1
|
Grimes JM, Ghosh S, Manzoor S, Li LX, Moran MM, Clements JC, Alexander SD, Markert JM, Leavenworth JW. Oncolytic reprogramming of tumor microenvironment shapes CD4 T-cell memory via the IL6ra-Bcl6 axis for targeted control of glioblastoma. Nat Commun 2025; 16:1095. [PMID: 39885128 PMCID: PMC11782536 DOI: 10.1038/s41467-024-55455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025] Open
Abstract
Oncolytic viruses (OVs) emerge as a promising cancer immunotherapy. However, the temporal impact on tumor cells and the tumor microenvironment, and the nature of anti-tumor immunity post-therapy remain largely unclear. Here we report that CD4+ T cells are required for durable tumor control in syngeneic murine models of glioblastoma multiforme after treatment with an oncolytic herpes simplex virus (oHSV) engineered to express IL-12. The upregulated MHCII on residual tumor cells facilitates programmed polyfunctional CD4+ T cells for tumor control and for recall responses. Mechanistically, the proper ratio of Bcl-6 to T-bet in CD4+ T cells navigates their enhanced anti-tumor capacity, and a reciprocal IL6ra-Bcl-6 regulatory axis in a memory CD4+ T-cell subset, which requires MHCII signals from reprogrammed tumor cells, tumor-infiltrating and resident myeloid cells, is necessary for the prolonged response. These findings uncover an OV-induced tumor/myeloid-CD4+ T-cell partnership, leading to long-term anti-tumor immune memory, and improved OV therapeutic efficacy.
Collapse
Affiliation(s)
- Jeffrey M Grimes
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadashib Ghosh
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shamza Manzoor
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Li X Li
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Monica M Moran
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer C Clements
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sherrie D Alexander
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
- The O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
- The O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Zhou M, Shen Z. Advanced progress in the genetic modification of the oncolytic HSV-1 virus. Front Oncol 2025; 14:1525940. [PMID: 39906660 PMCID: PMC11790444 DOI: 10.3389/fonc.2024.1525940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025] Open
Abstract
The use of replication-competent viruses for selective tumor oncolysis while sparing normal cells marks a significant advancement in cancer treatment. HSV-1 presents several advantages that position it as a leading candidate for oncolytic virotherapies. Its large genome can accommodate insertions over 30 kb or deletions of multiple virulence genes without compromising lytic replication in tumor cells. Additionally, anti-herpes drugs can inhibit its replication during accidental infections. Importantly, HSV-1 does not integrate into the host genome and cause mutations. The HSV-1 genome can be modified through genetic engineering in two main ways: first, by reducing infectivity and toxicity to normal cells via limited replication and assembly, altered protein-virus receptor binding, and minimized immune evasion; second, by enhancing anticancer activity through disruption of tumor cell metabolism, induction of autophagy, improved immune recognition, and modification of the tumor microenvironment. In this mini-review, we systematically examine genetic modification strategies for oncolytic HSV-1 while highlighting advancements from these modifications. Certain genetic alterations have shown efficacy in improving clinical outcomes for HSV-1-based therapies. These modifications include silencing specific genes and inserting exogenous genes into the HSV-1 genome. The insertion of exogenous genes has increasingly been used to develop new oncolytic HSV-1 variants. Finally, we discuss limitations associated with oncolytic virotherapy at the conclusion of this review. As more clinical trials explore newly engineered therapies, they are likely to yield breakthroughs and promote broader adoption for cancer treatment.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Shen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
You H, Geng S, Li S, Imani M, Brambilla D, Sun T, Jiang C. Recent advances in biomimetic strategies for the immunotherapy of glioblastoma. Biomaterials 2024; 311:122694. [PMID: 38959533 DOI: 10.1016/j.biomaterials.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapy is regarded as one of the most promising approaches for treating tumors, with a multitude of immunotherapeutic thoughts currently under consideration for the lethal glioblastoma (GBM). However, issues with immunotherapeutic agents, such as limited in vivo stability, poor blood-brain barrier (BBB) penetration, insufficient GBM targeting, and represented monotherapy, have hindered the success of immunotherapeutic interventions. Moreover, even with the aid of conventional drug delivery systems, outcomes remain suboptimal. Biomimetic strategies seek to overcome these formidable drug delivery challenges by emulating nature's intelligent structures and functions. Leveraging the variety of biological structures and functions, biomimetic drug delivery systems afford a versatile platform with enhanced biocompatibility for the co-delivery of diverse immunotherapeutic agents. Moreover, their inherent capacity to traverse the BBB and home in on GBM holds promise for augmenting the efficacy of GBM immunotherapy. Thus, this review begins by revisiting the various thoughts and agents on immunotherapy for GBM. Then, the barriers to successful GBM immunotherapy are analyzed, and the corresponding biomimetic strategies are explored from the perspective of function and structure. Finally, the clinical translation's current state and prospects of biomimetic strategy are addressed. This review aspires to provide fresh perspectives on the advancement of immunotherapy for GBM.
Collapse
Affiliation(s)
- Haoyu You
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuo Geng
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shangkuo Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mohammad Imani
- Department of Science, Iran Polymer and Petrochemical Institute, Tehran 14977-13115, Iran; Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Tehran 14588-89694, Iran
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal Quebec H3T 1J4, Canada
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
4
|
Rezaei R, Boulton S, Ahmadi M, Petryk J, Da Silva M, Kooshki Zamani N, Singaravelu R, St-Laurent G, Daniel L, Sadeghipour A, Pelin A, Poutou J, Munoz Zuniga AI, Choy C, Gilchrist VH, Khalid Z, Austin B, Onsu KA, Marius R, Ameli Z, Mohammadi F, Mancinelli V, Wang E, Nik-Akhtar A, Alwithenani A, Panahi Arasi F, Ferguson SSG, Hobman TC, Alain T, Tai LH, Ilkow CS, Diallo JS, Bell JC, Azad T. Antibiotic-mediated selection of randomly mutagenized and cytokine-expressing oncolytic viruses. Nat Biomed Eng 2024:10.1038/s41551-024-01259-7. [PMID: 39609558 DOI: 10.1038/s41551-024-01259-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/05/2024] [Indexed: 11/30/2024]
Abstract
Optimization of oncolytic viruses for therapeutic applications requires the strategic removal or mutagenesis of virulence genes alongside the insertion of transgenes that enhance viral replication, spread and immunogenicity. However, the complexity of many viral genomes and the labour-intensive nature of methods for the generation and isolation of recombinant viruses have hindered the development of therapeutic oncolytic viruses. Here we report an iterative strategy that exploits the preferential susceptibility of viruses to certain antibiotics to accelerate the engineering of the genomes of oncolytic viruses for the insertion of immunomodulatory cytokine transgenes, and the identification of dispensable genes with regard to replication of the recombinant oncolytic viruses in tumour cells. We applied the strategy by leveraging insertional mutagenesis via the Sleeping Beauty transposon system, combined with long-read nanopore sequencing, to generate libraries of herpes simplex virus type 1 and vaccinia virus, identifying stable transgene insertion sites and gene deletions that enhance the safety and efficacy of the viruses.
Collapse
Affiliation(s)
- Reza Rezaei
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Mahsa Ahmadi
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julia Petryk
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Miles Da Silva
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nika Kooshki Zamani
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Gabriel St-Laurent
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lauren Daniel
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Arezoo Sadeghipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Adrian Pelin
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
| | - Joanna Poutou
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Abril Ixchel Munoz Zuniga
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Clarence Choy
- Department of Biochemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria H Gilchrist
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Zumama Khalid
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Bradley Austin
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Ricardo Marius
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Zahra Ameli
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Fazel Mohammadi
- Department of Biosciences, University of Milan, Milan, Italy
| | - Valeria Mancinelli
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Emily Wang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abolfazl Nik-Akhtar
- Ottawa Institute of Systems Biology and Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Akram Alwithenani
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Fatemeh Panahi Arasi
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Faculty of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Tom C Hobman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Lee-Hwa Tai
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Carolina S Ilkow
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - John C Bell
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Taha Azad
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada.
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
5
|
Epstein AL, Rabkin SD. Safety of non-replicative and oncolytic replication-selective HSV vectors. Trends Mol Med 2024; 30:781-794. [PMID: 38886138 PMCID: PMC11329358 DOI: 10.1016/j.molmed.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) is a DNA virus and human pathogen used to construct promising therapeutic vectors. HSV-1 vectors fall into two classes: replication-selective oncolytic vectors for cancer therapy and defective non-replicative vectors for gene therapy. Vectors from each class can accommodate ≥30 kb of inserts, have been approved clinically, and demonstrate a relatively benign safety profile. Despite oncolytic HSV (oHSV) replication in tumors and elicited immune responses, the virus is well tolerated in cancer patients. Current non-replicative vectors elicit only limited immune responses. Seropositivity and immune responses against HSV-1 do not eliminate either the vector or infected cells, and the vectors can therefore be re-administered. In this review we highlight vectors that have been translated to the clinic and host-virus immune interactions that impact on the safety and efficacy of HSVs.
Collapse
Affiliation(s)
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Kiaheyrati N, Babaei A, Ranji R, Bahadoran E, Taheri S, Farokhpour Z. Cancer therapy with the viral and bacterial pathogens: The past enemies can be considered the present allies. Life Sci 2024; 349:122734. [PMID: 38788973 DOI: 10.1016/j.lfs.2024.122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Cancer continues to be one of the leading causes of mortality worldwide despite significant advancements in cancer treatment. Many difficulties have arisen as a result of the detrimental consequences of chemotherapy and radiotherapy as a common cancer therapy, such as drug inability to penetrate deep tumor tissue, and also the drug resistance in tumor cells continues to be a major concern. These obstacles have increased the need for the development of new techniques that are more selective and effective against cancer cells. Bacterial-based therapies and the use of oncolytic viruses can suppress cancer in comparison to other cancer medications. The tumor microenvironment is susceptible to bacterial accumulation and proliferation, which can trigger immune responses against the tumor. Oncolytic viruses (OVs) have also gained considerable attention in recent years because of their potential capability to selectively target and induce apoptosis in cancer cells. This review aims to provide a comprehensive summary of the latest literature on the role of bacteria and viruses in cancer treatment, discusses the limitations and challenges, outlines various strategies, summarizes recent preclinical and clinical trials, and emphasizes the importance of optimizing current strategies for better clinical outcomes.
Collapse
Affiliation(s)
- Niloofar Kiaheyrati
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran.
| | - Reza Ranji
- Department of Genetics, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ensiyeh Bahadoran
- School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Shiva Taheri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Farokhpour
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
7
|
Suzuki T, Uchida H. Induction of necroptosis in multinucleated giant cells induced by conditionally replicating syncytial oHSV in co-cultures of cancer cells and non-cancerous cells. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200803. [PMID: 38706990 PMCID: PMC11067338 DOI: 10.1016/j.omton.2024.200803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Viral modifications enabling syncytium formation in infected cells can augment lysis by oncolytic herpes simplex viruses (oHSVs) which selectively kill cancer cells. In the case of receptor-retargeted oHSVs (RR-oHSVs) that exclusively enter and spread to cancer cells, anti-tumor effects can be enhanced in a magnitude of >100,000-fold by modifying the virus to a syncytial type (RRsyn-oHSV). However, when syncytia containing non-cancerous cells are induced by conditionally replicating syncytial oHSV (CRsyn-oHSV), syncytial death occurs at an early stage. This results in limited anti-tumor effects of the CRsyn-oHSV. Here, we investigated whether necroptosis is involved in death of the syncytia formed by the fusion of cancer cells and non-cancerous cells. Mixed-lineage kinase domain-like (MLKL), a molecule executing necroptosis, was expressed in all murine cancer cell lines examined, while receptor-interacting protein kinase 3 (RIPK3), which phosphorylates MLKL, was absent from most cell lines. In contrast, RIPK3 was expressed in non-cancerous murine fibroblast cell lines. When a CRsyn-oHSV-infected RIPK3-deficient cancer cell line was co-cultured with the fibroblast cell line, but not with the cancer cells themselves, MLKL was phosphorylated and syncytial death was induced. These results indicate that early necroptosis is induced in multinucleated giant cells formed by CRsyn-oHSV when they also contain non-cancerous cells.
Collapse
Affiliation(s)
- Takuma Suzuki
- Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroaki Uchida
- Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
8
|
Vazaios K, Stavrakaki Ε, Vogelezang LB, Ju J, Waranecki P, Metselaar DS, Meel MH, Kemp V, van den Hoogen BG, Hoeben RC, Chiocca EA, Goins WF, Stubbs A, Li Y, Alonso MM, Calkoen FG, Hulleman E, van der Lugt J, Lamfers ML. The heterogeneous sensitivity of pediatric brain tumors to different oncolytic viruses is predicted by unique gene expression profiles. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200804. [PMID: 38694569 PMCID: PMC11060958 DOI: 10.1016/j.omton.2024.200804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 05/04/2024]
Abstract
Despite decades of research, the prognosis of high-grade pediatric brain tumors (PBTs) remains dismal; however, recent cases of favorable clinical responses were documented in clinical trials using oncolytic viruses (OVs). In the current study, we employed four different species of OVs: adenovirus Delta24-RGD, herpes simplex virus rQNestin34.5v1, reovirus R124, and the non-virulent Newcastle disease virus rNDV-F0-GFP against three entities of PBTs (high-grade gliomas, atypical teratoid/rhabdoid tumors, and ependymomas) to determine their in vitro efficacy. These four OVs were screened on 14 patient-derived PBT cell cultures and the degree of oncolysis was assessed using an ATP-based assay. Subsequently, the observed viral efficacies were correlated to whole transcriptome data and Gene Ontology analysis was performed. Although no significant tumor type-specific OV efficacy was observed, the analysis revealed the intrinsic biological processes that associated with OV efficacy. The predictive power of the identified expression profiles was further validated in vitro by screening additional PBTs. In summary, our results demonstrate OV susceptibility of multiple patient-derived PBT entities and the ability to predict in vitro responses to OVs using unique expression profiles. Such profiles may hold promise for future OV preselection with effective oncolytic potency in a specific tumor, therewith potentially improving OV responses.
Collapse
Affiliation(s)
- Konstantinos Vazaios
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Εftychia Stavrakaki
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Lisette B. Vogelezang
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Jie Ju
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Piotr Waranecki
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Dennis S. Metselaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Michaël H. Meel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
- Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | | | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - William F. Goins
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Dr, Pittsburgh, PA 15219, USA
| | - Andrew Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Yunlei Li
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Marta M. Alonso
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), Avda. de Pío XII, 55, 31008 Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Av. de Pío XII, 36, 31008 Pamplona, Spain
- Health Research Institute of Navarra (IDISNA), Av. de Pío XII, 36, 31008 Pamplona, Spain
| | - Friso G. Calkoen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Martine L.M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
9
|
Shen Y, Thng DKH, Wong ALA, Toh TB. Mechanistic insights and the clinical prospects of targeted therapies for glioblastoma: a comprehensive review. Exp Hematol Oncol 2024; 13:40. [PMID: 38615034 PMCID: PMC11015656 DOI: 10.1186/s40164-024-00512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Glioblastoma (GBM) is a fatal brain tumour that is traditionally diagnosed based on histological features. Recent molecular profiling studies have reshaped the World Health Organization approach in the classification of central nervous system tumours to include more pathogenetic hallmarks. These studies have revealed that multiple oncogenic pathways are dysregulated, which contributes to the aggressiveness and resistance of GBM. Such findings have shed light on the molecular vulnerability of GBM and have shifted the disease management paradigm from chemotherapy to targeted therapies. Targeted drugs have been developed to inhibit oncogenic targets in GBM, including receptors involved in the angiogenic axis, the signal transducer and activator of transcription 3 (STAT3), the PI3K/AKT/mTOR signalling pathway, the ubiquitination-proteasome pathway, as well as IDH1/2 pathway. While certain targeted drugs showed promising results in vivo, the translatability of such preclinical achievements in GBM remains a barrier. We also discuss the recent developments and clinical assessments of targeted drugs, as well as the prospects of cell-based therapies and combinatorial therapy as novel ways to target GBM. Targeted treatments have demonstrated preclinical efficacy over chemotherapy as an alternative or adjuvant to the current standard of care for GBM, but their clinical efficacy remains hindered by challenges such as blood-brain barrier penetrance of the drugs. The development of combinatorial targeted therapies is expected to improve therapeutic efficacy and overcome drug resistance.
Collapse
Affiliation(s)
- Yating Shen
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Dexter Kai Hao Thng
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Andrea Li Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore.
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Rayati M, Mansouri V, Ahmadbeigi N. Gene therapy in glioblastoma multiforme: Can it be a role changer? Heliyon 2024; 10:e27087. [PMID: 38439834 PMCID: PMC10909773 DOI: 10.1016/j.heliyon.2024.e27087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal cancers with a poor prognosis. Over the past century since its initial discovery and medical description, the development of effective treatments for this condition has seen limited progress. Despite numerous efforts, only a handful of drugs have gained approval for its treatment. However, these treatments have not yielded substantial improvements in both overall survival and progression-free survival rates. One reason for this is its unique features such as heterogeneity and difficulty of drug delivery because of two formidable barriers, namely the blood-brain barrier and the tumor-blood barrier. Over the past few years, significant developments in therapeutic approaches have given rise to promising novel and advanced therapies. Target-specific therapies, such as monoclonal antibodies (mAbs) and small molecules, stand as two important examples; however, they have not yielded a significant improvement in survival among GBM patients. Gene therapy, a relatively nascent advanced approach, holds promise as a potential treatment for cancer, particularly GBM. It possesses the potential to address the limitations of previous treatments and even newer advanced therapies like mAbs, owing to its distinct properties. This review aims to elucidate the current status and advancements in gene therapy for GBM treatment, while also presenting its future prospects.
Collapse
Affiliation(s)
- Mohammad Rayati
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Stergiopoulos GM, Iankov I, Galanis E. Personalizing Oncolytic Immunovirotherapy Approaches. Mol Diagn Ther 2024; 28:153-168. [PMID: 38150172 DOI: 10.1007/s40291-023-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Development of successful cancer therapeutics requires exploration of the differences in genetics, metabolism, and interactions with the immune system among malignant and normal cells. The clinical observation of spontaneous tumor regression following natural infection with microorganism has created the premise of their use as cancer therapeutics. Oncolytic viruses (OVs) originate from viruses with attenuated virulence in humans, well-characterized vaccine strains of known human pathogens, or engineered replication-deficient viral vectors. Their selectivity is based on receptor expression level and post entry restriction factors that favor replication in the tumor, while keeping the normal cells unharmed. Clinical trials have demonstrated a wide range of patient responses to virotherapy, with subgroups of patients significantly benefiting from OV administration. Tumor-specific gene signatures, including antiviral interferon-stimulated gene (ISG) expression profile, have demonstrated a strong correlation with tumor permissiveness to infection. Furthermore, the combination of OVs with immunotherapeutics, including anticancer vaccines and immune checkpoint inhibitors [ICIs, such as anti-PD-1/PD-L1 or anti-CTLA-4 and chimeric antigen receptor (CAR)-T or CAR-NK cells], could synergistically improve the therapeutic outcome. Creating response prediction algorithms represents an important step for the transition to individualized immunovirotherapy approaches in the clinic. Integrative predictors could include tumor mutational burden (TMB), inflammatory gene signature, phenotype of tumor-infiltrating lymphocytes, tumor microenvironment (TME), and immune checkpoint receptor expression on both immune and target cells. Additionally, the gut microbiota has recently been recognized as a systemic immunomodulatory factor and could further be used in the optimization of individualized immunovirotherapy algorithms.
Collapse
Affiliation(s)
| | - Ianko Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Shah S. Novel Therapies in Glioblastoma Treatment: Review of Glioblastoma; Current Treatment Options; and Novel Oncolytic Viral Therapies. Med Sci (Basel) 2023; 12:1. [PMID: 38249077 PMCID: PMC10801585 DOI: 10.3390/medsci12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
One of the most prevalent primary malignant brain tumors is glioblastoma (GB). About 6 incidents per 100,000 people are reported annually. Most frequently, these tumors are linked to a poor prognosis and poor quality of life. There has been little advancement in the treatment of GB. In recent years, some innovative medicines have been tested for the treatment of newly diagnosed cases of GB and recurrent cases of GB. Surgery, radiotherapy, and alkylating chemotherapy are all common treatments for GB. A few of the potential alternatives include immunotherapy, tumor-treating fields (TTFs), and medications that target specific cellular receptors. To provide new multimodal therapies that focus on the molecular pathways implicated in tumor initiation and progression in GB, novel medications, delivery technologies, and immunotherapy approaches are being researched. Of these, oncolytic viruses (OVs) are among the most recent. Coupling OVs with certain modern treatment approaches may have significant benefits for GB patients. Here, we discuss several OVs and how they work in conjunction with other therapies, as well as virotherapy for GB. The study was based on the PRISMA guidelines. Systematic retrieval of information was performed on PubMed. A total of 307 articles were found in a search on oncolytic viral therapies for glioblastoma. Out of these 83 articles were meta-analyses, randomized controlled trials, reviews, and systematic reviews. A total of 42 articles were from the years 2018 to 2023. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. One of the most prevalent malignant brain tumors is still GB. Significant promise and opportunity exist for oncolytic viruses in the treatment of GB and in boosting immune response. Making the most of OVs in the treatment of GB requires careful consideration and evaluation of a number of its application factors.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
13
|
Enow JA, Sheikh HI, Rahman MM. Tumor Tropism of DNA Viruses for Oncolytic Virotherapy. Viruses 2023; 15:2262. [PMID: 38005938 PMCID: PMC10675630 DOI: 10.3390/v15112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as one of the most promising cancer immunotherapy agents that selectively target and kill cancer cells while sparing normal cells. OVs are from diverse families of viruses and can possess either a DNA or an RNA genome. These viruses also have either a natural or engineered tropism for cancer cells. Oncolytic DNA viruses have the additional advantage of a stable genome and multiple-transgene insertion capability without compromising infection or replication. Herpes simplex virus 1 (HSV-1), a member of the oncolytic DNA viruses, has been approved for the treatment of cancers. This success with HSV-1 was achievable by introducing multiple genetic modifications within the virus to enhance cancer selectivity and reduce the toxicity to healthy cells. Here, we review the natural characteristics of and genetically engineered changes in selected DNA viruses that enhance the tumor tropism of these oncolytic viruses.
Collapse
Affiliation(s)
- Junior A. Enow
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Hummad I. Sheikh
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Masmudur M. Rahman
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
14
|
Hu M, Liao X, Tao Y, Chen Y. Advances in oncolytic herpes simplex virus and adenovirus therapy for recurrent glioma. Front Immunol 2023; 14:1285113. [PMID: 38022620 PMCID: PMC10652401 DOI: 10.3389/fimmu.2023.1285113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Recurrent glioma treatment is challenging due to molecular heterogeneity and treatment resistance commonly observed in these tumors. Researchers are actively pursuing new therapeutic strategies. Oncolytic viruses have emerged as a promising option. Oncolytic viruses selectively replicate within tumor cells, destroying them and stimulating the immune system for an enhanced anticancer response. Among Oncolytic viruses investigated for recurrent gliomas, oncolytic herpes simplex virus and oncolytic adenovirus show notable potential. Genetic modifications play a crucial role in optimizing their therapeutic efficacy. Different generations of replicative conditioned oncolytic human adenovirus and oncolytic HSV have been developed, incorporating specific modifications to enhance tumor selectivity, replication efficiency, and immune activation. This review article summarizes these genetic modifications, offering insights into the underlying mechanisms of Oncolytic viruses' therapy. It also aims to identify strategies for further enhancing the therapeutic benefits of Oncolytic viruses. However, it is important to acknowledge that additional research and clinical trials are necessary to establish the safety, efficacy, and optimal utilization of Oncolytic viruses in treating recurrent glioblastoma.
Collapse
Affiliation(s)
- Mingming Hu
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - XuLiang Liao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Tao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yaohui Chen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Ling AL, Solomon IH, Landivar AM, Nakashima H, Woods JK, Santos A, Masud N, Fell G, Mo X, Yilmaz AS, Grant J, Zhang A, Bernstock JD, Torio E, Ito H, Liu J, Shono N, Nowicki MO, Triggs D, Halloran P, Piranlioglu R, Soni H, Stopa B, Bi WL, Peruzzi P, Chen E, Malinowski SW, Prabhu MC, Zeng Y, Carlisle A, Rodig SJ, Wen PY, Lee EQ, Nayak L, Chukwueke U, Gonzalez Castro LN, Dumont SD, Batchelor T, Kittelberger K, Tikhonova E, Miheecheva N, Tabakov D, Shin N, Gorbacheva A, Shumskiy A, Frenkel F, Aguilar-Cordova E, Aguilar LK, Krisky D, Wechuck J, Manzanera A, Matheny C, Tak PP, Barone F, Kovarsky D, Tirosh I, Suvà ML, Wucherpfennig KW, Ligon K, Reardon DA, Chiocca EA. Clinical trial links oncolytic immunoactivation to survival in glioblastoma. Nature 2023; 623:157-166. [PMID: 37853118 PMCID: PMC10620094 DOI: 10.1038/s41586-023-06623-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023]
Abstract
Immunotherapy failures can result from the highly suppressive tumour microenvironment that characterizes aggressive forms of cancer such as recurrent glioblastoma (rGBM)1,2. Here we report the results of a first-in-human phase I trial in 41 patients with rGBM who were injected with CAN-3110-an oncolytic herpes virus (oHSV)3. In contrast to other clinical oHSVs, CAN-3110 retains the viral neurovirulence ICP34.5 gene transcribed by a nestin promoter; nestin is overexpressed in GBM and other invasive tumours, but not in the adult brain or healthy differentiated tissue4. These modifications confer CAN-3110 with preferential tumour replication. No dose-limiting toxicities were encountered. Positive HSV1 serology was significantly associated with both improved survival and clearance of CAN-3110 from injected tumours. Survival after treatment, particularly in individuals seropositive for HSV1, was significantly associated with (1) changes in tumour/PBMC T cell counts and clonal diversity, (2) peripheral expansion/contraction of specific T cell clonotypes; and (3) tumour transcriptomic signatures of immune activation. These results provide human validation that intralesional oHSV treatment enhances anticancer immune responses even in immunosuppressive tumour microenvironments, particularly in individuals with cognate serology to the injected virus. This provides a biological rationale for use of this oncolytic modality in cancers that are otherwise unresponsive to immunotherapy (ClinicalTrials.gov: NCT03152318 ).
Collapse
Affiliation(s)
- Alexander L Ling
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ana Montalvo Landivar
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Hiroshi Nakashima
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Jared K Woods
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andres Santos
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nafisa Masud
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Geoffrey Fell
- Department of Biostatistics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ayse S Yilmaz
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - James Grant
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Abigail Zhang
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Joshua D Bernstock
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Erickson Torio
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Hirotaka Ito
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Junfeng Liu
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Naoyuki Shono
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Michal O Nowicki
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel Triggs
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick Halloran
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Raziye Piranlioglu
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Himanshu Soni
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Brittany Stopa
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Wenya Linda Bi
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Pierpaolo Peruzzi
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ethan Chen
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Seth W Malinowski
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael C Prabhu
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yu Zeng
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anne Carlisle
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eudocia Quant Lee
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lakshmi Nayak
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ugonma Chukwueke
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - L Nicolas Gonzalez Castro
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sydney D Dumont
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tracy Batchelor
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Daniel Kovarsky
- Department of Molecular Cell Biology, Weizmann Institute of Medical Sciences, Tel Aviv, Israel
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Medical Sciences, Tel Aviv, Israel
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Keith Ligon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David A Reardon
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - E Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
16
|
Karandikar PV, Suh L, Gerstl JVE, Blitz SE, Qu QR, Won SY, Gessler FA, Arnaout O, Smith TR, Peruzzi PP, Yang W, Friedman GK, Bernstock JD. Positioning SUMO as an immunological facilitator of oncolytic viruses for high-grade glioma. Front Cell Dev Biol 2023; 11:1271575. [PMID: 37860820 PMCID: PMC10582965 DOI: 10.3389/fcell.2023.1271575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Oncolytic viral (OV) therapies are promising novel treatment modalities for cancers refractory to conventional treatment, such as glioblastoma, within the central nervous system (CNS). Although OVs have received regulatory approval for use in the CNS, efficacy is hampered by obstacles related to delivery, under-/over-active immune responses, and the "immune-cold" nature of most CNS malignancies. SUMO, the Small Ubiquitin-like Modifier, is a family of proteins that serve as a high-level regulator of a large variety of key physiologic processes including the host immune response. The SUMO pathway has also been implicated in the pathogenesis of both wild-type viruses and CNS malignancies. As such, the intersection of OV biology with the SUMO pathway makes SUMOtherapeutics particularly interesting as adjuvant therapies for the enhancement of OV efficacy alone and in concert with other immunotherapeutic agents. Accordingly, the authors herein provide: 1) an overview of the SUMO pathway and its role in CNS malignancies; 2) describe the current state of CNS-targeted OVs; and 3) describe the interplay between the SUMO pathway and the viral lifecycle and host immune response.
Collapse
Affiliation(s)
- Paramesh V. Karandikar
- T. H. Chan School of Medicine, University of Massachusetts, Worcester, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Lyle Suh
- T. H. Chan School of Medicine, University of Massachusetts, Worcester, MA, United States
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Qing Rui Qu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sae-Yeon Won
- Department of Neurosurgery, University of Rostock, Rostock, Germany
| | | | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Wei Yang
- Department of Anesthesiology, Multidisciplinary Brain Protection Program, Duke University Medical Center, Durham, NC, United States
| | - Gregory K. Friedman
- Department of Neuro-Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
17
|
Duan S, Wang S, Qiao L, Yu X, Wang N, Chen L, Zhang X, Zhao X, Liu H, Wang T, Wu Y, Li N, Liu F. Oncolytic Virus-Driven Biotherapies from Bench to Bedside. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206948. [PMID: 36879416 DOI: 10.1002/smll.202206948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/17/2023] [Indexed: 06/08/2023]
Abstract
With advances in cancer biology and an ever-deepening understanding of molecular virology, oncolytic virus (OV)-driven therapies have developed rapidly and become a promising alternative to traditional cancer therapies. In recent years, satisfactory results for oncolytic virus therapy (OVT) are achieved at both the cellular and organismal levels, and efforts are being increasingly directed toward clinical trials. Unfortunately, OVT remains ineffective in these trials, especially when performed using only a single OV reagent. In contrast, integrated approaches, such as using immunotherapy, chemotherapy, or radiotherapy, alongside OVT have demonstrated considerable efficacy. The challenges of OVT in clinical efficacy include the restricted scope of intratumoral injections and poor targeting of intravenous administration. Further optimization of OVT delivery is needed before OVs become a viable therapy for tumor treatment. In this review, the development process and antitumor mechanisms of OVs are introduced. The advances in OVT delivery routes to provide perspectives and directions for the improvement of OVT delivery are highlighted. This review also discusses the advantages and limitations of OVT monotherapy and combination therapy through the lens of recent clinical trials and aims to chart a course toward safer and more effective OVT strategies.
Collapse
Affiliation(s)
- Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Qiao
- Colorectal and Henia Minimally Invasive Surgery Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Nan Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Liting Chen
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xinyuan Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xu Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hongyu Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ying Wu
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Department of General Practice, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
18
|
Kardani K, Sanchez Gil J, Rabkin SD. Oncolytic herpes simplex viruses for the treatment of glioma and targeting glioblastoma stem-like cells. Front Cell Infect Microbiol 2023; 13:1206111. [PMID: 37325516 PMCID: PMC10264819 DOI: 10.3389/fcimb.2023.1206111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Glioblastoma (GBM) is one of the most lethal cancers, having a poor prognosis and a median survival of only about 15 months with standard treatment (surgery, radiation, and chemotherapy), which has not been significantly extended in decades. GBM demonstrates remarkable cellular heterogeneity, with glioblastoma stem-like cells (GSCs) at the apex. GSCs are a subpopulation of GBM cells that possess the ability to self-renew, differentiate, initiate tumor formation, and manipulate the tumor microenvironment (TME). GSCs are no longer considered a static population of cells with specific markers but are quite flexible phenotypically and in driving tumor heterogeneity and therapeutic resistance. In light of these features, they are a critical target for successful GBM therapy. Oncolytic viruses, in particular oncolytic herpes simplex viruses (oHSVs), have many attributes for therapy and are promising agents to target GSCs. oHSVs are genetically-engineered to selectively replicate in and kill cancer cells, including GSCs, but not normal cells. Moreover, oHSV can induce anti-tumor immune responses and synergize with other therapies, such as chemotherapy, DNA repair inhibitors, and immune checkpoint inhibitors, to potentiate treatment effects and reduce GSC populations that are partly responsible for chemo- and radio-resistance. Herein, we present an overview of GSCs, activity of different oHSVs, clinical trial results, and combination strategies to enhance efficacy, including therapeutic arming of oHSV. Throughout, the therapeutic focus will be on GSCs and studies specifically targeting these cells. Recent clinical trials and approval of oHSV G47Δ in Japan for patients with recurrent glioma demonstrate the efficacy and promise of oHSV therapy.
Collapse
Affiliation(s)
| | | | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Azad T, Rezaei R, Singaravelu R, Pelin A, Boulton S, Petryk J, Onsu KA, Martin NT, Hoskin V, Ghahremani M, Marotel M, Marius R, He X, Crupi MJF, Hoang HD, Nik-Akhtar A, Ahmadi M, Zamani NK, Golshani A, Alain T, Greer P, Ardolino M, Dickinson BC, Tai LH, Ilkow CS, Bell JC. Synthetic virology approaches to improve the safety and efficacy of oncolytic virus therapies. Nat Commun 2023; 14:3035. [PMID: 37236967 PMCID: PMC10213590 DOI: 10.1038/s41467-023-38651-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The large coding potential of vaccinia virus (VV) vectors is a defining feature. However, limited regulatory switches are available to control viral replication as well as timing and dosing of transgene expression in order to facilitate safe and efficacious payload delivery. Herein, we adapt drug-controlled gene switches to enable control of virally encoded transgene expression, including systems controlled by the FDA-approved rapamycin and doxycycline. Using ribosome profiling to characterize viral promoter strength, we rationally design fusions of the operator element of different drug-inducible systems with VV promoters to produce synthetic promoters yielding robust inducible expression with undetectable baseline levels. We also generate chimeric synthetic promoters facilitating additional regulatory layers for VV-encoded synthetic transgene networks. The switches are applied to enable inducible expression of fusogenic proteins, dose-controlled delivery of toxic cytokines, and chemical regulation of VV replication. This toolbox enables the precise modulation of transgene circuitry in VV-vectored oncolytic virus design.
Collapse
Affiliation(s)
- Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Faculty of Medicine and Health Sciences, Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC, J1H 5N4, Canada
| | - Reza Rezaei
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Adrian Pelin
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, CA 94158, USA
| | - Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Julia Petryk
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | | | | | - Victoria Hoskin
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Mina Ghahremani
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Marie Marotel
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, K1H, Canada
| | - Ricardo Marius
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Xiaohong He
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Mathieu J F Crupi
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Huy-Dung Hoang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Abolfazl Nik-Akhtar
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Mahsa Ahmadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Nika Kooshki Zamani
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Ashkan Golshani
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Peter Greer
- Department of Pathology and Molecular Medicine, Queens University, Kingston, ON, K7L 3N6, Canada
| | - Michele Ardolino
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, K1H, Canada
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Lee-Hwa Tai
- Centre de Recherche du CHUS, Sherbrooke, QC, J1H 5N4, Canada
- Department of Immunology & Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - Carolina S Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - John C Bell
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
20
|
Webb MJ, Sener U, Vile RG. Current Status and Challenges of Oncolytic Virotherapy for the Treatment of Glioblastoma. Pharmaceuticals (Basel) 2023; 16:793. [PMID: 37375742 PMCID: PMC10301268 DOI: 10.3390/ph16060793] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Despite decades of research and numerous clinical trials, the prognosis of patients diagnosed with glioblastoma (GBM) remains dire with median observed survival at 8 months. There is a critical need for novel treatments for GBM, which is the most common malignant primary brain tumor. Major advances in cancer therapeutics such as immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy have not yet led to improved outcomes for GBM. Conventional therapy of surgery followed by chemoradiation with or without tumor treating fields remains the standard of care. One of the many approaches to GBM therapy currently being explored is viral therapies. These typically work by selectively lysing target neoplastic cells, called oncolysis, or by the targeted delivery of a therapeutic transgene via a viral vector. In this review, we discuss the underlying mechanisms of action and describe both recent and current human clinical trials using these viruses with an emphasis on promising viral therapeutics that may ultimately break the field's current stagnant paradigm.
Collapse
Affiliation(s)
- Mason J. Webb
- Department of Hematology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
- Department of Medical Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA;
| | - Ugur Sener
- Department of Medical Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA;
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA;
| |
Collapse
|
21
|
Wang M, Wang X, Jin X, Zhou J, Zhang Y, Yang Y, Liu Y, Zhang J. Cell-based and cell-free immunotherapies for glioblastoma: current status and future directions. Front Immunol 2023; 14:1175118. [PMID: 37304305 PMCID: PMC10248152 DOI: 10.3389/fimmu.2023.1175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Glioblastoma (GBM) is among the most fatal and recurring malignant solid tumors. It arises from the GBM stem cell population. Conventional neurosurgical resection, temozolomide (TMZ)-dependent chemotherapy and radiotherapy have rendered the prognosis of patients unsatisfactory. Radiotherapy and chemotherapy can frequently induce non-specific damage to healthy brain and other tissues, which can be extremely hazardous. There is therefore a pressing need for a more effective treatment strategy for GBM to complement or replace existing treatment options. Cell-based and cell-free immunotherapies are currently being investigated to develop new treatment modalities against cancer. These treatments have the potential to be both selective and successful in minimizing off-target collateral harm in the normal brain. In this review, several aspects of cell-based and cell-free immunotherapies related to GBM will be discussed.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiaojie Wang
- Basic Medical School, Shenyang Medical College, Shenyang, Liaoning, China
| | - Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jingjing Zhou
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yiyuan Yang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
22
|
Chouljenko DV, Murad YM, Lee IF, Delwar Z, Ding J, Liu G, Liu X, Bu X, Sun Y, Samudio I, Jia WWG. Targeting carcinoembryonic antigen-expressing tumors using a novel transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1. Mol Ther Oncolytics 2023; 28:334-348. [PMID: 36938544 PMCID: PMC10018392 DOI: 10.1016/j.omto.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
VG2025 is a recombinant oncolytic herpes simplex virus type 1 (HSV-1) that uses transcriptional and translational dual regulation (TTDR) of critical viral genes to enhance virus safety and promote tumor-specific virus replication without reducing virulence. The TTDR platform is based on transcriptional control of the essential HSV-1 immediate-early protein ICP27 using a tumor-specific carcinoembryonic antigen (CEA) promoter, coupled with translational control of the neurovirulence factor ICP34.5 using multiple microRNA (miR)-binding sites. VG2025 further incorporates IL-12 and the IL-15/IL-15 receptor alpha subunit complex to enhance the antitumor and immune stimulatory properties of oncolytic HSVs. The TTDR strategy was verified in vitro and shown to be highly selective. Strong in vivo antitumor efficacy was observed following both intratumoral and intravenous administration. Clear abscopal and immune memory effects were also evident, indicating a robust antitumor immune response. Gene expression profiling of treated tumors revealed increased immune cell infiltration and activation of multiple immune-signaling pathways when compared with the backbone virus. Absence of neurotoxicity was verified in mice and in rhesus monkeys. Taken together, the enhanced tumor clearance, excellent safety profile, and positive correlation between CEA levels and viral replication efficiency may provide an opportunity for using biomarker-based precision medicine in oncolytic virotherapy.
Collapse
Affiliation(s)
- Dmitry V. Chouljenko
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
- Corresponding author: Dmitry V. Chouljenko, Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada.
| | - Yanal M. Murad
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - I-Fang Lee
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Zahid Delwar
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Jun Ding
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Guoyu Liu
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Xiaohu Liu
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Xuexian Bu
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Yi Sun
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Ismael Samudio
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - William Wei-Guo Jia
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| |
Collapse
|
23
|
Tripodi L, Sasso E, Feola S, Coluccino L, Vitale M, Leoni G, Szomolay B, Pastore L, Cerullo V. Systems Biology Approaches for the Improvement of Oncolytic Virus-Based Immunotherapies. Cancers (Basel) 2023; 15:1297. [PMID: 36831638 PMCID: PMC9954314 DOI: 10.3390/cancers15041297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Oncolytic virus (OV)-based immunotherapy is mainly dependent on establishing an efficient cell-mediated antitumor immunity. OV-mediated antitumor immunity elicits a renewed antitumor reactivity, stimulating a T-cell response against tumor-associated antigens (TAAs) and recruiting natural killer cells within the tumor microenvironment (TME). Despite the fact that OVs are unspecific cancer vaccine platforms, to further enhance antitumor immunity, it is crucial to identify the potentially immunogenic T-cell restricted TAAs, the main key orchestrators in evoking a specific and durable cytotoxic T-cell response. Today, innovative approaches derived from systems biology are exploited to improve target discovery in several types of cancer and to identify the MHC-I and II restricted peptide repertoire recognized by T-cells. Using specific computation pipelines, it is possible to select the best tumor peptide candidates that can be efficiently vectorized and delivered by numerous OV-based platforms, in order to reinforce anticancer immune responses. Beyond the identification of TAAs, system biology can also support the engineering of OVs with improved oncotropism to reduce toxicity and maintain a sufficient portion of the wild-type virus virulence. Finally, these technologies can also pave the way towards a more rational design of armed OVs where a transgene of interest can be delivered to TME to develop an intratumoral gene therapy to enhance specific immune stimuli.
Collapse
Affiliation(s)
- Lorella Tripodi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Sara Feola
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00100 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00100 Helsinki, Finland
| | - Ludovica Coluccino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Maria Vitale
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Guido Leoni
- Nouscom Srl, via Castel Romano 100, 00128 Rome, Italy
| | - Barbara Szomolay
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4YS, UK
| | - Lucio Pastore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00100 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00100 Helsinki, Finland
| |
Collapse
|
24
|
Hamad A, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recent Developments in Glioblastoma Therapy: Oncolytic Viruses and Emerging Future Strategies. Viruses 2023; 15:547. [PMID: 36851761 PMCID: PMC9958853 DOI: 10.3390/v15020547] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma is the most aggressive form of malignant brain tumor. Standard treatment protocols and traditional immunotherapy are poorly effective as they do not significantly increase the long-term survival of glioblastoma patients. Oncolytic viruses (OVs) may be an effective alternative approach. Combining OVs with some modern treatment options may also provide significant benefits for glioblastoma patients. Here we review virotherapy for glioblastomas and describe several OVs and their combination with other therapies. The personalized use of OVs and their combination with other treatment options would become a significant area of research aiming to develop the most effective treatment regimens for glioblastomas.
Collapse
Affiliation(s)
- Azzam Hamad
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Vladimir P. Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasiya V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
25
|
Ma R, Li Z, Chiocca EA, Caligiuri MA, Yu J. The emerging field of oncolytic virus-based cancer immunotherapy. Trends Cancer 2023; 9:122-139. [PMID: 36402738 PMCID: PMC9877109 DOI: 10.1016/j.trecan.2022.10.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Abstract
Oncolytic viruses (OVs) provide novel and promising therapeutic options for patients with cancers resistant to traditional therapies. Natural or genetically modified OVs are multifaceted tumor killers. They directly lyse tumor cells while sparing normal cells, and indirectly potentiate antitumor immunity by releasing antigens and activating inflammatory responses in the tumor microenvironment. However, some limitations, such as limited penetration of OVs into tumors, short persistence, and the host antiviral immune response, are impeding the broad translation of oncolytic virotherapy into the clinic. If these challenges can be overcome, combination therapies, such as OVs plus immune checkpoint blockade (ICB), chimeric antigen receptor (CAR) T cells, or CAR natural killer (NK) cells, may provide powerful therapeutic platforms in the clinic.
Collapse
Affiliation(s)
- Rui Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - E Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, Los Angeles, CA 91010, USA.
| |
Collapse
|
26
|
Shoaf ML, Desjardins A. Oncolytic Viral Therapy for Malignant Glioma and Their Application in Clinical Practice. Neurotherapeutics 2022; 19:1818-1831. [PMID: 35674873 PMCID: PMC9723031 DOI: 10.1007/s13311-022-01256-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common primary malignant brain tumor in adults and outcomes remain poor despite the current standard of care multimodal therapy. Oncolytic virotherapy utilizes engineered viruses to exert an anti-tumor effect via both direct oncolysis and stimulation of an immune response within the tumor microenvironment, turning tumors from "cold" to "hot." This has shown promise as a novel therapeutic modality and attempts to circumvent the challenges associated with traditional treatments. Many oncolytic viruses have been investigated in completed and ongoing clinical trials and while safety has been demonstrated, clinical outcomes have been variable, often with only a subgroup of patients showing a significant response. This review summarizes these studies, addresses relevant technical aspects of oncolytic virus administration, and highlights practical considerations to assist providers in appropriately caring for patients treated with oncolytic virotherapy. Additionally, future directions within the field that may help to maximize efficacy of this modality are discussed.
Collapse
Affiliation(s)
- Madison L Shoaf
- Department of Neurosurgery, Duke University Medical Center, PO Box 3624, Durham, NC, 27710, USA
| | - Annick Desjardins
- Department of Neurosurgery, Duke University Medical Center, PO Box 3624, Durham, NC, 27710, USA.
| |
Collapse
|
27
|
Hattori Y, Kurozumi K, Otani Y, Uneda A, Tsuboi N, Makino K, Hirano S, Fujii K, Tomita Y, Oka T, Matsumoto Y, Shimazu Y, Michiue H, Kumon H, Date I. Combination of Ad-SGE-REIC and bevacizumab modulates glioma progression by suppressing tumor invasion and angiogenesis. PLoS One 2022; 17:e0273242. [PMID: 36006934 PMCID: PMC9409598 DOI: 10.1371/journal.pone.0273242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and its overexpression has been shown to exert anti-tumor effects as a therapeutic target gene in many human cancers. Recently, we demonstrated the anti-glioma effects of an adenoviral vector carrying REIC/Dkk-3 with the super gene expression system (Ad-SGE-REIC). Anti-vascular endothelial growth factor treatments such as bevacizumab have demonstrated convincing therapeutic advantage in patients with glioblastoma. However, bevacizumab did not improve overall survival in patients with newly diagnosed glioblastoma. In this study, we examined the effects of Ad-SGE-REIC on glioma treated with bevacizumab. Ad-SGE-REIC treatment resulted in a significant reduction in the number of invasion cells treated with bevacizumab. Western blot analyses revealed the increased expression of several endoplasmic reticulum stress markers in cells treated with both bevacizumab and Ad-SGE-REIC, as well as decreased β-catenin protein levels. In malignant glioma mouse models, overall survival was extended in the combination therapy group. These results suggest that the combination therapy of Ad-SGE-REIC and bevacizumab exerts anti-glioma effects by suppressing the angiogenesis and invasion of tumors. Combined Ad-SGE-REIC and bevacizumab might be a promising strategy for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Yasuhiko Hattori
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Kurozumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Shizuoka, Japan
- * E-mail:
| | - Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuhito Uneda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobushige Tsuboi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keigo Makino
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuichiro Hirano
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaro Fujii
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Tomita
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuo Oka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuji Matsumoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Shimazu
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Hiromi Kumon
- Innovation Center Okayama for Nanobio-targeted Therapy, Okayama University, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
28
|
Giotta Lucifero A, Luzzi S. Emerging immune-based technologies for high-grade gliomas. Expert Rev Anticancer Ther 2022; 22:957-980. [PMID: 35924820 DOI: 10.1080/14737140.2022.2110072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The selection of a tailored and successful strategy for high-grade gliomas (HGGs) treatment is still a concern. The abundance of aberrant mutations within the heterogenic genetic landscape of glioblastoma strongly influences cell expansion, proliferation, and therapeutic resistance. Identification of immune evasion pathways opens the way to novel immune-based strategies. This review intends to explore the emerging immunotherapies for HGGs. The immunosuppressive mechanisms related to the tumor microenvironment and future perspectives to overcome glioma immunity barriers are also debated. AREAS COVERED An extensive literature review was performed on the PubMed/Medline and ClinicalTrials.gov databases. Only highly relevant articles in English and published in the last 20 years were selected. Data about immunotherapies coming from preclinical and clinical trials were summarized. EXPERT OPINION The overall level of evidence about the efficacy and safety of immunotherapies for HGGs is noteworthy. Monoclonal antibodies have been approved as second-line treatment, while peptide vaccines, viral gene strategies, and adoptive technologies proved to boost a vivid antitumor immunization. Malignant brain tumor-treating fields are ever-changing in the upcoming years. Constant refinements and development of new routes of drug administration will permit to design of novel immune-based treatment algorithms thus improving the overall survival.
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
29
|
Scanlan H, Coffman Z, Bettencourt J, Shipley T, Bramblett DE. Herpes simplex virus 1 as an oncolytic viral therapy for refractory cancers. Front Oncol 2022; 12:940019. [PMID: 35965554 PMCID: PMC9364694 DOI: 10.3389/fonc.2022.940019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
The need for efficacious and non-toxic cancer therapies is paramount. Oncolytic viruses (OVs) are showing great promise and are introducing new possibilities in cancer treatment with their ability to selectively infect tumor cells and trigger antitumor immune responses. Herpes Simplex Virus 1 (HSV-1) is a commonly selected OV candidate due to its large genome, relative safety profile, and ability to infect a variety of cell types. Talimogene laherparevec (T-VEC) is an HSV-1-derived OV variant and the first and only OV therapy currently approved for clinical use by the United States Food and Drug Administration (FDA). This review provides a concise description of HSV-1 as an OV candidate and the genomic organization of T-VEC. Furthermore, this review focuses on the advantages and limitations in the use of T-VEC compared to other HSV-1 OV variants currently in clinical trials. In addition, approaches for future directions of HSV-1 OVs as cancer therapy is discussed.
Collapse
Affiliation(s)
- Hayle Scanlan
- Rowan School of Medicine, RowanSOM-Jefferson Health-Virtua Our Lady of Lourdes Hospital, Stratford, NJ, United States
| | - Zachary Coffman
- Monroe Clinic Rural Family Medicine Program, The University of Illinois College of Medicine Rockford, Monroe, WI, United States
| | - Jeffrey Bettencourt
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Timothy Shipley
- Department of Biomedical Sciences, A.T. Still University School of Osteopathic Medicine in Arizona, Mesa, AZ, United States
| | - Debra E. Bramblett
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
- *Correspondence: Debra E. Bramblett,
| |
Collapse
|
30
|
The In Vitro Replication, Spread, and Oncolytic Potential of Finnish Circulating Strains of Herpes Simplex Virus Type 1. Viruses 2022; 14:v14061290. [PMID: 35746761 PMCID: PMC9230972 DOI: 10.3390/v14061290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is the only FDA- and EMA- approved oncolytic virus, and accordingly, many potential oncolytic HSVs (oHSV) are in clinical development. The utilized oHSV parental strains are, however, mostly based on laboratory reference strains, which may possess a compromised cytolytic capacity in contrast to circulating strains of HSV-1. Here, we assess the phenotype of thirty-six circulating HSV-1 strains from Finland to uncover their potential as oHSV backbones. First, we determined their capacity for cell-to-cell versus extracellular spread, to find strains with replication profiles favorable for each application. Second, to unfold the differences, we studied the genetic diversity of two relevant viral glycoproteins (gB/UL27, gI/US7). Third, we examined the oncolytic potential of the strains in cells representing glioma, lymphoma, and colorectal adenocarcinoma. Our results suggest that the phenotype of a circulating isolate, including the oncolytic potential, is highly related to the host cell type. Nevertheless, we identified isolates with increased oncolytic potential in comparison with the reference viruses across many or all of the studied cancer cell types. Our research emphasizes the need for careful selection of the backbone virus in early vector design, and it highlights the potential of clinical isolates as backbones in oHSV development.
Collapse
|
31
|
Otani Y, Yoo JY, Shimizu T, Kurozumi K, Date I, Kaur B. Implications of immune cells in oncolytic herpes simplex virotherapy for glioma. Brain Tumor Pathol 2022; 39:57-64. [PMID: 35384530 DOI: 10.1007/s10014-022-00431-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/27/2022] [Indexed: 12/13/2022]
Abstract
Despite current progress in treatment, glioblastoma (GBM) remains a lethal primary malignant tumor of the central nervous system. Although immunotherapy has recently achieved remarkable survival effectiveness in multiple malignancies, none of the immune checkpoint inhibitors (ICIs) for GBM have shown anti-tumor efficacy in clinical trials. GBM has a characteristic immunosuppressive tumor microenvironment (TME) that results in the failure of ICIs. Oncolytic herpes simplex virotherapy (oHSV) is the most advanced United States Food and Drug Administration-approved virotherapy for advanced metastatic melanoma patients. Recently, another oHSV, Delytact®, was granted conditional approval in Japan against GBM, highlighting it as a promising treatment. Since oncolytic virotherapy can recruit abundant immune cells and modify the immune TME, oncolytic virotherapy for immunologically cold GBM will be an attractive therapeutic option for GBM. However, as these immune cells have roles in both anti-tumor and anti-viral immunity, fine-tuning of the TME using oncolytic virotherapy will be important to maximize the therapeutic efficacy. In this review, we discuss the current knowledge of oHSV, with a focus on the role of immune cells as friend or foe in oncolytic virotherapy.
Collapse
Affiliation(s)
- Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Toshihiko Shimizu
- Department of Neurosurgery, Matsuyama Shimin Hospital, 2-6-5 Otemachi, Matsuyama, Ehime, 790-0067, Japan
| | - Kazuhiko Kurozumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| |
Collapse
|
32
|
Choi BD, Carter BS. Engineering Our Future: Advancing Cell and Gene Therapy in Neurosurgery. Neurosurgery 2022; 68:11-16. [DOI: 10.1227/neu.0000000000001878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 11/19/2022] Open
|
33
|
Shirbhate E, Veerasamy R, Boddu SH, Tiwari AK, Rajak H. Histone deacetylase inhibitor-based oncolytic virotherapy: a promising strategy for cancer treatment. Drug Discov Today 2022; 27:1689-1697. [DOI: 10.1016/j.drudis.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 12/25/2022]
|
34
|
Hong B, Sahu U, Mullarkey MP, Kaur B. Replication and Spread of Oncolytic Herpes Simplex Virus in Solid Tumors. Viruses 2022; 14:v14010118. [PMID: 35062322 PMCID: PMC8778098 DOI: 10.3390/v14010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022] Open
Abstract
Oncolytic herpes simplex virus (oHSV) is a highly promising treatment for solid tumors. Intense research and development efforts have led to first-in-class approval for an oHSV for melanoma, but barriers to this promising therapy still exist that limit efficacy. The process of infection, replication and transmission of oHSV in solid tumors is key to obtaining a good lytic destruction of infected cancer cells to kill tumor cells and release tumor antigens that can prime anti-tumor efficacy. Intracellular tumor cell signaling and tumor stromal cells present multiple barriers that resist oHSV activity. Here, we provide a review focused on oncolytic HSV and the essential viral genes that allow for virus replication and spread in order to gain insight into how manipulation of these pathways can be exploited to potentiate oHSV infection and replication among tumor cells.
Collapse
|
35
|
Mahmoud AB, Ajina R, Aref S, Darwish M, Alsayb M, Taher M, AlSharif SA, Hashem AM, Alkayyal AA. Advances in immunotherapy for glioblastoma multiforme. Front Immunol 2022; 13:944452. [PMID: 36311781 PMCID: PMC9597698 DOI: 10.3389/fimmu.2022.944452] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor of the central nervous system and has a very poor prognosis. The current standard of care for patients with GBM involves surgical resection, radiotherapy, and chemotherapy. Unfortunately, conventional therapies have not resulted in significant improvements in the survival outcomes of patients with GBM; therefore, the overall mortality rate remains high. Immunotherapy is a type of cancer treatment that helps the immune system to fight cancer and has shown success in different types of aggressive cancers. Recently, healthcare providers have been actively investigating various immunotherapeutic approaches to treat GBM. We reviewed the most promising immunotherapy candidates for glioblastoma that have achieved encouraging results in clinical trials, focusing on immune checkpoint inhibitors, oncolytic viruses, nonreplicating viral vectors, and chimeric antigen receptor (CAR) immunotherapies.
Collapse
Affiliation(s)
- Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
- King Abdullah International Medical Research Centre, King Saud University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- *Correspondence: Ahmad Bakur Mahmoud, ; Almohanad A. Alkayyal,
| | - Reham Ajina
- King Abdullah International Medical Research Centre, King Saud University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sarah Aref
- King Abdullah International Medical Research Centre, King Saud University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Manar Darwish
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - May Alsayb
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Mustafa Taher
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Shaker A. AlSharif
- King Fahad Hospital, Ministry of Health, Almadinah Almunwarah, Saudi Arabia
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center; King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- *Correspondence: Ahmad Bakur Mahmoud, ; Almohanad A. Alkayyal,
| |
Collapse
|
36
|
Jackson JW, Hall BL, Marzulli M, Shah VK, Bailey L, Chiocca EA, Goins WF, Kohanbash G, Cohen JB, Glorioso JC. Treatment of glioblastoma with current oHSV variants reveals differences in efficacy and immune cell recruitment. Mol Ther Oncolytics 2021; 22:444-453. [PMID: 34553031 PMCID: PMC8430372 DOI: 10.1016/j.omto.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/17/2021] [Indexed: 11/22/2022] Open
Abstract
Oncolytic herpes simplex viruses (oHSVs) have demonstrated efficient lytic replication in human glioblastoma tumors using immunodeficient mouse models, but early-phase clinical trials have reported few complete responses. Potential reasons for the lack of efficacy are limited vector potency and the suppressive glioma tumor microenvironment (TME). Here we compare the oncolytic activity of two HSV-1 vectors, a KOS-strain derivative KG4:T124 and an F-strain derivative rQNestin34.5v.1, in the CT2A and GL261N4 murine syngeneic glioma models. rQNestin34.5v1 generally demonstrated a greater in vivo viral burden compared to KG4:T124. However, both vectors were rapidly cleared from CT2A tumors, while virus remained ensconced in GL261N4 tumors. Immunological evaluation revealed that the two vectors induced similar changes in immune cell recruitment to either tumor type at 2 days after infection. However, at 7 days after infection, the CT2A microenvironment displayed the phenotype of an untreated tumor, while GL261N4 tumors exhibited macrophage and CD4+/CD8+ T cell accumulation. Furthermore, the CT2A model was completely resistant to virus therapy, while in the GL261N4 model rQNestin34.5v1 treatment resulted in enhanced macrophage recruitment, impaired tumor progression, and long-term survival of a few animals. We conclude that prolonged intratumoral viral presence correlates with immune cell recruitment, and both are needed to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Joseph W. Jackson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Bonnie L. Hall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Marco Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Vrusha K. Shah
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Lisa Bailey
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - E. Antonio Chiocca
- Harvey W. Cushing Neuro-oncology Laboratories (HCNL), Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - William F. Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Justus B. Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| | - Joseph C. Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
37
|
Suzuki T, Uchida H, Shibata T, Sasaki Y, Ikeda H, Hamada-Uematsu M, Hamasaki R, Okuda K, Yanagi S, Tahara H. Potent anti-tumor effects of receptor-retargeted syncytial oncolytic herpes simplex virus. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:265-276. [PMID: 34553018 PMCID: PMC8426171 DOI: 10.1016/j.omto.2021.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/12/2021] [Indexed: 11/27/2022]
Abstract
Most oncolytic virotherapy has thus far employed viruses deficient in genes essential for replication in normal cells but not in cancer cells. Intra-tumoral injection of such viruses has resulted in clinically significant anti-tumor effects on the lesions in the vicinity of the injection sites but not on distant visceral metastases. To overcome this limitation, we have developed a receptor-retargeted oncolytic herpes simplex virus employing a single-chain antibody for targeting tumor-associated antigens (RR-oHSV) and its modified version with additional mutations conferring syncytium formation (RRsyn-oHSV). We previously showed that RRsyn-oHSV exhibits preserved antigen specificity and an ∼20-fold higher tumoricidal potency in vitro relative to RR-oHSV. Here, we investigated the in vivo anti-tumor effects of RRsyn-oHSV using human cancer xenografts in immunodeficient mice. With only a single intra-tumoral injection of RRsyn-oHSV at very low doses, all treated tumors regressed completely. Furthermore, intra-venous administration of RRsyn-oHSV resulted in robust anti-tumor effects even against large tumors. We found that these potent anti-tumor effects of RRsyn-oHSV may be associated with the formation of long-lasting tumor cell syncytia not containing non-cancerous cells that appear to trigger death of the syncytia. These results strongly suggest that cancer patients with distant metastases could be effectively treated with our RRsyn-oHSV.
Collapse
Affiliation(s)
- Takuma Suzuki
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroaki Uchida
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoko Shibata
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasuhiko Sasaki
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hitomi Ikeda
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mika Hamada-Uematsu
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ryota Hamasaki
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Kosaku Okuda
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hideaki Tahara
- Project Division of Cancer Biomolecular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Cancer Drug Discovery and Development, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
38
|
Jahan N, Ghouse SM, Martuza RL, Rabkin SD. In Situ Cancer Vaccination and Immunovirotherapy Using Oncolytic HSV. Viruses 2021; 13:v13091740. [PMID: 34578321 PMCID: PMC8473045 DOI: 10.3390/v13091740] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus (HSV) can be genetically altered to acquire oncolytic properties so that oncolytic HSV (oHSV) preferentially replicates in and kills cancer cells, while sparing normal cells, and inducing anti-tumor immune responses. Over the last three decades, a better understanding of HSV genes and functions, and improved genetic-engineering techniques led to the development of oHSV as a novel immunovirotherapy. The concept of in situ cancer vaccination (ISCV) was first introduced when oHSV was found to induce a specific systemic anti-tumor immune response with an abscopal effect on non-injected tumors, in the process of directly killing tumor cells. Thus, the use of oHSV for tumor vaccination in situ is antigen-agnostic. The research and development of oHSVs have moved rapidly, with the field of oncolytic viruses invigorated by the FDA/EMA approval of oHSV talimogene laherparepvec in 2015 for the treatment of advanced melanoma. Immunovirotherapy can be enhanced by arming oHSV with immunomodulatory transgenes and/or using them in combination with other chemotherapeutic and immunotherapeutic agents. This review offers an overview of the development of oHSV as an agent for ISCV against solid tumors, describing the multitude of different oHSVs and their efficacy in immunocompetent mouse models and in clinical trials.
Collapse
Affiliation(s)
- Nusrat Jahan
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Shanawaz M. Ghouse
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Robert L. Martuza
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge St., CPZN-3800, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
39
|
Oncolytic HSV: Underpinnings of Tumor Susceptibility. Viruses 2021; 13:v13071408. [PMID: 34372614 PMCID: PMC8310378 DOI: 10.3390/v13071408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Oncolytic herpes simplex virus (oHSV) is a therapeutic modality that has seen substantial success for the treatment of cancer, though much remains to be improved. Commonly attenuated through the deletion or alteration of the γ134.5 neurovirulence gene, the basis for the success of oHSV relies in part on the malignant silencing of cellular pathways critical for limiting these viruses in healthy host tissue. However, only recently have the molecular mechanisms underlying the success of these treatments begun to emerge. Further clarification of these mechanisms can strengthen rational design approaches to develop the next generation of oHSV. Herein, we review our current understanding of the molecular basis for tumor susceptibility to γ134.5-attenuated oHSV, with particular focus on the malignant suppression of nucleic acid sensing, along with strategies meant to improve the clinical efficacy of these therapeutic viruses.
Collapse
|
40
|
Oncolytic Viruses for Malignant Glioma: On the Verge of Success? Viruses 2021; 13:v13071294. [PMID: 34372501 PMCID: PMC8310195 DOI: 10.3390/v13071294] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is one of the most difficult tumor types to treat with conventional therapy options like tumor debulking and chemo- and radiotherapy. Immunotherapeutic agents like oncolytic viruses, immune checkpoint inhibitors, and chimeric antigen receptor T cells have revolutionized cancer therapy, but their success in glioblastoma remains limited and further optimization of immunotherapies is needed. Several oncolytic viruses have demonstrated the ability to infect tumors and trigger anti-tumor immune responses in malignant glioma patients. Leading the pack, oncolytic herpesvirus, first in its class, awaits an approval for treating malignant glioma from MHLW, the federal authority of Japan. Nevertheless, some major hurdles like the blood–brain barrier, the immunosuppressive tumor microenvironment, and tumor heterogeneity can engender suboptimal efficacy in malignant glioma. In this review, we discuss the current status of malignant glioma therapies with a focus on oncolytic viruses in clinical trials. Furthermore, we discuss the obstacles faced by oncolytic viruses in malignant glioma patients and strategies that are being used to overcome these limitations to (1) optimize delivery of oncolytic viruses beyond the blood–brain barrier; (2) trigger inflammatory immune responses in and around tumors; and (3) use multimodal therapies in combination to tackle tumor heterogeneity, with an end goal of optimizing the therapeutic outcome of oncolytic virotherapy.
Collapse
|
41
|
Oncolytic Herpes Simplex Virus-Based Therapies for Cancer. Cells 2021; 10:cells10061541. [PMID: 34207386 PMCID: PMC8235327 DOI: 10.3390/cells10061541] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
With the increased worldwide burden of cancer, including aggressive and resistant cancers, oncolytic virotherapy has emerged as a viable therapeutic option. Oncolytic herpes simplex virus (oHSV) can be genetically engineered to target cancer cells while sparing normal cells. This leads to the direct killing of cancer cells and the activation of the host immunity to recognize and attack the tumor. Different variants of oHSV have been developed to optimize its antitumor effects. In this review, we discuss the development of oHSV, its antitumor mechanism of action and the clinical trials that have employed oHSV variants to treat different types of tumor.
Collapse
|
42
|
Bernstock JD, Hoffman SE, Chen JA, Gupta S, Kappel AD, Smith TR, Chiocca EA. The Current Landscape of Oncolytic Herpes Simplex Viruses as Novel Therapies for Brain Malignancies. Viruses 2021; 13:v13061158. [PMID: 34204248 PMCID: PMC8234451 DOI: 10.3390/v13061158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 01/02/2023] Open
Abstract
Despite advances in surgical resection and chemoradiation, high-grade brain tumors continue to be associated with significant morbidity/mortality. Novel therapeutic strategies and approaches are, therefore, desperately needed for patients and their families. Given the success experienced in treating multiple other forms of cancer, immunotherapy and, in particular, immunovirotherapy are at the forefront amongst novel therapeutic strategies that are currently under investigation for incurable brain tumors. Accordingly, herein, we provide a focused mini review of pertinent oncolytic herpes viruses (oHSV) that are being investigated in clinical trials.
Collapse
Affiliation(s)
- Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (J.D.B.); (S.E.H.); (J.A.C.); (S.G.); (A.D.K.); (T.R.S.)
| | - Samantha E. Hoffman
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (J.D.B.); (S.E.H.); (J.A.C.); (S.G.); (A.D.K.); (T.R.S.)
- Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Jason A. Chen
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (J.D.B.); (S.E.H.); (J.A.C.); (S.G.); (A.D.K.); (T.R.S.)
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (J.D.B.); (S.E.H.); (J.A.C.); (S.G.); (A.D.K.); (T.R.S.)
| | - Ari D. Kappel
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (J.D.B.); (S.E.H.); (J.A.C.); (S.G.); (A.D.K.); (T.R.S.)
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (J.D.B.); (S.E.H.); (J.A.C.); (S.G.); (A.D.K.); (T.R.S.)
- Computational Neuroscience Outcomes Center, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (J.D.B.); (S.E.H.); (J.A.C.); (S.G.); (A.D.K.); (T.R.S.)
- Correspondence:
| |
Collapse
|
43
|
Fukuhara H, Takeshima Y, Todo T. Triple-mutated oncolytic herpes virus for treating both fast- and slow-growing tumors. Cancer Sci 2021; 112:3293-3301. [PMID: 34036669 PMCID: PMC8353919 DOI: 10.1111/cas.14981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Oncolytic virus therapy has emerged as a promising treatment option against cancer. To date, oncolytic viruses have been developed for malignant tumors, but the need for this new therapeutic modality also exists for benign and slow‐growing tumors. G47∆ is an oncolytic herpes simplex virus type 1 (HSV‐1) with an enhanced replication capability highly selective to tumor cells due to genetically engineered, triple mutations in the γ34.5, ICP6 and α47 genes. To create a powerful, but safe oncolytic HSV‐1 that replicates efficiently in tumors regardless of growth speed, we used a bacterial artificial chromosome system that allows a desired promoter to regulate the expression of the ICP6 gene in the G47∆ backbone. Restoration of the ICP6 function in a tumor‐specific manner using the hTERT promoter led to a highly capable oncolytic HSV‐1. T‐hTERT was more efficacious in the slow‐growing OS‐RC‐2 and DU145 tumors than the control viruses, while retaining a high efficacy in the fast‐growing U87MG tumors. The safety features are also retained, as T‐hTERT proved safe when inoculated into the brain of HSV‐1 sensitive A/J mice. This new technology should facilitate the use of oncolytic HSV‐1 for all tumors irrespective of growth speed.
Collapse
Affiliation(s)
- Hiroshi Fukuhara
- Department of Urology, Kyorin University School of Medicine, Tokyo, Japan.,Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuta Takeshima
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Chianese A, Santella B, Ambrosino A, Stelitano D, Rinaldi L, Galdiero M, Zannella C, Franci G. Oncolytic Viruses in Combination Therapeutic Approaches with Epigenetic Modulators: Past, Present, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13112761. [PMID: 34199429 PMCID: PMC8199618 DOI: 10.3390/cancers13112761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer rates have been accelerating significantly in recent years. Despite notable advances having been made in cancer therapy, and numerous studies being currently conducted in clinical trials, research is always looking for new treatment. Novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators, including chromatin modifiers, such as DNA methyltransferase and histone deacetylases, and microRNA. Combinatorial treatments have several advantages: they enhance viral entry, replication, and spread between proximal cells and, moreover, they strengthen the immune response. In this review we summarize the main combination of therapeutic approaches, giving an insight into past, present, and future perspectives. Abstract According to the World Cancer Report, cancer rates have been increased by 50% with 15 million new cases in the year 2020. Hepatocellular carcinoma (HCC) is the only one of the most common tumors to cause a huge increase in mortality with a survival rate between 40% and 70% at 5 years, due to the high relapse and limitations associated with current therapies. Despite great progress in medicine, oncological research is always looking for new therapies: different technologies have been evaluated in clinical trials and others have been already used in clinics. Among them, oncolytic virotherapy represents a therapeutic option with a widespread possibility of approaches and applications. Oncolytic viruses are naturally occurring, or are engineered, viruses characterized by the unique features of preferentially infecting, replicating, and lysing malignant tumor cells, as well as activating the immune response. The combination of oncolytic virotherapy and chemical drugs are arousing great interest in the tumor treatment. In this scenario, novel and promising anticancer therapies comprise combinations of oncolytic viruses and epigenetic modulators or inhibitors of the signalling pathways. Combination treatments are required to improve the immune response and allow viral entry, replication, and diffusion between proximal cells. In this review, we summarize all combination therapies associated with virotherapy, including co-administered inhibitors of chromatin modifiers (combination strategies) and inserted target sites for miRNAs (recombination or arming strategies).
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Biagio Santella
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (A.A.); (D.S.); (M.G.)
- Correspondence: (C.Z.); (G.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Correspondence: (C.Z.); (G.F.)
| |
Collapse
|
45
|
Zhou Z, Tian J, Zhang W, Xiang W, Ming Y, Chen L, Zhou J. Multiple strategies to improve the therapeutic efficacy of oncolytic herpes simplex virus in the treatment of glioblastoma. Oncol Lett 2021; 22:510. [PMID: 33986870 DOI: 10.3892/ol.2021.12771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/29/2021] [Indexed: 11/06/2022] Open
Abstract
Oncolytic viruses have attracted widespread attention as biological anticancer agents that can selectively kill tumor cells without affecting normal cells. Although progress has been made in therapeutic strategies, the prognosis of patients with glioblastoma (GBM) remains poor and no ideal treatment approach has been developed. Recently, oncolytic herpes simplex virus (oHSV) has been considered a promising novel treatment approach for GBM. However, the therapeutic efficacy of oHSV in GBM, with its intricate pathophysiology, remains unsatisfactory due to several obstacles, such as limited replication and attenuated potency of oHSV owing to deletions or mutations in virulence genes, and ineffective delivery of the therapeutic virus. Multiple strategies have attempted to identify the optimal strategy for the successful clinical application of oHSV. Several preclinical trials have demonstrated that engineering novel oHSVs, developing combination therapies and improving methods for delivering oHSV to tumor cells seem to hold promise for improving the efficacy of this virotherapy.
Collapse
Affiliation(s)
- Zhengjun Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Junjie Tian
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Wenyan Zhang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Yang Ming
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, P.R. China.,Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan 646000, P.R. China
| | - Jie Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, P.R. China.,Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
46
|
Moaven O, Mangieri CW, Stauffer JA, Anastasiadis PZ, Borad MJ. Strategies to Develop Potent Oncolytic Viruses and Enhance Their Therapeutic Efficacy. JCO Precis Oncol 2021; 5:PO.21.00003. [PMID: 34250395 DOI: 10.1200/po.21.00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Despite advancements in cancer therapy that have occurred over the past several decades, successful treatment of advanced malignancies remains elusive. Substantial resources and significant efforts have been directed toward the development of novel therapeutic modalities to improve patient outcomes. Oncolytic viruses (OVs) are emerging tools with unique characteristics that have attracted great interest in developing effective anticancer treatment. The original attraction was directed toward selective replication and cell-specific toxicity, two unique features that are either inherent to the virus or could be conferred by genetic engineering. However, recent advancements in the knowledge and understanding of OVs are shifting the therapeutic paradigm toward a greater focus on their immunomodulatory role. Nonetheless, there are still significant obstacles that remain to be overcome to enhance the efficiency of OVs as effective therapeutic modalities and potentially establish them as part of standard treatment regimens. In this review, we discuss advances in the design of OVs, strategies to enhance their therapeutic efficacy, functional translation into the clinical settings, and various obstacles that are still encountered in the efforts to establish them as effective anticancer treatments.
Collapse
Affiliation(s)
- Omeed Moaven
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL
| | - Christopher W Mangieri
- Section of Surgical Oncology, Department of Surgery, Wake Forest University, Winston-Salem, NC
| | - John A Stauffer
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL
| | | | - Mitesh J Borad
- Division of Medical Oncology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| |
Collapse
|
47
|
Oncolytic Virus Therapy Alters the Secretome of Targeted Glioblastoma Cells. Cancers (Basel) 2021; 13:cancers13061287. [PMID: 33799381 PMCID: PMC7999647 DOI: 10.3390/cancers13061287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Proteins secreted by cancer cells in response to oncolytic virus anti-tumor therapy constitute the instructions for the immune cells. Yet as there are hundreds of proteins, including those encapsulated in vesicles, whose message drives the mobilization of immune cells, we aimed to decipher the instruction sent by cancer cells in response to therapy. Searching the cataloged vesicle and vesicle-free secreted proteins, we found that the proteins associated with the favorable survival of brain cancer patients were those that have the power to mobilize the immune cells. Thus, this approach established cancer-secreted contributors to the immune–therapeutic effect of the oncolytic virus. Abstract Oncolytic virus (OV) therapy, which is being tested in clinical trials for glioblastoma, targets cancer cells, while triggering immune cells. Yet OV sensitivity varies from patient to patient. As OV therapy is regarded as an anti-tumor vaccine, by making OV-infected cancer cells secrete immunogenic proteins, linking these proteins to transcriptome would provide a measuring tool to predict their sensitivity. A set of six patient-derived glioblastoma cells treated ex-vivo with herpes simplex virus type 1 (HSV1) modeled a clinical setting of OV infection. The cellular transcriptome and secreted proteome (separated into extracellular vesicles (EV) and EV-depleted fractions) were analyzed by gene microarray and mass-spectroscopy, respectively. Data validation and in silico analysis measured and correlated the secretome content with the response to infection and patient survival. Glioblastoma cells reacted to the OV infection in a seemingly dissimilar fashion, but their transcriptomes changed in the same direction. Therefore, the upregulation of transcripts encoding for secreted proteins implies a common thread in the response of cancer cells to infection. Indeed, the OV-driven secretome is linked to the immune response. While these proteins have distinct membership in either EV or EV-depleted fractions, it is their co-secretion that augments the immune response and associates with favorable patient outcomes.
Collapse
|
48
|
Nguyen HM, Saha D. The Current State of Oncolytic Herpes Simplex Virus for Glioblastoma Treatment. Oncolytic Virother 2021; 10:1-27. [PMID: 33659221 PMCID: PMC7917312 DOI: 10.2147/ov.s268426] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a lethal primary malignant brain tumor with no current effective treatments. The recent emergence of immuno-virotherapy and FDA approval of T-VEC have generated a great expectation towards oncolytic herpes simplex viruses (oHSVs) as a promising treatment option for GBM. Since the generation and testing of the first genetically engineered oHSV in glioma in the early 1990s, oHSV-based therapies have shown a long way of great progress in terms of anti-GBM efficacy and safety, both preclinically and clinically. Here, we revisit the literature to understand the recent advancement of oHSV in the treatment of GBM. In addition, we discuss current obstacles to oHSV-based therapies and possible strategies to overcome these pitfalls.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| | - Dipongkor Saha
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| |
Collapse
|
49
|
Ghose J, Dona A, Murtadha M, Gunes EG, Caserta E, Yoo JY, Russell L, Jaime-Ramirez AC, Barwick BG, Gupta VA, Sanchez JF, Sborov DW, Rosen ST, Krishnan A, Boise LH, Kaur B, Hofmeister CC, Pichiorri F. Oncolytic herpes simplex virus infects myeloma cells in vitro and in vivo. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:519-531. [PMID: 33738338 PMCID: PMC7940704 DOI: 10.1016/j.omto.2021.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022]
Abstract
Because most patients with multiple myeloma (MM) develop resistance to current regimens, novel approaches are needed. Genetically modified, replication-competent oncolytic viruses exhibit high tropism for tumor cells regardless of cancer stage and prior treatment. Receptors of oncolytic herpes simplex virus 1 (oHSV-1), NECTIN-1, and HVEM are expressed on MM cells, prompting us to investigate the use of oHSV-1 against MM. Using oHSV-1-expressing GFP, we found a dose-dependent increase in the GFP+ signal in MM cell lines and primary MM cells. Whereas NECTIN-1 expression is variable among MM cells, we discovered that HVEM is ubiquitously and highly expressed on all samples tested. Expression of HVEM was consistently higher on CD138+/CD38+ plasma cells than in non-plasma cells. HVEM blocking demonstrated the requirement of this receptor for infection. However, we observed that, although oHSV-1 could efficiently infect and kill all MM cell lines tested, no viral replication occurred. Instead, we identified that oHSV-1 induced MM cell apoptosis via caspase-3 cleavage. We further noted that oHSV-1 yielded a significant decrease in tumor volume in two mouse xenograft models. Therefore, oHSV-1 warrants exploration as a novel potentially effective treatment option in MM, and HVEM should be investigated as a possible therapeutic target.
Collapse
Affiliation(s)
- Jayeeta Ghose
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ada Dona
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Monrovia, CA 91016, USA
| | - Mariam Murtadha
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Monrovia, CA 91016, USA
| | - Emine Gulsen Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Monrovia, CA 91016, USA
| | - Enrico Caserta
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Monrovia, CA 91016, USA
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Luke Russell
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Benjamin G Barwick
- Department of Hematology & Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30307, USA
| | - Vikas A Gupta
- Department of Hematology & Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30307, USA
| | - James F Sanchez
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Monrovia, CA 91016, USA
| | - Douglas W Sborov
- Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Monrovia, CA 91016, USA
| | - Amrita Krishnan
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Monrovia, CA 91016, USA
| | - Lawrence H Boise
- Department of Hematology & Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30307, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Craig C Hofmeister
- Department of Hematology & Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30307, USA
| | - Flavia Pichiorri
- Department of Hematology and Hematopoietic Cell Transplantation, Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Monrovia, CA 91016, USA
| |
Collapse
|
50
|
Estevez-Ordonez D, Chagoya G, Salehani A, Atchley TJ, Laskay NMB, Parr MS, Elsayed GA, Mahavadi AK, Rahm SP, Friedman GK, Markert JM. Immunovirotherapy for the Treatment of Glioblastoma and Other Malignant Gliomas. Neurosurg Clin N Am 2021; 32:265-281. [PMID: 33781507 DOI: 10.1016/j.nec.2020.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) represents one of the most challenging malignancies due to many factors including invasiveness, heterogeneity, and an immunosuppressive microenvironment. Current treatment modalities have resulted in only modest effect on outcomes. The development of viral vectors for oncolytic immunovirotherapy and targeted drug delivery represents a promising therapeutic prospect for GBM and other brain tumors. A host of genetically engineered viruses, herpes simplex virus, poliovirus, measles, and others, have been described and are at various stages of clinical development. Herein we provide a review of the advances and current state of oncolytic virotherapy for the targeted treatment of GBM and malignant gliomas.
Collapse
Affiliation(s)
- Dagoberto Estevez-Ordonez
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Gustavo Chagoya
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Arsalaan Salehani
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Travis J Atchley
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Nicholas M B Laskay
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Matthew S Parr
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Galal A Elsayed
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Anil K Mahavadi
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Sage P Rahm
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA
| | - Gregory K Friedman
- Department of Neurosurgery, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA; Department of Pediatrics, Division of Pediatric Hematology-Oncology, The University of Alabama at Birmingham
| | - James M Markert
- Department of Neurosurgery, Neurosurgery, Pediatrics, and Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, 1060 Faculty Office Tower 510 20th Street South, Birmingham, AL, USA.
| |
Collapse
|