad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdou Akkouche
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba El Hajj
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
7
|
Uhl CG, Muzykantov VR, Liu Y. Biomimetic microfluidic platform for the quantification of transient endothelial monolayer permeability and therapeutic transport under mimicked cancerous conditions. BIOMICROFLUIDICS 2018; 12:014101. [PMID: 29333203 PMCID: PMC5750053 DOI: 10.1063/1.5000377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/14/2017] [Indexed: 05/08/2023]
Abstract
Therapeutic delivery from microvasculature to cancerous sites is influenced by many factors including endothelial permeability, vascular flow rates/pressures, cancer secretion of cytokines and permeabilizing agents, and characteristics of the chosen therapeutics. This work uses bi-layer microfluidics capable of studying dye and therapeutic transport from a simulated vessel to a cancerous region while allowing for direct visualization and quantification of endothelial permeability. 2.5 to 13 times greater dye transport was observed when utilizing small dye sizes (FITC) when compared to larger molecules (FITC-Dextran 4 kDa and FITC-Dextran 70 kDa), respectively. The use of lower flow rates/pressures is shown to improve dye transport by factors ranging from 2.5 to 5 times, which result from increased dye diffusion times within the system. Furthermore, subjecting confluent endothelial monolayers to cancerous cells resulted in increased levels of vascular permeability. Situations of cancer induced increases in vascular permeability are shown to facilitate enhanced dye transport when compared to non-diseased endothelial monolayers. Subsequent introduction of paclitaxel or doxorubicin into the system was shown to kill cancerous cells resulting in the recovery of endothelial confluency overtime. The response of endothelial cells to paclitaxel and doxorubicin is quantified to understand the direct influence of anti-cancer therapeutics on endothelial growth and permeability. Introduction of therapeutics into the system showed the recovery of endothelial confluency and dye transport back to conditions experienced prior to cancer cell introduction after 120 h of continuous treatment. Overall, the system has been utilized to show that therapeutic transport to cancerous sites depends on the size of the chosen therapeutic, the flow rate/pressure established within the vasculature, and the degree of cancer induced endothelial permeability. In addition, treatment of the cancerous region has been demonstrated with anti-cancer therapeutics, which are shown to influence vascular permeability in direct (therapeutics themselves) and indirect (death of cancer cells) manners. Lastly, the system presented in this work is believed to function as a versatile testing platform for future anti-cancer therapeutic testing and development.
Collapse
Affiliation(s)
| | - Vladimir R Muzykantov
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
8
|
Corbí AL, Sánchez-Ramón S, Domínguez-Soto A. The potential of intravenous immunoglobulins for cancer therapy: a road that is worth taking? Immunotherapy 2017; 8:601-12. [PMID: 27140412 DOI: 10.2217/imt.16.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Much has been learned recently about the role of immunoglobulins as effector molecules of the adaptive immunity and as active elements in the maintenance of immune homeostasis. The increasing number of pathologies where intravenous immunoglobulins (IVIg) display a beneficial action illustrates their therapeutic relevance. Considering recent findings on the ability of IVIg to modulate macrophage polarization, herein we review evidences on the antitumoral activity of IVIg. Fragmentary and nonconclusive, available evidences are just suggestive of the potential of IVIg in antitumoral therapy, but encourage for the generation of additional evidences through well-designed clinical trials, and for additional studies to address the molecular effects of IVIg as a means to avoid the extrapolation of data gathered from animal models.
Collapse
Affiliation(s)
- Angel L Corbí
- Centro de Investigaciones Biológicas, CSIC. Ramiro de Maeztu, 9. 28040 Madrid, SPAIN
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology & IdISSC, Hospital Clínico San Carlos, Prof Martín Lagos, S/N, 28040 Madrid, Spain; and, Department of Microbiology I, Complutense University School of Medicine, Madrid, Spain
| | | |
Collapse
|
9
|
Gordan S, Biburger M, Nimmerjahn F. bIgG time for large eaters: monocytes and macrophages as effector and target cells of antibody-mediated immune activation and repression. Immunol Rev 2016; 268:52-65. [PMID: 26497512 DOI: 10.1111/imr.12347] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mononuclear phagocytic system consists of a great variety of cell subsets localized throughout the body in immunological and non-immunological tissues. While one of their prime tasks is to detect, phagocytose, and kill intruding microorganisms, they are also involved in maintaining tissue homeostasis and immune tolerance toward self through removal of dying cells. Furthermore, monocytes and macrophages have been recognized to play a critical role for mediating immunoglobulin G (IgG)-dependent effector functions, including target cell depletion, tissue inflammation, and immunomodulation. For this, monocyte and macrophage populations are equipped with a complex set of Fc-receptors, enabling them to directly interact with pro- or anti-inflammatory IgG preparations. In this review, we will summarize the most recent findings, supporting a central role of monocytes and macrophages for pro- and anti-inflammatory IgG activity.
Collapse
Affiliation(s)
- Sina Gordan
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Biburger
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Sharma K, Janik JE, O'Mahony D, Stewart D, Pittaluga S, Stetler-Stevenson M, Jaffe ES, Raffeld M, Fleisher TA, Lee CC, Steinberg SM, Waldmann TA, Morris JC. Phase II Study of Alemtuzumab (CAMPATH-1) in Patients with HTLV-1-Associated Adult T-cell Leukemia/lymphoma. Clin Cancer Res 2016; 23:35-42. [PMID: 27486175 DOI: 10.1158/1078-0432.ccr-16-1022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/30/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Therapeutic regimens for adult T-cell leukemia/lymphoma (ATL) are limited with unsatisfactory results, thereby warranting development of novel therapies. This study investigated antitumor activity and toxicity of alemtuzumab with regard to response, duration of response, progression-free survival, and overall survival in patients with human T-cell lymphotropic virus-1 (HTLV-1)-associated ATL. EXPERIMENTAL DESIGN Twenty-nine patients with chronic, acute, and lymphomatous types of ATL were enrolled in a single-institution, nonrandomized, open-label phase II trial wherein patients received intravenous alemtuzumab 30 mg three times weekly for a maximum of 12 weeks. RESULTS Twenty-nine patients were evaluable for response and toxicity. The overall objective response was 15 of 29 patients [95% confidence interval (CI), 32.5%-70.6%]. The 15 patients who responded manifested a median time to response of 1.1 months. Median response duration was 1.4 months for the whole group and 14.5 months among responders. Median progression-free survival was 2.0 months. Median overall survival was 5.9 months. The most common adverse events were 2 with vasovagal episodes (7%) and 3 with hypotensive episodes (10%), leukopenia (41%) grade 3 and (17%) grade 4, lymphocytopenia (59%) grade 3, neutropenia (31%) grade 3, anemia (24%), and thrombocytopenia (10%). All patients developed cytomegalovirus antigenemia (CMV). Three were symptomatic and all responded to antiviral therapy. Grade 3 or 4 infections were reported in 4 (14%) of patients. CONCLUSIONS Alemtuzumab induced responses in patients with acute HTLV-1-associated ATL with acceptable toxicity, but with short duration of responses. These studies support inclusion of alemtuzumab in novel multidrug therapies for ATL. Clin Cancer Res; 23(1); 35-42. ©2016 AACR.
Collapse
Affiliation(s)
- Kamal Sharma
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - John E Janik
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Deirdre O'Mahony
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Donn Stewart
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - Elaine S Jaffe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Mark Raffeld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Thomas A Fleisher
- Clinical Pathology Department, Mark O. Hatfield Clinical Research Center, NIH, Bethesda, Maryland
| | - Cathryn C Lee
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - John C Morris
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
11
|
Abstract
Immunotherapy is now evolving into a major therapeutic option for cancer patients. Such clinical advances also promote massive interest in the search for novel immunotherapy targets, and to understand the mechanism of action of current drugs. It is projected that a series of novel immunotherapy agents will be developed and assessed for their therapeutic activity. In light of this, in vivo experimental mouse models that recapitulate human malignancies serve as valuable tools to validate the efficacy and safety profile of immunotherapy agents, before their transition into clinical trials. In this review, we will discuss the major classes of experimental mouse models of cancer commonly used for immunotherapy assessment and provide examples to guide the selection of appropriate models. We present some new data concerning the utility of a carcinogen-induced tumor model for comparing immunotherapies and combining immunotherapy with chemotherapy. We will also highlight some recent advances in experimental modeling of human malignancies in mice that are leading towards personalized therapy in patients.
Collapse
Affiliation(s)
- Shin Foong Ngiow
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; University of Queensland, Herston, QLD, Australia
| | - Sherene Loi
- Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia; University of Melbourne, Parkville, VIC, Australia
| | - David Thomas
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; University of Queensland, Herston, QLD, Australia; Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia; University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
12
|
Chan KR, Ong EZ, Mok DZL, Ooi EE. Fc receptors and their influence on efficacy of therapeutic antibodies for treatment of viral diseases. Expert Rev Anti Infect Ther 2015; 13:1351-60. [PMID: 26466016 PMCID: PMC4673539 DOI: 10.1586/14787210.2015.1079127] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lack of vaccines against several important viral diseases necessitates the development of therapeutics to save lives and control epidemics. In recent years, therapeutic antibodies have received considerable attention due to their good safety profiles and clinical success when used against viruses such as respiratory syncytial virus, Ebola virus and Hendra virus. The binding affinity of these antibodies can directly impact their therapeutic efficacy. However, we and others have also demonstrated that the subtype of Fc-gamma receptors (FcγRs) engaged influences the stoichiometric requirement for virus neutralization. Hence, the development of therapeutic antibodies against infectious diseases should consider the FcγRs engaged and Fc-effector functions involved. This review highlights the current state of knowledge about FcγRs and FcγR effector functions involved in virus neutralization, with emphasis on factors that can affect FcγR engagement. A better understanding of Fc-FcγR interactions during virus neutralization will allow development of therapeutic antibodies that are efficacious and can be administered with minimal side effects.
Collapse
Affiliation(s)
- Kuan Rong Chan
- a 1 Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Eugenia Z Ong
- b 2 Experimental Therapeutics Centre, Agency for Science Technology and Research, 31 Biopolis Way, Singapore 138669, Singapore
| | - Darren Z L Mok
- c 3 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Eng Eong Ooi
- a 1 Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
13
|
Abstract
The capacity of immunoglobulin G (IgG) antibodies to eliminate virtually any target cell has resulted in the widespread introduction of cytotoxic antibodies into the clinic in settings of cancer therapy, autoimmunity, and transplantation, for example. More recently, it has become apparent that also the protection from viral infection via IgG antibodies may require cytotoxic effector functions, suggesting that antibody-dependent cellular cytotoxicity (ADCC) directed against malignant or virally infected cells is one of the most essential effector mechanisms triggered by IgG antibodies to protect the host. A detailed understanding of the underlying molecular and cellular pathways is critical, therefore, to make full use of this antibody effector function. Several studies over the last years have provided novel insights into the effector pathways and innate immune effector cells responsible for ADCC reactions. One of the most notable outcomes of many of these reports is that cells of the mononuclear phagocytic system rather than natural killer cells are critical for removal of IgG opsonized target cells in vivo.
Collapse
|
14
|
Humanized NOD-SCID IL2rg–/– mice as a preclinical model for cancer research and its potential use for individualized cancer therapies. Cancer Lett 2014; 344:13-19. [PMID: 24513265 DOI: 10.1016/j.canlet.2013.10.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 11/24/2022]
Abstract
Humanized mouse models have been developed and utilized in cancer research for decades. Newly developed combined immunodeficient NOD-SCID-IL2rg–/– mice are more permissive for human cells and tissue engraftment. In this review, we discuss the use of NOD-SCID-IL2rg(–/–) mice as a preclinical tool in cancer research and its potential use for individualized cancer therapies.
Collapse
|
15
|
Pescovitz MD. Daclizumab: humanized monoclonal antibody to the interleukin-2 receptor. Expert Rev Clin Immunol 2014; 1:337-44. [DOI: 10.1586/1744666x.1.3.337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
High level prokaryotic expression of anti-Müllerian inhibiting substance type II receptor diabody, a new recombinant antibody for in vivo ovarian cancer imaging. J Immunol Methods 2013; 387:11-20. [DOI: 10.1016/j.jim.2012.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 12/30/2022]
|
17
|
Williams JW, Tjota MY, Sperling AI. The contribution of allergen-specific IgG to the development of th2-mediated airway inflammation. J Allergy (Cairo) 2012; 2012:236075. [PMID: 23150737 PMCID: PMC3485540 DOI: 10.1155/2012/236075] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/18/2012] [Indexed: 01/01/2023] Open
Abstract
In both human asthmatics and animal models of allergy, allergen-specific IgG can contribute to Th2-mediated allergic inflammation. Mouse models have elucidated an important role for IgG and Fc-gamma receptor (FcγR) signaling on antigen presenting cells (APC) for the induction of airway inflammation. These studies suggest a positive feedback loop between IgG produced by the adaptive B cell response and FcγR signaling on innate immune cells. Studies of IgG and FcγRs in humans with asthma or allergic lung disease have been more controversial. Some reports have identified associations between allergen-specific IgG and severity of allergic responses, while other studies have found associations of IgG subclass IgG4 with allergic tolerance. In this paper, we review the literature to help define the nature of IgG and FcγR signaling on innate immune cells and how it contributes to the development of allergic immune responses.
Collapse
Affiliation(s)
- Jesse W. Williams
- Committee on Molecular Pathology and Molecular Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Melissa Y. Tjota
- Interdisciplinary Scientist Training Program and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Anne I. Sperling
- Committee on Molecular Pathology and Molecular Medicine, University of Chicago, Chicago, IL 60637, USA
- Interdisciplinary Scientist Training Program and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Abstract
The surveillance of tumors by the immune system of cancer patients and its impact on disease progression and patient survival have been largely documented over the last years. In parallel, the use of therapeutic monoclonal antibodies (mAbs) in oncology has gained a widespread recognition as it has made it possible to increase patient survival and to ameliorate the quality of life in a number of cancers. However, the clinical responses observed following mAb treatment remain largely heterogeneous and their duration is still highly unpredictable. Recently, the concept that the injection of therapeutic antibodies not only triggers early anti-tumor events such as receptor blockade, cytostasis, apoptosis, complement-dependent cytotoxicity and/or antibody-dependent cytotoxicity but also allows the host immune system to fight tumor cells through the development of a long-lasting adaptive immunity has emerged. In the present review, we will examine the arguments that support this concept by detailing the cellular and molecular events likely to underlie the induction of an efficient anti-tumor adaptive immune response by mAbs. We will also discuss the consequences of this induction on the way therapeutic antibodies can be used and inserted in a more global immunotherapeutic approach aiming at strengthening the adaptive anti-tumor immune response developed by cancer patients.
Collapse
|
19
|
Butchar JP, Mehta P, Justiniano SE, Guenterberg KD, Kondadasula SV, Mo X, Chemudupati M, Kanneganti TD, Amer A, Muthusamy N, Jarjoura D, Marsh CB, Carson WE, Byrd JC, Tridandapani S. Reciprocal regulation of activating and inhibitory Fc{gamma} receptors by TLR7/8 activation: implications for tumor immunotherapy. Clin Cancer Res 2010; 16:2065-75. [PMID: 20332325 DOI: 10.1158/1078-0432.ccr-09-2591] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Activation of Toll-like receptors (TLR) 7 and 8 by engineered agonists has been shown to aid in combating viruses and tumors. Here, we wished to test the effect of TLR7/8 activation on monocyte Fcgamma receptor (FcgammaR) function, as they are critical mediators of antibody therapy. EXPERIMENTAL DESIGN The effect of the TLR7/8 agonist R-848 on cytokine production and antibody-dependent cellular cytotoxicity by human peripheral blood monocytes was tested. Affymetrix microarrays were done to examine genomewide transcriptional responses of monocytes to R-848 and Western blots were done to measure protein levels of FcgammaR. Murine bone marrow-derived macrophages from WT and knockout mice were examined to determine the downstream pathway involved with regulating FcgammaR expression. The efficacy of R-848 as an adjuvant for antibody therapy was tested using a CT26-HER2/neu solid tumor model. RESULTS Overnight incubation with R-848 increased FcgammaR-mediated cytokine production and antibody-dependent cellular cytotoxicity in human peripheral blood monocytes. Expression of FcgammaRI, FcgammaRIIa, and the common gamma-subunit was increased. Surprisingly, expression of the inhibitory FcgammaRIIb was almost completely abolished. In bone marrow-derived macrophage, this required TLR7 and MyD88, as R-848 did not increase expression of the gamma-subunit in TLR7(-/-) nor MyD88(-/-) cells. In a mouse solid tumor model, R-848 treatment superadditively enhanced the effects of antitumor antibody. CONCLUSIONS These results show an as-yet-undiscovered regulatory and functional link between the TLR7/8 and FcgammaR pathways. This suggests that TLR7/8 agonists may be especially beneficial during antibody therapy.
Collapse
Affiliation(s)
- Jonathan P Butchar
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lansigan F, Stearns DM, Foss F. Role of denileukin diftitox in the treatment of persistent or recurrent cutaneous T-cell lymphoma. Cancer Manag Res 2010; 2:53-9. [PMID: 21188096 PMCID: PMC3004568 DOI: 10.2147/cmar.s5009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Indexed: 11/23/2022] Open
Abstract
Denileukin diftitox (Ontak(®)) is indicated for the treatment of patients with persistent or recurrent cutaneous T-cell lymphoma (CTCL), a rare lymphoproliferative disorder of the skin. Denileukin diftitox was the first fusion protein toxin approved for the treatment of a human disease. This fusion protein toxin combines the IL2 protein with diphtheria toxin, and targets the CD25 subunit of the IL2 receptor, resulting in the unique delivery of a cytocidal agent to CD-25 bearing T-cells. Historically, immunotherapy targeting malignant T-cells including monoclonal antibodies has been largely ineffective as cytocidal agents compared to immunotherapy directed against B-cells such as rituximab. This review will summarize the development of denileukin diftitox, its proposed mechanism of action, the pivotal clinical trials that led to its FDA approval, the improvements in quality of life, and the common toxicities experienced during the treatment of patients with CTCL. CTCL is often a chronic progressive lymphoma requiring the sequential use of treatments such as retinoids, traditional chemotherapy, or biological response modifiers. The incorporation of the immunotoxin denileukin diftitox into the sequential or combinatorial treatment of CTCL will also be addressed.
Collapse
Affiliation(s)
- Frederick Lansigan
- Hematology/Oncology, Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | | | | |
Collapse
|
21
|
Maeda N, Muta H, Oflazoglu E, Yoshikai Y. Susceptibility of human T-cell leukemia virus type I-infected cells to humanized anti-CD30 monoclonal antibodies in vitro and in vivo. Cancer Sci 2010; 101:224-30. [PMID: 19799612 PMCID: PMC11159198 DOI: 10.1111/j.1349-7006.2009.01354.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Adult T-cell leukemia (ATL) is an aggressive malignancy of activated CD4(+) T cells associated with human T-cell leukemia virus type I (HTLV-I) infection. No conventional chemotherapy regimen has appeared successful in patients with ATL, thus establishing effective therapy is urgently required. In some cases, ATL tumor cells express CD30 on the cell surface, therefore, a therapy with mAb against CD30 would be beneficial. To investigate the effect of CD30-mediated therapy on ATL, we assessed SGN-30, a chimeric anti-CD30 mAb, and SGN-35, a monomethyl auristatin E-conjugated anti-CD30 mAb, in vitro and in vivo. Three HTLV-I-infected cell lines were co-cultured with SGN-30 or SGN-35, and the growth-inhibitory effects on the HTLV-I-infected cells were evaluated using an in vitro cell proliferation assay and cell cycle analysis. SGN-30 and SGN-35 showed growth-inhibitory activity against the HTLV-I-infected cell lines by apoptosis and/or cell growth arrest in vitro. To further investigate the effects of SGN-30 and SGN-35 on HTLV-I-infected cells in vivo, we used NOD/SCID mice subcutaneously engrafted with HTLV-I-infected cells. Both mAbs significantly inhibited the growth of HTLV-I-infected cell tumors in the NOD/SCID murine xenograft models. These data suggest that CD30-mediated therapy with SGN-30 or SGN-35 would be useful for patients with ATL.
Collapse
Affiliation(s)
- Naoyoshi Maeda
- Division of Host Defense, Research Center for Prevention of Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
22
|
Aschermann S, Lux A, Baerenwaldt A, Biburger M, Nimmerjahn F. The other side of immunoglobulin G: suppressor of inflammation. Clin Exp Immunol 2009; 160:161-7. [PMID: 20041883 DOI: 10.1111/j.1365-2249.2009.04081.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Immunoglobulin G (IgG) molecules can have two completely opposite functions. On one hand, they induce proinflammatory responses and recruit innate immune effector cells during infection with pathogenic microorganisms or autoimmune disease. On the other hand, intravenous infusion of high doses of pooled IgG molecules from thousands of donors [intravenous IG (IVIG) therapy] represents an efficient anti-inflammatory treatment for many autoimmune diseases. Whereas our understanding of the mechanism of the proinflammatory activity of IgG is quite advanced, we are only at the very beginning to comprehend how the anti-inflammatory activity comes about and what cellular and molecular players are involved in this activity. This review will summarize our current knowledge and focus upon the two major models of either IVIG-mediated competition for IgG-triggered effector functions or IVIG-mediated adjustment of cellular activation thresholds used to explain the mechanism of the anti-inflammatory activity.
Collapse
Affiliation(s)
- S Aschermann
- Laboratory of Experimental Immunology and Immunotherapy, Nikolaus-Fiebiger-Centre for Molecular Medicine, Medical Department III, University of Erlangen-Nuernberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
23
|
Abstract
Over the past decade, monoclonal antibodies have dramatically impacted the treatment of haematological malignancies, as evidenced by the effect of rituximab on the response rate and survival of patients with follicular and diffuse large B cell non-Hodgkin's lymphoma. Currently, only two monoclonal antibodies - the anti-CD33 immunotoxin gemtuzumab ozogamicin and the CD52-directed antibody alemtuzumab - are approved for treatment of relapsed acute myeloid leukaemia in older patients and B cell chronic lymphocytic leukaemia, respectively. Although not approved for such treatment, alemtuzumab is also active against T cell prolymphocytic leukaemia, cutaneous T cell lymphoma and Sézary syndrome, and adult T cell leukaemia and lymphoma. In addition, rituximab has demonstrated activity against B cell chronic lymphocytic and hairy cell leukaemia. Monoclonal antibodies targeting CD4, CD19, CD20, CD22, CD23, CD25, CD45, CD66 and CD122 are now being studied in the clinic for the treatment of leukaemia. Here, we discuss how these new antibodies have been engineered to reduce immunogenicity and improve antibody targeting and binding. Improved interactions with Fc receptors on immune effector cells can enhance destruction of target cells through antibody-dependent cellular cytotoxicity and complement-mediated cell lysis. The antibodies can also be armed with cellular toxins or radionuclides to enhance the destruction of leukaemia cells.
Collapse
Affiliation(s)
- John C Morris
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1457, USA.
| | | |
Collapse
|
24
|
Zhang M, Yao Z, Garmestani K, Yu S, Goldman CK, Paik CH, Brechbiel MW, Carrasquillo JA, Waldmann TA. Preclinical evaluation of an anti-CD25 monoclonal antibody, 7G7/B6, armed with the beta-emitter, yttrium-90, as a radioimmunotherapeutic agent for treating lymphoma. Cancer Biother Radiopharm 2009; 24:303-9. [PMID: 19538052 DOI: 10.1089/cbr.2008.0577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Radioimmunotherapy of cancer with radiolabeled antibodies has shown promise. We evaluated an anti-CD25 monoclonal Antibody, 7G7/B6, armed with (90)Y as a potential radioimmunotherapeutic agent for CD25-expressing lymphomas. MATERIALS AND METHODS The lymphoma model was established by subcutaneous injection of 1 x 10(7) SUDHL-1 cells into nude mice. The biodistribution of (111)In-7G7/B6 and therapeutic studies with (90)Y-7G7/B6 were performed in the tumor-bearing mice. RESULTS Therapy using (90)Y-7G7/B6 prolonged survival of the SUDHL-1 lymphoma-bearing mice significantly, as compared with either untreated mice or the mice treated with (90)Y-11F11, a radiolabeled isotype-matched control antibody (p < 0.001). All of the mice in the control and the (90)Y-11F11 treatment groups died by days 18 and 24, respectively. In contrast, 30% of the mice in the low-dose group (75 microCi of (90)Y-7G7/B6/mouse) and 75% in the high-dose group (150 microCi of (90)Y-7G7/B6/mouse) became tumor free and remained healthy for greater than 6 months. CONCLUSIONS Our findings suggested that (90)Y-7G7/B6 is a potentially useful radioimmunotherapeutic agent for the treatment of patients with CD25-expressing lymphomas.
Collapse
Affiliation(s)
- Meili Zhang
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1374, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ito A, Ishida T, Yano H, Inagaki A, Suzuki S, Sato F, Takino H, Mori F, Ri M, Kusumoto S, Komatsu H, Iida S, Inagaki H, Ueda R. Defucosylated anti-CCR4 monoclonal antibody exercises potent ADCC-mediated antitumor effect in the novel tumor-bearing humanized NOD/Shi-scid, IL-2Rgamma(null) mouse model. Cancer Immunol Immunother 2009; 58:1195-206. [PMID: 19048251 PMCID: PMC11030985 DOI: 10.1007/s00262-008-0632-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE There are no suitable small animal models to evaluate human antibody-dependent cellular cytotoxicity (ADCC) in vivo, due to species incompatibilities. Thus, the first aim of this study was to establish a human tumor-bearing mouse model in which human immune cells can engraft and mediate ADCC, but where the endogenous mouse immune cells cannot mediate ADCC. The second aim was to evaluate ADCC mediated in these humanized mice by the defucosylated anti-CC chemokine receptor 4 (CCR4) monoclonal antibody (mAb) which we have developed and which is now in phase I clinical trials. EXPERIMENTAL DESIGN NOD/Shi-scid, IL-2Rgamma(null) (NOG) mice were the recipients of human immune cells, and CCR4-expressing Hodgkin lymphoma (HL) and cutaneous T-cell lymphoma (CTCL) cell lines were used as target tumors. RESULTS Humanized mice have been established using NOG mice. The chimeric defucosylated anti-CCR4 mAb KM2760 showed potent antitumor activity mediated by robust ADCC in these humanized mice bearing the HL or CTCL cell lines. KM2760 significantly increased the number of tumor-infiltrating CD56-positive NK cells which mediate ADCC, and reduced the number of tumor-infiltrating FOXP3-positive regulatory T (Treg) cells in HL-bearing humanized mice. CONCLUSIONS Anti-CCR4 mAb could be an ideal treatment modality for many different cancers, not only to directly kill CCR4-expressing tumor cells, but also to overcome the suppressive effect of Treg cells on the host immune response to tumor cells. In addition, using our humanized mice, we can perform the appropriate preclinical evaluation of many types of antibody based immunotherapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neoplasm/pharmacology
- Antibodies, Neoplasm/therapeutic use
- Antibody-Dependent Cell Cytotoxicity
- Cell Line, Tumor
- Disease Models, Animal
- Hodgkin Disease/immunology
- Hodgkin Disease/pathology
- Hodgkin Disease/therapy
- Humans
- Immunotherapy
- Ki-1 Antigen/blood
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Lymphoma, T-Cell, Cutaneous/immunology
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/therapy
- Male
- Mice
- Mice, SCID
- Receptors, CCR4/antagonists & inhibitors
- Receptors, CCR4/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Asahi Ito
- Department of Medical Oncology and Immunology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-chou, Mizuho-ku, Nagoya, Aichi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Attia RR, Gardner LA, Mahrous E, Taxman DJ, Legros L, Rowe S, Ting JPY, Geller A, Kotb M. Selective targeting of leukemic cell growth in vivo and in vitro using a gene silencing approach to diminish S-adenosylmethionine synthesis. J Biol Chem 2008; 283:30788-95. [PMID: 18753136 PMCID: PMC2576526 DOI: 10.1074/jbc.m804159200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/21/2008] [Indexed: 11/06/2022] Open
Abstract
We exploited the fact that leukemic cells utilize significantly higher levels of S-adenosylmethionine (SAMe) than normal lymphocytes and developed tools that selectively diminished their survival under physiologic conditions. Using RNA interference gene silencing technology, we modulated the kinetics of methionine adenosyltransferase-II (MAT-II), which catalyzes SAMe synthesis from ATP and l-Met. Specifically, we silenced the expression of the regulatory MAT-IIbeta subunit in Jurkat cells and accordingly shifted the K(m L-Met) of the enzyme 10-15-fold above the physiologic levels of l-Met, thereby reducing enzyme activity and SAMe pools, inducing excessive apoptosis and diminishing leukemic cell growth in vitro and in vivo. These effects were reversed at unphysiologically high l-Met (>50 microm), indicating that diminished leukemic cell growth at physiologic l-Met levels was a direct result of the increase in MAT-II K(m L-Met) due to MAT-IIbeta ablation and the consequent reduction in SAMe synthesis. In our NOD/Scid IL-2Rgamma(null) humanized mouse model of leukemia, control shRNA-transduced Jurkat cells exhibited heightened engraftment, whereas cells lacking MAT-IIbeta failed to engraft for up to 5 weeks post-transplant. These stark differences in malignant cell survival, effected by MAT-IIbeta ablation, suggest that it may be possible to use this approach to disadvantage leukemic cell survival in vivo with little to no harm to normal cells.
Collapse
Affiliation(s)
- Ramy R Attia
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Otten MA, van der Bij GJ, Verbeek SJ, Nimmerjahn F, Ravetch JV, Beelen RHJ, van de Winkel JGJ, van Egmond M. Experimental Antibody Therapy of Liver Metastases Reveals Functional Redundancy between FcγRI and FcγRIV. THE JOURNAL OF IMMUNOLOGY 2008; 181:6829-36. [DOI: 10.4049/jimmunol.181.10.6829] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
28
|
Effective treatment of a murine model of adult T-cell leukemia using depsipeptide and its combination with unmodified daclizumab directed toward CD25. Blood 2008; 113:1287-93. [PMID: 18948574 DOI: 10.1182/blood-2008-04-149658] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Adult T-cell leukemia (ATL) is caused by human T-cell lymphotropic virus I (HTLV-1) and is an aggressive malignancy of CD4, CD25-expressing leukemia, and lymphoma cells. There is no accepted curative therapy for ATL. Depsipeptide, a histone deacetylase inhibitor, has demonstrated major antitumor effects in leukemias and lymphomas. In this study, we investigated the therapeutic efficacy of depsipeptide alone and in combination with daclizumab (humanized anti-Tac) in a murine model of human ATL. The Met-1 ATL model was established by intraperitoneal injection of ex vivo leukemic cells into nonobese diabetic/severe combined immunodeficiency mice. Either depsipeptide, given at 0.5 mg/kg every other day for 2 weeks, or daclizumab, given at 100 microg weekly for 4 weeks, inhibited tumor growth as monitored by serum levels of soluble IL-2R-alpha (sIL-2R-alpha) and soluble beta2-microglobulin (beta2mu) (P < .001), and prolonged survival of the leukemia-bearing mice (P < .001) compared with the control group. Combination of depsipeptide with daclizumab enhanced the antitumor effect, as shown by both sIL-2R-alpha and beta2mu levels and survival of the leukemia-bearing mice, compared with those in the depsipeptide or daclizumab alone groups (P < .001). The significantly improved therapeutic efficacy by combining depsipeptide with daclizumab supports a clinical trial of this combination in the treatment of ATL.
Collapse
|
29
|
Abstract
T-Cell leukemias and lymphomas represent a less common and heterogeneous group of lymphoid neoplasms. Overall, they respond less well to chemotherapy and have a poorer prognosis than their B-cell counterparts. T-Cell tumors express a number of potential targets for receptor-directed antibody therapy; however, there is no available therapeutic monoclonal antibody for these diseases with comparable activity to that of rituximab in B-cell disorders. Despite this, alemtuzumab, a humanized anti-CD52 monoclonal antibody has demonstrated meaningful anti-tumor activity in a variety of T-cell malignancies. A number of other antibodies, modified antibodies and immunotoxins directed against targets such as CD2, CD4, CD5, CD25, CD30 and CD122 expressed on malignant T-cells are under investigation. The current status of receptor-directed antibody therapy for T-cell leukemia and lymphoma is reviewed.
Collapse
MESH Headings
- Alemtuzumab
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibodies, Neoplasm/therapeutic use
- Antigens, CD/immunology
- Antineoplastic Agents/therapeutic use
- Humans
- Leukemia, T-Cell/diagnosis
- Leukemia, T-Cell/drug therapy
- Leukemia, T-Cell/immunology
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/drug therapy
- Lymphoma, T-Cell/immunology
- Prognosis
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/immunology
Collapse
Affiliation(s)
- John C Morris
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Mark O. Hatfield Clinical Research Center, Bethesda, Maryland 20892-1457, USA.
| | | | | |
Collapse
|
30
|
Abstract
The remarkable success story of the therapeutic application of pooled immunoglobulin G (IgG) preparations from thousands of donors, the so-called intravenous IgG (IVIG) therapy, to patients with a variety of hematological and immunological disorders began more than half a century ago. Since then, the use of this primary blood product has increased constantly, resulting in the serious danger of shortages in supply. Despite its widespread use and therapeutic success, the mechanisms of action, especially of the anti-inflammatory activity, are only beginning to be understood. In this review, we summarize the clinical use of IVIG for different diseases and discuss recent data on the molecular mechanisms that might explain how this potent drug mediates its activity in vivo.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Laboratory of Experimental Immunology and Immunotherapy, Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | | |
Collapse
|
31
|
Abstract
In addition to their role in binding antigen, antibodies can regulate immune responses through interacting with Fc receptors (FcRs). In recent years, significant progress has been made in understanding the mechanisms that regulate the activity of IgG antibodies in vivo. In this Review, we discuss recent studies addressing the multifaceted roles of FcRs for IgG (FcgammaRs) in the immune system and how this knowledge could be translated into novel therapeutic strategies to treat human autoimmune, infectious or malignant diseases.
Collapse
|
32
|
Zhou Q, Shankara S, Roy A, Qiu H, Estes S, McVie-Wylie A, Culm-Merdek K, Park A, Pan C, Edmunds T. Development of a simple and rapid method for producing non-fucosylated oligomannose containing antibodies with increased effector function. Biotechnol Bioeng 2008; 99:652-65. [PMID: 17680659 DOI: 10.1002/bit.21598] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycosylation in the Fc region of antibodies has been shown to play an important role in antibody function. In the current study, glycosylation of human monoclonal antibodies was metabolically modulated using a potent alpha-mannosidase I inhibitor, kifunensine, resulting in the production of antibodies with oligomannose-type N-glycans. Growing Chinese hamster ovary cells for 11 days in batch culture with a single treatment of kifunensine was sufficient to elicit this effect without any significant impact on cell viability or antibody production. Antibodies expressed in the presence of kifunensine at a concentration as low as 60 ng/mL contained mainly oligomannose-type glycans and demonstrated increased ADCC activity and affinity for FcgammaRIIIA, but reduced C1q binding. Although the kifunensine-mediated shift to oligomannose-type glycans could, in theory, result in rapid clearance of the antibody through increased mannose receptor binding, the serum levels of antibody in mice were not significantly altered up to 168 h following injection. The use of kifunensine provides a simple and rapid method for the production of antibodies with increased ADCC without the time-consuming need to re-engineer either the antibody molecule or the host cell line.
Collapse
Affiliation(s)
- Qun Zhou
- Genzyme Corporation, P.O. Box 9322, Framingham, Massachusetts 01701-9322, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Receptors for immunoglobulins [Fc-receptors (FcRs)] are widely expressed throughout the immune system. By binding to the antibody Fc-portion, they provide a link between the specificity of the adaptive immune system and the powerful effector functions triggered by innate immune effector cells. By virtue of coexpression of activating and inhibitory FcRs on the same cell, they set a threshold for immune cell activation by immune complexes (ICs). Besides their involvement in the efferent phase of an immune response, they are also important for modulating adaptive immune responses by regulating B cell and dendritic cell (DC) activation. Deletion of the inhibitory FcR leads to the loss of tolerance in the humoral immune system and the development of autoimmune disease. Uptake of ICs by FcRs on DCs and the concommitant triggering of activating and inhibitory signaling pathways will determine the strength of the initiated T-cell response. Loss of this balanced signaling results in uncontrolled responses that can lead to the damage of healthy tissues and ultimately to the initiation of autoimmune processes. In this chapter, we will discuss how coexpression of different activating and inhibitory receptors on different immune cells of the innate and adaptive immune system modulates cell activity. Moreover, we will focus on exogenous factors that can influence the balanced triggering of activating and inhibitory FcRs, such as the cytokine milieu and the role of differential antibody glycosylation.
Collapse
|
34
|
Stavenhagen JB, Gorlatov S, Tuaillon N, Rankin CT, Li H, Burke S, Huang L, Vijh S, Johnson S, Bonvini E, Koenig S. Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Cancer Res 2007; 67:8882-90. [PMID: 17875730 DOI: 10.1158/0008-5472.can-07-0696] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Monoclonal antibodies (mAb) are widely used in the treatment of non-Hodgkin's lymphoma and autoimmune diseases. Although the mechanism of action in vivo is not always known, the therapeutic activity of several approved mAbs depends on the binding of the Fcgamma regions to low-affinity Fcgamma receptors (FcgammaR) expressed on effector cells. We did functional genetic screens to identify IgG1 Fc domains with improved binding to the low-affinity activating Fc receptor CD16A (FcgammaRIIIA) and reduced binding to the low-affinity inhibitory Fc receptor, CD32B (FcgammaRIIB). Identification of new amino acid residues important for FcgammaR binding guided the construction of an Fc domain that showed a dramatically enhanced CD16A binding and greater than a 100-fold improvement in antibody-dependent cell-mediated cytotoxicity. In a xenograft murine model of B-cell malignancy, the greatest enhancement of an Fc-optimized anti-human B-cell mAb was accounted for by improved binding to FcgammaRIV, a unique mouse activating FcgammaR that is expressed by monocytes and macrophages but not natural killer (NK) cells, consistent with experimental and clinical data suggesting that mononuclear phagocytes, effector cells expressing both activating and inhibitory FcgammaR, are critical mediators of B-cell depletion in vivo. By using mice transgenic for human CD16A, enhanced survival was observed due to expression of CD16A-158(phe) on monocytes and macrophages as well as on NK cells in these mice. The design of new generations of improved antibodies for immunotherapy should aim at Fc optimization to increase the engagement of activating FcgammaR present on the surface of tumor-infiltrating effector cell populations.
Collapse
|
35
|
Takeda K, Stagg J, Yagita H, Okumura K, Smyth MJ. Targeting death-inducing receptors in cancer therapy. Oncogene 2007; 26:3745-57. [PMID: 17530027 DOI: 10.1038/sj.onc.1210374] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Deregulated cell death pathways may lead to the development of cancer, and induction of tumor cell apoptosis is the basis of many cancer therapies. Knowledge accumulated concerning the molecular mechanisms of apoptotic cell death has aided the development of new therapeutic strategies to treat cancer. Signals through death receptors of the tumor necrosis factor (TNF) superfamily have been well elucidated, and death receptors are now one of the most attractive therapeutic targets in cancer. In particular, DR5 and DR4, death receptors of TNF-related apoptosis-inducing ligand (TRAIL or Apo2L), are interesting targets of antibody-based therapy, since TRAIL may also bind decoy receptors that may prevent TRAIL-mediated apoptosis, whereas TRAIL ligand itself selectively induces apoptosis in cancer cells. Here, we review the potential therapeutic utility of agonistic antibodies against DR5 and DR4 and discuss the possible extension of this single-antibody-based strategy when combined with additional modalities that either synergizes to cause enhanced apoptosis or further engage the cellular immune response. Rational design of antibody-based therapies combining the induction of tumor cell apoptosis and activation of tumor-specific adaptive immunity enables promotion of distinct steps of the antitumor immune response, thereby enhancing tumor-specific lymphocytes that can eradicate TRAIL/DR5-resistant mutating, large established and heterogeneous tumors in a manner that does not require the definition of individual tumor-specific antigens.
Collapse
Affiliation(s)
- K Takeda
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Daclizumab (Zenapax) identifies the alpha subunit of the interleukin-2 (IL-2) receptor and blocks the interaction of this cytokine with its growth factor receptor. The scientific basis for the choice of the IL-2 receptor alpha subunit as a target for monoclonal antibody-mediated therapy of leukemia/lymphoma is that very few normal cells express IL-2R alpha, whereas the abnormal T cells in patients with an array of lymphoid malignancies express this receptor. In 1997, daclizumab was approved by the FDA for use in the prevention of renal allograft rejection. In addition, anti-Tac provided effective therapy for select patients with T-cell malignancies and an array of inflammatory autoimmune disorders. Finally, therapy with this antibody armed with (90)Y has led to clinical responses in the majority of patients with adult T-cell leukemia. These insights concerning the IL-2/IL-2 receptor system facilitated the development of effective daclizumab antibody therapy for select patients with leukemia/lymphoma.
Collapse
Affiliation(s)
- T A Waldmann
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1374, USA.
| |
Collapse
|
37
|
Nimmerjahn F, Ravetch JV. Antibodies, Fc receptors and cancer. Curr Opin Immunol 2007; 19:239-45. [PMID: 17291742 DOI: 10.1016/j.coi.2007.01.005] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 01/31/2007] [Indexed: 11/19/2022]
Abstract
Since the first report of the successful use of a monoclonal antibody for the treatment of human B cell lymphoma in 1982, several antibodies have become incorporated into standard treatment protocols for cancer. One of the most important factors that determine antibody activity in vivo is the efficient interaction with cellular Fc-receptors on innate immune effector cells. It has become clear that the outcome of this interaction is influenced by several factors, such as the antibody isotype-specific affinity to activating and inhibitory receptors, the level of inhibitory FcgammaRIIB expression, and the composition of the sugar side chain attached to the antibody Fc-portion. These novel insights into antibody FcR interactions might be useful to produce the next generation of improved immunotherapeutic molecules.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
38
|
Sibéril S, Dutertre CA, Fridman WH, Teillaud JL. FcgammaR: The key to optimize therapeutic antibodies? Crit Rev Oncol Hematol 2007; 62:26-33. [PMID: 17240158 DOI: 10.1016/j.critrevonc.2006.12.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 12/05/2006] [Accepted: 12/08/2006] [Indexed: 12/15/2022] Open
Abstract
The binding of IgG to receptors for the Fc region of IgG (FcgammaR) is a critical step for the initiation and the control of effector immune functions. Activating FcgammaR induce antibody-dependent cell cytotoxicity (ADCC), endocytosis of immune complexes followed by antigen presentation, phagocytosis, and release of cytokines or pro-inflammatory mediators. By contrast, inhibitory FcgammaR regulate immune responses by inhibiting the activation of B lymphocytes, monocytes, mast cells and basophils, induced through activating receptors. Studies with FcgammaR-deficient mice support the critical role of the different FcgammaR in the in vivo functional effects of therapeutic monoclonal antibodies. Structural studies have provided detailed insights in the molecular mechanisms that govern IgG/FcgammaR interactions. The importance of the sugar components linked to asparagine 297 in the function of IgG has been also highlighted. These data have led to the engineering of a new generation of monoclonal antibodies for therapeutic use with optimized effector functions.
Collapse
Affiliation(s)
- Sophie Sibéril
- Unité INSERM 255, IFR58, Université René Descartes-Paris 5, Université Pierre et Marie Curie-Paris 6, Centre de Recherches Biomédicales des Cordeliers, Paris, France
| | | | | | | |
Collapse
|
39
|
Waldmann TA. Anti-Tac (daclizumab, Zenapax) in the treatment of leukemia, autoimmune diseases, and in the prevention of allograft rejection: a 25-year personal odyssey. J Clin Immunol 2007; 27:1-18. [PMID: 17216565 DOI: 10.1007/s10875-006-9060-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
Twenty-five years ago, we reported the production of the monoclonal antibody, anti-Tac that identifies the IL-2 receptor alpha subunit and blocks the interaction of IL-2 with this growth factor receptor. In 1997, daclizumab (Zenapax), the humanized form of this antibody, was approved by the FDA for use in the prevention of renal allograft rejection. In addition, we demonstrated that daclizumab is of value in the treatment of patients with noninfectious uveitis, multiple sclerosis, and the neurological disease human T-cell lymphotropic virus I associated myelopathy/tropical spastic paraparesis (HAM/TSP). Others demonstrated therapeutic efficacy with daclizumab in patients with pure red cell aplasia, aplastic anemia, and psoriasis. Thus, translation of basic insights concerning the IL-2/IL-2 receptor system obtained using the monoclonal antibody daclizumab provided a useful strategy for the prevention of organ allograft rejection and the treatment of patients with select autoimmune diseases or T-cell leukemia/lymphoma.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Autoimmune Diseases/drug therapy
- Binding, Competitive/immunology
- Daclizumab
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Humans
- Immunoglobulin G/immunology
- Immunoglobulin G/pharmacology
- Immunoglobulin G/therapeutic use
- Immunosuppressive Agents/therapeutic use
- Interleukin-2/antagonists & inhibitors
- Interleukin-2/immunology
- Interleukin-2 Receptor alpha Subunit/antagonists & inhibitors
- Interleukin-2 Receptor alpha Subunit/immunology
- Leukemia/drug therapy
- Leukemia/metabolism
- Leukemia-Lymphoma, Adult T-Cell/drug therapy
- Mice
- Paraparesis, Tropical Spastic/drug therapy
- Receptors, Interleukin-2/antagonists & inhibitors
- Receptors, Interleukin-2/drug effects
- Receptors, Interleukin-2/immunology
- Uveitis/drug therapy
Collapse
Affiliation(s)
- Thomas A Waldmann
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, NIH Building 10, Bethesda, Maryland 20892-1374, USA.
| |
Collapse
|
40
|
Lowe DB, Shearer MH, Jumper CA, Bright RK, Kennedy RC. Fc gamma receptors play a dominant role in protective tumor immunity against a virus-encoded tumor-specific antigen in a murine model of experimental pulmonary metastases. J Virol 2006; 81:1313-8. [PMID: 17108042 PMCID: PMC1797535 DOI: 10.1128/jvi.01943-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian virus 40 (SV40) large tumor antigen (Tag) represents a virus-encoded tumor-specific antigen expressed in many types of human cancers and a potential immunologic target for antitumor responses. Fc receptors are important mediators in the regulation and execution of host effector mechanisms against conditions including infectious diseases, autoimmunity, and cancer. By examining tumor protection in SV40 Tag-immunized wild-type BALB/c mice using an experimental pulmonary metastasis model, we attempted to address whether engagement of the immunoglobulin G Fc receptors (FcgammaRs) on effector cells is necessary to mediate antitumor responses. All immunized BALB/c FcgammaR-/- knockout mice developed anti-SV40 Tag antibody responses prior to experimental challenge with a tumorigenic cell line expressing SV40 Tag. However, all mice deficient in the activating FcgammaRI (CD64) and FcgammaRIII (CD16) were unable to mount protective immunologic responses against tumor challenge and developed tumor lung foci. In contrast, mice lacking the inhibitory receptor FcgammaRII (CD32) demonstrated resistance to tumorigenesis. These results underscore the importance of effector cell populations expressing FcgammaRI/III within this murine tumor model system, and along with the production of a specific humoral immune response, antibody-dependent cell-mediated cytotoxicity (ADCC) may be a functioning mechanism of tumor clearance. Additionally, these data demonstrate the potential utility of ADCC as a viable approach for targeting vaccination strategies that promote FcgammaRI/III scavenging pathways against cancer.
Collapse
Affiliation(s)
- Devin B Lowe
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, 3601 4th Street, MS 6591, Lubbock, TX 79430, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Induction immunosuppression is intense, prophylactic therapy used at the time of transplantation based on the empiric observation that more powerful immunosuppression is required to prevent acute rejection early. In the past decade, there has been a growing trend towards the use of specialized agents such as antibody therapies for induction. In general, these agents have been shown to reduce the rate of acute rejection. However, their use has not been clearly shown to improve long-term transplant outcomes. This overview will review the biological basis for induction immunosuppression and the mechanisms of action of those specialized induction agents currently in clinical use. Clinical trials investigating induction regimens will be evaluated, and an individualized approach to the use of induction immunosuppressants will be presented.
Collapse
|
42
|
Nimmerjahn F. Activating and inhibitory FcγRs in autoimmune disorders. ACTA ACUST UNITED AC 2006; 28:305-19. [PMID: 17115158 DOI: 10.1007/s00281-006-0052-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 09/29/2006] [Indexed: 10/24/2022]
Abstract
Autoimmune disorders are characterized by the destruction of self-tissues by the immune system. Multiple checkpoints are in place to prevent autoreactivity under normal circumstances. Coexpression of activating and inhibitory Fc receptors (FcR) represents such a checkpoint by establishing a threshold for immune cell activation. In many human autoimmune diseases, however, balanced FcR expression is disturbed. Analysis of murine model systems provides strong evidence that aberrant FcR expression can result in uncontrolled immune responses and the initiation of autoimmune disease. This review will summarize this data and explain how this information might be used to better understand human autoimmune diseases and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Laboratory of Molecular Genetics and Immunology, 1230 York Avenue, New York, NY, 10021, USA,
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW This article summarizes the current pathophysiologic basis for human T cell lymphotropic virus-associated leukemia/lymphoma as well as past, present, and future therapeutic options. RECENT FINDINGS New studies have been published on allogeneic stem cell transplantation, arsenic trioxide, and bortezomib for this condition. SUMMARY Studies of the molecular biology of human T cell lymphotropic virus-1-induced T cell leukemia/lymphoma have defined a critical role for oncoprotein, Tax, and activation of nuclear factor kappaB transcription pathways, which have provided rational approaches to improved therapy for T cell leukemia/lymphoma as well as a model for other hematopoietic malignancies characterized by nuclear factor kappaB activation.
Collapse
Affiliation(s)
- Lee Ratner
- Division of Molecular Oncology, Washington University, 660 South Euclid Avenue, Saint Louis, MO 63110, USA.
| |
Collapse
|
44
|
Hishizawa M, Imada K, Sakai T, Nishikori M, Arima N, Tsudo M, Ishikawa T, Uchiyama T. Antibody Responses Associated with the Graft-versus-Leukemia Effect in Adult T-Cell Leukemia. Int J Hematol 2006; 83:351-5. [PMID: 16757438 DOI: 10.1532/ijh97.05173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adult T-cell leukemia (ATL) is a peripheral T-cell neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1). The prognosis of ATL, especially the acute and lymphoma subtypes, is poor with conventional and high-dose chemotherapy. The effectiveness of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for ATL has been reported, suggesting the presence of a graft-versus-leukemia (GVL) effect against this malignancy. To identify the target antigens associated with tumor rejection, we used SEREX (serological identification of antigens by recombinant cDNA expression cloning) to screen ATL complementary DNA expression libraries with sera from an ATL patient who had a GVL response after allo-HSCT. Among the isolated clones, autocrine motility factor receptor (AMFR), which encodes a glycosylated transmembrane protein, was found to have selective reactivity with the sera obtained during tumor regression. Real-time reverse transcription polymerase chain reaction analysis for AMFR showed highest expression in the testis among normal tissues. Furthermore, aberrant AMFR expression was found in at least some ATL patients. Taken together, these findings suggest that AMFR may be one of the GVL antigens that provoke effective antitumor immunity against ATL in allogeneic settings.
Collapse
MESH Headings
- Antibody Formation/genetics
- Antibody Formation/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cloning, Molecular
- Female
- Gene Expression Regulation
- Gene Library
- Graft vs Leukemia Effect/genetics
- Graft vs Leukemia Effect/immunology
- Hematopoietic Stem Cell Transplantation
- Humans
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/therapy
- Male
- Middle Aged
- Organ Specificity
- Receptors, Autocrine Motility Factor
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- Transplantation, Homologous
- Ubiquitin-Protein Ligases
Collapse
Affiliation(s)
- Masakatsu Hishizawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang M, Yao Z, Zhang Z, Garmestani K, Goldman CK, Ravetch JV, Janik J, Brechbiel MW, Waldmann TA. Effective therapy for a murine model of human anaplastic large-cell lymphoma with the anti-CD30 monoclonal antibody, HeFi-1, does not require activating Fc receptors. Blood 2006; 108:705-10. [PMID: 16551968 PMCID: PMC1895489 DOI: 10.1182/blood-2005-11-4607] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CD30 is a member of the tumor necrosis factor receptor family. Overexpression of CD30 on some neoplasms versus its limited expression on normal tissues makes this receptor a promising target for antibody-based therapy. Anaplastic large-cell lymphoma (ALCL) represents a heterogeneous group of aggressive non-Hodgkin lymphomas characterized by the strong expression of CD30. We investigated the therapeutic efficacy of HeFi-1, a mouse IgG1 monoclonal antibody, which recognizes the ligand-binding site on CD30, and humanized anti-Tac antibody (daclizumab), which recognizes CD25, in a murine model of human ALCL. The ALCL model was established by intravenous injection of karpas299 cells into nonobese diabetic/severe combined immuno-deficient (SCID/NOD) wild-type or SCID/NOD Fc receptor common gamma chain-deficient (FcRgamma(-/-)) mice. HeFi-1, given at a dose of 100 microg weekly for 4 weeks, significantly prolonged survival of the ALCL-bearing SCID/NOD wild-type and SCID/NOD FcRgamma(-/-) mice (P < .01) as compared with the control groups. In vitro studies showed that HeFi-1 inhibited the proliferation of karpas299 cells, whereas daclizumab did not inhibit cell proliferation. We demonstrated that the expression of FcRgamma on polymorphonuclear leukocytes and monocytes was not required for HeFi-1-mediated tumor growth inhibition in vivo, although it was required for daclizumab.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antigens, Neoplasm/immunology
- Cell Proliferation/drug effects
- Daclizumab
- Disease Models, Animal
- Humans
- Immunoglobulin G/pharmacology
- Immunotherapy/methods
- Ki-1 Antigen/immunology
- Lymphoma, Large-Cell, Anaplastic/drug therapy
- Mice
- Mice, Knockout
- Mice, SCID
- Neoplasm Transplantation
- Receptors, Fc/metabolism
- Transplantation, Heterologous
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Meili Zhang
- Metabolism Branch, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nimmerjahn F, Ravetch JV. Fcgamma receptors: old friends and new family members. Immunity 2006; 24:19-28. [PMID: 16413920 DOI: 10.1016/j.immuni.2005.11.010] [Citation(s) in RCA: 819] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 11/23/2005] [Accepted: 11/28/2005] [Indexed: 11/21/2022]
Abstract
Although cellular receptors for immunoglobulins were first identified nearly 40 years ago, their central role in the immune response was discovered only in the last decade. They are key players in both the afferent and efferent phase of an immune response, setting thresholds for B cell activation, regulating the maturation of dendritic cells, and coupling the exquisite specificity of the antibody response to innate effector pathways, such as phagocytosis, antibody-dependent cellular cytotoxicity, and the recruitment and activation of inflammatory cells. Moreover, because of their general presence as receptor pairs consisting of activating and inhibitory molecules on the same cell, they have become a paradigm for studying the balance of positive and negative signals that ultimately determine the outcome of an immune response. This review will summarize recent results in Fc-receptor biology with an emphasis on data obtained in in vivo model systems.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
47
|
Abstract
MAbs directed toward tumor cells, tumor neovasculature, and host negative immunoregulatory elements (checkpoints) have emerged as useful immunotherapeutic agents against cancer. However, effective active modulation of the immune response with anticancer vaccines will require identifying appropriate tumor-rejection antigens; optimizing the interactions of peptides, antigen-presenting cells, and T cells; and blockading negative immunological checkpoints that impede an effective immune response. Checkpoints being targeted include CTLA-4 and PD1 that are negative signaling receptors expressed on activated T cells, CD4+CD25+ Foxp3-expressing Tregs (suppressor T cells), IL-2-mediated activation-induced cell death (AICD), and the cytokine TGFbeta.
Collapse
Affiliation(s)
- Thomas A Waldmann
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1374, USA.
| |
Collapse
|
48
|
Abstract
Monoclonal antibodies are among the most rapidly expanding class of therapeutics for cancer treatment. Monoclonal antibodies targeting non-Hodgkin's lymphoma (NHL), Her-2/neu highly expressing metastatic breast cancer, colorectal cancer, acute myelogenous leukemia, and B-cell chronic lymphocytic leukemia (CLL) have received FDA approval. Promising new targets for antibody therapy include cellular growth factor receptors, mediators of tumor-driven neo-angiogenesis, as well as host negative immunoregulatory checkpoints that impede an effective immune response to neoplasia. Antibody efficacy has been increased by genetic engineering to humanize the antibodies and to increase their effector functions including antibody dependent cellular cytotoxicity. Furthermore, antibodies have been armed with cytokines, chemotherapeutic agents, toxins, and radionuclides to augment their efficacy as tumor cytotoxic agents. As a consequence of these advances, 30 years after their first development, monoclonal antibodies have become an important standard approach for the therapy of neoplasia with 19 therapeutic monoclonal antibodies now approved by the FDA including 8 for the treatment of cancer.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Metabolism Branch, Center for Cancer Research, National Cancer Institute NIH, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
49
|
Abstract
It has been 25 years since the discovery of human T-cell leukemia virus type I (HTLV-I) and its role in adult T-cell leukemia. Here, in brief, we review the current state of our understanding of HTLV-I epidemiology, viral biology, pathogenesis, and treatment. We discuss how HTLV-I may transform cells through destabilization of cellular genomic integrity and induction of cellular tolerance for chromosomal errors.
Collapse
Affiliation(s)
- Masao Matsuoka
- Laboratory of Virus Immunology, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
50
|
Li Z, Lim WK, Mahesh SP, Liu B, Nussenblatt RB. Cutting Edge: In Vivo Blockade of Human IL-2 Receptor Induces Expansion of CD56brightRegulatory NK Cells in Patients with Active Uveitis. THE JOURNAL OF IMMUNOLOGY 2005; 174:5187-91. [PMID: 15843513 DOI: 10.4049/jimmunol.174.9.5187] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vivo blockade of the human IL-2R by mAb has been used for immunosuppression in transplantation, therapy for leukemia, and autoimmune diseases. In this study, we report that administration of a humanized IL-2R blocking Ab induced a 4- to 20-fold expansion of CD56(bright) regulatory NK cells in uveitis patients over time. The induced CD56(bright) regulatory NK cells from patients exhibited similar phenotype as those naturally occurring CD56(bright) cells. Patients with active uveitis had a significantly lower level of CD56(bright) NK cells compared with normal donors (p < 0.01). In addition, the induced CD56(bright) cells could secrete large amounts of IL-10 whereas CD56(dim) NK cells could not, suggesting that the induction of the CD56(bright) cells may have a beneficial effect on the remission of active uveitis. Our observation may have implications to IL-2R blockade therapy and for the potential role of CD56(bright) regulatory NK cells in autoimmune diseases.
Collapse
MESH Headings
- Antibodies, Blocking/administration & dosage
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal, Humanized
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Autoimmune Diseases/therapy
- CD56 Antigen/biosynthesis
- Daclizumab
- Humans
- Immunoglobulin G/administration & dosage
- Infusions, Intravenous
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Lymphocyte Activation/immunology
- Receptors, Interleukin-2/antagonists & inhibitors
- Receptors, Interleukin-2/immunology
- Uveitis/immunology
- Uveitis/pathology
- Uveitis/therapy
Collapse
Affiliation(s)
- Zhuqing Li
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|