1
|
Liu Y, Geng N, Huang X. Molecular regulators of chemotaxis in human hematopoietic stem cells. Biochem Soc Trans 2024; 52:2427-2437. [PMID: 39584478 DOI: 10.1042/bst20240288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
Hematopoietic stem cells (HSCs), essential for lifelong blood cell regeneration, are clinically utilized to treat various hematological disorders. These cells originate in the aorta-gonad-mesonephros region, expand in the fetal liver, and mature in the bone marrow. Chemotaxis, involving gradient sensing, polarization, and migration, directs HSCs and is crucial for their homing and mobilization. The molecular regulation of HSC chemotaxis involves chemokines, chemokine receptors, signaling pathways, and cytoskeletal proteins. Recent advances in understanding these regulatory mechanisms have deepened insights into HSC development and hematopoiesis, offering new avenues for therapeutic innovations. Strategies including glucocorticoid receptor activation, modulation of histone acetylation, stimulation of nitric oxide signaling, and interference with m6A RNA modification have shown potential in enhancing CXCR4 expression, thereby improving the chemotactic response and homing capabilities of human HSCs. This review synthesizes current knowledge on the molecular regulation of human HSC chemotaxis and its implications for health and disease.
Collapse
Affiliation(s)
- Yining Liu
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Nanxi Geng
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xinxin Huang
- Zhongshan-Xuhui Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Gencer EB, Akin HY, Toprak SK, Turasan E, Yousefzadeh M, Yurdakul-Mesutoglu P, Cagan M, Seval MM, Katlan DC, Dalva K, Beksac MS, Beksac M. In vivo and in vitro effects of cord blood hematopoietic stem and progenitor cell (HSPC) expansion using valproic acid and/or nicotinamide. Curr Res Transl Med 2024; 72:103444. [PMID: 38447268 DOI: 10.1016/j.retram.2024.103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND High self-renewal capacity and most permissive nature of umbilical cord blood (CB) results with successful transplant outcomes but low hematopoietic stem and progenitor cell (HSPC) counts limits wider use. In order to overcome this problem ex vivo expansion with small molecules such as Valproic acid (VPA) or Nicotinamide (NAM) have been shown to be effective. To the best of our knowledge, the combinatory effects of VPA and NAM on HSPC expansion has not been studied earlier. The aim of this study was to analyze ex vivo and in vivo efficacy of VPA and NAM either alone or in combination in terms of expansion and engraftment. METHODS A total of 44 CB units were included in this study. To determine the ex vivo and in vivo efficacy, human CB CD34+ cells were expanded with VPA and/or NAM and colony forming unit (CFU) assay was performed on expanded HSPC. Xenotransplantation was performed simultaneously by intravenous injection of expanded HSPC to NOD-SCID gamma (NSG) mice (n = 22). Significance of the difference between the expansion groups or xenotransplantation models was analyzed using t-test, Mann-Whitney, ANOVA or Kruskal-Wallis tests as appropriate considering the normality of distributions and the number of groups analyzed. RESULTS In vitro CD34+ HSPC expansion fold relative to cytokines-only was significantly higher with VPA compared to NAM [2.23 (1.07-5.59) vs 1.48 (1.00-4.40); p < 0.05]. Synergistic effect of VPA+NAM has achieved a maximum relative expansion fold at 21 days (D21) of incubation [2.95 (1.00-11.94)]. There was no significant difference between VPA and VPA+NAM D21 (p = 0.44). Fold number of colony-forming unit granulocyte-macrophage (CFU-GM) colonies relative to the cytokine-only group was in favor of NAM compared to VPA [1.87 (1.00-3.59) vs 1.00 (1.00-1.81); p < 0.01]. VPA+NAM D21 [1.62 (1.00-2.77)] was also superior against VPA (p < 0.05). There was no significant difference between NAM and VPA+NAM D21. Following human CB34+ CB transplantation (CBT) in the mouse model, fastest in vivo leukocyte recovery was observed with VPA+NAM expanded cells (6 ± 2 days) and the highest levels of human CD45 chimerism was detectable with VPA-expanded CBT (VPA: 5.42 % at day 28; NAM: 2.45 % at day 31; VPA+NAM 1.8 % at day 31). CONCLUSION Our study results suggest using VPA alone, rather than in combination with NAM or NAM alone, to achieve better and faster expansion and engraftment of CB HSPC.
Collapse
Affiliation(s)
| | - Hasan Yalim Akin
- Ankara University Faculty of Medicine Cord Blood Bank, Ankara, Turkey; Middle East Technical University, Department of Biochemistry, Ankara, Turkey
| | - Selami Kocak Toprak
- Ankara University Faculty of Medicine Cord Blood Bank, Ankara, Turkey; Ankara University Faculty of Medicine Department of Hematology, Ankara, Turkey
| | - Eylul Turasan
- Ankara University Faculty of Medicine Cord Blood Bank, Ankara, Turkey
| | - Mahsa Yousefzadeh
- Ankara University Faculty of Medicine Cord Blood Bank, Ankara, Turkey; Ankara University Stem Cell Institute, Ankara, Turkey
| | | | - Murat Cagan
- Hacettepe University Faculty of Medicine Department of Obstetrics and Gynecology, Ankara, Turkey
| | - Mehmet Murat Seval
- Ankara University Faculty of Medicine Department of Obstetrics and Gynecology, Ankara, Turkey
| | - Doruk Cevdi Katlan
- Istanbul Training and Research Hospital Department of Obstetrics and Gynecology, Istanbul, Turkey
| | - Klara Dalva
- Ankara University Stem Cell Institute, Ankara, Turkey
| | - Mehmet Sinan Beksac
- Hacettepe University Faculty of Medicine Department of Obstetrics and Gynecology, Ankara, Turkey; Istinye University, Ankara Liv Hospital, Obstetrics and Gynecology, Ankara, Turkey
| | - Meral Beksac
- Ankara University Faculty of Medicine Department of Hematology, Ankara, Turkey; Istinye University, Ankara Liv Hospital, Hematology and Stem Cell Transplantation Unit Ankara, Turkey.
| |
Collapse
|
3
|
Branco A, Rayabaram J, Miranda CC, Fernandes-Platzgummer A, Fernandes TG, Sajja S, da Silva CL, Vemuri MC. Advances in ex vivo expansion of hematopoietic stem and progenitor cells for clinical applications. Front Bioeng Biotechnol 2024; 12:1380950. [PMID: 38846805 PMCID: PMC11153805 DOI: 10.3389/fbioe.2024.1380950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
As caretakers of the hematopoietic system, hematopoietic stem cells assure a lifelong supply of differentiated populations that are responsible for critical bodily functions, including oxygen transport, immunological protection and coagulation. Due to the far-reaching influence of the hematopoietic system, hematological disorders typically have a significant impact on the lives of individuals, even becoming fatal. Hematopoietic cell transplantation was the first effective therapeutic avenue to treat such hematological diseases. Since then, key use and manipulation of hematopoietic stem cells for treatments has been aspired to fully take advantage of such an important cell population. Limited knowledge on hematopoietic stem cell behavior has motivated in-depth research into their biology. Efforts were able to uncover their native environment and characteristics during development and adult stages. Several signaling pathways at a cellular level have been mapped, providing insight into their machinery. Important dynamics of hematopoietic stem cell maintenance were begun to be understood with improved comprehension of their metabolism and progressive aging. These advances have provided a solid platform for the development of innovative strategies for the manipulation of hematopoietic stem cells. Specifically, expansion of the hematopoietic stem cell pool has triggered immense interest, gaining momentum. A wide range of approaches have sprouted, leading to a variety of expansion systems, from simpler small molecule-based strategies to complex biomimetic scaffolds. The recent approval of Omisirge, the first expanded hematopoietic stem and progenitor cell product, whose expansion platform is one of the earliest, is predictive of further successes that might arise soon. In order to guarantee the quality of these ex vivo manipulated cells, robust assays that measure cell function or potency need to be developed. Whether targeting hematopoietic engraftment, immunological differentiation potential or malignancy clearance, hematopoietic stem cells and their derivatives need efficient scaling of their therapeutic potency. In this review, we comprehensively view hematopoietic stem cells as therapeutic assets, going from fundamental to translational.
Collapse
Affiliation(s)
- André Branco
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Janakiram Rayabaram
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia C. Miranda
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- AccelBio, Collaborative Laboratory to Foster Translation and Drug Discovery, Cantanhede, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Suchitra Sajja
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia L. da Silva
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
4
|
Shirdare M, Amiri F, Samiee MP, Safari A. Influential factors for optimizing and strengthening mesenchymal stem cells and hematopoietic stem cells co-culture. Mol Biol Rep 2024; 51:189. [PMID: 38270694 DOI: 10.1007/s11033-023-09041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/13/2023] [Indexed: 01/26/2024]
Abstract
Mesenchymal stem cells (MSCs) and Hematopoietic stem cells (HSCs) are two types of bone marrow stem cells that can proliferate and differentiate into different cell lineages. HSCs interact with MSCs under protective conditions, called niche. Numerous studies have indicated supportive effects of MSCs on HSCs proliferation and differentiation. Furthermore, HSCs have many clinical applications and could treat different hematologic and non-hematologic diseases. For this purpose, there is a need to perform in vitro studies to optimize their expansion. Therefore, various methods including co-culture with MSCs are used to address the limitations of HSCs culture. Some parameters that might be effective for improving the MSC/ HSC co-culture systems. Manipulating culture condition to enhance MSC paracrine activity, scaffolds, hypoxia, culture medium additives, and the use of various MSC sources, have been examined in different studies. In this article, we investigated the potential factors for optimizing HSCs/ MSCs co-culture. It might be helpful to apply a suitable approach for providing high-quality HSCs and improving their therapeutic applications.
Collapse
Affiliation(s)
- Mandana Shirdare
- Central Medical Laboratory, Vice Chancellor for Public Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mohammad Pouya Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Armita Safari
- Student Research Committee, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
5
|
Dahiya A, Agrawala PK, Dutta A. Mitigative and anti-inflammatory effects of Trichostatin A against radiation-induced gastrointestinal toxicity and gut microbiota alteration in mice. Int J Radiat Biol 2023; 99:1865-1878. [PMID: 37531370 DOI: 10.1080/09553002.2023.2242929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE Radiation-induced gastrointestinal injury (RIGI) is a serious side effect of abdominal and pelvic radiotherapy, which often limits the treatment of gastrointestinal and gynaecological cancers. RIGI is also observed during accidental radiological or nuclear scenarios with no approved agents available till date to prevent or mitigate RIGI in humans. Trichostatin A (TSA), an epigenetic modulator, has been currently in clinical trials for cancer treatment and is also well known for its antibiotic and antifungal properties. METHODS In this study, partial body (abdominal) irradiation mice model was used to investigate the mitigative effect of TSA against gastrointestinal toxicity caused by gamma radiation. Mice were checked for alterations in mean body weight, diarrheal incidence, disease activity index and survival against 15 Gy radiation. Structural abnormalities in intestine and changes in microbiota composition were studied by histopathology and 16S rRNA sequencing of fecal samples respectively. Immunoblotting and biochemical assays were performed to check protein nitrosylation, expression of inflammatory mediators, infiltration of inflammatory cells and changes in pro-inflammatory cytokine. RESULTS TSA administration to C57Bl/6 mice improved radiation induced mean body weight loss, maintained better health score, reduced disease activity index and promoted survival. The 16S rRNA sequencing of fecal DNA demonstrated that TSA influenced the fecal microbiota dynamics with significant alterations in the Firmicutes/Bacteriodetes ratio. TSA effectively mitigated intestinal injury, down-regulated NF-κB, Cox-2, iNOS expression, inhibited PGE2 and protein nitrosylation levels in irradiated intestine. The upregulation of NLRP3-inflammasome complex and infiltrations of inflammatory cells in the inflamed intestine were also prevented by TSA. Subsequently, the myeloperoxidase activity in intestine alongwith serum IL-18 levels was found reduced. CONCLUSION These findings provide evidence that TSA inhibits inflammatory mediators, alleviates gut dysbiosis, and promotes structural restoration of the irradiated intestine. TSA, therefore, can be considered as a potential agent for mitigation of RIGI in humans.
Collapse
Affiliation(s)
- Akshu Dahiya
- CBRN Division, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), India
| | - Paban K Agrawala
- CBRN Division, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), India
| | - Ajaswrata Dutta
- CBRN Division, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), India
| |
Collapse
|
6
|
Bertola N, Regis S, Bruno S, Mazzarello AN, Serra M, Lupia M, Sabatini F, Corsolini F, Ravera S, Cappelli E. Effects of Deacetylase Inhibition on the Activation of the Antioxidant Response and Aerobic Metabolism in Cellular Models of Fanconi Anemia. Antioxidants (Basel) 2023; 12:antiox12051100. [PMID: 37237966 DOI: 10.3390/antiox12051100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by a dysfunctional DNA repair and an oxidative stress accumulation due to defective mitochondrial energy metabolism, not counteracted by endogenous antioxidant defenses, which appear down-expressed compared to the control. Since the antioxidant response lack could depend on the hypoacetylation of genes coding for detoxifying enzymes, we treated lymphoblasts and fibroblasts mutated for the FANC-A gene with some histone deacetylase inhibitors (HDACi), namely, valproic acid (VPA), beta-hydroxybutyrate (OHB), and EX527 (a Sirt1 inhibitor), under basal conditions and after hydrogen peroxide addition. The results show that VPA increased catalase and glutathione reductase expression and activity, corrected the metabolic defect, lowered lipid peroxidation, restored the mitochondrial fusion and fission balance, and improved mitomycin survival. In contrast, OHB, despite a slight increase in antioxidant enzyme expressions, exacerbated the metabolic defect, increasing oxidative stress production, probably because it also acts as an oxidative phosphorylation metabolite, while EX527 showed no effect. In conclusion, the data suggest that VPA could be a promising drug to modulate the gene expression in FA cells, confirming that the antioxidant response modulation plays a pivotal in FA pathogenesis as it acts on both oxidative stress levels and the mitochondrial metabolism and dynamics quality.
Collapse
Affiliation(s)
- Nadia Bertola
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | | | - Martina Serra
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Michela Lupia
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Federica Sabatini
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Fabio Corsolini
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Enrico Cappelli
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy
| |
Collapse
|
7
|
Wang Y, Sugimura R. Ex vivo expansion of hematopoietic stem cells. Exp Cell Res 2023; 427:113599. [PMID: 37061173 DOI: 10.1016/j.yexcr.2023.113599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/27/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
Hematopoietic stem cells (HSCs) are multipotent progenitor cells that can differentiate into various mature blood cells and immune cells, thus reconstituting hematopoiesis. By taking advantage of the tremendous potential of HSCs, varied hereditary and hematologic diseases are promised to be alleviated or cured. To solve the contradiction between the growing demand for HSCs in disease treatment and the low population of HSCs in both cord blood and bone marrow, ex vivo HSC expansion along with multiple protocols has been investigated for harvesting adequate HSCs over the past two decades. This review surveys the state-of-the-art techniques for ex vivo HSC self-renewal and provides a concise summary of the effects of diverse intrinsic and extrinsic factors on the expansion of HSCs. The remaining challenges and emerging opportunities in the field of HSC expansion are also presented.
Collapse
Affiliation(s)
- Yuan Wang
- Centre for Translational Stem Cell Biology, Hong Kong
| | - Ryohichi Sugimura
- Centre for Translational Stem Cell Biology, Hong Kong; Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.
| |
Collapse
|
8
|
In Vitro Human Haematopoietic Stem Cell Expansion and Differentiation. Cells 2023; 12:cells12060896. [PMID: 36980237 PMCID: PMC10046976 DOI: 10.3390/cells12060896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The haematopoietic system plays an essential role in our health and survival. It is comprised of a range of mature blood and immune cell types, including oxygen-carrying erythrocytes, platelet-producing megakaryocytes and infection-fighting myeloid and lymphoid cells. Self-renewing multipotent haematopoietic stem cells (HSCs) and a range of intermediate haematopoietic progenitor cell types differentiate into these mature cell types to continuously support haematopoietic system homeostasis throughout life. This process of haematopoiesis is tightly regulated in vivo and primarily takes place in the bone marrow. Over the years, a range of in vitro culture systems have been developed, either to expand haematopoietic stem and progenitor cells or to differentiate them into the various haematopoietic lineages, based on the use of recombinant cytokines, co-culture systems and/or small molecules. These approaches provide important tractable models to study human haematopoiesis in vitro. Additionally, haematopoietic cell culture systems are being developed and clinical tested as a source of cell products for transplantation and transfusion medicine. This review discusses the in vitro culture protocols for human HSC expansion and differentiation, and summarises the key factors involved in these biological processes.
Collapse
|
9
|
Albayrak E, Kocabaş F. Therapeutic targeting and HSC proliferation by small molecules and biologicals. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:425-496. [PMID: 37061339 DOI: 10.1016/bs.apcsb.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Hematopoietic stem cells (HSCs) have considerably therapeutic value on autologous and allogeneic transplantation for many malignant/non-malignant hematological diseases, especially with improvement of gene therapy. However, acquirement of limited cell dose from HSC sources is the main handicap for successful transplantation. Therefore, many strategies based on the utilization of various cytokines, interaction of stromal cells, modulation of several extrinsic and intrinsic factors have been developed to promote ex vivo functional HSC expansion with high reconstitution ability until today. Besides all these strategies, small molecules become prominent with their ease of use and various advantages when they are translated to the clinic. In the last two decades, several small molecule compounds have been investigated in pre-clinical studies and, some of them were evaluated in different stages of clinical trials for their safety and efficiencies. In this chapter, we will present an overview of HSC biology, function, regulation and also, pharmacological HSC modulation with small molecules from pre-clinical and clinical perspectives.
Collapse
|
10
|
Histone Deacetylase Inhibitor I3 Induces the Differentiation of Acute Myeloid Leukemia Cells with t (8; 21) or MLL Gene Translocation and Leukemic Stem-Like Cells. JOURNAL OF ONCOLOGY 2022; 2022:3345536. [PMID: 36072977 PMCID: PMC9441378 DOI: 10.1155/2022/3345536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disorder characterized by the clonal expansion and differentiation arrest of leukemic cells in peripheral blood and bone marrow. Though the treatment using cytarabine-based protocol for AML patients with t (8; 21) translocation has improved the 5-year overall survival rate, drug resistance continues to be the principal limiting factor for the cure of the disease. In addition, very few AML patients with mixed lineage leukemia gene rearrangements (MLLr) have a desirable outcome. This study evaluated the cell differentiation effect of a potent HDAC (histone deacetylase) inhibitor, I3, and its possible mechanism on the AML cells with t (8; 21) translocation or MLLr and leukemic stem-like cells (Kasumi-1, KG-1, MOLM-13, and THP-1). I3 exhibited efficient anti-proliferative activity on these cells via promoting cell differentiation, accompanied by the cell cycle exit at G0/G1. Importantly, I3 showed the properties of HDAC inhibition, as assessed by the acetylation of histones H3 and H4, which resulted in blocking the activation of the VEGF (vascular endothelial growth factor)-MAPK (mitogen-activated protein kinase) signaling pathway in the Kasumi-1 cell line. These data demonstrate that I3 could be a potent chromatin-remodeling agent to surmount the differentiation block in AML patients, including those with t (8; 21) translocation or MLLr, and could be a potent and selective agent for AML treatment.
Collapse
|
11
|
Yao J, Li G, Cui Z, Chen P, Wang J, Hu Z, Zhang L, Wei L. The Histone Deacetylase Inhibitor I1 Induces Differentiation of Acute Leukemia Cells With MLL Gene Rearrangements via Epigenetic Modification. Front Pharmacol 2022; 13:876076. [PMID: 35571127 PMCID: PMC9091196 DOI: 10.3389/fphar.2022.876076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
Acute leukemia (AL) is characterized by excessive proliferation and impaired differentiation of leukemic cells. AL includes acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Previous studies have demonstrated that about 10% of AML and 22% of ALL are mixed lineage leukemia gene rearrangements (MLLr) leukemia. The prognosis of MLLr leukemia is poor and new therapeutics are urgently needed. Differentiation therapy with all-trans-retinoic acid (ATRA) has prolonged the 5-years disease-free survival rate in acute promyelocytic leukemia (APL), a subtype of AML. However, the differentiation therapy has not been effective in other acute leukemia. Here, we aim to explore the cell differentiation effect of the potent HDACs inhibitor, I1, and the possible mechanism on the MLLr-AML and MLLr-ALL cells (MOLM-13, THP-1, MV4-11 and SEM). It is shown that I1 can significantly inhibit the proliferation and the colony-forming ability of MOLM-13, THP-1, MV4-11 and SEM cells by promoting cell differentiation coupled with cell cycle block at G0/G1 phase. We show that the anti-proliferative effect of I1 attributed to cell differentiation is most likely associated with the HDAC inhibition activity, as assessed by the acetylation of histone H3 and H4, which may dictates the activation of hematopoietic cell lineage pathway in both MOLM-13 and THP-1 cell lines. Moreover, the activity of HDAC inhibition of I1 is stronger than that of SAHA in MOLM-13 and THP-1 cells. Our findings suggest that I1, as a chromatin-remodeling agent, could be a potent epigenetic drug to overcome differentiation block in MLLr-AL patients and would be promising for the treatment of AL.
Collapse
Affiliation(s)
- Jingfang Yao
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China.,School of Pharmacy, Weifang Medical University, Weifang, China
| | - Gentao Li
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zihui Cui
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Peilei Chen
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jinhong Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhenbo Hu
- Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Lei Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
12
|
Umemoto T, Johansson A, Ahmad SAI, Hashimoto M, Kubota S, Kikuchi K, Odaka H, Era T, Kurotaki D, Sashida G, Suda T. ATP citrate lyase controls hematopoietic stem cell fate and supports bone marrow regeneration. EMBO J 2022; 41:e109463. [PMID: 35229328 PMCID: PMC9016348 DOI: 10.15252/embj.2021109463] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/08/2023] Open
Abstract
In order to support bone marrow regeneration after myeloablation, hematopoietic stem cells (HSCs) actively divide to provide both stem and progenitor cells. However, the mechanisms regulating HSC function and cell fate choice during hematopoietic recovery remain unclear. We herein provide novel insights into HSC regulation during regeneration by focusing on mitochondrial metabolism and ATP citrate lyase (ACLY). After 5-fluorouracil-induced myeloablation, HSCs highly expressing endothelial protein C receptor (EPCRhigh ) were enriched within the stem cell fraction at the expense of more proliferative EPCRLow HSCs. These EPCRHigh HSCs were initially more primitive than EPCRLow HSCs and enabled stem cell expansion by enhancing histone acetylation, due to increased activity of ACLY in the early phase of hematopoietic regeneration. In the late phase of recovery, HSCs enhanced differentiation potential by increasing the accessibility of cis-regulatory elements in progenitor cell-related genes, such as CD48. In conditions of reduced mitochondrial metabolism and ACLY activity, these HSCs maintained stem cell phenotypes, while ACLY-dependent histone acetylation promoted differentiation into CD48+ progenitor cells. Collectively, these results indicate that the dynamic control of ACLY-dependent metabolism and epigenetic alterations is essential for HSC regulation during hematopoietic regeneration.
Collapse
Affiliation(s)
- Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell EngineeringInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Alban Johansson
- Laboratory of Hematopoietic Stem Cell EngineeringInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Shah Adil Ishtiyaq Ahmad
- Laboratory of Hematopoietic Stem Cell EngineeringInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Michihiro Hashimoto
- Laboratory of Stem Cell RegulationInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Sho Kubota
- Laboratory of Transcriptional Regulation in LeukemogenesisInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Kenta Kikuchi
- Laboratory of Chromatin Organization in Immune Cell DevelopmentInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Haruki Odaka
- Department of Cell ModulationInstitute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| | - Takumi Era
- Department of Cell ModulationInstitute of Molecular Embryology and GeneticsKumamoto UniversityKumamotoJapan
| | - Daisuke Kurotaki
- Laboratory of Chromatin Organization in Immune Cell DevelopmentInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Goro Sashida
- Laboratory of Transcriptional Regulation in LeukemogenesisInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Toshio Suda
- Laboratory of Stem Cell RegulationInternational Research Center for Medical SciencesKumamoto UniversityKumamotoJapan,Cancer Science Institute of SingaporeNational University of SingaporeSingapore CitySingapore
| |
Collapse
|
13
|
Effect of expansion of human umbilical cord blood CD34 + cells on neurotrophic and angiogenic factor expression and function. Cell Tissue Res 2022; 388:117-132. [PMID: 35106623 PMCID: PMC8976778 DOI: 10.1007/s00441-022-03592-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
The use of CD34 + cell-based therapies has largely been focused on haematological conditions. However, there is increasing evidence that umbilical cord blood (UCB) CD34 + -derived cells have neuroregenerative properties. Due to low cell numbers of CD34 + cells present in UCB, expansion is required to produce sufficient cells for therapeutic purposes, especially in adults or when frequent applications are required. However, it is not known whether expansion of CD34 + cells has an impact on their function and neuroregenerative capacity. We addressed this knowledge gap in this study, via expansion of UCB-derived CD34 + cells using combinations of LDL, UM171 and SR-1 to yield large numbers of cells and then tested their functionality. CD34 + cells expanded for 14 days in media containing UM171 and SR-1 resulted in over 1000-fold expansion. The expanded cells showed an up-regulation of the neurotrophic factor genes BDNF, GDNF, NTF-3 and NTF-4, as well as the angiogenic factors VEGF and ANG. In vitro functionality testing showed that these expanded cells promoted angiogenesis and, in brain glial cells, promoted cell proliferation and reduced production of reactive oxygen species (ROS) during oxidative stress. Collectively, this study showed that our 14-day expansion protocol provided a robust expansion that could produce enough cells for therapeutic purposes. These expanded cells, when tested in in vitro, maintained functionality as demonstrated through promotion of cell proliferation, attenuation of ROS production caused by oxidative stress and promotion of angiogenesis.
Collapse
|
14
|
Li J, Wang X, Ding J, Zhu Y, Min W, Kuang W, Yuan K, Sun C, Yang P. Development and clinical advancement of small molecules for ex vivo expansion of hematopoietic stem cell. Acta Pharm Sin B 2021; 12:2808-2831. [PMID: 35755294 PMCID: PMC9214065 DOI: 10.1016/j.apsb.2021.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cell (HSC) transplantation is the only curative therapy for many diseases. HSCs from umbilical cord blood (UCB) source have many advantages over from bone marrow. However, limited HSC dose in a single CB unit restrict its widespread use. Over the past two decades, ex vivo HSC expansion with small molecules has been an effective approach for obtaining adequate HSCs. Till now, several small-molecule compounds have entered the phase I/II trials, showing safe and favorable pharmacological profiles. As HSC expansion has become a hot topic over recent years, many newly identified small molecules along with novel biological mechanisms for HSC expansion would help solve this challenging issue. Here, we will give an overview of HSC biology, discovery and medicinal chemistry development of small molecules, natural products targeting for HSC expansion, and their recent clinical progresses, as well as potential protein targets for HSC expansion.
Collapse
|
15
|
Lee BC, Lozano RJ, Dunbar CE. Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Mol Ther 2021; 29:3205-3218. [PMID: 34509667 DOI: 10.1016/j.ymthe.2021.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) gene therapies have recently moved beyond gene-addition approaches to encompass targeted genome modification or correction, based on the development of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR-Cas technologies. Advances in ex vivo HSPC manipulation techniques have greatly improved HSPC susceptibility to genetic modification. Targeted gene-editing techniques enable precise modifications at desired genomic sites. Numerous preclinical studies have already demonstrated the therapeutic potential of gene therapies based on targeted editing. However, several significant hurdles related to adverse consequences of gene editing on HSPC function and genomic integrity remain before broad clinical potential can be realized. This review summarizes the status of HSPC gene editing, focusing on efficiency, genomic integrity, and long-term engraftment ability related to available genetic editing platforms and HSPC delivery methods. The response of long-term engrafting HSPCs to nuclease-mediated DNA breaks, with activation of p53, is a significant challenge, as are activation of innate and adaptive immune responses to editing components. Lastly, we propose alternative strategies that can overcome current hurdles to HSPC editing at various stages from cell collection to transplantation to facilitate successful clinical applications.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Lozano
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Liang J, Cao Y, He M, Li W, Huang G, Ma T, Li M, Huang Y, Huang X, Hu Y. AKR1C3 and Its Transcription Factor HOXB4 Are Promising Diagnostic Biomarkers for Acute Myocardial Infarction. Front Cardiovasc Med 2021; 8:694238. [PMID: 34568444 PMCID: PMC8458746 DOI: 10.3389/fcvm.2021.694238] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
Background: A recent study disclosed that ferroptosis was an important myocyte death style in myocardial infarction (MI). However, the diagnostic value of ferroptosis regulators and correlated underlying mechanisms in acute myocardial infarction (AMI) remain unknown. Methods: Bioinformatical analyses were conducted to identify the candidate biomarkers for AMI, and the collected local samples were used to validate the findings via real-time quantitative PCR. Bioinformatical analysis and luciferase reporter assay were implemented to identify the transcriptional factor. Transient transfection and ferroptosis characteristic measurement, including glutathione peroxidase 4, malondialdehyde, iron, and glutathione, was performed to verify the ability of the candidate gene to regulate the ferroptosis of cardiomyocytes. A meta-analysis was conducted in multiple independent cohorts to clarify the diagnostic value. Results: A total of 121 ferroptosis regulators were extracted from previous studies, and aldo-keto reductase family 1 member C3 (AKR1C3) was significantly downregulated in the peripheral blood samples of AMI cases from the analysis of GSE48060 and GSE97320. HOXB4 served as a transcriptional activator for AKR1C3 and could suppress the ferroptosis of the H9C2 cells treated with erastin. Besides this, peripheral blood samples from 16 AMI patients and 16 patients without coronary atherosclerotic disease were collected, where AKR1C3 and HOXB4 both showed a high diagnostic ability. Furthermore, a nomogram including HOXB4 and AKR1C3 was established and successfully validated in six independent datasets. A clinical correlation analysis displayed that AKR1C3 and HOXB4 were correlated with smoking, CK, CK-MB, and N-terminal-pro-B-type natriuretic peptide. Conclusion: Taken together, this study demonstrates that AKR1C3 and HOXB4 are promising diagnostic biomarkers, providing novel insights into the ferroptosis mechanisms of AMI.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yue Cao
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Mingli He
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Weiwen Li
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Guolin Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Tianyi Ma
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China.,Department of Cardiology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Meijun Li
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Zimran E, Papa L, Hoffman R. Ex vivo expansion of hematopoietic stem cells: Finally transitioning from the lab to the clinic. Blood Rev 2021; 50:100853. [PMID: 34112560 DOI: 10.1016/j.blre.2021.100853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 01/17/2023]
Abstract
Hematopoietic stem cells (HSCs) have been used for therapeutic purposes for decades in the form of autologous and allogeneic transplantation and are currently emerging as an attractive target for gene therapy. A low stem cell dose is a major barrier to the application of HSC therapy in several situations, primarily umbilical cord blood transplantation and gene modification. Strategies that promote ex vivo expansion of the numbers of functional HSCs could overcome this barrier, hence have been the subject of intense and prolonged research. Several ex vivo expansion strategies have advanced to evaluation clinical trials, which are showing favorable outcomes along with convincing safety signals. Preclinical studies have recently confirmed beneficial incorporation of ex vivo expansion into HSC gene modification protocols. Collectively, ex vivo HSC expansion holds promise for significantly broadening the availability of cord blood units for transplantation, and for optimizing gene therapy protocols to enable their clinical application.
Collapse
Affiliation(s)
- Eran Zimran
- Hematology Department, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Kiryat Hadassah 1, POB 1200, Jerusalem, 911200, Israel.
| | - Luena Papa
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levi Place, Box 1079, New York, NY 10029, USA.
| | - Ronald Hoffman
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levi Place, Box 1079, New York, NY 10029, USA.
| |
Collapse
|
18
|
Valproic Acid Decreases Endothelial Colony Forming Cells Differentiation and Induces Endothelial-to-Mesenchymal Transition-like Process. Stem Cell Rev Rep 2021; 16:357-368. [PMID: 31898801 DOI: 10.1007/s12015-019-09950-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor is a widely used anticonvulsant drug. VPA is also under clinical evaluation to be employed in anticancer therapy, as an antithrombotic agent or a molecule to be used in the stem cells expansion protocols. Since endothelial colony forming cells (ECFC) has been identified as the human postnatal vasculogenic cells involved in thrombotic disorders and serve as a promising source of immature cell for vascular repair, objectives of the present study were to determine how VPA contributes to ECFC commitment and their angiogenic properties. We examined the effect of VPA on ECFC obtained from cord blood by evaluating colony number, proliferation, migration and their sprouting ability in vitro, as well as their in vivo vasculogenic properties. VPA inhibited endothelial differentiation potential from of cord blood derived stem cells associated with decreased proliferation and sprouting activity of cultured ECFC. VPA treatment significantly decreased the vessel-forming ability of ECFC transplanted together with mesenchymal stem cells (MSC) in Matrigel implants in nude mice model. Surprisingly, a microscopic evaluation revealed that VPA induces marked morphological changes from a cobblestone-like EC morphology to enlarged spindle shaped morphology of ECFC. RT-qPCR and a CD31/CD90 flow cytometry analysis confirmed a phenotypic switch of VPA-treated ECFC to mesenchymal-like phenotype. In conclusion, the pan-HDAC inhibitor VPA described for expansion of hematopoietic stem cells and very small embryonic like stem cells cannot be successfully employed for differentiation of endothelial lineage committed ECFC into functional endothelial cells. Our data also suggest that VPA based therapeutics may induce endothelial dysfunction associated with fibrosis that might induce thrombosis recurrence or venous insufficiency.
Collapse
|
19
|
Katoch O, Tiwari M, Kalra N, Agrawala PK. Mechanism of Action of Diallyl Sulphide in Ameliorating the Hematopoietic Radiation Injury. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2021. [DOI: 10.1055/s-0041-1730094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.
Collapse
Affiliation(s)
- Omika Katoch
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| | - Mrinalini Tiwari
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| | - Namita Kalra
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| | - Paban K. Agrawala
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| |
Collapse
|
20
|
Ultimate Precision: Targeting Cancer But Not Normal Self-Replication. Lung Cancer 2021. [DOI: 10.1007/978-3-030-74028-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Ding Y, Gao S, Shen J, Bai T, Yang M, Xu S, Gao Y, Zhang Z, Li L. TNFSF15 facilitates human umbilical cord blood haematopoietic stem cell expansion by activating Notch signal pathway. J Cell Mol Med 2020; 24:11146-11157. [PMID: 32910534 PMCID: PMC7576288 DOI: 10.1111/jcmm.15626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
The lack of efficient ex vivo expansion methods restricts clinical use of haematopoietic stem cells (HSC) for the treatment of haematological malignancies and degenerative diseases. Umbilical cord blood (UCB) serves as an alternative haematopoietic stem cell source. However, currently what limits the use of UCB‐derived HSC is the very low numbers of haematopoietic stem and progenitor cells available for transplantation in a single umbilical cord blood unit. Here, we report that TNFSF15, a member of the tumour necrosis factor superfamily, promotes the expansion of human umbilical cord blood (UCB)‐derived HSC. TNFSF15‐treated UCB‐HSC is capable of bone marrow engraftment as demonstrated with NOD/SCID or NOD/Shi‐SCID/IL2Rgnull (NOG) mice in both primary and secondary transplantation. The frequency of repopulating cells occurring in the injected tibiae is markedly higher than that in vehicle‐treated group. Additionally, signal proteins of the Notch pathway are highly up‐regulated in TNFSF15‐treated UCB‐HSC. These findings indicate that TNFSF15 is useful for in vitro expansion of UCB‐HSC for clinical applications. Furthermore, TNFSF15 may be a hopeful selection for further UCB‐HSC application or study.
Collapse
Affiliation(s)
- Yahui Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jian Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Tairan Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Ming Yang
- Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shiqi Xu
- Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yingdai Gao
- Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhisong Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
22
|
Marx-Blümel L, Marx C, Weise F, Frey J, Perner B, Schlingloff G, Lindig N, Hampl J, Sonnemann J, Brauer D, Voigt A, Singh S, Beck B, Jäger UM, Wang ZQ, Beck JF, Schober A. Biomimetic reconstruction of the hematopoietic stem cell niche for in vitro amplification of human hematopoietic stem cells. PLoS One 2020; 15:e0234638. [PMID: 32569325 PMCID: PMC7307768 DOI: 10.1371/journal.pone.0234638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cell transplantation is successfully applied since the late 1950s; however, its efficacy still needs to be increased. A promising strategy is to transplant high numbers of pluripotent hematopoietic stem cells (HSCs). Therefore, an improved ex vivo culture system that supports proliferation and maintains HSC pluripotency would override possible limitations in cell numbers gained from donors. To model the natural HSC niche in vitro, we optimized the HSC medium composition with a panel of cytokines and valproic acid and used an artificial 3D bone marrow-like scaffold made of polydimethylsiloxane (PDMS). This 3D scaffold offered a suitable platform to amplify human HSCs in vitro and, simultaneously, to support their viability, multipotency and ability for self-renewal. Silicon oxide-covering of PDMS structures further improved amplification of CD34+ cells, although the conservation of naïve HSCs was better on non-covered 3D PDMS. Finally, we found that HSC cultivated on non-covered 3D PDMS generated most pluripotent colonies within colony forming unit assays. In conclusion, by combining biological and biotechnological approaches, we optimized in vitro HSCs culture conditions, resulting in improved amplification, multipotency maintenance and vitality of HSCs.
Collapse
Affiliation(s)
- L. Marx-Blümel
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
- * E-mail:
| | - C. Marx
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - F. Weise
- Institute for Micro and Nanotechnologies MacroNano, Nano-Biosystem Technology, Ilmenau University of Technology, Ilmenau, Germany
| | - J. Frey
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - B. Perner
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - G. Schlingloff
- Institute for Micro and Nanotechnologies MacroNano, Nano-Biosystem Technology, Ilmenau University of Technology, Ilmenau, Germany
| | - N. Lindig
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - J. Hampl
- Institute for Micro and Nanotechnologies MacroNano, Nano-Biosystem Technology, Ilmenau University of Technology, Ilmenau, Germany
| | - J. Sonnemann
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - D. Brauer
- Institute for Micro and Nanotechnologies MacroNano, Nano-Biosystem Technology, Ilmenau University of Technology, Ilmenau, Germany
| | - A. Voigt
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - S. Singh
- Institute for Micro and Nanotechnologies MacroNano, Nano-Biosystem Technology, Ilmenau University of Technology, Ilmenau, Germany
| | - B. Beck
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Ute-Maria Jäger
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
- Research Center Lobeda, Jena University Hospital, Jena, Germany
| | - Z. Q. Wang
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Jena, Germany
| | - J. F. Beck
- Department of Paediatric Haematology and Oncology, Children’s Clinic, Jena University Hospital, Jena, Germany
| | - A. Schober
- Institute for Micro and Nanotechnologies MacroNano, Nano-Biosystem Technology, Ilmenau University of Technology, Ilmenau, Germany
| |
Collapse
|
23
|
He Q, Hong M, He J, Chen W, Zhao M, Zhao W. Isoform-specific involvement of Brpf1 in expansion of adult hematopoietic stem and progenitor cells. J Mol Cell Biol 2020; 12:359-371. [PMID: 31565729 PMCID: PMC7288741 DOI: 10.1093/jmcb/mjz092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/16/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Bromodomain-containing proteins are known readers of histone acetylation that regulate chromatin structure and transcription. Although the functions of bromodomain-containing proteins in development, homeostasis, and disease states have been well studied, their role in self-renewal of hematopoietic stem and progenitor cells (HSPCs) remains poorly understood. Here, we performed a chemical screen using nine bromodomain inhibitors and found that the bromodomain and PHD finger-containing protein 1 (Brpf1) inhibitor OF-1 enhanced the expansion of Lin-Sca-1+c-Kit+ HSPCs ex vivo without skewing their lineage differentiation potential. Importantly, our results also revealed distinct functions of Brpf1 isoforms in HSPCs. Brpf1b promoted the expansion of HSPCs. By contrast, Brpf1a is the most abundant isoform in adult HSPCs but enhanced HSPC quiescence and decreased the HSPC expansion. Furthermore, inhibition of Brpf1a by OF-1 promoted histone acetylation and chromatin accessibility leading to increased expression of self-renewal-related genes (e.g. Mn1). The phenotypes produced by OF-1 treatment can be rescued by suppression of Mn1 in HSPCs. Our findings demonstrate that this novel bromodomain inhibitor OF-1 can promote the clinical application of HSPCs in transplantation.
Collapse
Affiliation(s)
- Qiuping He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Mengzhi Hong
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Jincan He
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Weixin Chen
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Meng Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Wei Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
24
|
Budgude P, Kale V, Vaidya A. Mesenchymal stromal cell‐derived extracellular vesicles as cell‐free biologics for the ex vivo expansion of hematopoietic stem cells. Cell Biol Int 2020; 44:1078-1102. [DOI: 10.1002/cbin.11313] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Pallavi Budgude
- Symbiosis Centre for Stem Cell ResearchSymbiosis International (Deemed University) Pune 412115 India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell ResearchSymbiosis International (Deemed University) Pune 412115 India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell ResearchSymbiosis International (Deemed University) Pune 412115 India
- Symbiosis School of Biological SciencesSymbiosis International (Deemed University) Pune 412115 India
| |
Collapse
|
25
|
Tingle CF, Magnuson B, Zhao Y, Heisel CJ, Kish PE, Kahana A. Paradoxical Changes Underscore Epigenetic Reprogramming During Adult Zebrafish Extraocular Muscle Regeneration. Invest Ophthalmol Vis Sci 2020; 60:4991-4999. [PMID: 31794598 PMCID: PMC6890397 DOI: 10.1167/iovs.19-27556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Genomic reprogramming and cellular dedifferentiation are critical to the success of de novo tissue regeneration in lower vertebrates such as zebrafish and axolotl. In tissue regeneration following injury or disease, differentiated cells must retain lineage while assuming a progenitor-like identity in order to repopulate the damaged tissue. Understanding the epigenetic regulation of programmed cellular dedifferentiation provides unique insights into the biology of stem cells and cancer and may lead to novel approaches for treating human degenerative conditions. Methods Using a zebrafish in vivo model of adult muscle regeneration, we utilized chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) to characterize early changes in epigenetic signals, focusing on three well-studied histone modifications-histone H3 trimethylated at lysine 4 (H3K4me3), and histone H3 trimethylated or acetylated at lysine 27 (H3K27me3 and H3K27Ac, respectively). Results We discovered that zebrafish myocytes undergo a global, rapid, and transient program to drive genomic remodeling. The timing of these epigenetic changes suggests that genomic reprogramming itself represents a distinct sequence of events, with predetermined checkpoints, to generate cells capable of de novo regeneration. Importantly, we uncovered subsets of genes that maintain epigenetic marks paradoxical to changes in expression, underscoring the complexity of epigenetic reprogramming. Conclusions Within our model, histone modifications previously associated with gene expression act for the most part as expected, with exceptions suggesting that zebrafish chromatin maintains an easily editable state with a number of genes paradoxically marked for transcriptional activity despite downregulation.
Collapse
Affiliation(s)
- Christina F Tingle
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Brian Magnuson
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States.,Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States
| | - Yi Zhao
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Curtis J Heisel
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States.,University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Phillip E Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Gallant efforts are ongoing to achieve sustained antiretroviral therapy (ART)-free HIV remission in the HIV-infected person; however, most, if not all, current human clinical studies have primarily focused these efforts on targeting viral persistence in CD4 T cells in blood and tissue sanctuaries. The lack of myeloid centered HIV clinical trials, either as primary or secondary end points, has hindered our understanding of the contribution of myeloid cells in unsuccessful trials but may also guide successes in future HIV eradication clinical strategies. RECENT FINDINGS Recent advances have highlighted the importance of myeloid reservoirs as sanctuaries of HIV persistence and therefore may partially be responsible for viral recrudescence following ART treatment interruption in several clinical trials where HIV was not detectable or recovered from CD4 T cells. Given these findings, novel innovative therapeutic approaches specifically focused on HIV clearance in myeloid cell populations need to be vigorously pursued if we are to achieve additional cases of sustained ART-free remission. This review will highlight new research efforts defining myeloid persistence and recent advances in HIV remission and cure trials that would be relevant in targeting this compartment and make an argument as to their clinical relevancy as we progress towards sustained ART-free HIV remission in all HIV-infected persons.
Collapse
Affiliation(s)
- Brooks I Mitchell
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, USA
| | - Elizabeth I Laws
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, USA
| | - Lishomwa C Ndhlovu
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, USA.
| |
Collapse
|
27
|
Zimran E, Papa L, Djedaini M, Patel A, Iancu-Rubin C, Hoffman R. Expansion and preservation of the functional activity of adult hematopoietic stem cells cultured ex vivo with a histone deacetylase inhibitor. Stem Cells Transl Med 2020; 9:531-542. [PMID: 31950644 PMCID: PMC7103619 DOI: 10.1002/sctm.19-0199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022] Open
Abstract
Attempts to expand ex vivo the numbers of human hematopoietic stem cells (HSCs) without compromising their marrow repopulating capacity and their ability to establish multilineage hematopoiesis has been the subject of intense investigation. Although most such efforts have focused on cord blood HSCs, few have been applied to adult HSCs, a more clinically relevant HSC source for gene modification. To date, the strategies that have been used to expand adult HSCs have resulted in modest effects or HSCs with lineage bias and a limited ability to generate T cells in vivo. We previously reported that culturing umbilical cord blood CD34+ cells in serum‐free media supplemented with valproic acid (VPA), a histone deacetylase inhibitor, and a combination of cytokines led to the expansion of the numbers of fully functional HSCs. In the present study, we used this same approach to expand the numbers of adult human CD34+ cells isolated from mobilized peripheral blood and bone marrow. This approach resulted in a significant increase in the numbers of phenotypically defined HSCs (CD34+CD45RA‐CD90+D49f+). Cells incubated with VPA also exhibited increased aldehyde dehydrogenase activity and decreased mitochondrial membrane potential, each functional markers of HSCs. Grafts harvested from VPA‐treated cultures were able to engraft in immune‐deficient mice and, importantly, to generate cellular progeny belonging to each hematopoietic lineage in similar proportion to that observed with unmanipulated CD34+ cells. These data support the utility of VPA‐mediated ex vivo HSC expansion for gene modification of adult HSCs.
Collapse
Affiliation(s)
- Eran Zimran
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY.,Hematology Department, Hadassah University Center, Jerusalem, Israel
| | - Luena Papa
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mansour Djedaini
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ami Patel
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Camelia Iancu-Rubin
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ronald Hoffman
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
28
|
Zhou Y, Zhu X, Dai Y, Xiong S, Wei C, Yu P, Tang Y, Wu L, Li J, Liu D, Wang Y, Chen Z, Chen S, Huang J, Cheng L. Chemical Cocktail Induces Hematopoietic Reprogramming and Expands Hematopoietic Stem/Progenitor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901785. [PMID: 31921559 PMCID: PMC6947705 DOI: 10.1002/advs.201901785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/20/2019] [Indexed: 05/03/2023]
Abstract
Generation of hematopoietic stem/progenitor cells (HSPCs) via cell expansion or cell reprogramming has been widely achieved by overexpression of transcription factors. Herein, it is reported that without introducing exogenous genes, mouse fibroblasts can be reprogrammed into hemogenic cells based on lineage tracing analysis, which further develop into hematopoietic cells, by treatment of cocktails of chemical compounds. The chemical cocktails also reprogram differentiated hematopoietic cells back into HSPC-like cells. Most importantly, the chemical cocktails enabling hematopoietic reprogramming robustly promote HSPC proliferation ex vivo. The expanded HSPCs acquire enhanced capacity of hematopoietic reconstruction in vivo. Single-cell sequencing analysis verifies the expansion of HSPCs and the cell reprogramming toward potential generation of HSPCs at the same time by the chemical cocktail treatment. Thus, the proof-of-concept findings not only demonstrate that hematopoietic reprogramming can be achieved by chemical compounds but also provide a promising strategy for acquisition of HSPCs by chemical cocktail-enabled double effects.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyRui Jin Hospital affiliated to Shanghai Jiao Tong UniversitySchool of MedicineKey Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems BiomedicineShanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Xingli Zhu
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyRui Jin Hospital affiliated to Shanghai Jiao Tong UniversitySchool of MedicineKey Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems BiomedicineShanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Yuting Dai
- School of Life Sciences and BiotechnologyShanghai Jiao Tong University200025ShanghaiChina
| | - Shumin Xiong
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyRui Jin Hospital affiliated to Shanghai Jiao Tong UniversitySchool of MedicineKey Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems BiomedicineShanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Chuijin Wei
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyRui Jin Hospital affiliated to Shanghai Jiao Tong UniversitySchool of MedicineKey Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems BiomedicineShanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Pei Yu
- Department of OrthopaedicsRui Jin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yuewen Tang
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyRui Jin Hospital affiliated to Shanghai Jiao Tong UniversitySchool of MedicineKey Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems BiomedicineShanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Liang Wu
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyRui Jin Hospital affiliated to Shanghai Jiao Tong UniversitySchool of MedicineKey Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems BiomedicineShanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Jianfeng Li
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyRui Jin Hospital affiliated to Shanghai Jiao Tong UniversitySchool of MedicineKey Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems BiomedicineShanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Dan Liu
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyRui Jin Hospital affiliated to Shanghai Jiao Tong UniversitySchool of MedicineKey Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems BiomedicineShanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Yanlin Wang
- Prenatal Diagnosis CenterInternational Peace Maternity and Child Health Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghai200030China
| | - Zhu Chen
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyRui Jin Hospital affiliated to Shanghai Jiao Tong UniversitySchool of MedicineKey Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems BiomedicineShanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Sai‐Juan Chen
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyRui Jin Hospital affiliated to Shanghai Jiao Tong UniversitySchool of MedicineKey Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems BiomedicineShanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200025China
| | - Jinyan Huang
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyRui Jin Hospital affiliated to Shanghai Jiao Tong UniversitySchool of MedicineKey Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems BiomedicineShanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200025China
- Pôle de Recherches Sino‐Français en Science du Vivant et GénomiqueLaboratory of Molecular PathologyRui‐Jin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Lin Cheng
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyRui Jin Hospital affiliated to Shanghai Jiao Tong UniversitySchool of MedicineKey Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems BiomedicineShanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200025China
| |
Collapse
|
29
|
Papa L, Djedaini M, Hoffman R. Ex vivo HSC expansion challenges the paradigm of unidirectional human hematopoiesis. Ann N Y Acad Sci 2019; 1466:39-50. [PMID: 31199002 PMCID: PMC7216880 DOI: 10.1111/nyas.14133] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Understanding mechanisms that determine the behavior of human hematopoietic stem cells (HSCs) is essential for developing novel strategies to expand ex vivo the number of fully functional HSCs. In this review, we focus on the complex interplay between intrinsic mechanisms regulated by transcriptional and mitochondrial networks and extrinsic signals imposed by the bone marrow microenvironment, which in concert regulate the balance between HSC self‐renewal and differentiation. Such integrated signaling mechanisms that dictate the fate of HSCs in vivo must be recapitulated ex vivo to achieve successful expansion of clinically relevant HSCs. We also highlight some of the most recent ex vivo HSC expansion strategies that have currently entered clinical development. Finally, based on the evidence reviewed here and lessons learned from ex vivo HSC expansion, we raise some critical questions regarding HSC fate and the cellular plasticity of hematopoietic cells that challenge the unidirectional model of human hematopoiesis.
Collapse
Affiliation(s)
- Luena Papa
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mansour Djedaini
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronald Hoffman
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
30
|
Moussy A, Papili Gao N, Corre G, Poletti V, Majdoul S, Fenard D, Gunawan R, Stockholm D, Páldi A. Constraints on Human CD34+ Cell Fate due to Lentiviral Vectors Can Be Relieved by Valproic Acid. Hum Gene Ther 2019; 30:1023-1034. [PMID: 30977420 DOI: 10.1089/hum.2019.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The initial stages following the in vitro cytokine stimulation of human cord blood CD34+ cells overlap with the period when lentiviral gene transfer is typically performed. Single-cell transcriptional profiling and time-lapse microscopy were used to investigate how the vector-cell crosstalk impacts on the fate decision process. The single-cell transcription profiles were analyzed using a new algorithm, and it is shown that lentiviral transduction during the early stages of stimulation modifies the dynamics of the fate choice process of the CD34+ cells. The cells transduced with a lentiviral vector are biased toward the common myeloid progenitor lineage. Valproic acid, a histone deacetylase inhibitor known to increase the grafting potential of the CD34+ cells, improves the transduction efficiency to almost 100%. The cells transduced in the presence of valproic acid can subsequently undergo normal fate commitment. The higher gene transfer efficiency did not alter the genomic integration profile of the vector. These observations open the way to substantially improving lentiviral gene transfer protocols.
Collapse
Affiliation(s)
- Alice Moussy
- 1Ecole Pratique des Hautes Etudes, PSL Research University, UMRS951, INSERM, Univ-Evry, Paris, France; University at Buffalo, The State University of New York, Buffalo, New York
| | - Nan Papili Gao
- 2Institute for Chemical Bioengineering, ETH Zurich, Zurich, Switzerland; University at Buffalo, The State University of New York, Buffalo, New York.,3Swiss Institute of Bioinformatics, Lausanne, Switzerland; University at Buffalo, The State University of New York, Buffalo, New York
| | - Guillaume Corre
- 4Genethon, Evry, France; and University at Buffalo, The State University of New York, Buffalo, New York
| | - Valentina Poletti
- 4Genethon, Evry, France; and University at Buffalo, The State University of New York, Buffalo, New York
| | - Saliha Majdoul
- 4Genethon, Evry, France; and University at Buffalo, The State University of New York, Buffalo, New York
| | - David Fenard
- 4Genethon, Evry, France; and University at Buffalo, The State University of New York, Buffalo, New York
| | - Rudiyanto Gunawan
- 2Institute for Chemical Bioengineering, ETH Zurich, Zurich, Switzerland; University at Buffalo, The State University of New York, Buffalo, New York.,3Swiss Institute of Bioinformatics, Lausanne, Switzerland; University at Buffalo, The State University of New York, Buffalo, New York.,5Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York
| | - Daniel Stockholm
- 1Ecole Pratique des Hautes Etudes, PSL Research University, UMRS951, INSERM, Univ-Evry, Paris, France; University at Buffalo, The State University of New York, Buffalo, New York
| | - András Páldi
- 1Ecole Pratique des Hautes Etudes, PSL Research University, UMRS951, INSERM, Univ-Evry, Paris, France; University at Buffalo, The State University of New York, Buffalo, New York
| |
Collapse
|
31
|
Christaki EE, Politou M, Antonelou M, Athanasopoulos A, Simantirakis E, Seghatchian J, Vassilopoulos G. Ex vivo generation of transfusable red blood cells from various stem cell sources: A concise revisit of where we are now. Transfus Apher Sci 2019; 58:108-112. [DOI: 10.1016/j.transci.2018.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Velcheti V, Schrump D, Saunthararajah Y. Ultimate Precision: Targeting Cancer but Not Normal Self-replication. Am Soc Clin Oncol Educ Book 2018; 38:950-963. [PMID: 30231326 DOI: 10.1200/edbk_199753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-replication is the engine that drives all biologic evolution, including neoplastic evolution. A key oncotherapy challenge is to target this, the heart of malignancy, while sparing the normal self-replication mandatory for health and life. Self-replication can be demystified: it is activation of replication, the most ancient of cell programs, uncoupled from activation of lineage-differentiation, metazoan programs more recent in origin. The uncoupling can be physiologic, as in normal tissue stem cells, or pathologic, as in cancer. Neoplastic evolution selects to disengage replication from forward-differentiation where intrinsic replication rates are the highest, in committed progenitors that have division times measured in hours versus weeks for tissue stem cells, via partial loss of function in master transcription factors that activate terminal-differentiation programs (e.g., GATA4) or in the coactivators they use for this purpose (e.g., ARID1A). These loss-of-function mutations bias master transcription factor circuits, which normally regulate corepressor versus coactivator recruitment, toward corepressors (e.g., DNMT1) that repress rather than activate terminal-differentiation genes. Pharmacologic inhibition of the corepressors rebalances to coactivator function, activating lineage-differentiation genes that dominantly antagonize MYC (the master transcription factor coordinator of replication) to terminate malignant self-replication. Physiologic self-replication continues, because the master transcription factors in tissue stem cells activate stem cell, not terminal-differentiation, programs. Druggable corepressor proteins are thus the barriers between self-replicating cancer cells and the terminal-differentiation fates intended by their master transcription factor content. This final common pathway to oncogenic self-replication, being separate and distinct from the normal, offers the favorable therapeutic indices needed for clinical progress.
Collapse
Affiliation(s)
- Vamsidhar Velcheti
- From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD
| | - David Schrump
- From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD
| | - Yogen Saunthararajah
- From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD
| |
Collapse
|
33
|
Megakaryocyte lineage development is controlled by modulation of protein acetylation. PLoS One 2018; 13:e0196400. [PMID: 29698469 PMCID: PMC5919413 DOI: 10.1371/journal.pone.0196400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
Treatment with lysine deacetylase inhibitors (KDACi) for haematological malignancies, is accompanied by haematological side effects including thrombocytopenia, suggesting that modulation of protein acetylation affects normal myeloid development, and specifically megakaryocyte development. In the current study, utilising ex-vivo differentiation of human CD34+ haematopoietic progenitor cells, we investigated the effects of two functionally distinct KDACi, valproic acid (VPA), and nicotinamide (NAM), on megakaryocyte differentiation, and lineage choice decisions. Treatment with VPA increased the number of megakaryocyte/erythroid progenitors (MEP), accompanied by inhibition of megakaryocyte differentiation, whereas treatment with NAM accelerated megakaryocyte development, and stimulated polyploidisation. Treatment with both KDACi resulted in no significant effects on erythrocyte differentiation, suggesting that the effects of KDACi primarily affect megakaryocyte lineage development. H3K27Ac ChIP-sequencing analysis revealed that genes involved in myeloid development, as well as megakaryocyte/erythroid (ME)-lineage differentiation are uniquely modulated by specific KDACi treatment. Taken together, our data reveal distinct effects of specific KDACi on megakaryocyte development, and ME-lineage decisions, which can be partially explained by direct effects on promoter acetylation of genes involved in myeloid differentiation.
Collapse
|
34
|
Recombinant TAT-BMI-1 fusion protein induces ex vivo expansion of human umbilical cord blood-derived hematopoietic stem cells. Oncotarget 2018; 8:43782-43798. [PMID: 28187462 PMCID: PMC5546440 DOI: 10.18632/oncotarget.15156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/17/2017] [Indexed: 01/24/2023] Open
Abstract
Transplantation of hematopoietic stem cells (HSCs) is a well-established therapeutic approach for numerous disorders. HSCs are typically derived from bone marrow or peripheral blood after cytokine-induced mobilization. Umbilical cord blood (CB) represents an appealing alternative HSC source, but the small amounts of the individual CB units have limited its applications. The availability of strategies for safe ex vivo expansion of CB-derived HSCs (CB-HSCs) may allow to extend the use of these cells in adult patients and to avoid the risk of insufficient engraftment or delayed hematopoietic recovery. Here we describe a system for the ex vivo expansion of CB-HSCs based on their transient exposure to a recombinant TAT-BMI-1 chimeric protein. BMI-1 belongs to the Polycomb family of epigenetic modifiers and is recognized as a central regulator of HSC self-renewal. Recombinant TAT-BMI-1 produced in bacteria was able to enter the target cells via the HIV TAT-derived protein transduction peptide covalently attached to BMI-1, and conserved its biological activity. Treatment of CB-CD34+ cells for 3 days with repeated addition of 10 nM purified TAT-BMI-1 significantly enhanced total cell expansion as well as that of primitive hematopoietic progenitors in culture. Importantly, TAT-BMI-1-treated CB-CD34+ cells displayed a consistently higher rate of multi-lineage long-term repopulating activity in primary and secondary xenotransplants in immunocompromised mice. Thus, recombinant TAT-BMI-1 may represent a novel, effective reagent for ex vivo expansion of CB-HSC for therapeutic purposes.
Collapse
|
35
|
Velcheti V, Radivoyevitch T, Saunthararajah Y. Higher-Level Pathway Objectives of Epigenetic Therapy: A Solution to the p53 Problem in Cancer. Am Soc Clin Oncol Educ Book 2017; 37:812-824. [PMID: 28561650 DOI: 10.1200/edbk_174175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Searches for effective yet nontoxic oncotherapies are searches for exploitable differences between cancer and normal cells. In its core of cell division, cancer resembles normal life, coordinated by the master transcription factor MYC. Outside of this core, apoptosis and differentiation programs, which dominantly antagonize MYC to terminate cell division, necessarily differ between cancer and normal cells, as apoptosis is suppressed by biallelic inactivation of the master regulator of apoptosis, p53, or its cofactor p16/CDKN2A in approximately 80% of cancers. These genetic alterations impact therapy: conventional oncotherapy applies stress upstream of p53 to upregulate it and causes apoptosis (cytotoxicity)-a toxic, futile intent when it is absent or nonfunctional. Differentiation, on the other hand, cannot be completely suppressed because it is a continuum along which all cells exist. Neoplastic evolution stalls advances along this continuum at its most proliferative points-in lineage-committed progenitors that have division times measured in hours compared with weeks for tissue stem cells. This differentiation arrest is by mutations/deletions in differentiation-driving transcription factors or their coactivators that shift balances of gene-regulating protein complexes toward corepressors that repress instead of activate hundreds of terminal differentiation genes. That is, malignant proliferation without differentiation, also referred to as cancer "stem" cell self-renewal, hinges on druggable corepressors. Inhibiting these corepressors (e.g., DNMT1) releases p53-independent terminal differentiation in cancer stem cells but preserves self-renewal of normal stem cells that express stem cell transcription factors. Thus, epigenetic-differentiation therapies exploit a fundamental distinction between cancer and normal stem cell self-renewal and have a pathway of action downstream of genetic defects in cancer, affording favorable therapeutic indices needed for clinical progress.
Collapse
Affiliation(s)
- Vamsidhar Velcheti
- From the Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH; Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Tomas Radivoyevitch
- From the Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH; Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Yogen Saunthararajah
- From the Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH; Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
36
|
Moussy A, Cosette J, Parmentier R, da Silva C, Corre G, Richard A, Gandrillon O, Stockholm D, Páldi A. Integrated time-lapse and single-cell transcription studies highlight the variable and dynamic nature of human hematopoietic cell fate commitment. PLoS Biol 2017; 15:e2001867. [PMID: 28749943 PMCID: PMC5531424 DOI: 10.1371/journal.pbio.2001867] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/23/2017] [Indexed: 11/19/2022] Open
Abstract
Individual cells take lineage commitment decisions in a way that is not necessarily uniform. We address this issue by characterising transcriptional changes in cord blood-derived CD34+ cells at the single-cell level and integrating data with cell division history and morphological changes determined by time-lapse microscopy. We show that major transcriptional changes leading to a multilineage-primed gene expression state occur very rapidly during the first cell cycle. One of the 2 stable lineage-primed patterns emerges gradually in each cell with variable timing. Some cells reach a stable morphology and molecular phenotype by the end of the first cell cycle and transmit it clonally. Others fluctuate between the 2 phenotypes over several cell cycles. Our analysis highlights the dynamic nature and variable timing of cell fate commitment in hematopoietic cells, links the gene expression pattern to cell morphology, and identifies a new category of cells with fluctuating phenotypic characteristics, demonstrating the complexity of the fate decision process (which is different from a simple binary switch between 2 options, as it is usually envisioned). Hematopoietic stem cells are classically defined as a specific category of cells at the top of the hierarchy that can differentiate all blood cell types following step-by-step the instructions of a deterministic program. We have analysed this process, and our findings support a much more dynamic view than previously described. We apply time-lapse microscopy coupled to single-cell molecular analyses in human hematopoietic stem cells and find that fate decision is not a unique, programmed event but a process of spontaneous variation and selective stabilisation reminiscent of trial–error processes. We show that each cell explores (at its own pace and independently of cell division) many different possibilities before reaching a stable combination of genes to be expressed. Our results suggest, therefore, that multipotency seems to be more like a transitory state than a feature of a specific cell category.
Collapse
Affiliation(s)
- Alice Moussy
- Ecole Pratique des Hautes Etudes, PSL Research University, UMRS 951, INSERM, Univ-Evry, Evry, France
- Genethon, Evry, France
| | | | | | - Cindy da Silva
- Ecole Pratique des Hautes Etudes, PSL Research University, UMRS 951, INSERM, Univ-Evry, Evry, France
| | | | - Angélique Richard
- Laboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
| | - Olivier Gandrillon
- Laboratoire de Biologie et de Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
| | - Daniel Stockholm
- Ecole Pratique des Hautes Etudes, PSL Research University, UMRS 951, INSERM, Univ-Evry, Evry, France
| | - András Páldi
- Ecole Pratique des Hautes Etudes, PSL Research University, UMRS 951, INSERM, Univ-Evry, Evry, France
- * E-mail:
| |
Collapse
|
37
|
Liu N, Li S, Wu N, Cho KS. Acetylation and deacetylation in cancer stem-like cells. Oncotarget 2017; 8:89315-89325. [PMID: 29179522 PMCID: PMC5687692 DOI: 10.18632/oncotarget.19167] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer stem-like cell (CSC) model has been established to investigate the underlying mechanisms of tumor initiation and progression. The imbalance between acetylation and deacetylation of histone or non-histone proteins, one of the important epigenetic modification processes, is closely associated with a wide variety of diseases including cancer. Acetylation and deacetylation are involved in various stemness-related signal pathways and drive the regulation of self-renewal and differentiation in normal developmental processes. Therefore, it is critical to explore their role in the maintenance of cancer stem-like cell traits. Here, we will review the extensive dysregulations of acetylation found in cancers and summarize their functional roles in sustaining CSC-like properties. Additionally, the use of deacetyltransferase inhibitors as an effective therapeutic strategy against CSCs is also discussed.
Collapse
Affiliation(s)
- Na Liu
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiqi Li
- Center of biotherapy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Nan Wu
- Department of Ophthalmology, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kin-Sang Cho
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Sahakian E, Chen J, Powers JJ, Chen X, Maharaj K, Deng SL, Achille AN, Lienlaf M, Wang HW, Cheng F, Sodré AL, Distler A, Xing L, Perez-Villarroel P, Wei S, Villagra A, Seto E, Sotomayor EM, Horna P, Pinilla-Ibarz J. Essential role for histone deacetylase 11 (HDAC11) in neutrophil biology. J Leukoc Biol 2017; 102:475-486. [PMID: 28550123 DOI: 10.1189/jlb.1a0415-176rrr] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022] Open
Abstract
Epigenetic changes in chromatin structure have been recently associated with the deregulated expression of critical genes in normal and malignant processes. HDAC11, the newest member of the HDAC family of enzymes, functions as a negative regulator of IL-10 expression in APCs, as previously described by our lab. However, at the present time, its role in other hematopoietic cells, specifically in neutrophils, has not been fully explored. In this report, for the first time, we present a novel physiologic role for HDAC11 as a multifaceted regulator of neutrophils. Thus far, we have been able to demonstrate a lineage-restricted overexpression of HDAC11 in neutrophils and committed neutrophil precursors (promyelocytes). Additionally, we show that HDAC11 appears to associate with the transcription machinery, possibly regulating the expression of inflammatory and migratory genes in neutrophils. Given the prevalence of neutrophils in the peripheral circulation and their central role in the first line of defense, our results highlight a unique and novel role for HDAC11. With the consideration of the emergence of new, selective HDAC11 inhibitors, we believe that our findings will have significant implications in a wide range of diseases spanning malignancies, autoimmunity, and inflammation.
Collapse
Affiliation(s)
- Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; .,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jie Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - John J Powers
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Kamira Maharaj
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Susan L Deng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Alex N Achille
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Maritza Lienlaf
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hong Wei Wang
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Fengdong Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Andressa L Sodré
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Allison Distler
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Limin Xing
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | | | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Alejandro Villagra
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ed Seto
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Eduardo M Sotomayor
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Pedro Horna
- Department of Hematopathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; and
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; .,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
39
|
Um S, Lee H, Zhang Q, Kim HY, Lee JH, Seo BM. Valproic Acid Modulates the Multipotency in Periodontal Ligament Stem Cells via p53-Mediated Cell Cycle. Tissue Eng Regen Med 2017; 14:153-162. [PMID: 30603472 DOI: 10.1007/s13770-017-0027-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/31/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022] Open
Abstract
Human periodontal ligament stem cells (PDLSCs), a type of mesenchymal stem cell, are a promising source for dental regeneration and are identified in human periodontal ligaments from extracted third molars. Valproic acid (VPA) is a histone deacetylase inhibitor that has been used as a wide-spectrum antiepileptic drug and a medication for mood disorders. VPA has shown several effects on increasing the pluripotency of embryonic stem cells and controlling osteogenic differentiation, besides the prevention of seizures. However, its effect on proliferation and osteogenesis depends on the cell type and concentration. The aim of this study was to investigate the effects of cyclic and constant VPA treatment on PDLSCs. Proliferation and apoptosis of PDLSCs were determined with cyclic and constant VPA treatment. In cemento/osteogenic differentiation, osteogenic markers decreased significantly after cyclic treatment with 0.5 mM VPA. In contrast, VPA enhanced osteogenic differentiation after constant treatment. With cyclic VPA treatment, p53 levels related to apoptotic pathway decreased to induce proliferation. These findings indicated that VPA has different roles in proliferation and differentiation of PDLSCs in vitro and in vivo via p53-related pathway.
Collapse
Affiliation(s)
- Soyoun Um
- 1Department of Dental Science, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- 5Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Ho Lee
- 2Department of Oral and Maxillofacial Surgery, SMG-SNU Boramae Medical Center, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061 Korea
| | - Qingbin Zhang
- 3Department of Temporomandibular Joint Diseases, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, 510182 China
| | - Hui Young Kim
- 4Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- 5Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Joo-Hee Lee
- 4Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- 5Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Byoung Moo Seo
- 4Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- 5Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| |
Collapse
|
40
|
Yucel D, Kocabas F. Developments in Hematopoietic Stem Cell Expansion and Gene Editing Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1079:103-125. [DOI: 10.1007/5584_2017_114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Zhang Y, Wang L, Feng Z, Cheng H, McGuire TF, Ding Y, Cheng T, Gao Y, Xie XQ. StemCellCKB: An Integrated Stem Cell-Specific Chemogenomics KnowledgeBase for Target Identification and Systems-Pharmacology Research. J Chem Inf Model 2016; 56:1995-2004. [PMID: 27643925 DOI: 10.1021/acs.jcim.5b00748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Given the capacity of self-renewal and multilineage differentiation, stem cells are promising sources for use in regenerative medicines as well as in the clinical treatment of certain hematological malignancies and degenerative diseases. Complex networks of cellular signaling pathways largely determine stem cell fate and function. Small molecules that modulate these pathways can provide important biological and pharmacological insights. However, it is still challenging to identify the specific protein targets of these compounds, to explore the changes in stem cell phenotypes induced by compound treatment and to ascertain compound mechanisms of action. To facilitate stem cell related small molecule study and provide a better understanding of the associated signaling pathways, we have constructed a comprehensive domain-specific chemogenomics resource, called StemCellCKB ( http://www.cbligand.org/StemCellCKB/ ). This new cloud-computing platform describes the chemical molecules, genes, proteins, and signaling pathways implicated in stem cell regulation. StemCellCKB is also implemented with web applications designed specifically to aid in the identification of stem cell relevant protein targets, including TargetHunter, a machine-learning algorithm for predicting small molecule targets based on molecular fingerprints, and HTDocking, a high-throughput docking module for target prediction and systems-pharmacology analyses. We have systematically tested StemCellCKB to verify data integrity. Target-prediction accuracy has also been validated against the reported known target/compound associations. This proof-of-concept example demonstrates that StemCellCKB can (1) accurately predict the macromolecular targets of existing stem cell modulators and (2) identify novel small molecules capable of probing stem cell signaling mechanisms, for use in systems-pharmacology studies. StemCellCKB facilitates the exploration and exchange of stem cell chemogenomics data among members of the broader research community.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States.,Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300020, P. R. China
| | - Lirong Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Haizi Cheng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Terence Francis McGuire
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Yahui Ding
- Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300020, P. R. China
| | - Tao Cheng
- Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300020, P. R. China
| | - Yingdai Gao
- Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300020, P. R. China
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
42
|
Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma. PLoS One 2016; 11:e0162916. [PMID: 27627801 PMCID: PMC5023141 DOI: 10.1371/journal.pone.0162916] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/30/2016] [Indexed: 01/26/2023] Open
Abstract
Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible limitations to use VPA in cancer therapy.
Collapse
|
43
|
PML nuclear body disruption impairs DNA double-strand break sensing and repair in APL. Cell Death Dis 2016; 7:e2308. [PMID: 27468685 PMCID: PMC4973339 DOI: 10.1038/cddis.2016.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022]
Abstract
Proteins involved in DNA double-strand break (DSB) repair localize within the promyelocytic leukemia nuclear bodies (PML-NBs), whose disruption is at the root of the acute promyelocytic leukemia (APL) pathogenesis. All-trans-retinoic acid (RA) treatment induces PML-RARα degradation, restores PML-NB functions, and causes terminal cell differentiation of APL blasts. However, the precise role of the APL-associated PML-RARα oncoprotein and PML-NB integrity in the DSB response in APL leukemogenesis and tumor suppression is still lacking. Primary leukemia blasts isolated from APL patients showed high phosphorylation levels of H2AX (γ-H2AX), an initial DSBs sensor. By addressing the consequences of ionizing radiation (IR)-induced DSB response in primary APL blasts and RA-responsive and -resistant myeloid cell lines carrying endogenous or ectopically expressed PML-RARα, before and after treatment with RA, we found that the disruption of PML-NBs is associated with delayed DSB response, as revealed by the impaired kinetic of disappearance of γ-H2AX and 53BP1 foci and activation of ATM and of its substrates H2AX, NBN, and CHK2. The disruption of PML-NB integrity by PML-RARα also affects the IR-induced DSB response in a preleukemic mouse model of APL in vivo. We propose the oncoprotein-dependent PML-NB disruption and DDR impairment as relevant early events in APL tumorigenesis.
Collapse
|
44
|
Medhekar SK, Shende VS, Chincholkar AB. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review. Int J Stem Cells 2016; 9:21-30. [PMID: 27426082 PMCID: PMC4961100 DOI: 10.15283/ijsc.2016.9.1.21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 03/07/2016] [Indexed: 12/14/2022] Open
Abstract
Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field.
Collapse
Affiliation(s)
| | - Vikas Suresh Shende
- Department of Pharmacology, Satara College of Pharmacy, Degaon, Satara (MH), India
| | | |
Collapse
|
45
|
Aranyi T, Stockholm D, Yao R, Poinsignon C, Wiart T, Corre G, Touleimat N, Tost J, Galy A, Paldi A. Systemic epigenetic response to recombinant lentiviral vectors independent of proviral integration. Epigenetics Chromatin 2016; 9:29. [PMID: 27408621 PMCID: PMC4940770 DOI: 10.1186/s13072-016-0077-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/28/2016] [Indexed: 01/03/2023] Open
Abstract
Background Lentiviral vectors (LV) are widely used for various gene transfer or gene therapy applications. The effects of LV on target cells are expected to be limited to gene delivery. Yet, human hematopoietic CD34+ cells respond to functional LVs as well as several types of non-integrating LVs by genome-wide DNA methylation changes. Results A new algorithm for the analysis of 450K Illumina data showed that these changes were marked by de novo methylation. The same 4126 cytosines located in islands corresponding to 1059 genes were systematically methylated. This effect required cellular entry of the viral particle in the cells but not the genomic integration of the vector cassette. Some LV preparations induced only mild sporadic changes while others had strong effects suggesting that LV batch heterogeneity may be related to the extent of the epigenetic response. Conclusion These findings identify a previously uncharacterized but consistent cellular response to viral components and provide a novel example of environmentally modified epigenome. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0077-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamas Aranyi
- Université Evry Val d'Essonne, UMRS_951, Genethon, 91002 Evry, France
| | - Daniel Stockholm
- Ecole Pratique des Hautes Etudes, PSL Research University, UMRS_951, Genethon, 1 bis rue de l'Internationale, 91002 Evry, France
| | | | | | | | | | - Nizar Touleimat
- Centre National de Génotypage, CEA-Institut de Génomique, 2, rue Gaston Crémieux, 91000 Evry, France
| | - Jörg Tost
- Centre National de Génotypage, CEA-Institut de Génomique, 2, rue Gaston Crémieux, 91000 Evry, France
| | - Anne Galy
- Inserm, U951, Genethon, 1 bis rue de l'Internationale, 91002 Evry, France.,Genethon, 91002 Evry, France
| | - Andràs Paldi
- Ecole Pratique des Hautes Etudes, PSL Research University, UMRS_951, Genethon, 1 bis rue de l'Internationale, 91002 Evry, France
| |
Collapse
|
46
|
Novel chemical attempts at ex vivo hematopoietic stem cell expansion. Int J Hematol 2016; 103:519-29. [DOI: 10.1007/s12185-016-1962-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/16/2022]
|
47
|
Patel AN, Bartlett CE, Ichim TE. Mesenchymal Stem Cells. STEM CELL AND GENE THERAPY FOR CARDIOVASCULAR DISEASE 2016:139-150. [DOI: 10.1016/b978-0-12-801888-0.00011-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
48
|
Bhatia S, Reister S, Mahotka C, Meisel R, Borkhardt A, Grinstein E. Control of AC133/CD133 and impact on human hematopoietic progenitor cells through nucleolin. Leukemia 2015; 29:2208-20. [PMID: 26183533 DOI: 10.1038/leu.2015.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Abstract
AC133 is a prominent surface marker of CD34+ and CD34- hematopoietic stem/progenitor cell (HSPC) subsets. AC133+ HSPCs contain high progenitor cell activity and are capable of hematopoietic reconstitution. Furthermore, AC133 is used for prospective isolation of tumor-initiating cells in several hematological malignancies. Nucleolin is a multifunctional factor of growing and cancer cells, which is aberrantly active in certain hematological neoplasms, and serves as a candidate molecular target for cancer therapy. Nucleolin is involved in gene transcription and RNA metabolism and is prevalently expressed in HSPCs, as opposed to differentiated hematopoietic tissue. The present study dissects nucleolin-mediated activation of surface AC133 and its cognate gene CD133, via specific interaction of nucleolin with the tissue-dependent CD133 promoter P1, as a mechanism that crucially contributes to AC133 expression in CD34+ HSPCs. In mobilized peripheral blood (MPB)-derived HSPCs, nucleolin elevates colony-forming unit (CFU) frequencies and enriches granulocyte-macrophage CFUs. Furthermore, nucleolin amplifies long-term culture-initiating cells and also promotes long-term, cytokine-dependent maintenance of hematopoietic progenitor cells. Active β-catenin, active Akt and Bcl-2 levels in MPB-derived HSPCs are nucleolin-dependent, and effects of nucleolin on these cells partially rely on β-catenin activity. The study provides new insights into molecular network relevant to stem/progenitor cells in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- S Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - S Reister
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - C Mahotka
- Institute of Pathology, Heinrich Heine University, Düsseldorf, Germany
| | - R Meisel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - A Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - E Grinstein
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Epigenetic regulatory networks determine the fate of dividing hematopoietic stem cells (HSCs). Prior attempts at the ex-vivo expansion of transplantable human HSCs have led to the depletion or at best maintenance of the numbers of HSCs because of the epigenetic events that silence the HSC gene-expression pattern. The purpose of this review is to outline the recent efforts to use small molecules to reprogram cultured CD34 cells so as to expand their numbers. RECENT FINDINGS Chromatin-modifying agents (CMAs) reactivate the gene-expression patterns of HSCs that have been silenced as they divide ex vivo. Increasing evidence indicates that CMAs act not only by promoting HSC symmetrical self-renewal divisions, but also by reprogramming progenitor cells, resulting in greater numbers of HSCs. The use of such CMAs for these purposes has not resulted in malignant transformation of the ex-vivo treated cell product. SUMMARY The silencing of the gene-expression program that determines HSC function after ex-vivo culture can be reversed by reprogramming the progeny of dividing HSCs with transient exposure to CMAs. The successful implementation of this approach provides a strategy which might lead to the development of a clinically relevant means of manufacturing increased numbers of HSCs.
Collapse
Affiliation(s)
- Camelia Iancu-Rubin
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | |
Collapse
|
50
|
Pineault N, Abu-Khader A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp Hematol 2015; 43:498-513. [DOI: 10.1016/j.exphem.2015.04.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/24/2022]
|